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Abstract—Android apps include third-party native libraries to
increase performance and to reuse functionality. Native code is
directly executed from apps through the Java Native Interface
or the Android Native Development Kit. Android developers
add precompiled native libraries to their projects, enabling their
use. Unfortunately, developers often struggle or simply neglect
to update these libraries in a timely manner. This results in
the continuous use of outdated native libraries with unpatched
security vulnerabilities years after patches became available.

To further understand such phenomena, we study the security
updates in native libraries in the most popular 200 free apps
on Google Play from Sept. 2013 to May 2020. A core difficulty
we face in this study is the identification of libraries and their
versions. Developers often rename or modify libraries, making
their identification challenging. We create an approach called
LibRARIAN (LibRAry veRsion IdentificAtioN) that accurately
identifies native libraries and their versions as found in Android
apps based on our novel similarity metric bin2sim . LibRARIAN
leverages different features extracted from libraries based on
their metadata and identifying strings in read-only sections.

We discovered 53/200 popular apps (26.5%) with vulnerable
versions with known CVEs between Sept. 2013 and May 2020,
with 14 of those apps remaining vulnerable. We find that app
developers took, on average, 528.71±40.20 days to apply security
patches, while library developers release a security patch after
54.59± 8.12 days—a 10 times slower rate of update.

I. INTRODUCTION

Third-party libraries are convenient, reusable, and form an
integral part of mobile apps. Developers can save time and
effort by reusing already implemented functionality. Native
third-party libraries are prevalent in Android applications
(“apps”), especially social networking and gaming apps. These
two app categories—ranked among the top categories on
Google Play—require special functionality such as 3D ren-
dering, or audio/video encoding/decoding [14], [26], [40],
[33], [38]. These tasks tend to be resource-intensive and are,
thus, often handled by native libraries to improve runtime
performance.

The ubiquity of third-party libraries in Android apps in-
creases the attack surface [35], [39] since host apps expose
vulnerabilities propagated from these libraries [20], [37]. An-
other series of previous work has studied the outdatedness and
updateability of third-party Java libraries in Android apps [9],
[4], with a focus on managed code of such apps (e.g., Java or
Dalvik code). However, these previous studies do not consider
native libraries used by Android apps.

We argue that security implications in native libraries are
even more critical for three main reasons. First, app developers
add native libraries but neglect to update them. The reasons for
this may include concerns over regressions arising from such
updates, prioritizing new functionality over security, deadline
pressures, or lack of tracking library dependencies and their
security patches. This negligence results in outdated or vul-
nerable native libraries remaining in new versions of apps.
Second, native libraries are susceptible to memory vulnerabil-
ities (e.g., buffer overflow attacks) that are straight-forward to
exploit. Third, and contrary to studies from almost 10 years
ago [11], [44], native libraries are now used pervasively in
mobile apps. To illustrate this point, we analyzed the top 200
apps from Google Play between Sept. 2013 and May 2020. We
obtained the version histories of these apps from AndroZoo [2]
totaling 7,678 versions of those 200 top free apps. From these
apps, we identified 66,684 native libraries in total with an
average of 11 libraries per app and a maximum of 141 for
one version of Instagram.

To better understand the usage of third-party native libraries
in Android apps and its security implications, we conduct
a longitudinal study to identify vulnerabilities in third-party
native libraries and assess the extent to which developers
update such libraries of their apps. In order to achieve this,
we make the following research contributions:
• We construct a novel approach, called LibRARIAN

(LibRAry veRsion IdentificAtioN) that, given an unknown
binary, identifies (i) the library it implements and (ii) its
version. Furthermore, we introduce a new similarity-scoring
mechanism for comparing native binaries called bin2sim ,
which utilizes 6 features that enable LibRARIAN to dis-
tinguish between different libraries and their versions. The
features cover both metadata and data extracted from the
libraries. These features represent elements of a library
that are likely to change between major, minor, and patch
versions of a native library.

• We conduct a large-scale, longitudinal study that tracks
security vulnerabilities in native libraries used in apps over 7
years. We build a repository of Android apps and their native
libraries with the 200 most popular free apps from Google
Play totaling 7,678 versions gathered between the dates of
Sept. 2013 and May 2020. This repository further contains
66,684 native libraries used by these 7,678 versions.
Prior work [30], [24], [21], [1] has measured the similarity
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between binaries. However, these approaches identify semantic
similarities/differences between binaries at the function-level,
with the goal of identifying malware. LibRARIAN , orthog-
onally, is a syntactic-based tool which computes similarity
between two benign binaries (at the file-level) with the goal
of identifying library versions with high scalability.

We utilize LibRARIAN and our repository to study (1)
LibRARIAN ’s accuracy and effectiveness, (2) the prevalence
of vulnerabilities in native libraries in the top 200 apps, and
(3) the rate at which app developers apply patches to address
vulnerabilities in native binaries. The major findings of our
study are as follows:
• For our ground truth dataset which contains 46 known

libraries with 904 versions, LibRARIAN correctly identifies
91.15% of those library versions, thus achieving a high
identification accuracy.

• To study the prevalence of vulnerabilities in the top 200 apps
in Google Play, we use LibRARIAN to examine 53 apps
with vulnerable versions and known CVEs between Sept.
2013 and May 2020. 14 of these apps remain vulnerable and
contain a wide-range of vulnerability types—including de-
nial of service, memory leaks, null pointer dereferences, or
divide-by-zero errors. We further find that libraries in these
apps, on average, have been outdated for 859.17 ± 137.55
days. The combination of high severity and long exposure
of these vulnerabilities results in ample opportunity for
attackers to target these highly popular apps.

• To determine developer response rate of applying security
fixes, we utilize LibRARIAN to analyze 40 apps, focusing
on popular third-party libraries (those found in more apps)
with known CVEs such as FFmpeg, GIFLib, OpenSSL,
WebP, SQLite3, OpenCV, Jpeg-turbo, Libpng, and XML2,
between Sept. 2013 and May 2020.
We find that app developers took, on average, 528.71±40.20
days to apply security patches, while library developers
release a security patch after 54.59±8.12 days—a 10 times
slower rate of update. These libraries that tend to go for
long periods without being patched affect highly popular
apps with billions of downloads and installs.

• We make our dataset, analysis platform, and results available
online to enable reusability, reproducibility, and others to
build upon our work [25].

II. LibRARIAN

Figure 1 shows the overall workflow of LibRARIAN .
LibRARIAN identifies unknown third-party native libraries
and their versions (Unknown Lib Versions) by (1) extracting
features that distinguish major, minor, and patch versions of li-
braries that are stable across platforms regardless of underlying
architecture or compilation environments; (2) comparing those
features against features from a ground-truth dataset (Known
Lib Versions) using a novel similarity metric, bin2sim; and
(3) matching against strings that identify version information
of libraries extracted from Known Lib Versions, which we
refer to as Version Identification Strings. In the remainder of

this section, we describe each of these three major steps of
LibRARIAN .

Unknown 
Lib Versions

Known Lib 
Versions

LibRAry veRsion
IdentificAtioN (LibRARIAN)

Identified 
Library 
Versions

Fig. 1: LibRARIAN identifies versions of native binaries from
Android apps by using our bin2sim similarity-scoring tech-
nique to compare known (ground-truth dataset) and unknown
versions of native binaries.

A. Feature Vector Extraction

Our binary similarity detection is based on the extraction
of features from binaries combining both metadata found
in Executable and Linkable Format (ELF) files as well as
identifying features in different binary sections of the library.
All shared libraries included in Android apps are compiled into
ELF binaries. Like other object files, ELF binaries contain a
symbol table with externally visible identifiers such as function
names, global symbols, local symbols, and imported symbols.
This symbol table is used (1) during loading and linking and
(2) by binary analysis tools [16] (e.g., objdump, readelf,
nm, pwntools, or angr [36]) to infer information about the
binary.

To distinguish between different libraries and their versions,
we need to identify differencing features. To that end, we de-
fine a set of six features inherent to versions and libraries. Five
features represent ELF metadata, these features are used to
compute the similarity score between two binaries as described
in Section II-B, hence, we refer to these features as Metadata
Features. Orthogonally, we leverage strings extracted from the
.rodata section of an ELF object, which we refer to as Version
Identification Strings. This feature complements the similarity
score from the first set of features. We either use it to verify
the correctness of the version or as a fallback if the similarity
to existing binaries in our ground-truth dataset is low (see
Section II-C).

Table I shows the list of all LibRARIAN features. The
features include: (i) five Metadata Features based on exported
and imported functions, exported and imported globals, and
library dependencies; and (ii) one Data Feature which is
applied as a second factor to either substitute the Metadata
Features, in case the reported similarity score is low, or to
confirm the reported score. These 6 features represent the
code elements of a library that would be expected to change
based on a versioning scheme that distinguishes major, minor,
and patch versions of a library. Furthermore, these features
are stable across platforms regardless of the underlying ar-
chitecture or compilation environments. We did not include
code features (e.g., control-flow and data-flow features) as they
are extremely volatile and change between compilations and
across architectures. Binary similarity matching is a hard open
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Feature
Type

Name Definition

M
et

ad
at

a Exported Globals Externally visible variables, i.e., they can be accessed externally.
Imported Globals Variables from other libraries that are used in this library.
Exported Functions Externally visible functions, i.e., functions that can be called from outside the library.
Imported Functions Functions from other libraries that are used in this library.
Dependencies The library dependencies that are automatically loaded by the ELF object

D
at

a Version Identification Strings Flexible per-library version strings (e.g., “libFoo-1.0.2” matched to strings in the .rodata
section of an ELF object)

TABLE I: List of features LibRARIAN extracts from native binaries of Android apps along with their type and definition.

problem: While recent work has made progress regarding ac-
curacy [12], [42], [30], [24], [21], [1], [19], [10], the majority
of algorithms have exponential computation cost relative to
the code size and are infeasible for large-scale studies.

We built a dataset of heuristics by inspecting the binaries in
our ground-truth dataset. We developed scripts to process the
data in the .rodata sections extracted during feature processing
and search for unique per-library strings that contain version
information. For example, FFmpeg version info is found
when applying the regex ffmpeg-([0-9]\.)*[0-9]
or FFmpeg version([0-9]\.)*[0-9]. Table II shows
our list of extracted version heuristics. Each version heuristic
can be produced automatically by constructing regular ex-
pressions from strings in .rodata sections of binaries in our
ground-truth dataset. For example, if the string “libFoo-1.0.2”
is found in version 1.0.2 of libFoo, LibRARIAN uses a regular
expression replacing the numeric suffix of the string with an
appropriate pattern (e.g., libFoo-[0-9]+(\.[0-9])*).

We deliberately exclude any metadata or identifying strings
for symbols that are volatile across architectures or build
environments like compiler version, relocation information
(and types), or debug symbols. LibRARIAN ’s accuracy results
in Section III-A2 demonstrate that our selected set of features
suffice to distinguish between different versions of libraries.

The implementation leverages angr’s [36] ELF parser which
already is platform independent. Our extraction platform re-
covers all metadata from the ELF symbol tables and, if
available, searches for string patterns in the comment and read-
only sections. Our filters remove platform specific information
and calls to standard libraries (e.g., C++ ABI calls, vectors,
or other data structures). The current implementation covers
x86-64, x86, ARM, and ARM64 binaries—which are all
platforms we observed in our evaluation. We accommodate
for architecture differences in two ways: First, we remove
architecture noise in feature vectors (e.g., symbols that are only
used in one architecture); and second, we collect, if available,
binaries for the different architectures.

The feature extraction compiles all recovered information
as a dictionary into a JSON file. The dictionary contains
arrays of strings for each of the features mentioned above plus
additional metadata to identify the library and architecture.

B. Similarity Computation

LibRARIAN ’s similarity computation, which we refer to
as bin2sim , leverages the five Metadata Features when com-
puting the similarity scores between an app binary and our

ground-truth dataset. bin2sim is based on the Jaccard coeffi-
cient, and is used to determine the similarity between feature
vectors. bin2sim allows LibRARIAN to account for addition
or removal of features between different libraries and versions.
Given two binaries b1 and b2 with respective feature vectors
FV1 and FV2, bin2sim computes the size of the intersection
of FV1 and FV2 (i.e., the number of common features) over
the size of the union of FV1 and FV2 (i.e., the number of
unique features):

bin2sim(FV1, FV2) =
| FV1 ∩ FV2 |
| FV1 ∪ FV2 |

∈ [0, 1] (1)

The similarity score is a real number between 0 and 1,
with a score of 1 indicating identical features, a score of 0
indicating no shared features between the two libraries, and a
fractional value indicating a partial match. Due to the volatility
of the similarity score, filtering noise such as platform-specific
details as mentioned in the previous section is essential for the
accuracy of our approach.

LibRARIAN counts an unknown library instance from
Unknown Lib Versions as matching a known library version
if its bin2sim is above 0.85. This threshold was determined
experimentally and works effectively as our evaluation will
demonstrate (see Section III). If bin2sim results in the same
value above the threshold for multiple known binaries, Li-
bRARIAN tries obtaining an exact match between one of the
known binaries and the unknown binary by using their hash
codes to determine the unknown binary’s version.

A low similarity score might result from modifications made
by app developers to the original third-party library which
results in the removal or addition of specific features. From
our experience, removal of features from the original library
is common among mobile developers and is likely driven by
the need to reduce the size of the library and the app as much
as possible. For example, we observed that the WebP video
codec library is often deployed without encoding functionali-
ties to reduce binary size. Some size optimization techniques
require choosing needed modules from a library and leaving
the rest, stripping the resulting binary, and modifying build
flags. Another factor that reduces similarity as measured by
the Jaccard coefficient is that certain architectures tend to
export more features as compared to others. For instance, 32-
bit architectures such as armeabi-v7a and x86 export more
features compared to arm64-v8a and x86 64.

C. Version Identification Strings
For libraries where LibRARIAN reports low similarity

scores (e.g., some libraries like RenderScript or Unity only
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Library Name Extracted Heuristics
Jpeg-turbo Jpeg-turbo version 1(\.[0-9]{1,})*
FFmpeg ffmpeg-([0-9]\.)*[0-9]|FFmpeg version ([0-9]\.)*[0-9]
Firebase Firebase C++ [0-9]+(\.[0-9])*
Libavcodec Lavc5[0-9](\.[0-9]{1,})
Libavfilter Lavf5[0-9](\.[0-9]{1,})
Libpng Libpng version 1(\.[0-9]{1,})*
Libglog glog-[0-9]+(\.[0-9])*
Libvpx WebM Project VP(.*)
OpenCV General configuration for OpenCV [0-9]+(\.[0-9])*|opencv-[0-9]+(\.[0-9])*
OpenSSL openssl-1(\.[0-9])*[a-z]|ˆOpenSSL 1(\.[0-9])*[a-z]
Speex speex-(.*)
SQLite3 ˆ3\.([0-9]{1,}\.)+[0-9]
Unity3D ([0-9]+\.)+([0-9]+)[a-z][0-9]|Expected version:(.*)
Vorbis Xiph.Org Vorbis 1.(.*)
XML2 GITv2.[0-9]+(\.[0-9])

TABLE II: Heuristics used to search for unique per-library strings that contain version information

export a single function 1), these five features fail to provide
sufficient information about the underlying components in a
library. If libraries only export one or a few functions, the
similarity metrics have a hard time distinguishing between
different libraries. We therefore extend the features with strings
that uniquely identify the library. Such strings are often ver-
sion strings. Based on extracted flexible per-library heuristics
from our ground-truth dataset (see Table II), we heuristically
identify exact library versions and increase overall accuracy.
For libraries with high similarity scores, we use these library
heuristics to confirm the correct version.

To identify binaries with low similarity scores, we leverage
Version Identification Strings, which is the set of extracted per-
library version strings. For example, say a library version lv
extracted from app a had a similarity score of 0.3 when com-
pared with OpenCV-2.4.11 using Metadata Features. Given the
low score, we search the Version Identification Strings feature
for specific keywords such as General configuration
for OpenCV *.*.* or opencv-*.*.*. Where the as-
terisk represents the versioning scheme of OpenCV library.

Our feature extraction process logs all strings (arrays of
more than 3 ASCII printable characters ending with a 0
byte) from the .rodata section alongside the other features.
As libraries commonly have large amounts of read-only string
data that frequently changes, we cannot use this data directly
as a feature (due to the low overlap resulting in low similarity).
By processing the .rodata from our ground-truth dataset and
clustering the data, we extract common version identifiers and
version strings. We then translate them into regular expressions
that allow us to match versions for different libraries.

III. EVALUATION

To assess the prevalence of vulnerable native libraries for
Android, we answer the following three research questions:
RQ1: Accuracy and effectiveness of LibRARIAN. Can Li-
bRARIAN accurately and effectively identify versions of na-
tive libraries? How does LibRARIAN compare against state-
of-the-art native-library version identification? How effective

1These libraries are “stripped” and hide all functionality internally. The
single exported function takes a string as parameter which corresponds to the
target function and they dispatch to internal functionality based on this string.

are LibRARIAN ’s feature types at identifying versions of
native libraries?
RQ2: Prevalence of outdated libraries. How prevalent are
vulnerabilities in native libraries of Android apps?
RQ3: Patch response time. After a vulnerability is reported
for a third-party library, how quickly do developers apply
patches?

To supplement the aforementioned RQs, we conducted
a detailed case study on a vulnerable app (Section III-D),
providing practical insight into vulnerabilities in third-party
libraries and possible exploits.

To answer these research questions, we analyze the top 200
apps in Google Play over several years. We track the version
history of these apps from AndroZoo [2], a large repository
of over 11 million Android apps. Our repository contains app
metadata including the app name, release dates, and native
binaries. Note that Google Play unfortunately restricts lists to
200 apps. Overall, we collected 7,678 instances, where each
instance is a version of the 200 top apps from Google Play.

We determined that 145 out of 200 (72.50%) of the distinct
apps in our repository contain at least one native library, i.e.,
5,852 out of 7,678 (76.21%) of the total apps in our database.
There are a total of 66,684 libraries in the form of .so files,
i.e., shared library files, in our repository with an average of
11 libraries per app and a maximum of 141 for one version
of Instagram. In fact, Instagram—for which we collected 184
versions since Dec. 2013—contains a total of 6,677 .so files.

We run LibRARIAN on a machine with 2 AMD EPYC
7551 32-Core CPUs and 512GB of RAM running Ubuntu
18.04. The average number of features in the extracted feature
vectors is 2,116.86 features. Some outliers such as libWaze and
libTensorflow reach up to 79,581 features. This shows that the
set of third-party native libraries in our repository is diverse,
some of them are very complex and offer a large number
of functionalities. Generating feature vectors is quick and
generally takes a few seconds per library. The most complex
library, libTensorflow takes 4 min and 38 sec to analyze.
We found that, out of 7,253 binaries for which LibRARIAN
inferred their versions, the average runtime for library version
detection is 118.19 seconds—with a minimum of 97 seconds
and a maximum of 224 seconds.
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A. RQ1: Accuracy and Effectiveness

To determine if LibRARIAN accurately and effectively
identifies native library versions from Android apps, we as-
sess LibRARIAN in three scenarios. For the first scenario,
we compare its accuracy with OSSPolice, the state-of-the-
art technique for identifying versions of native binaries for
Android apps. For the second scenario, we assess LibRARIAN
on a larger dataset for which OSSPolice could not be applied
and, thus, evaluate LibRARIAN ’s accuracy independently of
other tools. In the third scenario, we assess the effectiveness of
LibRARIAN ’s feature types at identifying versions of native
libraries.

1) Comparative Analysis: OSSPolice uses source code to
build an index that allows it to identify versions of binaries.
OSSPolice measures the similarity between strings extracted
from binaries and features found directly in source reposi-
tories. Unlike LibRARIAN , OSSPolice relies on comparing
binaries with source code, resulting in an overly large feature
space which, in turn, makes OSSPolice susceptible to falsely
identifying any binary containing a library as exactly matching
that library. For example, OSSPolice falsely identifies MuPDF
and OpenCV as matching Libpng because those two libraries
include Libpng in their source code [10].

We repeatedly contacted the OSSPolice authors to obtain
a fully-working version of their tool, but unfortunately they
did not provide us their non-public data index or sufficient
information to reproduce their setup. As a result, we performed
a comparative analysis between LibRARIAN and OSSPolice
based on the published OSSPolice numbers [10].

The ground-truth dataset in the OSSPolice evaluation con-
tains a total of 475 binaries (out of which 67 are unique)
extracted from 104 applications collected by F-Droid [13]. Li-
bRARIAN correctly identified 63/67 (94%) unique binaries in
the OSSPolice dataset, improving accuracy by 12% compared
to the accuracy reported by OSSPolice (82%) which correctly
identified 55/67 libraries. OSSPolice has lower accuracy be-
cause it misidentifies reused libraries (as described above) and
it relies on simple syntactic features (e.g., string literals and
exported functions) while our feature vectors extract additional
features—such as imported functions, exported and imported
global variables, and dependencies that uniquely identify dif-
ferent versions of binaries. These additional features were a
major factor in the superior accuracy of LibRARIAN com-
pared to OSSPolice.

LibRARIAN did not identify 4 binaries because the library
functions are dispatched from a single function and do not
contain identifying version information that was readily avail-
able. Hence, our extracted features fail to provide sufficient
information about the underlying components in the library.
Nevertheless, LibRARIAN significantly reduces the number
of binaries that need to be manually inspected.

Lastly, it is important to reiterate that these results are only
compared against the dataset used in the OSSPolice paper but
without us being able to replicate or reuse OSSPolice, due to
key elements of the tool being unavailable.

Finding 1: LibRARIAN achieves a 12% improvement in its
accuracy compared to OSSPolice on the 67 unique binaries in
OSSPolice’s dataset. Unlike OSSPolice, LibRARIAN obtains
this improvement without relying on source code, which
may not be available for all libraries and results in an
unnecessarily larger feature space.

2) Independent Accuracy: We further assess LibRARIAN ’s
accuracy on a larger and more recent set of library versions
than those found in OSSPolice’s dataset. To that end, we
manually collect a set of binaries with known libraries and
versions (Known Lib Versions in Figure 1) and compare
the inferred libraries and versions to the known ones to
determine LibRARIAN ’s accuracy. We build our dataset based
on libraries used in common Android apps.

Experiment Setup. We first manually locate the pre-built
binaries of libraries to serve as ground truth. To that end, we
use readily available auxiliary data such as keywords found in
feature vectors, binary filenames, and dependencies. Once we
identify potential targets, we retrieve the pre-built binaries of
all versions and architectures, if possible.

There are a variety of distribution channels where app
developers can obtain third-party binaries. We obtained such
binaries from official websites, GitHub, and Debian reposito-
ries. The binaries with known libraries and versions contain
46 distinct libraries with a total of 904 versions and an average
of 19 versions per library.

Results. LibRARIAN correctly identified the versions of
824/904 (91.15%) libraries in our ground truth: 553/904
(61.17%) of these library versions have unique feature vectors;
15.16% of the these libraries contain the exact version number
in the strings literals; and the remaining 14.82% of library
versions are distinguished using hash codes to break ties
between bin2sim values of binaries.

Misidentification occurs in 8.85% of library versions, where
the largest equivalence class contains 4 library versions. This
usually occurs for consecutive versions—minor or micro revi-
sions (e.g., 3.1.0 and 3.1.1). These minor or micro revisions
generally fix small bugs and do not change, add, or remove
exported symbols. Although LibRARIAN cannot pinpoint the
exact library version in this case, LibRARIAN significantly
reduces the search space for post analysis to a few candidate
versions.

Finding 2: LibRARIAN correctly identifies 824 of 904
(91.15%) library versions from 46 distinct libraries, making
it highly accurate for identifying the native libraries and
versions. For misidentified library versions, LibRARIAN
reports a slightly different version.

3) Feature Effectiveness: To assess the effectiveness of
Metadata Features, Version Identification Strings, and their
combination at inferring binaries, we computed the extent to
which each feature is capable of inferring binaries in our
repository. To that end, any binary whose library and version
can be inferred with a bin2sim above 0.85 as described
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in Section II counts as an inferred binary. We found that
37.42% of binaries in our repository are inferable by Version
Identification Strings only. 45.29% of the remaining binaries
are inferable using only the five Metadata Features mentioned
in Section II-A, while the remaining 17.29% are inferred using
both Metadata Features and Version Identification Strings.
This indicates that not all libraries have the version information
encoded directly in the strings. Having a combination of both
Metadata Features and Version Identification Strings is crucial
to increase the number of inferred binaries.

We further aimed to assess the extent to which each of the
five Metadata Features contribute to computing bin2sim in
order to assess each of their individual effectiveness. Recall
from Section II-B that our matching algorithm leverages five
features when computing the similarity scores between an
app binary and our ground-truth dataset. Table III lists these
feature along with their contribution factor, i.e., the average
percentage each one of these features contribute to the total
similarity score. To calculate the contribution factor (contribf )
of a feature f , we first calculate the similarity score taking all
five features into account (scoreall). We then calculate the
similarity score of each feature separately (scoref ). For each
feature, we find contribf = scoref/scoreall, which is the
percentage each f contributes to the total similarity score.
As shown in Table III, Exported Functions contributes the
most when computing bin2sim (Equation 1), i.e., 58.25% of
the matching features are Exported Functions, followed by
Imported Functions contributing 32.98%, Dependencies, Ex-
ported Globals, and finally Imported Globals contributing less
overall. Still, these five features sometimes manage to uniquely
identify a library and are therefore included as they, overall,
improve the similarity score. Recall that Version Identification
Strings is not taken into account when computing the similarity
score between binaries.

Finding 3: 37.42% of binaries are inferable using Version
Identification Strings, 45.29% are inferable using Metadata
Features, and 17.29% are inferable using both feature types.
Exported Functions and Imported Functions account for
the overwhelming majority of effectiveness of Metadata
Features, contributing 58.25% and 32.98%, respectively.

Feature
Type

Name Contribution
Factor

M
et

ad
at

a Exported Globals 3.32%
Imported Globals 1.06%
Exported Functions 58.25%
Imported Functions 32.98%
Dependencies 4.39%

TABLE III: List of features bin2sim extracted from native
binaries of Android apps along with their type and overall
contribution factor, which measures the average percentage
each feature contributes to the total similarity score

B. RQ2: Prevalence of Vulnerable Libraries

To study the prevalence of vulnerabilities in native libraries,
we need to identify their exact versions. To that end, we

leverage LibRARIAN to identify potential library versions
from our repository. Once the versions are identified, we
investigate the extent to which native libraries of Android apps
are vulnerable and remain vulnerable.

Experiment Setup. We infer the correct version of 7,253 bi-
naries (10.87% of the total binaries in our Android repository)
using LibRARIAN . Due to the highly time-consuming nature
of the manual collection of ground-truth binaries, we limit
ourselves to libraries that (i) are found in a greater number
of apps (more than 10 apps) and (ii) have known CVEs. As a
result, an overwhelming majority of the remaining binaries
in our dataset have either no known CVEs or affect very
few apps, making them an unsuitable choice for applying an
expensive manual analysis for studying this research question.

Results. We found that, out of 7,253 binaries for which
we inferred their versions, 3,674 were vulnerable libraries
(50.65%) affecting 53/200 distinct apps. 14 new releases of
these distinct apps remain vulnerable at the time of sub-
mission. The complete list of libraries with reported CVEs
between Sept. 2013 and the writing of this paper can be found
in Table IV. As for the number of apps affected by vulnerable
libraries, our results show that 53 distinct apps have been
affected by a minimum of 1 vulnerable library and a maximum
of 16 vulnerable libraries covering dates between Sept 2013
and May 2020.

Finding 4: 53 of the 200 top apps on Google Play (26.5%)
were plagued by a vulnerable library over approximately six
years and 8 months (i.e., between Sept. 2013 and May 2020).
14 of those apps still include a vulnerable binary, i.e., 7%
of the top 200 apps on Google Play, even at the time at
which we collected apps for this study and are, on average,
outdated by 859.17 ± 137.55 days. As a result, vulnerable
native libraries play a substantial role in exposing popular
Android apps to known vulnerabilities.

We emailed app developers since February 2020 to inform
them that their apps continue to use a vulnerable library. We
urged them to take an action (i.e., remove or replace such
libraries) or at least provide some justification as to why such
libraries are not updated. Our investigation is ongoing. While
several app developers already updated their apps to remove
the vulnerable library, many updates are still outstanding.
Some of the replies we received simply blame other library
developers. For example, we heard back from Discord that the
vulnerable lib is a dependency of another third-party library
used in Discord (Fresco): “Until Fresco fixes this, however,
we are not able to address this in our app”.

Four libraries were particularly prevalent in terms of the
number of vulnerable versions they contain (i.e., OpenSSL),
the number of apps they affect (i.e., OpenCV and GIFLib),
or the length of time during which the library remained vul-
nerable (i.e., XML2 in Microsoft XBox SmartGlass). OpenSSL
has the largest number of vulnerable versions (22 in total)
included in 13 distinct apps. 3 apps: Amazon Alexa, Facebook
Messenger and Norton Secure VPN still include vulnerable
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Lib Name No. Vul
Lib Vers

Vul Lib Vers No. Apps No. Apps
Still Vul

OpenCV 5 2.4.1, 2.4.11, 2.4.13, 3.1.0, 3.4.1 21 7
WebP 3 0.3.1, 0.4.2, 0.4.3 11 1
GIFLib 2 5.1.1, 5.1.4 15 1
FFmpeg 9 2.8, 2.8.7, 3.0.1, 3.0.3, 3.2, 3.3.2, 3.3.4, 3.4, 4.0.2 8 1
Libavcodec 9 55.39.101, 55.52.102, 56.1.100, 56.60.100, 57.107.100, 57.17.100, 57.24.102,

57.64.100, 57.89.100
10 0

Libavformat 3 55.19.104, 56.40.101, 57.71.100 3 0
Libavfilter 3 3.90.100, 4.2.100, 5.1.100 1 0
Libavutil 3 52.48.101, 52.66.100, 54.20.100 2 0
Libswscale 3 2.5.101, 3.0.100, 4.0.100 5 1
Libswresample 2 0.17.104, 1.1.100 1 0
SQlite3 7 3.11.0, 3.15.2, 3.20.1, 3.26.0, 3.27.2, 3.28.0, 3.8.10.2 7 2
XML2 1 2.7.7 3 1
OpenSSL 22 1.0.0a, 1.0.1c, 1.0.1e, 1.0.1h, 1.0.1i, 1.0.1p, 1.0.1s, 1.0.2a, 1.0.2f, 1.0.2g, 1.0.2h, 1.0.2j,

1.0.2k, 1.0.2m, 1.0.2o, 1.0.2p, 1.0.2r, 1.1.0, 1.1.0g, 1.1.0h, 1.1.0i, 1.1.1b
13 3

Jpeg-turbo 2 1.5.1, 1.5.2 3 0
Libpng 7 1.6.10, 1.6.17, 1.6.24, 1.6.34, 1.6.37, 1.6.7, 1.6.8 5 1

TABLE IV: A list of libraries with reported CVEs found in our repository along with the number of distinct apps that were
affected by a vulnerable library and the number of distinct apps containing a vulnerable version till now.

versions of OpenSSL.
OpenCV and GIFLib affect the most apps. OpenCV has

the largest number of affected apps with a total of 21 apps
where 7 recent apps still have a vulnerable instance of
OpenCV. Most applications do not include OpenCV directly
but indirectly through the dependencies of card.io which
enables card payment processing but comes with the two
outdated versions (2.4.11 and 2.4.13) of both opencv_core
and opencv_imgproc. Following OpenCV in the number
of affected apps is GIFLib, which has two vulnerable versions
found in a total of 15 distinct apps, 1 app is still affected.

One vulnerable version of XML2 (2.7.7) was found in 35
versions of Microsoft XBox SmartGlass and the library was
not updated for 6 years—still remaining vulnerable up to the
writing of this paper. This particular case is notable due to the
extremely long amount of time the library had been vulnerable
and remained vulnerable.

To examine the affects of vulnerable libraries on apps
further, we list popular apps and the reported CVEs they
expose their users to. Table V shows 10 out of 14 popular
apps that are using at least one library with a reported CVE at
the time of our app collection. We discuss four of these apps
in more detail in the remainder of this section.

Facebook Messenger, which has a download base of over
500M (the largest in this list), contains OpenSSL-1.1.0, which
is vulnerable since Sept. 2016. This vulnerable library contains
multiple memory leaks which allows an attacker to cause
a denial of service (memory consumption) by sending large
OCSP (Online Certificate Status Protocol) request extensions.

Amazon Kindle, an app that provides access to an electronic
library of books—with a total of more than 100M installs,
uses two vulnerable libraries: XML2-2.7.7 and Libpng-1.6.7.
XML2-2.7.7 contains a variant of the “billion laughs” vulnera-
bility which allows attackers to craft an XML document with
a large number of nested entries that results in a denial of
service attack. XML2-2.7.7 is vulnerable since Nov. 2014 and
continues to be used in recent versions of the app. Libpng-
1.6.7 has a NULL pointer dereference vulnerability. This

vulnerability was published 6 years ago under CVE-2013-6954
and it remains unchanged in recent releases of Amazon Kindle.

DoorDash, a food delivery app with more than 10M installs
includes GIFLib-5.1.4 which was reported vulnerable over 8
months ago. A malformed GIF file triggers a division-by-zero
exception in the DGifSlurp function in GIFLib versions prior
to 5.1.6. This vulnerable library remains unchanged up to now.

Target uses OpenCV-2.4.11 as a dependency of card.io
which enables card payment processing. This version of
OpenCV was announced vulnerable in Aug. 2017 yet remains
unchanged in these apps.

App Name Vulnerable Libs No.
Installs

Amazon Alexa OpenSSL-1.0.2p, SQlite3-3.27.2 10M+
Amazon Kindle Libpng-1.6.7, XML2-2.7.7 100M+
Amazon Music FFmpeg-4.0.2 100M+
DoorDash GIFLib-5.1.4 10M+
Facebook Messenger OpenSSL-1.1.0 500M+
Grubhub OpenCV-2.4.1 10M+
Sam’s Club OpenCV-2.4.1 10M+
SUBWAY OpenCV-2.4.1 5M+
Norton Secure VPN OpenSSL-1.1.1b 10M+
Target OpenCV-2.4.11 10M+

TABLE V: 10 out of 14 popular apps from Google Play which
include a vulnerable library that remained unchanged.

Finding 5: These four apps showcase that these vulnerabil-
ities are wide-ranging involving denial of service, memory
leaks, or null pointer dereferences. The high severity and
long exposure time of these vulnerabilities results in ample
opportunity for attackers to target these highly popular apps.

C. RQ3: Rate of Vulnerable Library Fixing

To determine the vulnerability response rate, we identify the
duration between (1) the release time of a security update and
(2) the time at which app developers applied a fix either by (i)
updating to a new library version or (ii) completely removing
a vulnerable library. Recall that we collected the previous
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versions of the top 200 apps from Google Play. Moreover,
we inferred the library versions from 7,253 libraries using
LibRARIAN . Given the histories of apps and inferred library
versions we can track the library life span per app—i.e., the
time at which a library is added to an app and when it is either
removed or updated to a new version in the app.

To this end, we analyzed 40 popular apps with known
vulnerable versions of FFmpeg, GIFLib, OpenSSL, WebP,
SQLite3, OpenCV, Jpeg-turbo, Libpng, and XML2, between
Sept. 2013 and May 2020. We exclude apps that removed
a library before a CVE was associated with it and apps
containing libraries that are vulnerable up to the writing of this
paper. We obtained the date at which a library vulnerability
was found; when a security patch was made available for
the library; and the time at which either the library was
updated to a new version or removed. Table VI shows all the
combinations of apps and vulnerable libraries.

Finding 6: On average, library developers release a security
patch after 54.59 ± 8.12 days from a reported CVE. App
developers apply these patches, on average, after 528.71 ±
40.20 days from the date an update was made available—
which is about 10 times slower than the rate at which library
developers release security patches.

Finding 6 reveals that many popular Android apps expose
end-users to long vulnerability periods, especially considering
that library developers released fixed versions much sooner.
This extreme lag between release of a security patch for a
library and the time at which an app developer updates to the
patched libraries, or just eliminates the library, indicates that,
at best, it is (1) highly challenging for developers to update
these kinds of libraries or, less charitably, (2) app developers
are highly negligent of such libraries.

App Name Vul Lib Version Vul
Announced

TTRP
(Days)

TTAF
(Days)

Xbox XML2-2.7.7 2014-11-04 12 1956
Apple Music XML2-2.7.7 2014-11-04 12 1704
TikTok GIFLib-5.1.1 2015-12-21 87 1429
Zoom Meetings OpenSSL-1.0.0a 2010-08-17 91 1323
Amazon Alexa OpenSSL-1.0.1s 2016-05-04 12 1086
Amazon Kindle Libpng-1.6.34 2017-01-30 330 1019
StarMaker FFmpeg-3.2 2016-12-23 4 1001
eBay OpenCV-2.4.13 2017-08-06 41 905
Fitbit SQlite3-3.20.1 2017-10-12 12 902
Uber OpenCV-2.4.13 2017-08-06 41 830
Snapchat SQlite3-3.20.1 2017-10-12 12 670
Discord GIFLib-5.1.1 2015-12-21 87 665
Lyft OpenCV-2.4.11 2017-08-06 41 662
Twitter GIFLib-5.1.1 2015-12-21 87 457
Instagram FFmpeg-2.8.0 2017-01-23 2 267

TABLE VI: Combinations of 15 apps and particular vulnerable
library versions they have contained, the date the vulnerability
was publicly disclosed (Vul announced), the period between
vulnerability disclosure and patch availability in days (i.e.
Time-to-Release-Patch (TTRP)), and the total number of days
elapsed before a fix was made (i.e. Time-to-Apply-Fix (TTAF))

Developers applied security patches for vulnerable libraries
at a rate as slow as 5.4 years, in the case of Xbox, and as
fast as 267 days for Instagram, where a vulnerable version
of FFmpeg was removed in that amount of time. In order to
determine what type of fix was applied by a developer, we
checked the next app version where a vulnerable library was
last seen. We found that developers either kept the library but
updated to a new version, removed a vulnerable version, or
removed all native libraries in an app. In the next paragraphs,
we discuss five popular native libraries used in Android apps
that exhibit particularly slow fix rates: FFmpeg, OpenSSL,
GIFLib, OpenCV, and SQLite3.

Multiple vulnerabilities were found in versions 2.8 and
3.2 of FFmpeg in Dec. 2016 and Jan. 2017, respectively.
The number of days a security patch was released for these
vulnerable library versions is 4 and 2 days, respectively.
However, developers took 267 days to address vulnerabilities
in Instagram, and nearly 3 years to apply a fix in Starmaker.

OpenSSL-1.0.0a and OpenSSL-1.0.1s were associated with
CVE-2010-2939 and CVE-2016-2105 in Aug. 2010, and May
2016 of which OpenSSL developers provided a security patch
91 and 12 days after. However, developers of Zoom took 1,323
days to apply a fix, while developers of Amazon Alexa took
1,086 days.

A heap-based buffer overflow was reported in GIFLib-5.1.1
at the end of 2015. The results show that 3 apps using this
vulnerable version of GIFLib have an average time-to-fix, i.e.,
total number of days elapsed before a fix was applied, of
850.33 days (2.3 years), which is 10 times slower. This lag
time is particularly concerning since GIFLib released a fix 87
days after the vulnerable version.

A fix to an out-of-bounds read error that was affecting
OpenCV through version 3.3 was released 41 days after the
CVE was published. The vulnerable versions of this library
affects 3 apps in total: Uber, Lyft, and eBay. OpenCV has
an average time-to-fix of 799 days (i.e., 2 years), which is
19 times slower than the rate at which library developers of
OpenCV release security patches.

SQLite3 released version 3.26.0, which fixes an integer
overflow found in all versions prior to 3.25.3. Snapchat and
Fitbit removed a vulnerable version of SQLite-3.20.1 library
786 days later.

Finding 7: The results for these five popular native libraries
in Android apps show that it often takes years for app devel-
opers to update to new library versions—even if the existing
version contains severe security or privacy vulnerabilities—
placing millions of users at major risk.

To further understand the consequences of outdated vulner-
able libraries, we calculated the average time-to-fix across all
vulnerable libraries per app. Table VII lists the top 10 apps
with the most number of days a vulnerable library remained
in an app until a fix for the vulnerability was applied. Apple
Music had the longest lag between the vulnerable library being
introduced and fixed, i.e., 4.66 years. Uber was the fastest
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App Name Time-to-Apply-Fix
(Days)

No. Installs

Apple Music 1704.00 50M+
Amazon Kindle 1019.00 100M+
eBay 905.00 100M+
Fitbit 902.00 10M+
Snapchat 844.00 1,000M+
Xbox 763.67 50M+
ZOOM Meetings 668.33 100M+
Lyft 662.00 10M+
Amazon Alexa 605.50 10M+
Uber 588.50 500M+

TABLE VII: Top 10 most negligent apps in terms of the
average time to fix a vulnerable library

at almost 589 days. Individual apps had as few as over 10
million installs and as many as over a billion installs. Among
the social-media apps, Snapchat, which has over 1 billion
downloads and the largest number of installs among the top
10 apps in Table VII, fixed its vulnerable libraries after 844
days. These very long times to fix vulnerable libraries in
highly popular social-media apps places billions of users at
high security risk.

Finding 8: The most neglected apps in terms of time to
fix vulnerable native libraries range from 588.50 days to
nearly five years, affecting billions of users and leaving them
at substantial risk of having those libraries exploited. This
finding emphasizes the need for future research to provide
developers with mechanisms for speeding up this very slow
fix rate.

Table VIII lists the top 10 most neglected vulnerable li-
braries across all apps. XML2 is the most neglected library with
an average time-to-fix of 5 years; WebP is the least neglected
library with an average time-to-fix of 213.40 days. Among
these 10 libraries, the fact that it takes app developers 431.81
days, on average, to update vulnerable versions of OpenSSL
is particularly concerning due to its security-critical nature.

Lib Name Time-to-Apply-Fix
(Days)

Genre

XML2 1830.00 XML parser
Libpng 923.20 Codec
Jpeg-turbo 841.67 Codec
FFmpeg 720.90 Multimedia framework
OpenCV 635.27 Computer Vision
OpenSSL 431.81 Network
GIFLib 421.06 Graphis
SQlite3 369.29 RDBMS
WebP 213.40 Codec

TABLE VIII: Top 10 most neglected vulnerable libraries in
terms of the average time-to-fix

Finding 9: Future research should focus on these highly
neglected libraries as experimental subjects for determining
methods to ease the burden of updating these libraries;
running regression tests to ensure these updates do not

introduce new errors; and repairing those errors, possibly
automatically, when they do arise.

D. Exploitability Case Study

To demonstrate the exploitability of unpatched vulnera-
bilities in third party apps, we carry out a targeted case
study where we analyze individual applications and create a
proof-of-concept (PoC) exploit. Our PoC highlights how these
unpatched vulnerabilities can be exploited by third parties
when interacting with the apps.

XRecoder allows users to capture screen videos, screen
shots, and record video calls. Furthermore, XRecoder provides
video editing functionalities, enabling users to trim videos
and change their speed. This application uses FFmpeg, an
open-source video encoding framework that provides video
and audio editing, format transcoding, video scaling and post-
production effects.

XRecoder embeds the FFmpeg library version 3.1.11,
which is vulnerable to CVE-2018-14394 (reported in
July 2018). FFmpeg-3.1.11 contains a vulnerable function
(ff mov write packet) that may result in a division-by-zero
error if provided with an empty input packet. Hence, an
attacker can craft a WaveForm audio to cause denial of service.

To assess whether this vulnerable function is reachable in
XRecoder, we used Radare2 [34] to replace the first instruction
in the vulnerable function with an interrupt instruction. We run
the application after the latter modification which consequently
resulted in an app crash, i.e., allowing us to trigger the
vulnerability consistently.
ff_mov_write_packet is called by multiple func-

tions across two different binaries (FFmpeg-3.1.11.so and
the app-specific libisvideo.so) and two different platforms
(Dalvik and Native). av_buffersink_get_frame, one
of the ancestors of ff_mov_write_packet, is called by
nativeGenerateWaveFormData from the Dalvik-side.

IV. DISCUSSION:

Findings in RQ2 (Section III-B) demonstrate that out of
7,253 binaries for which we inferred their versions, 3,674
were vulnerable libraries (50.65%) affecting 53 distinct apps
between Sept. 2013 and May 2020. This constitutes about
26.5% of the top 200 apps on Google Play. More alarmingly,
new releases of 14 distinct apps remain vulnerable even at
the time at which we collected apps for this study with an
average outdatedness of 859.17±137.55 days. While we have
informed app developers about the outdated libraries in their
apps, one interesting piece of follow-up work based on this
result is surveying Android app developers to determine the
reason for this extremely slow rate of fixing vulnerable native
libraries in their apps. Such a study can further assess what
forms of support app developers would need to truly reduce
this slow rate of updating vulnerable library versions to ones
with security patches.

For RQ3 (Section III-C), we analyzed the speed at which
developers updated their apps to patched libraries and found
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that, on average, library developers release a security patch
after 54.59 ± 8.12 days from a reported CVE. While app
developers apply these patches on average after 528.71±41.20
days from the date an update was made available (10 times
slower). Recall that we only consider apps in these cases that
actually ended up fixing vulnerable native libraries. The results
for RQ2 and RQ3 corroborate the need to make app developers
aware of the severe risks they are exposing their users to by
utilizing vulnerable native libraries.

Overall, our results demonstrate the degree to which native
libraries are neglected in terms of leaving them vulnerable. Un-
fortunately, our findings indicate that the degree of negligence
of native libraries is severe, while popular apps on Google Play
use native libraries extensively with 145 out of 200 top free
apps (72.50%). Interesting future work for our study includes
uncovering the root causes of such negligence and means
of aiding developers to quickly update their native libraries.
For example, platform providers (e.g., Google) could provide
mechanisms to automatically update native libraries while also
testing for regressions and possibly automatically repairing
them. Such an idea is similar to how Debian’s repositories cen-
trally manage libraries and dependencies between applications
and libraries. Whenever a library is updated, only the patched
library is updated, the applications remain the same. The
Android system would highly profit from a similar approach
of central dependency and vulnerability management.

V. THREATS TO VALIDITY

External validity. The primary external threat to validity
involves the generalizability of the data set collection and
the selection methodology. Recent changes in Google Play
limited the length of the “top-apps” list to 200 items. Despite
the restrictions imposed by Google Play (limiting our analysis
to the top-200 apps), these apps (1) account for the bulk of
downloads and the largest user base on Google Play and (2) are
generalizable to popular apps, thus having the largest impact.

The results from RQ1 show that LibRARIAN detects ver-
sions of native libraries with high accuracy (91.15%). The
need to compare against binaries with a known number of
versions and libraries (i.e., Known Lib Versions in Figure 1)
limits LibRARIAN . Specifically, misidentification of a library
or its version might occur when an unknown binary for which
we are trying to identify a library and version does not exist
in Known Lib Versions. In these cases, LibRARIAN identifies
the unknown binary as being the library and version closest
to it according to bin2sim that exists in Known Lib Versions.
One possible way of enhancing LibRARIAN in such cases is
to leverage supervised machine learning, which may, at least,
be able to identify if the library is most likely an unknown
major, minor, or patch version of a known library.

Internal validity. One internal threat is the accuracy of
timestamps in AndroZoo and its effect on the reported patch
life cycle findings. To mitigate this threat, we collected Andro-
Zoo timestamps over three months and correlated updates with
Google Play. We verified that AndroZoo has a maximum lag
of 9 days. This short delay is much smaller than the update

frequency of vulnerable apps. Furthermore, we verified that
using dates added to AndroZoo and version codes give us
reliable timestamps for earlier time periods.

Construct validity. One threat to construct validity is the
labeling of the libraries in our repository as vulnerable or not.
To mitigate this threat, we relied on the vulnerabilities reported
by the Common Vulnerabilities and Exposures database [7]
which contains a list of publicly known security vulnerabilities
along with a description of each vulnerability.

We conducted an exploitability case study of one vul-
nerable library in an app Section III-D. For the remaining
set of discovered vulnerable libraries/apps, we verified that
vulnerable native functions are exported and that the library
is loaded from the app/Dalvik-side. Performing a complete
analysis of exploitable/reachable native functions in Android
is an interesting but orthogonal research problem. Building a
cross-language control-flow/data-flow analysis to assess reach-
ability of vulnerable native code from the Dalvik code of an
Android app is an open research problem, worthy of a separate
research paper: (1) recovering a binary CFG/DFG is currently
unsound, based on heuristics, and runs into state explosion
and (2) conducting an exploitability study of all vulnerable
libraries/apps across our entire dataset is infeasible due to the
large amount of apps/libraries.

Another threat to validity is the possibility of developers
manually patching security vulnerabilities. To mitigate this
threat to validity, we checked the versions identified by Li-
bRARIAN and found that LibRARIAN correctly identifies an
overwhelming majority of patch-level versions (61.21%). For
the patch-level versions that LibRARIAN cannot distinguish
as effectively, LibRARIAN makes manual identification much
easier, by significantly reducing the search space for post
analysis to only 3-4 candidate versions. Furthermore, based
on the results of our dataset, we believe that app developers
are unlikely to manually patch a library they do not maintain
given that it already takes years for these developers to simply
update a library version.

VI. RELATED WORK

A series of work has demonstrated the importance of third-
party libraries for managed code of Android apps (i.e., Dalvik
code) and their security effects and implications [9], [4].
Derr et al. [9] investigated the outdatedness of libraries in
Android apps by conducting a survey with more than 200 app
developers. They reported that a substantial number of apps
use outdated libraries and that almost 98% of 17K actively
used library versions have known security vulnerabilities.
Backes et al. [4] report, for managed code-level libraries, that
app developers are slow to update to new library versions—
discovering that two long-known security vulnerabilities re-
mained present in top apps during the time of their study.
None of these studies examined native third-party libraries
in Android apps nor did they look at the security impact of
vulnerable libraries or whether these vulnerabilities are on the
attack surface. LibRARIAN now explores the attack surface of
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native libraries, closing this important gap and calling platform
providers to action.

A wide variety of approaches have emerged that identify
third-party libraries with a focus on managed code. These
approaches employ different mechanisms to detect third-party
libraries within code including white-listing package names
[17], [5]; supervised machine learning [32], [27]; and code
clustering [41], [28], [23]. LibScout [4] proposed a different
technique to detect libraries using normalized classes as a
feature that provides obfuscation resiliency.

Some techniques identify vulnerabilities in native libraries
by computing a similarity score between binaries with
known vulnerabilities and target binaries of interest [15][12].
VulSeeker [15] matches binaries with known vulnerabilities
using control-flow graphs and machine learning. Similarly,
discovRE [12] and BinXray [42] matches binaries at the
function level. Other techniques employ a hybrid technique
such as BinSim[30], Mobilefinder[24], BinMatch[21], and
DroidNative [1]. These approaches identify semantic similari-
ties/differences between functions in binaries based on execu-
tion traces for the purpose of analyzing/identifying malware.
Unlike these tools, LibRARIAN focuses on benign libraries
with the goal of identifying their versions with high scalability.

Binary Analysis Tool (BAT) [19] and OSSPolice [10]
measure similarity between strings extracted from binaries
and features found directly in source repositories. Unlike
LibRARIAN , these approaches compare source code with
binaries, which introduces the issue of internal clones (i.e.,
third-party library source code that is reused in the source
code of another library). BAT and OSSPolice rely on simple
syntactic features (e.g., string literals and exported functions).
OSSPolice cannot detect internal code clones, while LibRAR-
IAN can, giving it superior ability to identify versions of
native libraries. Furthermore, BAT does not detect versions
of binaries and was shown to have inferior accuracy for
computing binary similarity compared to OSSPolice. Unlike
these tools, LibRARIAN extracts additional features—such as
imported functions, exported and imported global variables,
and dependencies that uniquely identify different versions of
binaries. As shown in Section III-A1, these additional features
were a major factor in the superior accuracy of LibRARIAN
compared to OSSPolice.

Other related empirical research studies the prevalence of
vulnerable dependencies in open source projects [6], vulner-
abilities in WebAssembly binaries [22], or investigates the
updatability of ad libraries in Android Apps [31]. Other work
such as [18], [43] present third party library recommendation
tools for mobile apps.

Despite the existence of much previous work on surviv-
ability of vulnerabilities in Android apps/libraries, such work
has not conducted a large-scale longitudinal study of native
third-party libraries as we did in this paper. Moreover, the
survivability of vulnerabilities in non-native libraries are sig-
nificantly shorter compared to those reported in our results.
While survivability of vulnerabilities in native Android apps
took, on average, 528.71±40.20 days in our study, prior work

[3], [29] shows that survival times of vulnerabilities in Python
and Javascript are 100 days and 365 days, respectively. 50%
of vulnerabilities in npm packages were fixed within a month,
75% were fixed within 6 months only [8].

None of this aforementioned related work has examined
the prevalence of security vulnerabilities in Android’s native
libraries or the time-to-fix for vulnerable versions of such
libraries. As a result, our work covers a critical attack vector
that has been ignored in existing research.

VII. CONCLUSION

Third-party libraries have become ubiquitous among pop-
ular apps in the official Android market, Google Play, with
145 out of the 200 top free apps on Google Play (72.50%)
containing native libraries. These libraries are particularly
beneficial for handling CPU-intensive tasks and for reusing
existing code in general. Unfortunately, the pervasiveness of
native third-party libraries in Android apps expose end users
to a large set of unpatched security vulnerabilities.

To determine the extent to which these native libraries
remain vulnerable in Android apps, we study the prevalence
of native libraries in the top 200 apps on Google Play
across 7,253 versions of those apps. From these versions,
we extracted 66,684 native libraries. To identify versions of
libraries, we constructed an approach called LibRARIAN that
leverages a novel similarity metric, bin2sim , that is capable of
identifying versions of native libraries with a high accuracy—a
91.15% correct identification rate.

For vulnerabilities, we found 53 apps with vulnerable ver-
sions with known CVEs between Sept. 2013 and May 2020,
with 14 of those apps still remaining vulnerable until the
end point of our study. We find that app developers took, on
average, 528.71± 40.20 days to apply security patches, while
library developers release a security patch after 54.59 ± 8.12
days—a 10 times slower rate of update.

VIII. DATA AVAILABILITY

Our dataset, analysis platform, and results are available
online [25] for reusability and reproducibility purposes.
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