- 1 Comparative genomics reveals insight into the evolutionary origin of massively
- 2 scrambled genomes.

3

- 4 Yi Feng¹, Rafik Neme^{1,2}, Leslie Y. Beh¹, Xiao Chen³, Jasper Braun^{4,5}, Michael Lu¹, Laura F.
- 5 Landweber^{1*}

6

- 7 1. Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia
- 8 University, New York, NY 10032, USA
- 9 2. Current affiliation: Department of Chemistry and Biology, Universidad del Norte, Barranquilla,
- 10 Colombia
- 3. Pacific Biosciences, Menlo Park, CA 94025, USA
- 12 4. Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
- 5. Current affiliation: Division of Clinical Pathology, Department of Pathology, Beth Israel
- 14 Deaconess Medical Center, Boston, MA 02215, USA

15

16

- 17 *Author for Correspondence: Laura F. Landweber, Departments of Biochemistry and Molecular
- 18 Biophysics and Biological Sciences, Columbia University, New York, NY, USA, 212-305-3898,
- 19 Laura.Landweber@columbia.edu

20

- 21 **Keywords**: genome rearrangement, *de novo* genome assembly, transposable elements (TEs),
- ciliate, scrambled gene, comparative genomics, evolution

23

Abstract

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Ciliates are microbial eukaryotes that undergo extensive programmed genome rearrangement, a natural genome editing process that converts long germline chromosomes into smaller gene-rich somatic chromosomes. Three well-studied ciliates include Oxytricha trifallax, Tetrahymena thermophila and Paramecium tetraurelia, but only the Oxytricha lineage has a massively scrambled genome, whose assembly during development requires hundreds of thousands of precise programmed DNA joining events, representing the most complex genome dynamics of any known organism. Here we study the emergence of such complex genomes by examining the origin and evolution of discontinuous and scrambled genes in the Oxytricha lineage. This study compares six genomes from three species, the germline and somatic genomes for Euplotes woodruffi, Tetmemena sp., and the model ciliate Oxytricha trifallax. To complement existing data, we sequenced, assembled and annotated the germline and somatic genomes of Euplotes woodruffi, which provides an outgroup, and the germline genome of Tetmemena sp... We find that the germline genome of *Tetmemena* is as massively scrambled and interrupted as Oxytricha's: 13.6% of its gene loci require programmed translocations and/or inversions, with some genes requiring hundreds of precise gene editing events during development. This study revealed that the earlier-diverged spirotrich, E. woodruffi, also has a scrambled genome, but only roughly half as many loci (7.3%) are scrambled. Furthermore, its scrambled genes are less complex, together supporting the position of *Euplotes* as a possible evolutionary intermediate in this lineage, in the process of accumulating complex evolutionary genome rearrangements, all of which require extensive repair to assemble functional coding regions. Comparative analysis also reveals that scrambled loci are often associated with local duplications, supporting a gradual model for the origin of complex, scrambled genomes via many small events of DNA duplication and decay.

Introduction

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Organisms do not always contain a single, static genome. Programmed genome editing is a naturally occurring and essential part of development in many organisms, including ciliates (1), nematodes (2), lampreys (3) and zebra finches (4). Most of these events involve precise removal and rejoining of large regions of DNA during postzygotic differentiation of a somatic genome from a germline genome. Ciliates are microbial eukaryotes with two types of nuclei: a somatic macronucleus (MAC) that differentiates from a germline micronucleus (MIC). In the model ciliate Oxytricha, the MAC is entirely active chromatin (5), and the hub of transcription. The three species that we compare are all spirotrichs, which have gene-sized "nanochromosomes" in the MAC, present at high copy number (6, 7, 8, 9, 10, 11). The diploid MIC participates in sexual reproduction, but its megabase-sized chromosomes are mostly transcriptionally silent. Gene loci are often arranged discontinuously in the MIC, with short genic segments called Macronuclear Destined Sequences (MDSs), interrupted by stretches of non-coding DNA called Internally Eliminated Sequences (IESs) (Figure 1A). During sexual development, a new MAC genome rearranges from a copy of the zygotic MIC genome. MDSs join in the correct order and orientation, whereas MIC-limited genomic regions undergo programmed deletion, including repetitive elements, intergenic regions and IESs (Figure 1A). Though analogous to intron splicing, these events occur on DNA. The MDSs for some MAC chromosomes are scrambled if they require translocation or inversion during MAC development (Figure 1A). Pairs of short repeats, called *pointers*, are present at MDS-IES junctions in both scrambled and nonscrambled loci (12, 13). Pointer sequences are present twice in the MIC, at the end of MDS nand the beginning of MDS n+1. One copy of the repeat is present at each MDS-MDS junction in a mature MAC chromosome (Figure 1A). These microhomologous regions help guide MDS

recombination, but most are non-unique and the shortest pointers are just 2 bp. Thousands of long, noncoding template RNAs collectively program MDS joining (14, 15, 16).

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Numerous studies have inferred the possible scope of genome rearrangement in different ciliate species using partial genome surveys. In *Paramecium*, PiggyMac-depleted cells fail to remove MIC-limited regions properly, which provided a resource to annotate ~45,000 IESs prior to assembly of a draft MIC genome (17). The use of single-cell sequencing has allowed pilot studies to sample partial MIC genomes of diverse species (9, 18, 19, 20). Alignment of tentative MIC reads to either assembled MAC genomes or single-cell transcriptome data predicts over 20 candidate scrambled loci in two basal ciliates, Loxodes sp. and Blepharisma americanum (19) and hundreds of candidate loci in the tintinnid Schmidingerella arcuata (20). Nearly one third (31%) of approximately 5,000 surveyed transcripts may be scrambled in *Chilodonella uncinata* (18, Figure 1B), which has four confirmed cases of scrambled genes (21, 22). Transcriptomebased surveys offer less precise estimates, and cannot distinguish RNA splicing. Several computational pipelines have been developed to facilitate the inference of genome rearrangement features by split-read mapping in the absence of complete MIC or MAC reference genomes (23, 24, 25, 26). By surveying lighter genome coverage prior to full sequencing, these tools provide partial insight into germline architecture. This helps guide selection of species for full genome sequencing and subsequent construction of complete rearrangement maps between the MIC and MAC genomes. High-quality MIC genome reference assemblies are only currently available for three ciliate genera: Oxytricha (1), Tetrahymena (27) and Paramecium (28, 29).

Programmed genome rearrangements in *Oxytricha* exhibit the highest accuracy and largest scale of any known natural gene-editing system, with exquisite control over hundreds of thousands of precise DNA cleavage/joining events. Accordingly, its germline genome structure

is arguably the most complex of any model organism (1), requiring programmed deletion of over 90% of the germline DNA during development and massive descrambling of the resulting fragments to construct a new MAC genome of over 18,000 chromosomes (10). This differs from the distantly related *Tetrahymena* and *Paramecium* that both eliminate ~30% of the germline genome (27, 28). *Paramecium* uses exclusively 2 bp pointers and lacks evidence of any scrambled loci. A small number of scrambled loci (4 confirmed out of 2711 candidates) have been reported in *Tetrahymena* (30, Figure 1B). *Tetrahymena and Paramecium* diverged from *Oxytricha* over one billion years ago (31, 32), which leaves a large gap in our understanding of the emergence of complex DNA rearrangements in the *Oxytricha* lineage.

Open questions include how did the *Oxytricha* germline genome acquire its high number of IES insertions and how do scrambled loci arise and evolve. Three previous studies tackled these questions at the level of single genes and orthologs, including DNA polymerase α, actin I and TEBPα (33, 34, 35, 36). Here, we provide the first comparative genomic analysis of *Oxytricha trifallax* and two other spirotrichous ciliates, *Tetmemena sp.* and *Euplotes woodruffi*. *Tetmemena sp.* is a hypotrich similar to *Tetmemena pustulata*, formerly *Stylonychia pustulata* (7), in the same family as *Oxytricha trifallax* (Figure 1B, 1, 7). Hypotrichs are noted for the presence of scrambled genes, based on previous ortholog comparisons (7, 33, 34, 35, 36 Figure 1B). *E. woodruffi*, together with the hypotrichous ciliates, belong to the class Spirotrichea (Figure 1B). Like hypotrichs, *Euplotes* also has gene-sized nanochromosomes in the MAC genome (8, 9, 37), but this outgroup uses a different genetic code (UGA is reassigned to cysteine, ref. 38) and little is known about its MIC genome. A partial MIC genome of *Euplotes vannus* was previously assembled, and it contains highly conserved TA pointers (9), consistent with previous observations in *Euplotes crassus* (39). This differs from *Oxytricha trifallax*, which uses

longer pointers of varying lengths, with scrambled pointers typically longer than nonscrambled ones (1, Figure 1B). This observation suggests that longer pointers may supply more information to facilitate MDS descrambling, sometimes over great distances. Therefore, the preponderance of 2 bp pointers in the other *Euplotes* species could indicate limited capacity to support scrambled genes, and a partial genome survey of *E. vannus* concluded that at least 97% of loci are nonscrambled (9). Early studies of *Euplotes octocarinatus*, on the other hand, demonstrated its use of longer pointers (that usually contain TA) (40, 41), suggesting that some members of the *Euplotes* genus may have the capacity to support complex genome reorganization. To investigate the origin of scrambled genomes, we choose *E. woodruffi* as an outgroup, because it is closely related to *E. octocarinatus* (42) and feasible to culture in the lab.

This study includes the *de novo* assemblies of the micronuclear genome of *Tetmemena sp.* and both genomes of *E. woodruffi*. The availability of MIC and MAC genomes for both species allows us to annotate and compare their genome rearrangement maps and other key features to each other and to *O. trifallax*. The MIC genome of *Tetmemena* is extremely interrupted, like *Oxytricha*. While the *E. woodruffi* MIC genome is much more IES-sparse, it contains thousands of scrambled genes, whose architecture we compare to orthologous loci in the other species. We infer that the evolutionary origin of scrambled genes is associated with local duplications, providing strong support for a previously proposed simple evolutionary model requiring only duplication and decay (43) that allows for the evolutionary expansion of extremely rearranged chromosome architectures.

Results

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Germline genome expansion via repetitive elements

Tetmemena sp. and E. woodruffi were both propagated in laboratory culture from single cells. The E. woodruffi MAC genome was sequenced and assembled from paired-end Illumina reads from whole cell DNA, which is mostly MAC-derived. For comparative analysis, the MAC genome of E. woodruffi was assembled using the same pipeline previously used for Tetmemena sp. (7). Because MIC DNA is significantly more sparse than MAC DNA in individual cells (13) MIC DNA was enriched before sequencing (see Methods); however, this leads to much lower sequence coverage of the MIC than the MAC. Third-generation long reads (Pacific Biosciences and Oxford Nanopore Technologies) were combined with Illumina paired-end reads (Methods, see genome coverage in Supplementary File 1) to construct hybrid genome assemblies for Tetmemena sp. and E. woodruffi. Though the final genome assemblies are still fragmented, often due to transposon or other repetitive insertions at boundaries (Figure 2 - figure supplement 1), the current draft assemblies cover most (>90%) MDSs for 89.1% of MAC nanochromosomes in Tetmemena, and for 90.0% of MAC nanochromosomes in E. woodruffi. This allowed us to establish near-complete rearrangement maps for the newly assembled genomes of Tetmemena and E. woodruffi, at a level comparable to the published reference for O. trifallax (1), which is appropriate for comparative analysis.

Table 1 shows a comparison of genome features for the three species. The three MAC genomes are similar in size, with most nanochromosomes bearing only one gene. The size distributions of MAC chromosomes are similar for the three species, though slightly shorter for *E. woodruffi*, consistent with prior observation via gel electrophoresis (13, Figure 2 - figure supplement 2). Like *O. trifallax* (6), the maximum number of genes encoded on one

chromosome is 7-8 (Table 1). Surprisingly, the MIC genome sizes differ substantially: the *Tetmemena* MIC genome assembly is 237 Mbp, nearly half that of *Oxytricha*. The *E. woodruffi* MIC genome assembly is even smaller, approximately 172 Mbp (Table 1).

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

The expansion of repetitive elements in the Oxytricha lineage may contribute to the difference in MIC genomes sizes (Figure 2A-C). Oxytricha has a variety of transposable elements (TEs) in the MIC, with telomere-bearing elements (TBEs) of the Tc1/mariner family the most abundant (1, 44, Supplementary File 2). A complete TBE transposon contains three open reading frames (ORFs). ORF1 encodes a 42kD transposase with a DDE-catalytic motif. Though present only in the germline, TBEs are so abundant in hypotrichs that some were partially recovered and assembled from whole cell DNA (44). The Oxytricha MIC genome contains ~10,000 complete TBEs and ~24,000 partial TBEs, which occupy approximately 15.20% (75 Mbp) of the genome (Figure 2A, Supplementary File 3, 1, 44). *Tetmemena*, on the other hand, has many fewer TBE ORFs and only 48 complete TBEs (Supplementary File 3), comprising 1.83% (4.3 Mbp) of its MIC genome (Figure 2B). Euplotes crassus has also been reported to have an abundant transposon family called Tec elements (Transposon of *Euplotes crassus*). Like TBEs, each Tec consists of three ORFs, and ORF1 also encodes a transposase from the Tc1/mariner family (45, 46, 47, 48, 49). The ~57kD ORF2 encodes a tyrosine-type recombinase (50) and the 20kD ORF3 has unknown function (47). Using the three ORFs of Tec1 and Tec2 as queries for search, we identified 74 complete Tec elements in E. woodruffi. Collectively, Tec ORFs occupy 3.6 Mbp, corresponding to only 2.1% of the MIC genome (Figure 2C). Notably, the transposase-encoding ORF1 is more abundant than the other two TBE/Tec ORFs in all three ciliates (Supplementary File 3), consistent with its proposed role in DNA cleavage during genome rearrangement in Oxytricha (51).

Oxytricha contains three families of TBEs. TBE3 appears to be the most ancient among hypotrichs, based on previous analysis of limited MIC genome data (44). We constructed phylogenetic trees using randomly subsampled TBE sequences for all three ORFs from Oxytricha and Tetmemena (Figure 2D-F). This confirmed that only TBE3 is present in the Tetmemena MIC genome, as proposed in (44). This also suggests that TBE1 and TBE2 expanded in Oxytricha after its divergence from other hypotrichous ciliates. As illustrated in Figure 2 - figure supplement 1, the MIC genome contexts of TBEs in Oxytricha and Tetmemena are similar, with many TE insertions within IESs, consistent with either IESs as hotspots for TE insertion or with the model (49) that some TE insertions may have generated IESs, as demonstrated in Paramecium (29, 52). Subsequent sequence evolution at the edges of IES/MDS pointers (36) can give rise to boundaries that no longer correspond precisely to TBE ends. For further discussion of the conservation of TBE locations, see the section, "Oxytricha and Tetmemena share conserved rearrangement junctions" below.

Additionally, Repeatmodeler/Repeatmasker identified that *Oxytricha* has more MIC repeats in the "Other" category than *Tetmemena* or *E. woodruffi* (Figure 2, subcategories of repeat content in Supplementary File 2). 214 Mbp of the *Oxytricha* MIC genome (43%, which is greater than 35.9% reported in ref. 1 that used earlier versions of the software) is considered repetitive (including TBEs, tandem repeats and other repeats in Figure 2), versus 31.7 Mbp for *Tetmemena* (13.4%) and 28.5 Mbp (16.8%) for *E. woodruffi. Oxytricha*'s additional ~180 Mbp in repeat content partially explains the significantly larger MIC genome size of *Oxytricha* versus the other spirotrich ciliates.

The E. woodruffi genome has fewer IESs

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

We used the genome rearrangement annotation tool SDRAP (53) to annotate the MIC genomes of Oxytricha, Tetmemena and E. woodruffi (Methods). Consistent with their close genetic distance, the genomes of O. trifallax and Tetmemena have similarly high levels of discontinuity (Figure 3A): We annotated over 215,299 MDSs in Oxytricha and over 215,624 in Tetmemena MDSs with similar MDS length distributions (Figure 3A). By contrast, E. woodruffi MDSs are typically longer, which indicates a less interrupted genome (Figure 3A). We compared the number of MDSs between single-copy orthologs for single-gene MAC chromosomes across the three species and found that the orthologs have similar CDS lengths (Figure 3 - figure supplement 1A-B). There is a strong positive correlation between number of MDSs for orthologous genes in Oxytricha and Tetmemena ($R^2 = 0.75$, Figure 3B). There is no correlation among number of MDSs between orthologs of E. woodruffi and Oxytricha ($R^2 = 0.003$, Figure 3C), since E. woodruffi orthologs typically contain fewer MDSs. The E. woodruffi genome is generally much less interrupted than that of Oxytricha or Tetmemena. 39.9% of MAC nanochromosomes in E. woodruffi lack IESs (IES-less nanochromosomes) compared to only 4.1% and 4.4% in Oxytricha and Tetmemena, respectively. The sparse IES distribution (as measured by plotting pointer distributions) in E. woodruffi displays a curious 5' end bias on single-gene MAC chromosomes, oriented in gene direction (Figure 3E). A weak 5' bias is also present in Oxytricha (Figure 3D) and Tetmemena (Figure 3 figure supplement 1C). In addition, E. woodruffi IESs preferentially accumulate in the 5' UTR, a short distance upstream of start codons (Figure 3F). Notably, the median distance between the 5' telomere and start codon in E. woodruffi is just 54 bp for single-gene chromosomes.

E. woodruffi has an intermediate level of genome scrambling

Scrambled genome rearrangements exist in all three species, which we report here for the first time in *Tetmemena* and the early-diverged *E. woodruffi*. Previous studies have described scrambled genes with confirmed MIC-MAC rearrangement maps for a limited species of hypotrichs (1, 7, 33, 34, 35, 36) and *Chilodonella* (21, 22), but not in *Euplotes*. Consistent with the phylogenetic placement of *Euplotes* as an earlier-diverged outgroup to hypotrichs (54, 55), the *E. woodruffi* genome is scrambled, but it contains approximately half as many scrambled genes (2429 genes encoded on 1913 chromosomes, or 7.3% of genes), versus 15.6% scrambled in *Oxytricha trifallax* (3613 genes encoded on 2852 chromosomes) and 13.6% in *Tetmemena* (3371 genes encoded on 2556 chromosomes). The *E. woodruffi* lineage may therefore reflect an evolutionary intermediate stage between ancestral genomes with only modest levels of genome scrambling versus the more massively scrambled genomes of hypotrichs.

We infer that many genes were likely scrambled in the last common ancestor of *Oxytricha* and *Tetmemena*, because these two species share approximately half of their scrambled genes (Supplementary File 4). Furthermore, most scrambled genes are not new genes, since they possess at least one ortholog in other ciliate species (Supplementary File 4, Supplementary File 5).

Scrambled genes are associated with local paralogy

Notably, scrambled genes in all three species generally have more paralogs (Figure 4). We identified orthogroups containing genes derived from the same gene in the last common ancestor of the three species (Methods). For each species, orthogroups with at least one scrambled gene are significantly larger than those containing no scrambled genes (*p*-value <1e-5,

Mann-Whitney U test, Figure 4A-C). This association suggests a possible role of gene duplication in the origin of scrambled genes.

Scrambled pointers are generally longer than nonscrambled ones in all three species (Figure 3 - figure supplement 2), consistent with prior observations (1) and the possibility that longer pointers participate in more complex rearrangements, including recombination between MDSs separated by greater distances (56). Scrambled and nonscrambled IESs also differ in their length distribution (Figure 3 - figure supplement 2). Notably, scrambled "pointers" in *E. woodruffi* can be as long as several hundred base pairs (median 48 bp, average 212 bp) unlike the more typical 2-20 bp canonical pointers. These long "pointers" in *E. woodruffi* are more likely partial MDS duplications (Figure 4 - figure supplement 1A). We also identified MDSs that map to two or more paralogous regions within the same MIC contig (Supplementary File 6), therefore representing MDS duplications and not alleles. Such paralogous regions could be alternatively incorporated into the rearranged MAC product. Notably, we find that, for all three species, there are significantly more scrambled than nonscrambled MAC chromosomes that contain at least one paralogous MDS (chi-square test, *p*-value <1e-10; Supplementary File 6). An example is shown in Figure 4 - figure supplement 1A (MDS 7 and 7).

The presence of paralogous MDSs can contribute to the origin of scrambled rearrangements, as proposed in an elegant model by Gao et al. (ref.43; illustrated in Figure 4 - figure supplement 1B). The model proposes that initial MDS duplications permit alternative use of either MDS copy into the mature MAC chromosome. As mutations accumulate in redundant paralogs, cells that incorporate the least decayed MDS regions into the MAC gene would have both a fitness advantage and a better match to the template RNA (14) that guides rearrangement, thus increasing the likelihood of incorporation into the MAC chromosome. The paralogous

regions containing more mutations would gradually decay into IESs and scrambled pointers eventually reduced to a shorter length. The extended length "pointers" that we identified in *E. woodruffi* may reflect an intermediate stage in the origin of scrambled genes (Figure 4 - figure supplement 1B).

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

This model may generally explain the abundance and expansion of "odd-even" patterns in ciliate scrambled genes (56, 57). As illustrated in Figure 4 - figure supplement 1A, the evenand odd-numbered MDSs for many scrambled genes derive from different MIC genome clusters. The model predicts that the IES between MDS n-1 and n+1 often derives from ancestral duplication of a region containing MDS n (Figure 4 - figure supplement 2A). To test this hypothesis explicitly, we extracted from all odd-even scrambled loci in the three species all sets of corresponding MDS/IES pairs that are flanked by identical pointers on both sides, i.e. all pairs of scrambled MDSs and IESs, where the IES between MDS n-1 and n+1 is directly exchanged for MDS n during DNA rearrangement (S1 and S2 in Figure 4 - figure supplement 2A). To exclude the possibility of alleles confounding this analysis, MDS and IES pairs were only considered if they map to the same MIC contig. In E. woodruffi, the lengths of these MDS/IES pairs strongly correlate (Spearman correlation ρ =0.755, p<1e-5, Figure 4 - figure supplement 2B). Moreover, many MDS and IES sequence pairs also share sequence similarity, consistent with paralogy: For 248 MDS-IES pairs of similar length, 90.3% share a core sequence with ~97.5% identity across 8-100% of both the IES and MDS length. The lowest end of these observations is also compatible with an alternative model (34) in which direct recombination between IESs and MDSs at short repeats can lead to expansion of odd-even patterns. For Oxytricha and Tetmemena, the MDS and IES lengths for such MDS/IES pairs also display a weakly-positive correlation (p-values and Spearman correlation ρ shown in Figure 4 - figure

supplement 2D-E). Remarkably, the odd-even-containing loci that are species-specific, and therefore became scrambled more recently, have the strongest length correlation (Figure 4 - figure supplement 2C-E) and more pairs that display sequence similarity (Supplementary File 7) relative to older loci (scrambled in two or more species). This result is consistent with an evolutionary process in which mutations accumulate in one copy of the MDS, gradually obscuring its sequence homology and ability to be incorporated as a functional MDS, and eventually its ability to be recognized by the template RNAs that guide DNA rearrangement. This analysis also suggests that most of the odd-even scrambled loci in *E. woodruffi* arose recently, because there is greater sequence similarity between MDSs and the corresponding IESs that they replace. Conversely, we infer that most loci that are scrambled in both *Oxytricha* and *Tetmemena* became scrambled earlier in evolution, since they display weaker sequence similarity between exchanged MDS and IES regions.

Scrambled and nonscrambled genes display nearly identical expression support (the presence of at least one read in all 3 replicates) in both *Oxytricha* (Supplementary File 8) and *Tetmemena*. *E. woodruffi* has slightly more expression support for nonscrambled vs. scrambled genes (Figure 4 - figure supplement 3), which could be explained by more recent acquisition of thousands of scrambled loci in *E. woodruffi*. In some of those cases the nonscrambled paralogs may still contribute the major function. The distribution of expression levels is similar for scrambled vs. nonscrambled genes in all three species, supporting their authenticity (Figure 4 - figure supplement 3), although in a Mann-Whitney U test, the average expression level of three replicates is significantly higher in nonscrambled genes for *Oxytricha* and *E. woodruffi*, but not significant for *Tetmemena*.

Oxytricha and Tetmemena share conserved DNA rearrangement junctions

To understand the conservation of genome rearrangement patterns, we developed a pipeline guided by protein sequence alignment to compare pointer positions for orthologous genes between any two species (Methods, Figure 5A). We compared pointers for 2503 three-species single-copy orthologs. 4448 pointer locations are conserved between *Oxytricha* and *Tetmemena* on 1345 ortholog pairs (Supplementary File 9), representing 38.3% of pointers in these orthologs in *Oxytricha* and 30.9% in *Tetmemena*. For *Oxytricha/E. woodruffi* and *Tetmemena/E. woodruffi* comparisons, 56 and 58 pointer pairs are conserved, respectively. We also identified 23 pointer locations shared among all three species (Supplementary File 9, Figure 5B, Figure 5 - source data 1).

To test if these pointer locations are genuinely conserved versus coincidental matching by chance, we performed a Monte Carlo simulation, as also used to study intron conservation (58). We randomly shuffled pointer positions on CDSs 1000 times, and counted the number of conserved pointer pairs expected for each simulation (Methods). Of the 1000 simulations, none exceeded the observed number of conserved pointer pairs between *Oxytricha* and *Tetmemena* (*p*-value < 0.001), suggesting evolutionary conservation of pointer positions (Supplementary File 9). A similar result was obtained for pointers conserved in all three species (Supplementary File 9). However, the numbers of pointer pairs conserved between *Oxytricha/E. woodruffi* and *Tetmemena/E. woodruffi* are similar to the expectations by chance (Supplementary File 9). The low level of pointer conservation of either hypotrich with *E. woodruffi* may reflect the smaller number of IESs in *E. woodruffi*; hence most pointers would have arisen in the hypotrich lineage. Furthermore, *E. woodruffi* is genetically more distant from the two hypotrichs; hence the accumulation of substitutions would obscure protein sequence homology, which we used to

compare pointer locations. For ortholog pairs between *Oxytricha* and *Tetmemena*, scrambled pointers are significantly more conserved than nonscrambled ones (chi-square test, *p*-value <1e-10, Supplementary File 10). We also find that most pointer sequences differ even if the positions are conserved (Figure 5B, Figure 5 - source data 1, Supplementary File 11), suggesting that substitutions may accumulate in pointers without substantially altering rearrangement boundaries.

Oxytricha and Tetmemena both contain a high copy number of TBE transposons (1, 44, Supplementary File 3). We investigated the level of TBE conservation between these two species. To identify orthologous insertions, we focus on TBE insertions in nonscrambled IESs on single-copy orthologs, which include 1706 Oxytricha TBEs inserted in 1296 nonscrambled IESs (multiple TBEs can be inserted into an IES) and 180 Tetmemena TBEs inserted into 170 nonscrambled IESs. We refer to the pointer flanking a TBE-containing IES as a TBE pointer. No TBE pointer locations are conserved between two species. This suggests that TBEs might invade the genomes of Oxytricha and Tetmemena independently, or still be actively mobile in the genome. Only 27 Oxytricha TBE pointers (containing 36 TBEs) are conserved with non-TBE pointers in Tetmemena (Figure 5 - source data 2, Figure 5C). No Tetmemena TBE pointer is conserved with an Oxytricha non-TBE pointer. This suggests that TBE insertions may preferentially produce new rearrangement junctions instead of inserting into an existing IES.

Intron locations sometimes coincide with DNA rearrangement junctions

Ciliate genomes are generally intron-poor. *Oxytricha* averages 1.7 introns/gene, *Tetmemena* has 1.1, and *E. woodruffi* has 2.2. Among three-species orthologs, intron locations sometimes map near pointer positions (within a 20 bp window, Figure 5B, Figure 5 - figure

supplement 1). IESs and introns are both non-coding sequences removed from mature transcripts, though at different stages. A previous single-gene study observed that an IES in Paraurostyla overlaps the position of an intron in Uroleptus, Urostyla and also the human homolog (34). This observation suggested an intron-IES conversion model in which the ability to eliminate non-coding sequences as either DNA or RNA provides a potential backup mechanism. Such interconversion has also been observed between two strains of Stylonychia (59). In the present study, we identified 174 potential cases of intron-IES conversion in the three species (Figure 5 - figure supplement 1, Supplementary File 12): 103 (59.2%) E. woodruffi introns map near Oxytricha/Tetmemena pointers. We used a 20 bp window for this analysis, since one would only expect the boundaries of introns and IESs to coincide precisely if they were recent evolutionary conversions. A Monte Carlo simulation for these intron-IES comparisons (Supplementary File 12) revealed that p < 0.001 for most three-species comparisons. For twospecies comparisons, we identify 306 cases where an intron boundary in one species precisely coincides with a pointer sequence in another species, with strongest statistical support for the comparison between Oxytricha intron positions vs. Tetmemena IES junctions (p = 0.008) (Supplementary File 13). Notably, *Tetmemena* intron locations rarely coincide with *Oxytricha* IESs (Supplementary File 13), suggesting a possible bias in the direction of intron-IES conversion during evolution.

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

The observation that *E. woodruffi* has the most introns but the smallest number of IESs per gene (Figure 3) is consistent with removal of intragenic non-coding sequences as either DNA or RNA. The intron-sparseness of ciliates is compatible with a hypothesis that it is advantageous to eliminate non-coding sequences earlier at the DNA level, with intron deletion sometimes providing an opportunity for repair if they fail to be excised as IESs (34).

Evolution of complex genome rearrangements: Russian doll genes

Genome rearrangements in the Oxytricha lineage can include overlapping and nested loci, with MDSs for different MAC loci embedded in each other (1, 60). When multiple gene loci are nested in each other, these have been called Russian doll loci (60). Oxytricha contains two loci with five or more layers of nested genes (60). Oxytricha and Tetmemena display a high degree of synteny and conservation in both Russian doll loci. In the first Russian doll gene cluster, one nested gene (green) is present in Oxytricha but absent in Tetmemena (Figure 6A, Figure 6 - figure supplement 1, Figure 6 - figure supplement 2), confirmed by PCR (Methods). Oxytricha also has a complete TBE3 insertion in the green gene (Figure 6A, Figure 6 - figure supplement 1A), hinting at a possible link between transposon and new gene insertion. In addition, a two-gene chromosome in Oxytricha (orange) is present as two single-gene chromosomes in *Tetmemena* (Figure 6A, Figure 6 - figure supplement 1). In *Oxytricha*, seven orange MDSs ligate across two loci via an 18 bp pointer (TATATCTATACTAAACTT) to form a 2-gene nanochromosome. However, in *Tetmemena*, telomeres are added to the ends of both gene loci instead, forming two independent MAC chromosomes (Figure 6A, Figure 6 - figure supplement 1). The second Russian doll locus has an example of a long, conserved pointer (orange dotted line) that bridges three other loci (the green and blue scrambled loci and one nonscrambled locus, Figure 6B). Close to this region is a decayed TBE insertion (769bp) in Oxytricha. None of the E. woodruffi orthologs of both Russian doll loci map to the same MIC contig, which suggests that the Russian doll cluster arose after the divergence of *Euplotes* from the common ancestor of Oxytricha and Tetmemena.

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

Discussion

The highly diverse ciliate clade provides a valuable resource for evolutionary studies of genome rearrangement. However, full assembly and annotation of germline MIC genomes has concentrated on the model ciliates *Tetrahymena*, *Paramecium* and *Oxytricha*. To provide insight into genome evolution in this lineage, we assembled and compared germline and somatic genomes of *Tetmemena sp.* and an outgroup, *Euplotes woodruffi*, to that of *Oxytricha trifallax*. This expands our knowledge of the diversity of ciliate genome structures and the evolutionary origin of complex genome rearrangements.

Dramatic variation in transposon copy number (TBE and Tec elements) from the Tc1/mariner family appears to explain most of the variation in MIC genome size. In many eukaryotic taxa, genome size can differ dramatically even for closely related species, a phenomenon known as the "C-value paradox" (61). Our present observations are compatible with previous reports that the repeat content of the genome, especially transposon content, positively correlates with genome size (62).

Oxytricha has three TBE families in the MIC genome, but only TBE3 is present in Tetmemena, consistent with our previous conclusion that TBE3 is ancestral to the base of the transposon lineage in hypotrichous ciliates (44). Tens of thousands of TBE1/2 transposons then expanded specifically in Oxytricha. Despite a high copy number of TBEs in both Oxytricha and Tetmemena, we find no identical TBE locations in nonscrambled IESs, even among syntenic Russian doll regions. These observations suggest that TBEs may be active in these genomes and contribute to the evolution of genome structure.

In the relatively IES-poor genome of E. woodruffi, IESs accumulate upstream of start codons, similar to the 5' bias of introns in intron-poor organisms (63). The simplest model to explain 5' intron bias is homologous recombination between a reverse transcript of an intronlacking mRNA and the original DNA locus to erase introns in the coding region (63). A similar mechanism could simultaneously erase IESs in coding regions via germline recombination between the MIC chromosome and a reverse transcript; however, they are usually in different subcellular locations. More plausibly, a source for DNA recombination could be a MAC nanochromosome, since they are already abundant at high copy number, but another source could be by capture of a reverse transcript of a long non-coding template RNA that guides DNA rearrangement (14, 15). Either recombination event in the germline would lead to loss of IESs, while retaining introns, but neither would necessarily provide a bias for IES-loss in coding regions. Any of these infrequent events would be meaningful on an evolutionary time scale, even if developmentally rare. The 5' bias of IESs could also reflect an evolutionary bias for continuous coding regions. Alternatively, upstream IESs might regulate gene expression or cell growth (29), like some introns (64, 65). This study investigated the evolution of scrambled genes by comparing Oxytricha and Tetmemena to E. woodruffi, as an earlier-diverged representative of the spirotrich lineage. While E. woodruffi has approximately half as many scrambled genes as Tetmemena and Oxytricha, its genes are also much more continuous. For example, the most scrambled gene in E. woodruffi,

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

genes are also much more continuous. For example, the most scrambled gene in *E. woodruffi*, encoding a DNA replication licensing factor (EUPWOO_MAC_28518, 3kb), has only 20 scrambled junctions. The most scrambled gene in *Tetmemena* (LASU02015934.1, 14.7kb, encoding a hydrocephalus-inducing-like protein) has 204 scrambled pointers, and the most scrambled gene in *Oxytricha* (Contig17454.0, 13.7kb, encoding a dynein heavy chain family

protein, ref. 1) is similarly complex, with 195 scrambled junctions. Together, these observations are consistent with our interpretation that *E. woodruffi* reflects an evolutionary intermediate stage, as it contains both fewer scrambled loci and fewer scrambled junctions within its scrambled loci. The observation that the most scrambled locus differs in each species is also consistent with the conclusion that complex gene architectures may continue to elaborate independently.

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

We observed that scrambled genes in each species tend to have more paralogs than nonscrambled genes. Similarly, in *Chilodonella uncinata* (18), a distantly-related ciliate in the class *Phyllopharyngea* that also has scrambled genes, scrambled gene families (orthogroups) contain more genes (\sim 2.9) than nonscrambled gene families (\sim 1.3) (18). Apart from duplications at the gene level, E. woodruffi often contains partial MDS duplications at scrambled junctions, annotated as unusually long "pointers" (Figure 4 - figure supplement 1). We also demonstrate that odd-even scrambled patterns could readily arise from local duplications (Figure 4 - figure supplement 2). These observations are most consistent with a simple model (43) in which local duplications permit combinatorial DNA recombination between paralogous germline regions, and mutation accumulation in either paralog establishes an odd-even scrambled pattern that can propagate by weaving together segments from paralogous sources. Other proposed models include Hoffman and Prescott's (66) IES-invasion model that suggested that pairs of IESs could invade an MDS, and then subsequently recombine with another IES to yield odd-even scrambled regions; however, a previous examination did not find support for this model (34). Prescott et al. (67) also proposed that some odd-even scrambled loci could arise suddenly via reciprocal recombination with loops of A/T-rich DNA, but this does not exploit paralogy, only the high A/T content in the MIC. We previously proposed a gradual model (34, 56) in which MDS/IES

recombination at short AT-rich repeats (precursors to pointers) could generate and propagate odd-even scrambled patterns. While limited comparisons of orthologs favored the stepwise recombination models (33, 34, 35, 36), none of the earlier models accounted for the widespread existence of partial paralogy, revealed by genome assemblies.

Local duplications provide a buffer against mutations, allowing paralogous MDSs to repair the MAC locus during assembly of odd/even scrambled genes. Therefore, once an odd/even scrambled locus is established, a consequence is that evolution can only proceed in the direction of accumulating more scrambled junctions, as each new mutation in one paralog necessitates repair via incorporation of the other paralog (Figure 4 - figure supplement 1B). This shortens the length of the respective MDSs and increases the number of recombination junctions, creating an evolutionary ratchet that drives the increase in scrambling. The lack of the presence of an error-free, continuous version of this locus in the germline reduces the possibility of losing the scrambled pattern from the MIC genome, relative to the trend towards decreasing MDS lengths as more mutations accumulate in either paralog, with a resulting increase in the levels of scrambling and fragmentation (68, 69). The only opportunity to repair a scrambled locus in the MIC would be a rare event that replaces the locus via recombination with a continuous version from the parental MAC, with the source being either parental MAC DNA or a reverse transcript of a template RNA (14, 15), as discussed above.

Recent exciting reports have also described scrambled genomes in metazoa, including cephalopods (70, 71), but those events entail primarily evolutionary shuffling of gene order, without accompanying genome editing or repair. The ciliate lineage is remarkable in having evolved a sophisticated mechanism of RNA-guided genome editing that allows accurate and

precise DNA repair of translocations and inversions. The future opportunity to harness this system to develop novel tools for genome editing outside of *Oxytricha* offers exciting directions.

Methods

DNA collection and sequencing of Tetmemena sp.

Tetmemena sp. (strain SeJ-2015; ref. 7) was isolated as a single cell from a stock culture and propagated as a clonal strain via vegetative (asexual) cell culture. Cells were cultured in Pringsheim media (0.11mM Na₂HPO₄, 0.08mM MgSO₄, 0.85mM Ca(NO₃)₂, 0.35mM KCl, pH 7.0) and fed with *Chlamydomonas reinhardtii*, together with 0.1%(v/v) of an overnight culture of non-virulent *Klebsiella pneumoniae*. Macronuclei and micronuclei were isolated using sucrose gradient centrifugation (72). Genomic DNA was subsequently purified using the Nucleospin Tissue Kit (Takara Bio USA, Inc.). Macronuclear DNA was sequenced and assembled in Chen *et al.* (7). Micronuclear DNA was further size-selected via BluePippin (Sage Science) for PacBio sequencing, or via 0.6% (w/v) SeaKem Gold agarose electrophoresis (Lonza) for Illumina sequencing. Micronuclear DNA purification and sequencing protocols are described in (1).

DNA collection and sequencing for E. woodruffi

E. woodruffi (strain Iz01) was cultured in Volvic water at room temperature and fed with green algae every 2-3 days. We fed cells with Chlamydomonas reinhardtii for MAC DNA collection, and switched to Chlorogonium capillatum for MIC DNA collection. In order to remove algal contamination, cells were starved for at least 2-3 days before collection. Cells were washed and concentrated as in Chen et al. (1). Because MAC DNA is predominant in whole cell DNA, we used whole cell DNA (purified via NucleoSpin Tissue kit, Takara Bio USA, Inc.) for

MAC genome sequencing. Paired-end sequencing was performed on an Illumina Hiseq2000 at the Princeton University Genomics Core Facility.

MIC DNA was enriched from whole cell DNA and sequenced via three sequencing platforms (Illumina, Pacific Biosciences and Oxford Nanopore Technologies). We used conventional and pulse-field gel electrophoresis to enrich MIC DNA:

- 1) High-molecular-weight DNA was separated from whole cell DNA by gelelectrophoresis (0.25% agarose gel at 4 °C, 120 V for 4 hr). The top band was cut from the gel
 and purified with the QIAGEN QIAquick kit. The purified high-molecular-weight DNA was
 directly sent to the group of Dr. Robert Sebra at the Icahn School of Medicine at Mount Sinai for
 library construction and sequencing. BluePippin (Sage Science) separation was used before
 sequencing to select DNA >10kb. DNA was sequenced on two platforms: Illumina HiSeq2500
 (150 bp paired-end reads) and PacBio Sequel (SMRT reads).
- 2) High-molecular-weight DNA was also enriched by pulsed-field gel electrophoresis (PFGE). *E. woodruffi* cells were mixed with 1% low-melt agarose to form plugs according to Akematsu et al. (73), with addition of 1 hr incubation with 50 μg/ml RNase (Invitrogen AM2288) in 10 mM Tris-HCl (pH7.5) at 37 °C for RNA depletion. After three washes of 1 hr with 1x TE buffer, the DNA plugs were incubated in 1mM PMSF to inactivate proteinase K, followed by MspJI (New England Biolabs) digestion at ^mCNNR(9/13) sites to remove contaminant DNA (^mC indicates C5-methylation or C5- hydroxymethylation). Previous reports have shown that no methylcytosine is detectable in vegetative cells of *Oxytricha* (74), *Tetrahymena* (75) and *Paramecium* (76), suggesting that C5-methylation and C5-hydroxymethylation are rarely involved in the vegetative growth of the ciliate lineage. We also validated by qPCR that the quantity of two randomly selected MIC loci is not changed after the

MspJI digestion. On the contrary, algal genomic DNA is significantly digested by MspJI. Based on these results, we conclude that MspJI digestion can be used to remove bacterial and algal DNA with C5-methylation and C5-hydroxymethylation, leaving *E. woodruffi* MIC DNA intact. The agarose plugs containing digested DNA were then inserted into wells of 1.0% Certified Megabase agarose gel (Bio-Rad) for PFGE (CHEF-DR II System, Bio-Rad). The DNA was separated at 6 V, 14°C with 0.5X TBE buffer at a 120° angle for 24 hr with switch time of 60-120 seconds. We validated by qPCR that the *E. woodruffi* MIC chromosomes were not mobilized from the well, while the MAC DNA migrated into the gel. The MIC DNA was then extracted by phenol-chloroform purification. Library preparation and sequencing were performed at Oxford Nanopore Technologies (New York, NY).

MAC genome assembly of *E. woodruffi*

We assembled the MAC genome of *E.woodruffi* using the same pipeline for *Tetmemena sp.* (7) for comparative analysis: two draft genomes were assembled by SPAdes (77) and Trinity (78), and were then merged by CAP3 (79). Trinity, which is a software developed for *de novo* transcriptome assembly (78), has been used to assemble hypotrich MAC genomes (7) because their nanochromosome genome structure is similar to transcriptomes, including properties such as variable copy number and alternative isoforms (10). Telomeric reads were mapped to contigs by BLAT (80), and contigs were further extended and capped by telomeres when at least 5 reads pile up at a position near ends by custom python scripts (https://github.com/yifeng-evo/Oxytricha_Tetmemena_Euplotes/tree/main/MAC_genome_telomere_capping). The mitochondrial DNA was removed if the contig has a TBLASTX (81) hit on the *Oxytricha* mitochondrial genome (Genbank accession JN383842.1 and JN383843.1) or two *Euplotes*

mitochondrial genomes (*Euplotes minuta* GQ903130.1, *Euplotes crassus* GQ903131.1). Algal contigs were removed by BLASTN to all *Chlamydomonas reinhardtii* nucleotide sequences downloaded from Genbank. Non-telomeric contigs were mapped to bacterial NR by BLASTX to remove bacterial contaminations. The genome was further compressed by CD-HIT (82) in two steps: 1) contigs <500bp were removed if 90% of the short contig can be aligned to a contig >=500bp with 90% similarity (-c 0.9 -aS 0.9 -uS 0.1); 2) Then the genome was compressed by 95% similarity (-c 0.95 -aS 0.9 -uS 0.1). Contigs shorter than 500bp without telomeres were removed. Nine contigs, likely Tec contaminants from the MIC genome, were also excluded (Tblastn, "-db_gencode 10 -evalue 1e-5"), and they could be assembled due to the high copy number in the MIC genome (47, 48, Genbank accessions of Tec ORFs are AAA62601.1, AAA62602.1, AAA62603.1, AAA91339.1, AAA91340.1, AAA91341.1,

RNA sequencing of E. woodruffi and Tetmemena sp.

Three biological replicates of total RNA was isolated from asexually growing *E. woodruffi* and *Tetmemena sp.* cells using TRIzol reagent (Thermo Fisher Scientific), and enriched for the poly(A)+ fraction using the NEBNext® Poly(A) mRNA Magnetic Isolation Module (New England Biolabs). Stranded RNA-seq libraries were constructed using the ScriptSeq v2 RNA-seq library preparation kit (Epicentre) and sequenced on an Illumina Nextseq500 at the Columbia Genome Center. For *E.woodruffi*, the transcriptome was assembled by Trinity (78) and transcript alignments to the MAC genome were generated by PASA (83).

Gene prediction of the *E. woodruffi* MAC genome and validation of MAC genome completeness

We followed the gene prediction pipeline developed by the Broad institute (https://github.com/PASApipeline/PASApipeline/PASApipeline/PASApipeline/Wiki) using EVidenceModeler (EVM, 84) to generate the final gene predictions. EVM produced gene structures by weighted combination of evidence from three resources: *ab initio* prediction, protein alignments and transcript alignments (the weight was 3, 3, 10 respectively). *Ab initio* prediction was generated by BRAKER2 pipeline (85). Protein alignments for EVM were generated by mapping *Oxytricha* proteins to the *E. woodruffi* MAC genome by Exonerate (86). EVM predicted 33379 genes on MAC chromosomes with at least one telomere.

We assessed MAC genome completeness using three methods: 1) 28294 (80.6%) of the 35099 *E. woodruffi* MAC contigs have at least one telomere. 2) In the *E. woodruffi* genes predicted on telomeric contigs, 88.8% of BUSCO (87, 88) genes in the lineage database alveolata_odb10 were identified as complete. Within the 171 BUSCO genes, 135 are complete and single-copy, 17 are complete and duplicated, 7 are fragmented and 12 are missing. This represents the best *Euplotes* MAC genome assembly available. 3) We identified 51 tRNA encoding all 20 amino acids by tRNAscan-SE (89) in the MAC genome, including two suppressor tRNAs of UAA and UAG.

MIC genome assembly of Tetmemena sp.

The MIC genome of *Tetmemena* was assembled with a hybrid approach to combine reads from different sequencing platforms. *Tetmemena* Illumina reads were first assembled by SPAdes (77, parameters "-k 21,33,55,77,99,127 –careful"). PacBio reads were error corrected by

FMLRC (90) using Illumina reads with default parameters. Corrected PacBio reads were aligned to both the MAC genome and the Illumina MIC assembly with BLASTN. Reads were removed if they start or end with telomeres or are aligned better to the MAC. The remaining reads were assembled with wtdbg2 (91, parameters "-x rs"). The PacBio assembly was polished by Pilon (92) with the "--diploid" option. The Illumina and PacBio assemblies were merged by quickmerge (93) with the "-1 5000" option.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

610

611

612

613

614

615

MIC genome assembly of E. woodruffi

The MIC genome of E. woodruffi was assembled using a similar procedure as described above for *Tetmemena*. E. woodruffi reads were filtered to remove bacterial contamination, including abundant high-GC contaminants, possibly endosymbionts (94). Nanopore reads with GC content >= 55% were assembled by Flye (95) with the parameter "--meta" for metagenomic assembly of bacterial contigs. We used kaiju (96) to identify bacteria taxa for these contigs. 9 of 10 top-covered contigs derive from Proteobacteria, from which many *Euplotes* symbionts derive (94). Bacterial contamination was removed from Illumina reads if perfectly mapping to these metagenomic contigs by Bowtie2 (97). The cleaned Illumina reads were then assembled by SPAdes with "-k 21,33,55,77,99,127" (77). Pacbio raw reads and Nanopore raw reads with GC content < 55% were aligned to a concatenated database containing both the MAC genome and the Illumina MIC assembly with BLASTN. Reads were removed if they start or end with telomeres or align better to the MAC. Remaining PacBio/Nanopore reads were assembled by Flye with "--meta" mode. The PacBio-Nanopore assembly was polished by Pilon with the "-diploid" option. Illumina and PacBio-Nanopore assemblies were merged by quickmerge with the "-1 10000" option. Contigs shorter than 1kb were removed.

MIC genome decontamination

The draft MIC genome of *Tetmemena* was first mapped to telomeric MAC contigs by BLASTN. MIC contigs containing MDSs were included in the final assembly. The rest of the MIC contigs were filtered by a decontamination pipeline: 1) contigs were aligned to the *Klebsiella pneumoniae* genome, *Chlamydomonas reinhardtii* genome and the *Oxytricha* mitochondrial genome by BLASTN to remove contaminants; 2) the remaining contigs were then searched against the bacteria NR database and a ciliate protein database (including protein sequences annotated in *Tetrahymena thermophila*: http://www.ciliate.org/system/downloads/tet-latest/4-Protein%20fasta.fasta;; *Paramecium tetraurelia*: http://paramecium.cgm.cnrs-gif.fi; and *Oxytricha trifallax*: https://oxy.ciliate.org) by BLASTX. Contigs with higher bit score to bacteria NR or G+C >45% were removed. The *E. woodruffi* MIC genome was decontaminated similarly, with addition of all *Chlorogonium* sequences (the algal food source) on NCBI and the two *Euplotes* mitochondrial genomes (*Euplotes minuta* GQ903130.1, *Euplotes crassus* GQ903131.1) to filter contaminants.

Repeat identification

The repeat content in the MIC genomes was identified by RepeatModeler 1.0.10 (98) and RepeatMasker 4.0.7 (99) with default parameters.

TBE/Tec detection

Representative *Oxytricha* TBE ORFs (Genbank accession AAB42034.1, AAB42016.1 and AAB42018.1) were used as queries to search TBEs in the *Oxytricha* and *Tetmemena* MIC

genomes by TBLASTN (-db gencode 6 -evalue 1e-7 -max target seqs 30000). Tec ORFs were similarly detected by using Euplotes crassus Tec1 and Tec2 ORFs as queries (-db gencode 10 -evalue 1e-5 -max target seqs 30000, Genbank accessions of Tec ORFs are AAA62601.1, AAA62602.1, AAA62603.1, AAA91339.1, AAA91340.1, AAA91341.1, AAA91342.1). Complete TBEs/Tecs were determined by custom python scripts when three ORFs are within 2000 bp from each other and in correct orientation (https://github.com/yifeng-evo/Oxytricha Tetmemena Euplotes/tree/main/TBE ORFs/TBE to oxy genome tblastn parse .py, 44). 30 TBE ORFs with >70% completeness were subsampled from each species for phylogenetic analysis (except for the 57kD ORF in *Tetmemena*, for which 21 were subsampled). The subsampled TBE ORFs were aligned using MUSCLE (100) and the alignments were trimmed by trimAl "-automated1" (101). Phylogenetic trees were constructed using PhyML 3.3 (102).

Rearrangement annotations

SDRAP (53) was used to annotate MDSs, pointers and MIC-specific regions (minimum percent identity for preliminary match annotation=95, minimum percent identity for additional match annotation=90, minimum length of pointer annotation=2). SDRAP requires MAC and MIC genomes as input. For the SDRAP annotation of *Oxytricha*, we used the MAC genome from Swart et al. (6) instead of the latest hybrid assembly that incorporated PacBio reads (10), because the former version was primarily based on Illumina reads, similar to the MAC genomes of *Tetmemena* (7, Genbank GCA_001273295.2) and *E. woodruffi* which are also Illumina assemblies. *Oxytricha* and *Tetmemena* MAC genomes were preprocessed by removing MAC contigs with TBE ORFs, considered MIC contaminants (44). SDRAP is a new program that can

output the rearrangement annotations with minor differences from Chen et al. (1) but most annotations are robust (Figure 3 - figure supplement 2). Scrambled and nonscrambled junctions/IESs were annotated by custom python scripts (https://github.com/yifeng-evo/Oxytricha Tetmemena Euplotes/tree/main/scrambled nonscrambled IES pointer).

MIC genome categories

Each MIC genome region is assigned to only one category in Figure 2A-C, even if it belongs to more than one category. The assignment is based on the following priority: MDS, TBE/Tec, MIC genes (only available for *Oxytricha*, which has developmental RNA-seq data), IES, tandem repeats, other repeats and non-coding non-repetitive regions. For example, a MIC region can be a TBE in an IES, and it is only considered as TBE in Figure 2A-C.

Ortholog comparison pipeline and Monte Carlo simulations

Orthogroups of genes on telomeric MAC contigs were detected by OrthoFinder with "-S blast" (103). Single-copy orthologs were aligned by Clustal Omega (104). Protein alignments were reversely translated to CDS alignments by a modified script of pal2nal (105, https://github.com/yifeng-evo/Oxytricha_Tetmemena_Euplotes/tree/main/Ortholog_comparison/pal2nal.pl). Two modifications were made in the script: 1) the modified script allows pal2nal to take different genetic codes for three sequences (-codontable 6,6,10); 2) the script also fixed an error in the original pal2nal script in which codontable 10 for the Euplotid nuclear code was the same as the universal code. Visualization of pointer positions and intron locations on orthologs was implemented by a custom python script (https://github.com/yifeng-

evo/Oxytricha_Tetmemena_Euplotes/blob/main/Ortholog_comparison/visualization_of_ortholog_comparison.py). Pointer positions or intron locations are considered conserved if they are within a 20 bp alignment window on the CDS alignment. Protein domains were annotated by HIMMER (106). We performed Monte Carlo simulations by randomly shuffling pointer locations on the CDS but keeping their original position distribution. This was implemented by a custom python script, which transforms the CDS to a circle, rotates pointer positions on the circle and outputs the shuffled position on the re-linearized CDS (https://github.com/yifeng-evo/Oxytricha_Tetmemena_Euplotes/blob/main/Ortholog_comparison/shuffle_simulation.py). The null hypothesis of the Monte Carlo test is that pointers positions are conserved by chance. P-value of Monte Carlo test is given by Nexpected>observed/Ntotal (Nexpected>observed is the number of simulations when there are more conserved pointers in the simulation than the observation from real data, Ntotal =1000 in this study).

PCR validation of Russian doll locus

The complex Russian doll locus on MIC contig TMEMEN_MIC_21461 in *Tetmemena* was validated by PCR to confirm the *Tetmemena* MIC genome assembly. *Tetmemena* micronuclear DNA was purified as described previously and used as template for PCR using PrimeSTAR Max DNA polymerase (Takara Bio). 11 primer sets (Supplementary File 14) were designed to amplify products between 3 kb and 6 kb in length, with overlapping regions between consecutive primer pairs. The resulting PCR products were visualized through agarose gel electrophoresis and bands of the expected size were extracted using a Monarch® DNA Gel Extraction Kit (New England Biolabs). The purified gel bands were cloned using a TOPOTM XL-2 Complete PCR Cloning Kit (Invitrogen), transformed into One ShotTM OmniMAXTM 2 T1R E.

coli cells (Invitrogen), and individual clones were grown and their plasmids harvested with a QIAprep Spin Miniprep Kit (QIAGEN). The plasmid ends were Sanger sequenced, as well as the region where the *Oxytricha* MIC assembly contains inserted MDSs (Genewiz). Sanger sequencing reads were mapped to the *Tetmemena* MIC contig TMEMEN_MIC_21461 and visualized using Geneious Prime® 2021.1.1 (https://www.geneious.com).

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

725

726

727

728

729

Acknowledgements

We thank Toshinobu Suzaki (Kobe University) for the gift of E. woodruffi (strain Iz01 from Shizuoka Prefecture) and Chlorogonium capillatum. We thank Sheela George for laboratory support and help with cell collection. We thank David Dai, Eoghan Harrington, John Beaulaurier and Sissel Juul at Oxford Nanopore Technologies in New York for providing sequencing and advice. We thank Robert Sebra and Melissa Smith for advice on PacBio sequencing. We thank Takahiko Akematsu, Lorraine Symington and Lea Marie for helping with PFGE. We thank Kaiyi Zhu, Shaojie He, Molly Przeworski, Harmen Bussemaker and Nataša Jonoska for advice on Monte Carlo simulation. We also thank Samuel Sternberg, Bill Jack, Scott Roy, and all current and past Landweber lab members for discussion about the origin of scrambled genes and Margarita T. Angelova, Sindhuja Devanapally, Danylo Villano and Kehan Bao for comments on the manuscript. This work was supported by the National Institutes of Health, R35GM122555, and National Science Foundation, DMS1764366, and the National Center for Genome Analysis Support computing resources (supported by National Science Foundation DBI1062432, ABI1458641, and ABI1759906 to Indiana University). Rafik Neme was supported by the Pew Latin American Fellows Program.

747

748	Availability of data and materials
749	Custom scripts are public on https://github.com/yifeng-
750	evo/Oxytricha Tetmemena Euplotes. DNA-seq reads and genome assemblies are available at
751	GenBank under Bioprojects PRJNA694964 (Tetmemena sp.) and PRJNA781979 (Euplotes
752	woodruffi). Genbank accession numbers for genomes are JAJKFJ000000000 (Tetmemena
753	sp. Micronucleus genome), JAJLLS000000000 (Euplotes woodruffi Micronucleus genome), and
754	JAJLLT000000000 (Euplotes woodruffi Macronucleus genome).
755	Three replicates of RNA-seq reads for vegetative cells are available at GenBank under accession
756	numbers of SRR21815378, SRR21815379, SRR21815380 for <i>E. woodruffi</i> and SRR21817702,
757	SRR21817703 and SRR21817704 for Tetmemena sp
758	MDSs annotations for three species are available at https://doi.org/10.5061/dryad.5dv41ns96 and
759	https://knot.math.usf.edu/mds_ies_db/2022/downloads.html (please select species from the drop-
760	down menu).
761	
762	Declaration of interests
763	Leslie Y. Beh is an employee at Illumina Inc.
764	Xiao Chen is an employee at Pacific Biosciences.
765	
766	References
767	1. Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM, Swart EC, Perlman DH,
768	Doak TG, Stuart A, Amemiya CT, Sebra RP, Landweber LF. The architecture of a

- scrambled genome reveals massive levels of genomic rearrangement during development.
- 770 Cell. 2014 Aug 28;158(5):1187-98.
- 2. Mitreva M, Blaxter ML, Bird DM, McCarter JP. Comparative genomics of nematodes.
- 772 Trends in Genetics. 2005 Oct 1;21(10):573-81.
- 3. Smith JJ, Baker C, Eichler EE, Amemiya CT. Genetic consequences of programmed
- genome rearrangement. Current Biology. 2012 Aug 21;22(16):1524-9.
- 4. Biederman MK, Nelson MM, Asalone KC, Pedersen AL, Saldanha CJ, Bracht JR.
- Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in
- the zebra finch, *Taeniopygia guttata*. Current Biology. 2018 May 21;28(10):1620-7.
- 5. Beh LY, Debelouchina GT, Clay DM, Thompson RE, Lindblad KA, Hutton ER, Bracht
- JR, Sebra RP, Muir TW, Landweber LF. Identification of a DNA N6-adenine
- methyltransferase complex and its impact on chromatin organization. Cell. 2019 Jun
- 781 13;177(7):1781-96.
- 6. Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD,
- Nowacki M, Schotanus K, Jung S., Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL,
- Storton D, Matese JC, Parsons L, Chang WJ, Bowen MS, Stover NA, Jones TA, Eddy
- SR, Herrick GA, Doak TG, Wilson RK, Mardis ER, Landweber LF. The Oxytricha
- 786 trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny
- 787 chromosomes. PLoS Biology. 2013 Jan 29;11(1):e1001473.
- 788 7. Chen X, Jung S, Beh LY, Eddy SR, Landweber LF. Combinatorial DNA rearrangement
- facilitates the origin of new genes in ciliates. Genome Biology and Evolution. 2015 Oct
- 790 1;7(10):2859-70.

- 791 8. Wang R, Xiong J, Wang W, Miao W, Liang A. High frequency of +1 programmed
- ribosomal frameshifting in *Euplotes octocarinatus*. Scientific Reports. 2016 Feb
- 793 19;6(1):1-2.
- 9. Chen X, Jiang Y, Gao F, Zheng W, Krock TJ, Stover NA, Lu C, Katz LA, Song W.
- Genome analyses of the new model protist *Euplotes vannus* focusing on genome
- rearrangement and resistance to environmental stressors. Molecular Ecology Resources.
- 797 2019 Sep;19(5):1292-308.
- 798 10. Lindblad KA, Pathmanathan JS, Moreira S, Bracht JR, Sebra RP, Hutton ER, Landweber
- 799 LF. Capture of complete ciliate chromosomes in single sequencing reads reveals
- widespread chromosome isoforms. BMC Genomics. 2019 Dec;20(1):1-1.
- 11. Vinogradov DV, Tsoĭ OV, Zaika AV, Lobanov AV, Turanov AA, Gladyshev VN,
- Gel'fand MS. Draft macronuclear genome of a ciliate *Euplotes crassus*. Molekuliarnaia
- 803 Biologiia. 2012 Mar 1;46(2):361-6.
- 12. Mitcham JL, Lynn AJ, Prescott DM. Analysis of a scrambled gene: the gene encoding
- alpha-telomere-binding protein in *Oxytricha nova*. Genes and Development. 1992 May
- 806 1;6(5):788-800.
- 13. Prescott DM. The DNA of ciliated protozoa. Microbiological Reviews. 1994
- 808 Jun;58(2):233-67.
- 809 14. Nowacki M, Vijayan V, Zhou Y, Schotanus K, Doak TG, Landweber LF. RNA-mediated
- epigenetic programming of a genome-rearrangement pathway. Nature. 2008
- 811 Jan;451(7175):153-8.

- 15. Lindblad KA, Bracht JR, Williams AE, Landweber LF. Thousands of RNA-cached
- copies of whole chromosomes are present in the ciliate *Oxytricha* during development.
- 814 RNA. 2017 Aug 1;23(8):1200-8.
- 16. Yerlici VT, Landweber LF. Programmed genome rearrangements in the ciliate *Oxytricha*.
- 816 Microbiology Spectrum. 2014 Dec 5;2(6):2-6.
- 17. Arnaiz O, Mathy N, Baudry C, Malinsky S, Aury JM, Denby Wilkes C, Garnier O,
- Labadie K, Lauderdale BE, Le Mouël A, Marmignon A. The *Paramecium* germline
- genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal
- eliminated sequences. PLoS Genetics. 2012;8(10):e1002984. doi:
- 821 10.1371/journal.pgen.1002984.
- 18. Maurer-Alcalá XX, Knight R, Katz LA. Exploration of the germline genome of the ciliate
- 823 Chilodonella uncinata through single-cell omics (transcriptomics and genomics). MBio.
- 824 2018 Jan 9;9(1):e01836-17.
- 19. Maurer-Alcalá XX, Yan Y, Pilling OA, Knight R, Katz LA. Twisted tales: insights into
- genome diversity of ciliates using single-cell 'omics. Genome Biology and Evolution.
- 827 2018 Aug; 10(8):1927-38.
- 20. Smith SA, Maurer-Alcalá XX, Yan Y, Katz LA, Santoferrara LF, McManus GB.
- 829 Combined genome and transcriptome analyses of the ciliate *Schmidingerella arcuata*
- 830 (Spirotrichea) reveal patterns of DNA elimination, scrambling, and inversion. Genome
- Biology and Evolution. 2020 Sep;12(9):1616-22.
- 832 21. Katz LA, Kovner AM. Alternative processing of scrambled genes generates protein
- diversity in the ciliate *Chilodonella uncinata*. Journal of Experimental Zoology Part B:
- Molecular and Developmental Evolution. 2010 Sep 15;314(6):480-8.

- 22. Gao F, Song W, Katz LA. Genome structure drives patterns of gene family evolution in
- ciliates, a case study using *Chilodonella uncinata* (Protista, Ciliophora,
- Phyllopharyngea). Evolution. 2014 Aug;68(8):2287-95.
- 838 23. Denby Wilkes C, Arnaiz O, Sperling L. ParTIES: a toolbox for *Paramecium* interspersed
- DNA elimination studies. Bioinformatics. 2016 Feb 15;32(4):599-601.
- 24. Zheng W, Chen J, Doak TG, Song W, Yan Y. ADFinder: accurate detection of
- programmed DNA elimination using NGS high-throughput sequencing data.
- Bioinformatics. 2020 Jun 1;36(12):3632-6.
- 25. Feng Y, Beh LY, Chang WJ, Landweber LF. SIGAR: Inferring Features of Genome
- Architecture and DNA Rearrangements by Split-Read Mapping. Genome Biology and
- 845 Evolution. 2020 Oct;12(10):1711-8.
- 26. Seah BK, Swart EC. BleTIES: Annotation of natural genome editing in ciliates using
- long read sequencing. bioRxiv. 2021 Jan 1. doi.org/10.1101/2021.05.18.444610
- 27. Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M,
- Krishnakumar V, Badger JH, Caler EV, Russ C. Structure of the germline genome of
- 850 *Tetrahymena thermophila* and relationship to the massively rearranged somatic genome.
- 851 Elife. 2016 Nov 28;5:e19090.
- 852 28. Guérin F, Arnaiz O, Boggetto N, Wilkes CD, Meyer E, Sperling L, Duharcourt S. Flow
- 853 cytometry sorting of nuclei enables the first global characterization of *Paramecium*
- germline DNA and transposable elements. BMC Genomics. 2017 Dec;18(1):1-7.
- 29. Sellis D, Guérin F, Arnaiz O, Pett W, Lerat E, Boggetto N, Krenek S, Berendonk T,
- Couloux A, Aury JM, Labadie K, Malinsky S, Bhullar S, Meyer E, Sperling L, Duret L,

- Duharcourt S. Massive colonization of protein-coding exons by selfish genetic elements
- in *Paramecium* germline genomes. Plos Biology. 2021 Jul 29;19(7):e3001309.
- 30. Sheng Y, Duan L, Cheng T, Qiao Y, Stover NA, Gao S. The completed macronuclear
- genome of a model ciliate *Tetrahymena thermophila* and its application in genome
- scrambling and copy number analyses. Science China Life Sciences. 2020
- 862 Oct;63(10):1534-42.f
- 31. Parfrey LW, Lahr DJ, Knoll AH, Katz LA. Estimating the timing of early eukaryotic
- diversification with multigene molecular clocks. Proceedings of the National Academy of
- 865 Sciences. 2011 Aug 16;108(33):13624-9.
- 32. Bracht JR, Fang W, Goldman AD, Dolzhenko E, Stein EM, Landweber LF. Genomes on
- the edge: programmed genome instability in ciliates. Cell. 2013 Jan 31;152(3):406-16.
- 33. Hogan DJ, Hewitt EA, Orr KE, Prescott DM, Müller KM. Evolution of IESs and
- scrambling in the actin I gene in hypotrichous ciliates. Proceedings of the National
- 870 Academy of Sciences. 2001 Dec 18;98(26):15101-6.
- 34. Chang WJ, Bryson PD, Liang H, Shin MK, Landweber LF. The evolutionary origin of a
- complex scrambled gene. Proceedings of the National Academy of Sciences. 2005 Oct
- 873 18;102(42):15149-54.
- 35. Wong LC, Landweber LF. Evolution of programmed DNA rearrangements in a
- scrambled gene. Molecular Biology and Evolution. 2006 Apr 1;23(4):756-63.
- 36. DuBois MI, Prescott DM. Scrambling of the actin I gene in two *Oxytricha* species.
- Proceedings of the National Academy of Sciences. 1995 Apr 25;92(9):3888-92.

- 37. Chen W, Zuo C, Wang C, Zhang T, Lyu L, Qiao Y, Zhao F, Miao M. The hidden
- genomic diversity of ciliated protists revealed by single-cell genome sequencing. BMC
- Biology. 2021 Dec;19(1):1-3.
- 38. Meyer F, Schmidt HJ, Plümper E, Hasilik A, Mersmann G, Meyer HE, Engström A,
- Heckmann K. UGA is translated as cysteine in pheromone 3 of *Euplotes octocarinatus*.
- Proceedings of the National Academy of Sciences. 1991 May 1;88(9):3758-61.
- 39. Klobutcher LA, Herrick G. Consensus inverted terminal repeat sequence of *Paramecium*
- lESs: resemblance to termini of Tc1-related and *Euplotes* Tec transposons. Nucleic Acids
- 886 Research. 1995 Jun 11;23(11):2006-13.
- 40. Tan M, Brünen-Nieweler C, Heckmann K. Isolation of micronuclei from *Euplotes*
- 888 octocarinatus and identification of an internal eliminated sequence in the micronuclear
- gene encoding γ-tubulin 2. European Journal of Protistology. 1999 Jun 21;35(2):208-16.
- 41. Wang W, Zhi H, Chai B, Liang A. Cloning and sequence analysis of the micronuclear
- and macronuclear gene encoding Rab protein of *Euplotes octocarinatus*. Bioscience,
- Biotechnology, and Biochemistry. 2005 Jan 1;69(3):649-52.
- 42. Syberg-Olsen MJ, Irwin NA, Vannini C, Erra F, Di Giuseppe G, Boscaro V, Keeling PJ.
- Biogeography and character evolution of the ciliate genus *Euplotes* (Spirotrichea,
- Euplotia), with description of *Euplotes curdsi* sp. nov. PloS One. 2016 Nov
- 9;11(11):e0165442.
- 43. Gao F, Roy SW, Katz LA. Analyses of alternatively processed genes in ciliates provide
- 898 insights into the origins of scrambled genomes and may provide a mechanism for
- speciation. MBio. 2015 Feb 3;6(1):e01998-14.

- 44. Chen X, Landweber LF. Phylogenomic analysis reveals genome-wide purifying selection
- on TBE transposons in the ciliate *Oxytricha*. Mobile DNA. 2016 Dec;7(1):1-0.
- 902 45. Baird SE, Fino GM, Tausta SL, Klobutcher LA. Micronuclear genome organization in
- 903 Euplotes crassus: a transposonlike element is removed during macronuclear
- development. Molecular and Cellular Biology. 1989 Sep 1;9(9):3793-807.
- 905 46. Krikau MF, Jahn CL. Tec2, a second transposon-like element demonstrating
- developmentally programmed excision in *Euplotes crassus*. Molecular and Cellular
- 907 Biology. 1991 Sep;11(9):4751-9.
- 908 47. Jahn CL, Doktor SZ, Frels JS, Jaraczewski JW, Krikau MF. Structures of the *Euplotes*
- 909 crassus Tec1 and Tec2 elements: identification of putative transposase coding regions.
- 910 Gene. 1993 Oct 29;133(1):71-8.
- 911 48. Jahn CL, Krikau MF, Shyman S. Developmentally coordinated en masse excision of a
- highly repetitive element in *E. crassus*. Cell. 1989 Dec 22;59(6):1009-18.
- 913 49. Klobutcher LA, Herrick GL. Developmental genome reorganization in ciliated protozoa:
- the transposon link. Progress in Nucleic Acid Research and Molecular Biology. 1997 Mar
- 915 21;56:1-62.
- 50. Doak TG, Witherspoon DJ, Jahn CL, Herrick G. Selection on the genes of *Euplotes*
- 917 crassus Tec1 and Tec2 transposons: evolutionary appearance of a programmed frameshift
- 918 in a Tec2 gene encoding a tyrosine family site-specific recombinase. Eukaryotic cell.
- 919 2003 Feb 1;2(1):95-102.
- 920 51. Nowacki M, Higgins BP, Maquilan GM, Swart EC, Doak TG, Landweber LF. A
- 921 functional role for transposases in a large eukaryotic genome. Science. 2009 May
- 922 15;324(5929):935-8.

- 52. Feng Y, Landweber LF. Transposon debris in ciliate genomes. PLoS Biology. 2021 Aug
 24;19(8):e3001354.
- 53. Braun J, Neme R, Feng Y, Landweber LF, Jonoska N. SDRAP for annotating scrambled
 or rearranged genomes. bioRxiv 2022.10.24.513505
- 54. Lynn D. The ciliated protozoa: characterization, classification, and guide to the literature.
 Springer Science & Business Media; 2008 Jun 24.
- 55. Gao F, Warren A, Zhang Q, Gong J, Miao M, Sun P, Xu D, Huang J, Yi Z, Song W. The
 all-data-based evolutionary hypothesis of ciliated protists with a revised classification of
 the phylum Ciliophora (Eukaryota, Alveolata). Scientific Reports. 2016 Apr 29;6(1):1-4.
- 56. Landweber LF, Kuo TC, Curtis EA. Evolution and assembly of an extremely scrambled
 gene. Proceedings of the National Academy of Sciences. 2000 Mar 28;97(7):3298-303.
- 57. Burns J, Kukushkin D, Chen X, Landweber LF, Saito M, Jonoska N. Recurring patterns
 among scrambled genes in the encrypted genome of the ciliate *Oxytricha trifallax*.
 Journal of Theoretical Biology. 2016 Dec 7;410:171-80.

938

- 58. Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biology. 2003 Sep 2;13(17):1512-7.
- 59. Möllenbeck M, Cavalcanti AR, Jönsson F, Lipps HJ, Landweber LF. Interconversion of
 germline-limited and somatic DNA in a scrambled gene. Journal of Molecular Evolution.
 2006 Jul;63(1):69-73.
- 60. Braun J, Nabergall L, Neme R, Landweber LF, Saito M, Jonoska N. Russian doll genes
 and complex chromosome rearrangements in *Oxytricha trifallax*. G3: Genes, Genomes,
 Genetics. 2018 May 1;8(5):1669-74.

- 946 61. Thomas Jr CA. The genetic organization of chromosomes. Annual review of genetics.
- 947 1971 Dec;5(1):237-56.
- 948 62. Elliott TA, Gregory TR. What's in a genome? The C-value enigma and the evolution of
- eukaryotic genome content. Philosophical Transactions of the Royal Society B:
- 950 Biological Sciences. 2015 Sep 26;370(1678):20140331.
- 951 63. Mourier T, Jeffares DC. Eukaryotic intron loss. Science. 2003 May 30;300(5624):1393-
- 952 1393.
- 953 64. Parenteau J, Maignon L, Berthoumieux M, Catala M, Gagnon V, Abou Elela S. Introns
- are mediators of cell response to starvation. Nature. 2019 Jan;565(7741):612-7.
- 955 65. Morgan JT, Fink GR, Bartel DP. Excised linear introns regulate growth in yeast. Nature.
- 956 2019 Jan;565(7741):606-11.
- 957 66. Hoffman DC, Prescott DM. Evolution of internal eliminated segments and scrambling in
- the micronuclear gene encoding DNA polymerase α in two *Oxytricha* species. Nucleic
- 959 acids research. 1997 May 1;25(10):1883-9.
- 960 67. Prescott JD, DuBois ML, Prescott DM. Evolution of the scrambled germline gene
- encoding α-telomere binding protein in three hypotrichous ciliates. Chromosoma. 1998
- 962 Nov;107(5):293-303.
- 963 68. Landweber LF. Why genomes in pieces? Science. 2007 Oct 19;318(5849):405-7.
- 964 69. Landweber LF. Making sense of scrambled genomes. Science. 2008 Feb
- 965 15;319(5865):901-2.
- 966 70. Schmidbaur H, Kawaguchi A, Clarence T, Fu X, Hoang OP, Zimmermann B, Ritschard
- 967 EA, Weissenbacher A, Foster JS, Nyholm SV, Bates PA. Emergence of novel

- cephalopod gene regulation and expression through large-scale genome reorganization.
- 969 Nature communications. 2022 Apr 21;13(1):1-1.
- 970 71. Albertin CB, Medina-Ruiz S, Mitros T, Schmidbaur H, Sanchez G, Wang ZY, Grimwood
- J, Rosenthal JJ, Ragsdale CW, Simakov O, Rokhsar DS. Genome and transcriptome
- 972 mechanisms driving cephalopod evolution. Nature communications. 2022 May 4;13(1):1-
- 973 4.
- 72. Lauth MR, Spear BB, Heumann J, Prescott DM. DNA of ciliated protozoa: DNA
- sequence diminution during macronuclear development of *Oxytricha*. Cell. 1976 Jan
- 976 1;7(1):67-74.
- 977 73. Akematsu T, Fukuda Y, Garg J, Fillingham JS, Pearlman RE, Loidl J. Post-meiotic DNA
- double-strand breaks occur in *Tetrahymena*, and require Topoisomerase II and Spo11.
- 979 Elife. 2017 Jun 16;6:e26176.
- 980 74. Bracht JR, Perlman DH, Landweber LF. Cytosine methylation and hydroxymethylation
- 981 mark DNA for elimination in *Oxytricha trifallax*. Genome Biology. 2012 Oct;13(10):1-
- 982 23.
- 983 75. Gorovsky MA, Hattman S, Pleger GL. [6N] Methyl adenine in the nuclear DNA of a
- eucaryote, *Tetrahymena pyriformis*. The Journal of Cell Biology. 1973 Mar 1;56(3):697-
- 985 701.
- 986 76. Cummings DJ, Tait A, Goddard JM. Methylated bases in DNA from *Paramecium*
- 987 *aurelia*. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis.
- 988 1974 Nov 20;374(1):1-1.
- 989 77. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
- 990 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV. SPAdes: a new genome assembly

- algorithm and its applications to single-cell sequencing. Journal of Computational
- 992 Biology. 2012 May 1;19(5):455-77.
- 78. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan
- L, Raychowdhury R, Zeng Q, Chen Z. Full-length transcriptome assembly from RNA-
- 995 Seq data without a reference genome. Nature Biotechnology. 2011 Jul;29(7):644-52.
- 79. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Research.
- 997 1999 Sep 1;9(9):868-77.
- 998 80. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Research. 2002 Apr
- 999 1;12(4):656-64.
- 1000 81. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.
- BLAST+: architecture and applications. BMC Bioinformatics. 2009 Dec;10(1):1-9.
- 1002 82. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
- sequencing data. Bioinformatics. 2012 Dec 1;28(23):3150-2.
- 1004 83. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith Jr RK, Hannick LI, Maiti R,
- 1005 Ronning CM, Rusch DB, Town CD, Salzberg SL. Improving the *Arabidopsis* genome
- annotation using maximal transcript alignment assemblies. Nucleic Acids Research. 2003
- 1007 Oct 1;31(19):5654-66.
- 1008 84. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman
- JR. Automated eukaryotic gene structure annotation using EVidenceModeler and the
- 1010 Program to Assemble Spliced Alignments. Genome biology. 2008 Sep;9(1):1-22.
- 1011 85. Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: Automatic
- eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a
- protein database. NAR Genomics and Bioinformatics. 2021 Mar;3(1):lqaa108.

- 1014 86. Slater GS, Birney E. Automated generation of heuristics for biological sequence 1015 comparison. BMC Bioinformatics. 2005 Dec;6(1):1-1.
- 1016 87. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:
- assessing genome assembly and annotation completeness with single-copy orthologs.
- 1018 Bioinformatics. 2015 Oct 1;31(19):3210-2.
- 1019 88. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and
- streamlined workflows along with broader and deeper phylogenetic coverage for scoring
- of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution. 2021
- 1022 Oct;38(10):4647-54.
- 1023 89. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA
- genes in genomic sequence. Nucleic Acids Research. 1997 Mar 1;25(5):955-64.
- 1025 90. Wang JR, Holt J, McMillan L, Jones CD. FMLRC: Hybrid long read error correction
- using an FM-index. BMC Bioinformatics. 2018 Dec;19(1):1-1.
- 1027 91. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nature Methods. 2020
- 1028 Feb;17(2):155-8.
- 1029 92. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng
- 1030 Q, Wortman J, Young SK, Earl AM. Pilon: an integrated tool for comprehensive
- microbial variant detection and genome assembly improvement. PloS One. 2014 Nov
- 1032 19;9(11):e112963.
- 1033 93. Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de
- novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids
- 1035 Research. 2016 Nov 2;44(19):e147-e147.

- 1036 94. Boscaro V, Husnik F, Vannini C, Keeling PJ. Symbionts of the ciliate *Euplotes*: diversity,
- patterns and potential as models for bacteria–eukaryote endosymbioses. Proceedings of
- 1038 the Royal Society B. 2019 Jul 24;286(1907):20190693.
- 1039 95. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using
- repeat graphs. Nature Biotechnology. 2019 May;37(5):540-6.
- 1041 96. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for
- metagenomics with Kaiju. Nature Communications. 2016 Apr 13;7(1):1-9.
- 97. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods.
- 1044 2012 Apr;9(4):357-9.
- 1045 98. Smit AF, Hubley R. RepeatModeler Open-1.0. 2008-2015
- 1046 http://www.repeatmasker.org.
- 99. Smit AF, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015
- 1048 http://www.repeatmasker.org.
- 1049 100. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high
- 1050 throughput. Nucleic Acids Research. 2004 Mar 1;32(5):1792-7.
- 1051 101. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated
- alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009 Aug
- 1053 1;25(15):1972-3.
- 1054 102. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New
- algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
- 1056 performance of PhyML 3.0. Systematic Biology. 2010 May 1;59(3):307-21.
- 1057 103. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for
- 1058 comparative genomics. Genome Biology. 2019 Dec;20(1):1-4.

1059 104. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam 1060 H, Remmert M, Söding J, Thompson JD. Fast, scalable generation of high-quality protein 1061 multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 1062 2011;7(1):539. 1063 105. Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein 1064 sequence alignments into the corresponding codon alignments. Nucleic Acids Research. 1065 2006 Jul 1:34(suppl 2):W609-12. 1066 106. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence 1067 similarity searching. Nucleic Acids Research. 2011 May 18;39(suppl 2):W29-37. 107. 1068 Miller RV, Neme R, Clay DM, Pathmanathan JS, Lu MW, Yerlici VT, Khurana 1069 JS, Landweber LF. Transcribed germline-limited coding sequences in Oxytricha trifallax. 1070 G3. 2021 Jun;11(6):jkab092. 1071 108. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ. Macronuclear genome sequence of the ciliate 1072 1073 Tetrahymena thermophila, a model eukaryote. PLoS Biology. 2006 Sep;4(9):e286. 109. 1074 Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, 1075 Anthouard V, Aiach N, Arnaiz O. Global trends of whole-genome duplications revealed 1076 by the ciliate *Paramecium tetraurelia*. Nature. 2006 Nov;444(7116):171-8. 1077 110. Riley JL, Katz LA. Widespread distribution of extensive chromosomal 1078 fragmentation in ciliates. Molecular Biology and Evolution. 2001 Jul 1;18(7):1372-7. 1079 1080

Table 1. Statistics of MAC and MIC genomes in three species

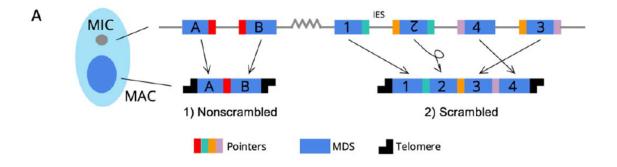
	Oxytricha trifallax		Tetmemena sp.		Euplotes woodruffi	
	MAC ^{6,b}	MIC ¹	MAC ⁷	MIC ^c	MAC ^c	MIC ^c
genome size (Mbp)	67.1	496	60.6	237	72.2	172
N50 (bp)	3,745	27,807	3,339	14,722	2,702	44,656
GC%	31.36	28.44	37.05	32.17	36.56	35.31
number of contigs ^a	22,426	25,720	25,206	28,446	35,099	17,655
Two-telomere contigs	14,225	-	15,802	-	19,061	-
Telomeric contigs	20,336	-	21,165	-	28,294	-
Single-gene telomeric contigs	76.1%	-	75.5%	-	68.5%	-
Maximum number of genes on a telomeric contig	8	-	7	-	8	-

^a TBE contaminants in MAC contigs were removed (Methods). Therefore, 24 *Oxytricha* MAC contigs and 13 *Tetmemena* MAC contigs were removed from the published versions.

b This study used the MAC genome of *Oxytricha* from Swart et al. (6) instead of the long-read assembly in Lindblad et al. (10), because the short MAC genomes in the present study were primarily assembled from Illumina reads, as in (6). (10) updated (6) by including nanochromosomes captured in single long reads, which are currently not available for the other two species. The MIC genomes of *Tetmemena* and *E. woodruffi* were assembled to a similar N50 as the reference *O. trifallax* genome (1) for comparative analysis.

^c Data from this study.

1097


1098

1099

1100

1101

1102

В MAC gene-sized Scrambled MIC genome assembly Average pointer length nanochromosomes genes Oxytricha scrambled 11bp Yes6,10 Yes1 Yes1 trifallax nonscrambled 5bp1 Tetmemena scrambled 10bp Yes⁷ Yes Yes nonscrambled 5bp scrambled 13bp **Euplotes** Yes Yes nonscrambled 4bp Yes woodruffi 0 - 4bp AT-rich Tetrahymena No^{30, 108} Yes²⁷ Yes30 thermophila variable positions²⁷ Paramecium No¹⁰⁹ Yes²⁸ 2bp (TA)¹⁷ Nο tetraurelia Chilodonella Partial genome assembled scrambled 9bp Yes^{18, 21, 22} Yes110 nonscrambled 7bp18 uncinata using single-cell omics18 Plasmodium NA NΑ NA NA falciparum

Figure 1. Genome rearrangements in representative ciliate species. A) Diagram of genome rearrangement in *Oxytricha*. Each ciliate cell contains a somatic macronucleus (MAC) and a germline micronucleus (MIC). During development, the MAC genome rearranges from a copy of the MIC genome. 1) Nonscrambled genes rearrange simply by joining consecutive macronuclear destined sequences (MDSs, blue boxes) and removing internal eliminated sequences (IESs, thin lines). 2) Rearrangement of scrambled genes requires MDS translocation and/or inversion.

Pointers are microhomologous sequences (colored vertical bars) present in two copies in the MIC and only one copy in the MAC where consecutive MDSs recombine. B) Comparison of genome rearrangement features of representative ciliates and the non-ciliate Plasmodium falciparum as an outgroup (phylogenetic information is based on refs. 31 and 32). Conclusions from this study are shown in bold. * indicates that some scrambled pointers in E. woodruffi are much longer, as discussed in the results. Statistics for pointers <=30bp in E. woodruffi are shown. Table information derives from the following sources: [1] Chen, Xiao, et al. "The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development." Cell 158.5 (2014): 1187-1198. [6] Swart, Estienne C., et al. "The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes." *PLoS biology* 11.1 (2013): e1001473. [7] Chen, Xiao, et al. "Combinatorial DNA rearrangement facilitates the origin of new genes in ciliates." Genome biology and evolution 7.10 (2015): 2859-2870. [10] Lindblad, Kelsi A., et al. "Capture of complete ciliate chromosomes in single sequencing reads reveals widespread chromosome isoforms." BMC genomics 20.1 (2019): 1-11. [17] Arnaiz, Olivier, et al. "The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences." (2012): e1002984. [18] Maurer-Alcalá, Xyrus X., Rob Knight, and Laura A. Katz. "Exploration of the germline genome of the ciliate *Chilodonella uncinata* through single-cell omics (transcriptomics and genomics)." MBio 9.1 (2018): e01836-17. [21] Katz, Laura A., and Alexandra M. Kovner. "Alternative processing of scrambled genes generates protein diversity in the ciliate Chilodonella uncinata." Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 314.6 (2010): 480-488. [22] Gao, Feng, Weibo Song,

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

and Laura A. Katz. "Genome structure drives patterns of gene family evolution in ciliates, a case 1127 study using Chilodonella 52uncinate (Protista, Ciliophora, Phyllopharyngea)." Evolution 68.8 1128 (2014): 2287-2295. [27] Hamilton, Eileen P., et al. "Structure of the germline genome of 1129 Tetrahymena thermophila and relationship to the massively rearranged somatic genome." eLife 5 1130 (2016): e19090. [28] Guérin, Frédéric, et al. "Flow cytometry sorting of nuclei enables the first 1131 global characterization of *Paramecium* germline DNA and transposable elements." *BMC* 1132 genomics 18.1 (2017): 1-17. [30] Sheng, Yalan, et al. "The completed macronuclear genome of a model ciliate *Tetrahymena thermophila* and its application in genome scrambling and copy 1133 1134 number analyses." Science China Life Sciences 63.10 (2020): 1534-1542. [108] Eisen, Jonathan 1135 A., et al. "Macronuclear genome sequence of the ciliate *Tetrahymena thermophila*, a model 1136 eukaryote." PLoS Biology 4.9 (2006): e286. [109] Aury, Jean-Marc, et al. "Global trends of 1137 whole-genome duplications revealed by the ciliate *Paramecium tetraurelia*." *Nature* 444.7116 1138 (2006): 171-178. [110] Riley, Jennifer L., and Laura A. Katz. "Widespread distribution of 1139 extensive chromosomal fragmentation in ciliates." *Molecular Biology and Evolution* 18.7 (2001): 1140 1372-1377. 1141 Full citation information for refs. 31 and 32: 1142 [31] Parfrey, Laura Wegener, et al. "Estimating the timing of early eukaryotic diversification 1143 with multigene molecular clocks." Proceedings of the National Academy of Sciences 108.33 1144 (2011): 13624-13629.

1147

1145

1146

ciliates." Cell 152.3 (2013): 406-416.

1126

1148

[32] Bracht, John R., et al. "Genomes on the edge: programmed genome instability in

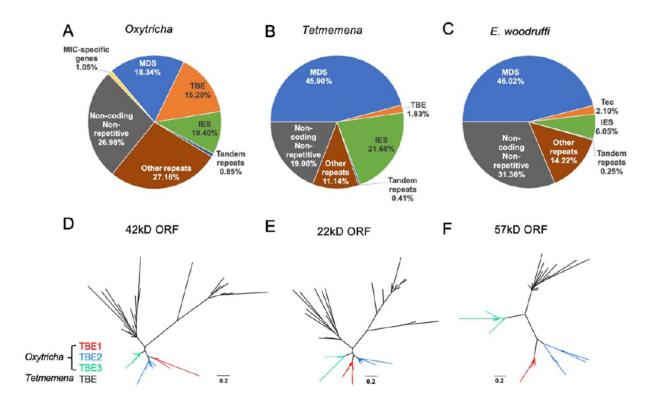


Figure 2. The three MIC genomes differ in repeat content, especially transposable elements. A-C) MIC genome categories for (A) Oxytricha trifallax, (B) Tetmemena sp., and (C) E. woodruffi. Oxytricha displays the greatest proportion of repetitive elements (TBE, Other repeats, and Tandem repeats) relative to the other species. Oxytricha MIC-specific genes were annotated in (1, 107). D-F) Phylogenetic analysis of the three TBE ORFs in Oxytricha and Tetmemena: (D) 42kD, (E) 22kD, and (F) 57kD, suggest that TBE3 (green) is the ancestral transposon family in Oxytricha. For each ORF, 30 protein sequences from each species were randomly subsampled and Maximum Likelihood trees constructed using PhyML (102).

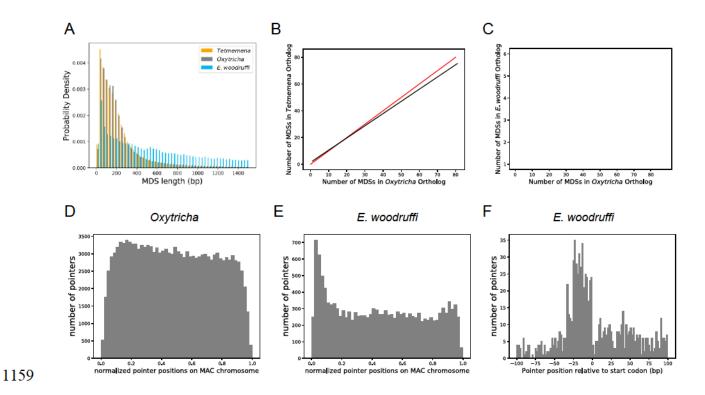
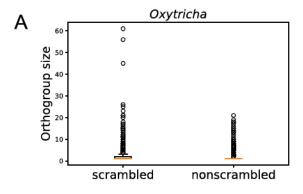
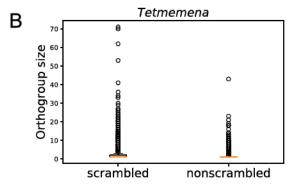




Figure 3. The three MIC genomes are interrupted by IESs at different levels. A) MDSs of *E. woodruffi* are longer compared to *Oxytricha* or *Tetmemena*. B) Positive correlation between the numbers of MDSs for orthologous genes in *Tetmemena* and in *Oxytricha* for 903 single-gene orthologs. Black line is the function of linear regression (R² = 0.75). Red line is y=x. C) Orthologs in *E. woodruffi* have fewer MDSs compared to *Oxytricha*, with no correlation (R² = 0.003). Note that many highly discontinuous genes in *Oxytricha* are IES-less in *E. woodruffi* (present on one MDS). 917 single-gene orthologs are shown. D) Distribution of pointers on single-gene MAC chromosomes in *Oxytricha vs.* E) *E. woodruffi*, with MAC chromosomes oriented in gene direction. Pointers significantly accumulate at the 5' end of single-gene MAC chromosomes in *E. woodruffi*. (F) Pointer positions on 3684 two-MDS MAC chromosomes demonstrate a preference upstream of the start codon.

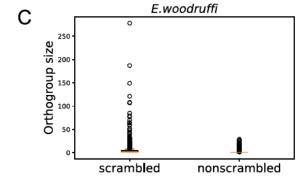
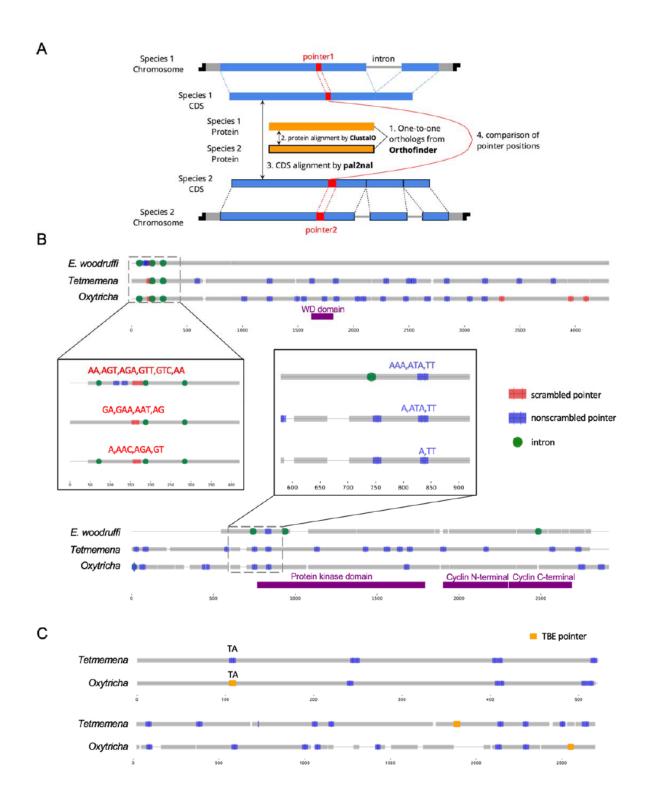



Figure 4. Scrambled genes have more paralogs than nonscrambled genes in the three species.

Orthogroups containing at least one scrambled gene ("scrambled") are larger than orthogroups that lack scrambled genes ("nonscrambled") in A) Oxytricha, B) Tetmemena and C) E.

1179 woodruffi.

Figure 5. Identification and examples of conserved pointers. A) Pipeline for comparison of pointer positions in orthologs. Orthologs are first grouped by OrthoFinder (103) and protein sequences of single-copy orthologs aligned by Clustal Omega (104). Then the protein alignments

1184	are reverse translated to coding sequence (CDS) alignments by a modified script of pal2nal (105,
1185	Methods). Pointers are annotated on the CDS alignments for comparison between any two
1186	orthologs. B) Two examples of pointer conservation across three species. Gray lines represent
1187	the alignment of orthologous CDSs and boxes show magnified regions containing conserved
1188	pointers. The top panel shows a conserved scrambled pointer (Oxytricha: Contig889.1.g68;
1189	Tetmemena: LASU02015390.1.g1; E. woodruffi: EUPWOO_MAC_30105.g1). The bottom panel
1190	shows a conserved nonscrambled pointer (Oxytricha: Contig19750.0.g98; Tetmemena:
1191	LASU02002033.1.g1; E. woodruffi: EUPWOO_MAC_31621.g1). Pointer sequences are noted
1192	and commas indicate reading frame. Protein domains detected by HMMER (106) are marked in
1193	purple. C) Examples of TBE insertions in nonscrambled IESs. The upper pair of sequences show
1194	an Oxytricha TBE pointer (orange insertion of an incomplete TBE2 transposon containing the
1195	42kD and 57kD ORFs) conserved with a Tetmemena non-TBE pointer (Oxytricha:
1196	Contig736.1.g130; Tetmemena: LASU02012221.1.g1). Both species have a TA pointer at this
1197	junction. The bottom pair of sequences illustrate a case of nonconserved TBE pointers
1198	(Oxytricha: Contig17579.0.g71; Tetmemena: LASU02007616.1.g1).

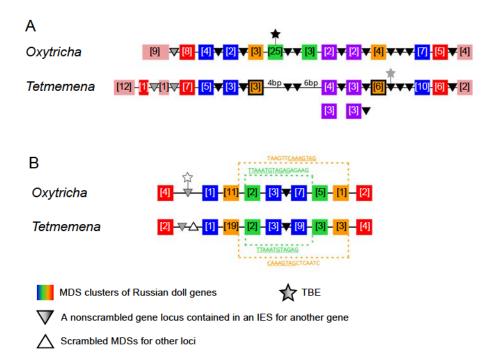


Figure 6. Synteny in "Russian doll" loci in Oxytricha and Tetmemena. A) Schematic comparison of the Russian doll gene cluster on Oxytricha MIC contig OXYTRI_MIC_87484 vs. Tetmemena MIC contig TMEMEN_MIC_21461. Boxes of the same color represent clusters of MDSs for orthologous genes (detailed map in Figure 6 - figure supplement 1 and Figure 6 - figure supplement 2). Numbers in brackets indicate the number of MDSs in each cluster, grouped by MAC chromosome. One nested gene (green) in Oxytricha is absent from Tetmemena. A two-gene chromosome (orange) that derives from seven MDSs in Oxytricha is processed as two single-gene chromosomes in Tetmemena instead (indicated by black border around orange boxes). The purple gene in Oxytricha has two paralogs in Tetmemena. Black triangles represent conserved, orthologous, nonscrambled gene loci inserted between nested Russian doll genes. Empty triangle represents scrambled MDSs for other loci. Gray triangles, complete nonscrambled MAC loci embedded between gene layers in one species with no orthologous gene detected in the other species. Black star, a complete TBE transposon insertion. Gray star, a

partial TBE insertion. B) Oxytricha MIC contig OXYTRI_MIC_69233 vs. Tetmemena MIC contig TMEMEN_MIC_22886. Pointer sequences bridging the nested MDSs of orange and green genes are highlighted. The underlined pointer portions are conserved between species, e.g. the last 8bp of the Oxytricha pointer, TAAGTTCAAAGTAG, are identical to the first 8bp of CAAAGTAGCTCAATC in Tetmemena, illustrating pointer sliding (36), or gradual shifting of MDS/IES boundaries. White star indicates a decayed TBE with no ORF identified.

Figure 2 - figure supplement 1. Comparison of MIC genome context of A) TBE/Tec transposons and B) other transposable elements in the three species. Complete and partial TBE/Tec elements were annotated by MIC context. Other transposable elements include all subcategories shown in Supplementary File 2. Boundary (light blue): edges of assembled MIC contigs. MIC-specific contig (orange): no MDS identified on the MIC contig so it cannot be annotated as intergenic or a long IES. Intergenic (green): MIC regions between MDSs for different MAC contigs. IES paralogous (yellow): TE insertions between duplicate (paralogous)MDSs, so they are neither scrambled nor nonscrambled. IES nonscrambled (dark blue): TE insertions that map between consecutive, nonscrambled MDSs for the same MAC contigs. IES scrambled (magenta): MIC regions between nonconsecutive (scrambled) MDSs for the same MAC contigs. Note that TEs in IESs or intergenic regions could be flanked by other MIC-limited sequences extending beyond the TE ends.

Figure 2 - figure supplement 2. Length distribution of assembled MAC nanochromosomes in the three species. Chromosomes over 11 kb are excluded from the plot.

Figure 3 - figure supplement 1. A and B) CDS lengths correlate for *Oxytricha*, *Tetmemena* and *E. woodruffi* orthologs (related to Figure 3). A) *Tetmemena* CDS length positively correlates with that of *Oxytricha* orthologs (R²=0.96). Black line is the linear regression fitting function. Red line shows y=x. B) *E. woodruffi* CDS length positively correlates with that of *Oxytricha* orthologs (R²=0.83). C) The distribution of pointers on single-gene MAC chromosomes in *Tetmemena* displays a weak 5' bias (related to Figure 3).

Figure 3 - figure supplement 2. Scrambled and nonscrambled loci have distinct length distributions of IESs and pointers. A-C) Length distribution of scrambled and nonscrambled pointers <= 30bp in A) *Oxytricha*, B) *Tetmemena* and C) *E. woodruffi*. D- F) Length distribution of scrambled and nonscrambled IESs in D) *Oxytricha* (<=100bp), E) *Tetmemena* (<=100bp) and F) *E. woodruffi* (<=300bp).

Figure 4 - figure supplement 1. An example of an *E. woodruffi* scrambled gene locus containing paralogous MDSs. A) The upper panel is the map of a scrambled MIC locus (EUPWOO MIC 17325). Below is the corresponding map of the MAC chromosome (EUPWOO MAC 29939). Pointers between MDSs are labeled above or below the MAC contig (nonscrambled pointer length in blue and scrambled pointers labeled in red). B) A model for the evolutionary origin of this scrambled MIC locus by partial duplication and subsequent decay. Stage 1: The ancestral MIC locus contains three nonscrambled MDSs (labeled proto-MDSs because they are precursors for the modern state). Stage 2: The region containing two proto-MDSs duplicated in the MIC genome. Stage 3: Nucleotide substitutions accumulated in both paralogous copies at different positions (shown in gray dashed boxes) leading to the fixation of some regions as MDSs, while the regions that accumulated more mutations decayed into IESs, which are removed during genome rearrangement. (Figure 4 - figure supplement 1B has been adapted from a general model in Figure 3 from Gao et al., 2015 [43].) [43]: Gao, Feng, Scott W. Roy, and Laura A. Katz. "Analyses of alternatively processed genes in ciliates provide insights into the origins of scrambled genomes and may provide a mechanism for speciation." *MBio* 6.1 (2015): e01998-14.

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Figure 4 - figure supplement 2. The trend of scrambled loci to contain odd-even patterns may arise from partial duplication followed by mutation accumulation. A) A diagram describing a typical scrambled region with an odd-even pattern. We propose that the IES (S1) between MDS n and MDS n+2 may be ancestrally paralogous to MDS n+1 (S2) which evolved by duplication of MDS n+1 before it was scrambled. S1 and S2 would therefore be homologous in this model. B) The lengths of modern IES (S1) and MDS (S2) display a strong positive correlation in E. woodruffi (504 pairs). Many data points fall on the y=x (red line). All MDS and IES pairs were only considered if they are on the same MIC contig, to exclude alleles. C) Character mapping of scrambled loci on a phylogeny: 1. Examples of scrambled loci uniquely present in one species (only showing for Oxytricha and Tetmemena; most scrambled genes in E. woodruffi have no ortholog detectable in the other two species, possibly because the long genetic distance obscured homology, see main text and Supplementary File 4); 2. Scrambled loci shared between Oxytricha and Tetmemena, but not E. woodruffi; 3. Scrambled loci shared in three species. The lengths of IES (S1) and MDS (S2) in typical odd-even regions display a moderately positive correlation in Oxytricha (D) and Tetmemena (E). Newer scrambled loci correlate more strongly. Red line represents y=x. Note that S1 and S2 are flanked by identical pointers, a and b, in all annotated pairs.

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

Figure 4 - figure supplement 3. Expression level of scrambled and nonscrambled genes in A) *Oxytricha*, B) *Tetmemena* and C) *E. woodruffi*. P-values of Mann-Whitney U tests are shown in blue. The line in orange shows the median. The box shows the range between the first and third quartiles. The upper whisker represents the third quartile $+1.5 \times$ interquartile range (IQR) and the lower whisker shows the first quartile $-1.5 \times$ IQR. Numbers in brackets indicate genes which have a coefficient of variation of TPM (transcripts per million) less than 1.

1292	Figure 5 - figure supplement 1. Examples of Intron-IES conversion across three species. A)
1293	Four intron positions in E. woodruffi (orange boxes in magnified regions) overlap locations of
1294	nonscrambled pointers in the orthologous genes in Oxytricha and Tetmemena (Oxytricha:
1295	Contig13378.0.g40; Tetmemena: LASU02004100.1.g1; E. woodruffi:
1296	EUPWOO_MAC_08218.g1) consistent with a possible trend of some ancestral introns becoming
1297	IESs in the hypotrich lineage. Two positions fall within a conserved protein domain of unknown
1298	function (DUF3591). B) An orthologous gene with two intron-IES conversions in reciprocal
1299	directions (Oxytricha: Contig16930.0.g77; Tetmemena: LASU02013377.1.g1; E. woodruffi:
1300	EUPWOO_MAC_15089.g1). Colors and annotation as in Figure 5.
1301	

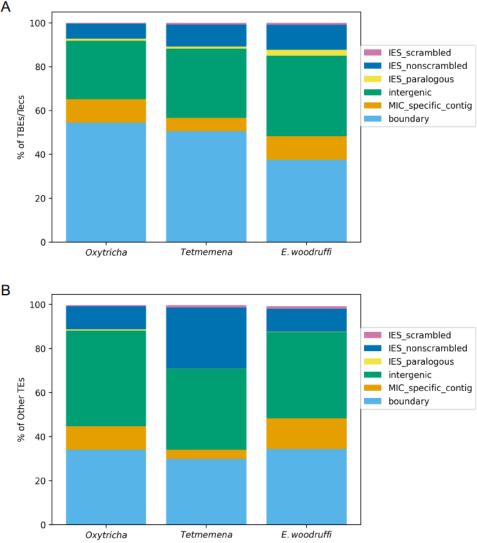
Figure 6 - figure supplement 1. Detailed illustration of both Russian Doll regions in Figure 6.

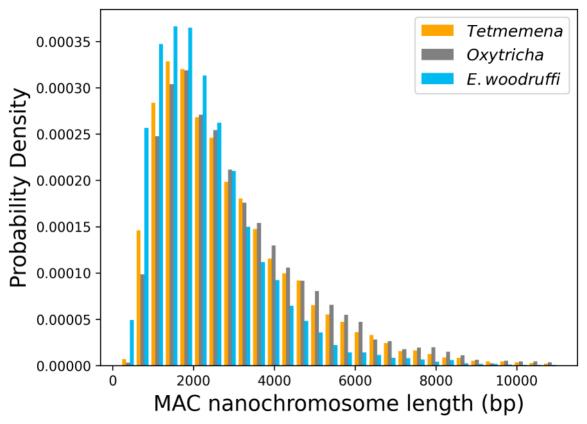
MDS indices are annotated here for each MAC locus. Overlined numbers represent inverted

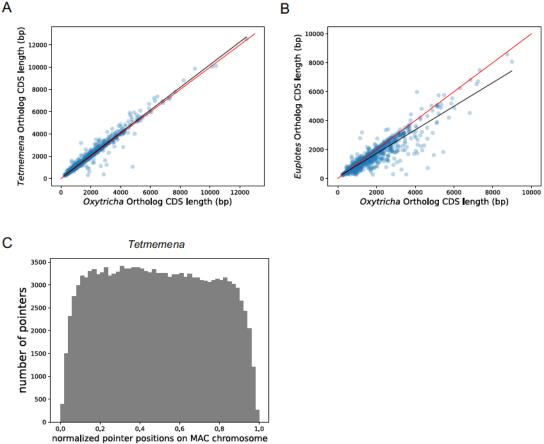
MDSs. MAC contig numbers for the MDSs are listed below and shown in corresponding color

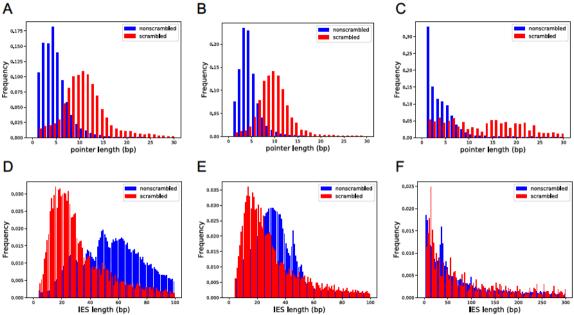
patterns (the *Oxytricha* loci were previously characterized in ref. 60).

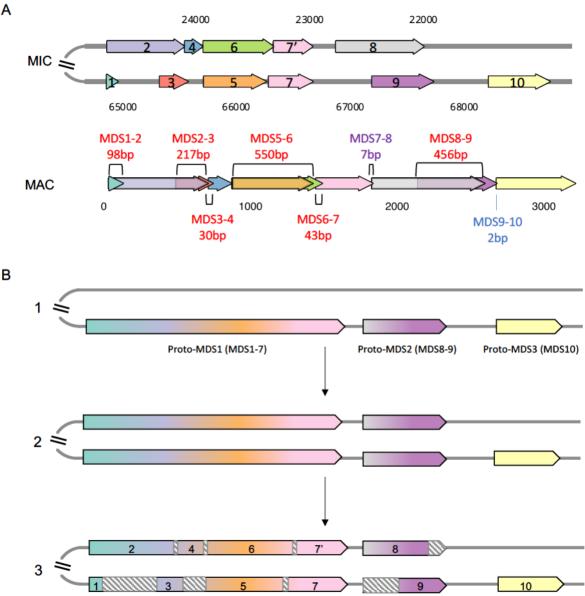
Figure 6 - figure supplement 2. Details of the Russian Doll region in *Tetmemena*(TMEMEN_MIC_21461, Figure 6A). The whole region (~50 kb) was validated by 11 PCRs.


The two black arrows indicate the absence of a Russian doll gene (green in Figure 6A) that is present in *Oxytricha*. Legend lists the 20 *Tetmemena* MAC contigs that contain the corresponding MDSs.


1312	Supplementary File 1. Sequencing depth statistics for MIC genome assemblies
1313	*Sequencing data from Chen et al. (1).
1314	**Raw reads were mapped to the MIC genome assembly by Minimap2 and Bowtie2 (97).
1315	Average coverage was calculated with BBmap (sourceforge.net/projects/bbmap/) pileup.sh for
1316	MDS-containing contigs in the MIC genome assembly.
1317	
1318	Supplementary File 2. Subcategories of repeat content in the three species.
1319	Repeat content of the three genomes, as annotated by Repeatmasker (99) with additional manual
1320	annotation of TBE/Tec elements. The numbers may differ from Figure 2A-C because some
1321	repeats are assigned as other MIC categories in the pie charts (Methods). For example, a MIC
1322	region which is both an IES and satellite, is assigned as IES in Figure 2A-C, but is counted as a
1323	satellite in this table.
1324	
1325	Supplementary File 3. TBE/Tec ORFs in three species
1326	* Differs from 10,109 in Chen et al. (44) because we used different versions of BLAST and
1327	custom python scripts to identify complete TBEs (See Methods).
1328	
1329	Supplementary File 4. Orthology among scrambled and nonscrambled genes in the three
1330	species
1331 1332	* Ciliate database is generated by extracting all protein sequences in phylum Ciliophora (taxid:
1333	5878) from NR database.
1334	


1335 1336	Supplementary File 5. Summary of orthologs in each pair of species
1337	The (i,j) cell shows the number of genes in species i with an ortholog in species j .
1338	* Genes with no ortholog detected by OrthoFinder (103) in the other two species.
1339 1340	Supplementary File 6. More scrambled MAC contigs contain at least one paralogous MDS that
1341	may be involved in alternative rearrangement.
1342 1343	Supplementary File 7. MDS-IES pairs share homologous sequences in the three species (related
1344	to Figure 4 - figure supplement 2).
1345 1346 1347	Supplementary File 8. Genes with expression support in the three species
1348	Supplementary File 9. Presence of conserved pointers in three species, with Monte Carlo
1349	simulations
1350	
1351	Supplementary File 10. Scrambled pointers are more conserved than nonscrambled pointers.
1352	
1353	Supplementary File 11. Most pointers conserved in position are different in sequence
1354	
1355	Supplementary File 12. Intron-IES conversion comparison in three species and Monte Carlo
1356	simulations
1357	
1358	Supplementary File 13. Pairwise intron-IES conversion comparisons and Monte Carlo
1359	simulations


- Supplementary File 14. PCR primers for validation of the Russian doll region in *Tetmemena* MIC DNA (Figure 6A)


1363	Figure 5 - source data 1. Pointers conserved in all three species.
1364 1365	Figure 5 - source data 2. The TBE pointers in <i>Oxytricha</i> that are conserved with non-TBE pointers in <i>Tetmemena</i> .
1366	
1367	
1368	
1369	
1370	
1371	
1372	

