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A braided Frobenius algebra is a Frobenius algebra with a Yang—Baxter operator that
commutes with the operations, that are related to diagrams of compact surfaces with
boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a
group with the operation (z,y,2) — zy~ 'z, that is ternary self-distributive. Hopf alge-
bras can be endowed with the algebra version of the heap operation. Using this, we
construct braided Frobenius algebras from a class of certain Hopf algebras that admit
integrals and cointegrals. For these Hopf algebras we show that the heap operation
induces a Yang—Baxter operator on the tensor product, which satisfies the required com-
patibility conditions. Diagrammatic methods are employed for proving commutativity
between Yang—Baxter operators and Frobenius operations.

Keywords: Self-distributivity; heap operation; Yang—Baxter operators; compact ori-
entable surfaces with boundary.
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1. Introduction

Frobenius algebras have been studied in recent decades in relation to 2-dimensional
topological quantum field theories (TQFTSs) [15], and to Khovanov homology [14]
in knot theory, that is a categorification of the Jones polynomial [11]. Braid groups
have been extensively used in relation to generalizations of the Jones polyno-
mial, and braided monoidal categories have been developed to further extend knot
invariants to ribbon graphs [20], that consist of disk vertices and ribbon edges.
Spatial graphs with a move that corresponds to handle slides have been studied
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for handlebody-links [9]. Corresponding algebraic structures that have multiplica-
tion and braiding at the same time, with compatibility conditions, have also been
studied [2, 17]. Compact surfaces with boundary can be represented by ribbon
graphs, and their moves [18] and their invariants [10] have been studied. For alge-
braic objects having both Frobenius and braiding structures, Frobenius objects in
braided monoidal categories were proposed in [4], and relations to a certain tangle
category were discussed. Hopf-Frobenius algebras were considered e.g. in [3], and
invariants that use heaps for framed links were considered in [21, 22].

Motivated from these developments, in this paper, we present a construction of
braided Frobenius algebras from certain Hopf algebras. A braided Frobenius algebra
is a Frobenius algebra X = (V, u,n, A, ¢) (multiplication, unit, comultiplication,
counit) over a unital ring k, along with a Yang-Baxter (YB) operator §, such
that operations of X commute with the operator [, as explicitly formulated in
Definition 5.1. This commutation is represented by diagrams depicted in Fig. 1,
where the multiplication and the YB operator are represented by trivalent vertices
and crossings, respectively, and these are part of moves for spatial graph diagrams.

The idea of the construction is based on heaps. A heap is an abstraction of
a group endowed with the ternary operation a x b x ¢ — T(a,b,c) = ab~lc. It
is computed that this operation on a group satisfies the ternary self-distributive
law (TSD) T((x,y, 2),u,v) = T(T(x,u,v),T(y,u,v), T(z,u,v)) for all x,y, z,u,v.
Binary self-distributive operations have been studied in relation to the Yang-Baxter
operators through tensor categories (e.g. [1]). In [6] a diagrammatic interpretation
of TSD was given in terms of framed links, providing set-theoretic Yang—Baxter
operators. The assignment of heap elements on arcs and the heap operations to
crossings are depicted in Fig. 2, together with the TSD property corresponding to
a braid relation (the type IIT Reidemeister move in knot theory). In [5], the con-
structions of TSD operations from heaps were generalized to monoidal categories.
Those in the category of finite dimensional Hopf algebras over a field are called
quantum heaps. We use quantum heaps X to construct a Frobenius algebra struc-
ture on V = X ® X that commute with the Yang-Baxter operator induced by the
TSD operations. A key method of proofs is an extensive use of diagrams.

The paper is organized as follows. In Sec. 2 we review basic definitions and
facts regarding heap structures, Hopf algebras, Frobenius algebras and Yang—Baxter
operators. In Sec. 3 we deal with ternary self-distributive (TSD) structures in coal-
gebras, and construct a Yang—Baxter operator associated to a TSD structure arising
from quantum heaps in Hopf algebras. In Sec. 4 (co)pairings are constructed that

Y=Y 7Y

Fig. 1. Axioms of a braided Frobenius algebra.
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(xu~ V) yu V) (le V)

=xylzulv

Fig. 2. Heap operation and braid relation.

commute with Yang-Baxter operators. These (co)pairing are used for (co)units for
Frobenius structures. In Sec. 5 we introduce the notion of braided Frobenius algebra
and show that there is a class of these structures arising from quantum heaps where
a Frobenius algebra is defined via Hopf algebra (co)integrals. Section 6 discusses
relations to compact surfaces with boundary embedded in 3-space, and issues of
twists in braided Frobenius algebras.

2. Preliminaries

In this section, we review materials used in this paper.

2.1. Heaps
We recall the definition and basic properties of heaps. Given a set X with a ternary
operation [—], the set of equalities

[[xla T2, I3]7 €4, I5] = [1717 [I4a xs, IQ]) I5] = [1717 €2, [I37 Ty, I5]]

is called para-associativity. The equations [z, x, y] = y and [z, y, y] = x are called the
degeneracy conditions. A heap is a non-empty set with a ternary operation satisfying
the para-associativity and the degeneracy conditions [5]. A typical example of a heap
is a group G where the ternary operation is given by [z,y, 2] = zy~*
call a group heap.

Let X be a set with a ternary operation (z,y,z) — T(z,y,z). The condition
T((x,y,2),u,v) =T(T(x,u,v), T(y,u,v), T(z,u,v)) forall z,y, z,u,v € X, is called
ternary self-distributivity, TSD for short. It is known and easily checked that the
heap operation (z,y, z) — [z,y, 2] = T'(z,y, z) is ternary self-distributive. We focus
on the TSD property of heaps.

z, which we

2.2. Hopf algebras

A Hopf algebra (X, p,n,A¢,S) (a module over a unital ring k, multiplication,
unit, comultiplication, counit, antipode, respectively), is defined as follows. First, a
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bialgebra X has a multiplication p : X ® X — X with unit 1 and a comultiplication
A : X — X ® X with counit e such that the compatibility condition Aoy =
(L@ p)T o (A®A) holds. Then a Hopf algebra is a bialgebra endowed with a map
S X — X, called antipode, satisfying the equations po (1 ® S)o A =noe =
o (S®1)oA, called the antipode condition.

The diagrammatic representation of the algebraic operations appearing in a
Hopf algebra is given in Fig. 3. Diagrams are read from top to bottom. For example,
the top two arcs of the trivalent vertex for p (the leftmost diagram) represent
X ® X, the vertex represents i, and the bottom arc represents X. In Fig. 4 some of
the defining axioms of a Hopf algebra are translated into diagrammatic equalities.
Specifically, diagrams represent (A) associativity of p, (B) unit condition, (C),
compatibility between p and A, (D) the antipode condition. The coassociativity
and counit conditions are represented by diagrams that are vertical mirrors of (A)
and (B), respectively.

Any Hopf algebra satisfies the equality Sur = p(S ® S), where 7 denotes the
transposition 7(z ® y) = y ® x for simple tensors. This equality is depicted in
Fig. 5. A Hopf algebra is called involutory if S? = 1, the identity. It is known,
[13, Theorem II1.3.4], that if a Hopf algebra is commutative or cocommutative it
follows that it is also involutory. In what follows, we will not mention that our Hopf
algebras are involutory when they are (co)commutative, and freely apply the fact
that S2 = 1 without further mention.

YoroA L

w n A € S

Fig. 3. Operations of Hopf algebras.

()]

Fig. 4. Axioms of Hopf algebras.

Y-§

Fig. 5. Twisting p with antipodes.
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o & !
(i) (;) Zr (i) D) T

Fig. 6. Left (co)integral of Hopf algebras.

For the comultiplication, we use Sweedler’s notation A(z) = () ® 2 supress-
ing the summation. Further, we use (A ® 1)A(z) = (z(') ® 21?)) @ z(? and
10A)A(z) = 2M @ (Y @x(22)), both of which are also written as () @z(?) @23)
from the coassociativity.

A left integral of X is an element A € X such that 2\ = e(z)A for all z € X.
A right integral, a (two-sided) integral, cointegrals are defined similarly. Diagrams
for integral conditions are depicted in Fig. 6. The diagram (A) represents an integral,
(B) represents the defining equation of a left integral, and similar for cointegrals
in (C) and (D). The existence of integrals is a fundamental tool to endow a Hopf
algebra with a Frobenius structure (defined in what follows). It is known that
the space of integrals of a finite dimensional free Hopf algebra over a PID is 1-
dimensional, see [16]. More generally, a finitely generated projective Hopf algebra
over a ring admits a left integral space of rank one [19]. Observe that when a
Hopf algebra is (co)commutative, it follows that a left (co)integral is also a right
(co)integral.

2.3. Frobenius algebras

We use the following definition: A Frobenius algebra (V, 1, m, A, €) is an associative
algebra (V, u,n) with multiplication g and unit n : k — V, and a coassociative
coalgebra (V, A, €) with comultiplication A and counit € : V' — k, over a unital ring
k, such that p and A satisfy the Frobenius compatibility condition: (u®@1)(1®A) =
Ap = (1® p)(A®1). This condition is depicted in Fig. 7.

2.4. The Yang—Baxter operator

Let X be a module over a ring and let R : X ® X — X ® X be an operator (i.e.
a linear map). The Yang—Baxter equation, YBE for short, for R is the functional

Fig. 7. Frobenius compatibility condition.
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equation
(Re1)o(1®R)o(R®1)=(1®R)o(R®1)o (18 R),

where left-hand side and right-hand side are both endomorpshism of X ® X ® X.
The YBE is well known to be represented by the type III Reidemeister move in
knot theory, and has been widely studied in low-dimensional topology because it
produces invariants of knots. If the operator R satisfies the YBE, then it is said to
be a pre Yang-Baxter operator. If, in addition, R is invertible then we say that R
is a Yang-Baxzter operator, YB operator for short.

3. Ternary Self-Distributive Operations in Coalgebras
and YB Operators

In this section, we provide a method of producing YB operators from ternary self-
distributive (TSD) operations.

Definition 3.1 ([6]). A coalgebra morphism 7" : V&3 — V for a coalgebra V over
a unital ring k is called ternary self-distributive (TSD for short) if it satisfies, when
expressed in simple tensors,

TTzey®z2)@uev) =TT (xouV @) T(yeu® @ v?®)
®T(z@u® @v®)),

where the coalgebra structure on V®? is induced by the comultiplication of V/
according to

Ags(z @y ® Z) e ® y(l) ® »(1) ® 22 ® y(2) ® »(2) ® 23 ® y(3) ® 23

A diagram representing the TSD condition is depicted in Fig. 8.

Xy zuyv

Fig. 8. 'TSD condition for coalgebras.
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TxRyRz)
= MUx®SO)N)Rz)

Fig. 9. Quantum heap operation as a TSD.

Lemma 3.2 ([6]). Let (X, u, A, ¢, ¢€,5) be an involutory Hopf algebra. Let T(x &
y®z) = xS(y)z = plplr @ S(y)) ® z) expressed in simple tensors, where the
concatenation denotes the multiplication. Then T is TSD.

This construction is represented by the diagrams in Fig. 9.

Definition 3.3. A TSD morphism 7" : V&3 — V for a module V over a unital ring
k is called reversible if it satisfies

T(T(xey? @) M ayl) =c@ye(z)
for all x,y,z € V.

Lemma 3.4. Let (X, u, A, ,¢,5) be a cocommutative (therefore involutory) Hopf
algebra, and let T(x @ y @ z) = xS(y)z be as defined in Lemma 3.2. Then T is
reversible.

Proof. One computes

as desired. 0O

Lemma 3.5. Let (X,A) be a cocommutative coalgebra over a unital ring k. Let
T : X® — X be a reversible TSD morphism. Then the map v : X®3 — X©3
defined for simple tensors by v(z ® y @ 2) = yM @ 2V @ T(z @ y@ @ 2?) is
invertible with inverse v Yy @ z @ z) = T(z ® 23 @ y?) @y @ 2V, s0 that
vyt =1 and v 1y = 1.

2350012-7
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Proof. The proof is an application of the reversibility condition of 7. On simple
tensors we have

ey =11 eV e Tey® ©:®)
=T(T(x® y(2) ® 2(2)) ® 212 y(12)) ® y(ll) ® 2D
=T(T(z® y(22) ® 2(22)) ® 22D g y(21)) ® y(l) ® 21
= e(y)e(zP)z @y @ 20
=rRYR z,

which shows that y~!'4 = 1. Similar considerations imply that yy~' = 1 as well.
In this proof we used the notation of the form y(*") and y'? to indicate that these
terms are obtained from the term y(!) by applying comultiplication. O

Diagrammatic representations of morphisms v and 7~ ! in Lemma 3.5 are
depicted in the left and right of Fig. 10, respectively. The first equality v~ 'y = 1
in the lemma is represented by Fig. 11.

Lemma 3.6. Let (X, A) be a cocommutative coalgebra over a unital ring k. Let
T: X% — X be a reversible TSD coalgebra morphism. Let V = X @ X be endowed
with the tensor coalgebra structure induced by (X, A). Then the map 3 : V&? — V&2
defined for simple tensors by

BlzRy) @ (zow) =Y eT(@e:P@uw®)e Ty e 2% @uw®)
satisfies the YBE. Furthermore, there is an inverse

Flzow e @ey)=Teeuw? 0:NeTyeouw® ) 00w,

X y z X y z y z X y z
y(l)® zM ®T(x®y(2) X Z(Z)) T(x® 7@ ®y(2)) X y(1)® z M

Fig. 10. Hopf algebra maps corresponding to crossings.

(-

Fig. 11.  The type II Reidemeister move with a single under-arc and double over-arcs.
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Proof. We show that the YBE holds on simple tensors. Let x,y, z, w,u,v € X,
then the left-hand side of the YBE is computed as
B (1eB)Be1) (1Y@ 20w uv)
=1 @M @TY @ u® @v?) @ T(w? @u® v®)
T (T(z®:? @w?)ou® uv®)
QT(T(y® 2% @w®) @ u® @v®).
The right-hand side computed on t ® y ® z @ W ® u @ v gives
1) o(fRL)o(1®R)2RYR20wWRUR V)
=uM @M @ TM e u® @ v®) e T(w® @ u™ @v™)
@T(T(zou? @) eT(? @u® @v®) e T(w?® @u® gv®))
T[T (you® @0v®)@T(=® @u® @v®) @ TWw? @ u® g v®)).

To apply the TSD property of T" using the fact that 7' is a coalgebra morphism,
one needs to have a proper consecutive order of terms that appear under comul-
tiplication. To rearrange the terms in the last line above, the cocommutativity of
A is applied. Then we see that both sides coincide. To show that [ is reversible
observe that, since A is cocommutative, one has 8 = (y ® 1) o (1 ® ). Since 7 is
invertible by Lemma 3.5, it follows that [ is invertible. O

Figure 10 shows the diagrammatic interpretation of the braiding and its inverse
in Lemma 3.6 on a single edge of a ribbon. The full braiding, as well as its inverse,
is obtained by repeating the procedure on both edges that delimit a ribbon.

Lemma 3.7. Let (X, pu,n, A€, S) be a cocommutative Hopf algebra. Then the map
B:X%®2 . X9 defined on simple tensors as

ty®z0wr zM @uw® @xS(=®)w® @ ys(z®)wd

15 a Yang-Bazter operator.

Proof. The statement follows directly by applying Lemma 3.6 to the quantum
heap construction of Lemma 3.2. The invertibility follows from Lemma 3.4. O

4. YB Operators and Pairings in Quantum Heaps

In this section, we introduce pairings and copairings that commute with the YB
operators constructed in the preceding section. We obtain such (co)pairing using
integrals of Hopf algebras.

Definition 4.1. A pairing U: V ®V — k and a copairing N : k — V®V in a
module V over a unital ring k are said to have (or satisfy) the switchback property

2350012-9
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Fig. 12. The switchback property.

U=y n-A

Fig. 13. Defining cup and cap by left (co)integrals.

if they satisfy the equalities
Ueollen) =1=1ouU)(Ne1).

The conditions imply that U is non-singular.
These conditions are depicted diagrammatically in Fig. 13.

Definition 4.2. Let (X, u,n, A€, S) be a finitely generated projective Hopf alge-
bra over a (unital) ring k. Then X has an integral and a cointegral [19]. Let us
indicate them by A and -, respectively. We define a cup on X by U := A\u(1 ® S)
and N := A+, as depicted in Fig. 13.

For a Hopf algebra (X, u,n, A, €, S), the following module P(H*) was considered
n [19]. Let x : X* — X* ® X be a right X-comodule structure on X* defined by
the left H*-module structure. Then P(H*) was defined by P(H*) = {a* € X* |
x(a*) =az* @1}

Lemma 4.3. Let (X, pu,n,A¢,5) be a finitely generated projective Hopf algebra
over a ring k, such that P(X*) 2k, and U, N be as in Definition 4.2. Then U and
N satisfy the switchback property.

Proof. In [19], it is proved, under the assumptions, that there exists an integral
A and cointegral v such that U = Ay and N = (S ® 1)A~ satisfy the switchback
property. It then follows that so do U and N in Definition 4.2 as well. O

Since we use this lemma extensively from here forward, we will assume that
every Hopf algebra satisfies the assumption of this lemma. As pointed out in [19],
the condition that P(H*) = k is automatically satisfied when pic(k) = 0. This is
the case for instance when k is a PID or a local ring. In particular, one obtains the
result of Larson and Sweedler in [16], where the ground ring is taken to be a PID.

Definition 4.4. Let V be a coalgebra over a unital ring k, with ternary morphism
(of coalgebras) T : V3 — V. A pairing U: V ® V — k is said to have (or satisfy)

2350012-10
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the passcup property with respect to T if it satisfies
12?2 @ U) (M @ v @ T(z@u® 2v®) e y)
=UR1®) e T(yev?® ou?)eu® @vW)

for all z,y,u,v € V. In other words, U satisfies the passcup property with respect
to T, if the map v induced by 7', in Lemma 3.5, satisfies

1 eu@rel)=Ul1®) @ ey ).
The passcup property is depicted in Fig. 14.
Lemma 4.5. Let (X, u,n, A, €,5) be a cocommutative Hopf algebra. Then the pair-

ing U defined in Definition 4.2 satisfies the passcup property with respect to the TSD
defined in Lemma 3.2.

Proof. In order to prove the passcup property, we proceed as in Fig. 15. The
first equality corresponds to rewriting one negative crossing using the definition
of inverse of quantum heap operation T, equality (1) utilizes naturality of the
switching map X ® X — X ® X, equality (2) corresponds to the compatibility
relation between the antipode S and the comultiplication A of X, equality (3) is
given by redrawing the diagram using naturality of switching map, equality (4)
corresponds to the fact that A is both a right and left integral. Involutority is used
at step (3). This completes the proof of the passcup property. O

Lemma 4.6. Let (X, u,m,A,€,5) be a commutative and cocommutative Hopf alge-
bra and set V = X ® X. Then the cup and cap defined in Definition 13 commute

0y

Fig. 14. The passcup property.

Fig. 15. Proof of the passcup property.

2350012-11



200 Reading

September 17, 2021 12:15 WSPC/S0219-4988 171-JAA 2350012

M. Saito € E. Zappala

with the YB operator 3 defined in Lemma 3.7. Specifically, it holds that (1 @ U)S =
U1l and (U1)8 = 1QU as morphisms VRV — V, (1@N)s = N1 and
BN®1)=1®N as morphisms V. —V @ V.

Proof. Diagrammatic sketch proofs are found in Figs. 16-19. In Fig. 16, (1®U)3 =
U® 1 is proved by Lemmas 4.5 and 3.5 successively. Other equalities are proved as
depicted, using Hopf algebra axioms and the definition of integrals. In Fig. 17, other

than axioms, commutativity is used in the 4th equality, and cocommutativity is used
in the 5th equality. While the diagrams in Figs. 17 and 18 treat the single-stranded

KA~/

Fig. 16. Proofof (1@ U)f=U® 1.

KRG
NG

Fig. 17. Proof of (U 1) =1® U.

<R
R

Fig. 18. Proofof (I1®@N)B=N® 1.

2350012-12
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%)
([0

Fig. 19. Proofof S(N® 1) =1®N.

N X

case, an iteration of the diagrammatic proof implies the case with two edges sliding.
Cocommutativity is used in the 3rd and 5th equalities in Fig. 18 and 3rd equality
in Fig. 19. Observe that the equalities S = 1 and €S = ¢, which are consequences
of S being an anti-homomorphism, have been used. O

5. Construction of Braided Frobenius Algebras

In [4], a braided Frobenius object is defined to be a Frobenius object in a braided
monoidal category. It is natural to define a braided Frobenius algebra to be, more
generally, a Frobenius algebra endowed with a YB operator 3, that satisfies the
coherence conditions of a Frobenius object in a braided monoidal category with 3
playing the role of the braiding.

Definition 5.1 (cf. [4]). A braided Frobenius algebra is a Frobenius algebra
X = (V,u,n, A, €) (multiplication, unit, comultiplication, counit) over unital ring
k, endowed with a YB operator 8 : V® V — V ® V, such that the Frobenius
operations commute with 5 as follows:

(wol)@ep)(fel)=0apn), Aep)(Eel)(AepF) =L, (uel),

(Al)p=@Bel)Eel)(leld), (AeA)f=@EeL)@Eel)(Ax1l),
(Lens=n®1, Bnel)=1xmn,
(Ieaf=ex1, (e@1)B=1®e¢.

The commuting conditions for a braided Frobenius algebra for multiplication
are depicted in Fig. 1. Those for comultiplication are represented by the upside
down diagrams. The commuting conditions for the (co)unit are depicted in Fig. 20.

A A A

Fig. 20. Commutation of (co)unit and the YB operator.

2350012-13
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It is expected that our results can be applied to the case of Frobenius objects
in monoidal categories, since our main methods are diagrammatic. Although the
main exception is the proof of (co)associativity in Theorem 5.2, one can replace
the proof with diagrammatic arguments as well. Since the main scope of this paper
is to obtain the algebraic background to have invariants of compact surfaces with
boundary based on Hopf algebras, we restrict ourselves to working in the setting of
modules over unital rings, as in Definition 5.1.

We now proceed to construct a family of braided Frobenius algebras from a
class of Hopf algebras. We mention that the monoid structure in the next theorem
also appears in [8, Secs. 4 and 5], under the name of pair of pants monoid, for
dagger pivotal categories. In our construction, the fact that Frobenius monoids
(e.g. algebras) are self-dual allows us to discard the duality in X* ® X.

Theorem 5.2. Let (X, u,n,A¢,S) be a commutative and cocommutative Hopf
algebra. Then V = X ® X has a braided Frobenius algebra structure.

Proof. A product pgs : X®? ® X®? — X®? is defined by means of U as
te2 =1@URIT.

The coproduct Ags : X¥2 — X®2 @ X®? is obtained from N by the definition
Agr =1®N®1.

The unit ng2 : k — X®? ® X®2 is defined by N. The unit condition follows
from the switchback condition, as depicted in Fig. 21. The counit €gso is defined
by €g2 = U and the counit condition follows similarly. It is checked that these
operations define a Frobenius structure in a manner similar to arguments found
in [8].

Since X is an involutory Hopf algebra, applying Lemma 3.7 it follows that X ® X
has a YB operator § that is induced by the quantum heap structure of X. Hence,
X ® X is endowed with a Frobenius structure and a YB operator induced by the
quantum heap operation.

To complete the proof, we need to show that YB operator and Frobenius mor-
phisms commute in the sense of Definition 5.1. The commutations between (co)units
and YB operator follow from Lemma 4.6 (see Figs. 16-19). For doubled strands,
the commutations between multiplication and YB operator are depicted in Fig. 22.
These follow from commutations between counits and YB operator. The commu-
tations between comultiplication and YB operator are represented by the upside

-\

Fig. 21. The unit axiom.
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\/% \V/ J \v
Fig. 22. Braided Frobenius conditions for a doubled Hopf algebra.

down (the vertical mirror) figures of Fig. 22, and follow from commutations between
units and YB operator. O

Example 5.3. Let X = k[G] be a group ring of a group heap G with the TSD
operation defined by linearlization of the group heap operation T(z @ y® 2) =
xy~ 'z for z,y, z € G. Endow X with the Hopf algebra structure, where y is defined
by the linearlized group multiplication, group A(z) = x @ x for x € G, unit defined
by (1) = e € G (the identity element), and counit defined by e(x) = 1 for = € G.
The integral is defined by ) .~ 2 and cointegral by e — 1, e # g — 0. All
conditions in Theorem 5.2 are checked. The YB operator is defined from 7', and
for group elements B((z ® y) ® (u ®@v)) = (u ® v) @ (zu~ v ® yu~tv). Thus, the
YB operator is the linearlization of group heap YB operator as depicted in Fig. 2.
If the group G is abelian, X satisfies the assumption of Theorem 5.2. Moreover, so
does the dual Hopf algebra k[G]*.

Example 5.4. Let k be a PID or a local ring of characteristic p. Then the truncated
polynomial algebra H = k[X]/(X pk) is a finitely generated free (hence projective)
Hopf algebra for any k& > 1. As previously pointed out, H satisfies P(X™*) = k
since k is either a PID or a local ring. We can therefore apply Lemma 4.3 and
Theorem 5.2, since H is commutative and cocommutative. Explicitly, the algebra
structure of H is determined by multiplication of polynomials, the comultiplication
is obtained extending A(X) =1® X 4+ X ®1 to be an algebra homomorphism (note
that it is here crucial that H is truncated at a power of the characteristic of the
ground ring), the counit is defined by (1) = 1, ¢(X) = 0 and the antipode is given
by S(X) = —X. This construction can be generalized to truncated polynomial
algebras with more than one indeterminate.

We note that considering local rings gives a wider class of objects with respect
to that of PID’s in [16]. For instance, the ring Z,[Y1,Y2]/(Y1,Y2)? is a local ring
that is not a PID to which the previous construction can be applied.

6. Twists in Braided Frobenius Algebras

In this section, we introduce twists in braided Frobenius algebras, and discuss rela-
tions to tortile category structure and surfaces with boundary embedded in 3-space.

2350012-15
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Definition 6.1. Let (V, A, ¢€) be a finite dimensional coalgebra over a field k with
a TSD morphism 7 : V®3 — V (Definition 3.1). Then the morphism 6 : V @ V —
V ® V defined by

Oz ®y) =TEY 22?0y THY o2 y®)
is called a twist by T.

Remark 6.2. The twisting introduced in Definition 6.1 is motivated by a “quan-
tum” version of the core quandle [7] operation (x,y) — yx~ 'y defined on groups.
In fact we have

z®@y— 21 8(z®)y? @y s =®)y®
- 6(Lplj(l))y@) ® y(l)S(x(Q))y(g)
=y @y VS (z)y®,

where the second term in the tensor product can be identified with the core quandle
operation between y!) and z.

The operation 6 is written by maps as follows. Fix a basis {e; : i = 1,...,n} for
V', and define the pairing V : V@ V* — k for the dual space V* by V(x; ®x7) = i,
with the Kronecker’s delta, and copairing A : k — V@ V* by A(1) = Y1 o ® x}.
Then 6 is written as

=1V (1 eVvel)(Be1®?)1* oA 1)(1%* @A)

with the YB operator 3 induced by 7' (Lemma 3.6). Diagrammatically, € is repre-
sented by Fig. 23, and corresponds to a full twist as in the right of the figure. In
the figure, the maxima and minima correspond to A and V, respectively, and they
are indicated by such notations to distinguish them from N and U.

Proposition 6.3. Let (V,A,€) be a cocommutative coalgebra over a unital ring k
with a reversible TSD morphism T : V&3 — V (Definition 3.1). Let 0 be the twist in
Definition 6.1. Then 6 commutes with the YB operator 0 induced by T'. Specifically,
we have B0 @1) = (1 ®0)5 and (1 ®0) = (0 @ 1)4.

\

Fig. 23. Twisting a ribbon.
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Proof. On simple tensors we have
B (z0y®zew) =BTV 0?0y T™M @ 2® @ y®) @20 w)
— 20 g u® @ T(T(EW @2 @ y@) @ @ w®)
® T(T(y(l) 23 y(B)) 228 w(B))
and also
1®0)J(zy®zQw)
—120):VeuM Tz Y ouw?)oT(ye 3 @w?))
— 20 g @ T(T(r o2 @uw®)V o T ® g w®)®
@T(y® 23 @ w(3))(2)) @T(T(y® 23 w(B))(l)
T (z® 22 w(2))(3) T (y® 23 @ w(3))(3))
— 20 g u® @ (T @ 22D @ W) @ T(x? @ 222 g w22)
®T(y(2) ® 232 w(32))) ® T(T(y(l) ® 26D w(Bl))
®T(:1:(3) ® 223 w(23)) ® T(y(3) ® 2033 w(33))),

where the fact that, by definition, 7" is a coalgebra morphism has been applied in
the second equality of the second set of equations. Applying cocommutativity (and
coassociativity) of A we can rearrange the z and w terms to have the equality

1®0)freyzew)
=0V T(T M o2 euw?)2T(@® % ow?)
QTH? @ % @uw) o T(THY @ 25 @ w®)
@TE® 20 0uw®)eTy® @7 e w™)),

which shows that (0 @ 1)(z®@y® z@w) and (1 ®0)5(r @y ® z ® w) differ by an
application of the TSD condition of T'. This shows the equality (0@ 1) = (1 ®6)0.

Let us now consider the equation S(1 ®6) = (§ @ 1). For the left-hand side we
have

5(]1@9)(:E®y®z®w)
— P g 22D @ D) @ T g 26 g D)
©T(x®T(=1? ® 2 ©w?) @ T(wl? @ 262 @ wb?)
Ty T z@?’) @ w®) @ T(w® @ 2639 @ wt?),
while for the right-hand side we have
BRDBEQy®z0w) =T @202 @w?) @ T(w @ 213 @ wl?)
@T(x®:?uw?)eT(ye® ow?).
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To complete the proof we see that it is enough to show the equality
TreT(EY ®:20u?) e Tw® @0 uw®) =Teezow). (1)
We have
TxoT(EY ®:2 @w?) e T(wh @3 @w®))
= e(ze(w?) Tz TEY @23 @w?®) o T(wh @ @ w?))
=T(T(T(z®uw® ®:3)2:2 @uw?) TV @ % @ w®)
®T(w(1) 220 w(5))),

where the first equality uses the definition of counit €, and the second equality makes
use of the invertibility condition of T'. Let us now apply the TSD property of T to the
terms T(z@w® @23)), 20w, 23) and w®, where we set T(z@w® @23)) = ¢
for convenience. We get

T(T(q®:? @uw?)oTEY @9 @uw®) o Twh @2 @ w®))
C (T 2@ 2 w®) @ 5D & w®) = (zW)ew®) - Tz ©
ouw?)=T(z® 2z w),

where invertibility of 7', as well as cocommutativity of A, has been used in the
second equality. This shows that Eq. (1) holds. O

Remark 6.4. Here we discuss relations to the notion of tortile category. A braided
monoidal category with duals is called tortile [12] (or ribbon [8]) if it is endowed with
natural isomorphisms 0x : X — X, called twists, such that Oxgy = By, xfx,y (0x ®
0y ) for all objects X, Y, where § denotes the braiding, #; = 1, where I denotes the
unit object, and (0x)* = x- for all X.

Let (V, A €) be a finite dimensional coalgebra over a field k with a TSD operation
T :V® — V (Definition 3.1). Then Proposition 6.3 implies that a twist on V®2*
can be defined from the twist in Definition 6.1 (and the pairing and copairing defined
in the paragraph preceding Proposition 6.3). More specifically, the twist 6}, on V ©2¥
is defined by parallel loops, that are defined by taking k-fold parallel ribbons. The
case k = 2 is depicted in Fig. 24 left. The equality 02 = By, v v,y (0 ®0) is indicated

0|0
s

Fig. 24. Twisting a doubled ribbon.

2350012-18



200 Reading

September 17, 2021 12:15 WSPC/S0219-4988 171-JAA 2350012

Braided Frobenius algebras from certain Hopf algebras

(A) m ®) (©)

Fig. 25. Commutation between a twist and multiplication.

in the figure. More general statements on parallel string constructions and tortile
categories are found in [12].

Proposition 6.5. Let X be as in Theorem 5.2, and let V = X ® X denote the
associated braided Frobenius structure on the doubled vector space. Let 0 be the twist
in Definition 6.1. Then the twist 8 commutes with the multiplication and comulti-

plication. This means, with notations as in Remark 6.4, that Oy pge = pe2 v,y
and A®20V = 9\/3/A®2 hold.

The commutation between the twist and multiplication is depicted in the left
equality (A4) = (B) of Fig. 25. The right equality (B) = (C) is a consequence of
Fig. 24. We note that the resulting equality (A) = (C) corresponds diagrammati-
cally to twisting the trivalent vertex by one full twist.

Proof. We verify equality 6y jig2 = g2 0y, on simple tensors z ® y ® z ® w. For
the left-hand side we have

Oy pe2(z @y @z @ w) = y(yS(2)) - w® @ wh S(x)w®.
The right-hand side is given as
pe2 Ovy (@ @y ®z©w) = vy S (@®)y@ s P)w® s w®)zW s (yW)
x 2™ 8 (zM)Y)
W §(2® )y ()@ @ WM §(2E))y ) §(25))w®)
= y(yMS(zM)) - yP 8 (22)w®
@ w8 (x)y® 8 (23w
=v(yS(2)) - w? @ w® S (x)w®,

where the first equality is obtained by unraveling the definitions, the second equality
is a multiple application of the counit axiom, and the third equality follows by
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\
=

Fig. 26. Twisting a ribbon by a loop.

applying the definition of cointegral v twice. Equality Ag260y = 0y, Aga is proven
on simple tensors in a similar fashion. O

Remark 6.6. For the braided Frobenius algebra V' constructed in Theorem 5.2,
a twist © can be defined using N and U instead of A and V as depicted in Fig. 26
left. Specifically,

0=12U)1*eue1)(Bx19*)(1* N 1)(1%*®nN)

with the YB operator 8 induced by 7' (Lemma 3.6). Since all maps that appear in
this formula commute with the YB operator § from earlier lemmas, © commute
with 3. By the same argument as Remark 6.4, we obtain a twist O} on V®2*,
Similarly, ©® commutes with p and A. A sketch proof of the commutation between

1 and © is depicted in Fig. 27.

We close the paper with remarks on invariants of embedded surfaces with bound-
ary. It is of interest to find invariants, using braided Frobenius algebras, of compact
orientable surfaces with boundary represented by ribbon graph diagrams, as con-
sidered in [18], in a way analogous to quantum knot invariants. In this approach,
a height function is fixed on the plane, and building blocks of diagrams consist
of cups and caps in addition to crossings and trivalent vertices. Although a com-
plete set of moves for ribbon graph diagrams for certain embedded surfaces was
given in [18], height functions were not considered. It is desirable to have a list of
additional moves. For example, the passcup move and passcap move (the upside

Fig. 27.  Sketch picture proof of commutation.
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oA

Fig. 28. Conversion of p to A through N.

MR

-

Y

Fig. 29. Canceling a pair of loops.

down of passcup) are such moves, and they are satisfied by braided Frobenius alge-
bras constructed in this paper. Another move depicted in Fig. 28 is also satisfied
from Frobenius algebra axioms. Although most moves in [18] for orientable surfaces
(without half twists), with appropriate choices of height functions, are satisfied by
our resulting braided Frobenius algebras, it is not clear at this time whether the
equation corresponding to the move depicted in Fig. 29 is satisfied, in general, under
our construction. However, it may be satisfied by some specific examples, and may
provide invariants for such surfaces.

For non-orientable surfaces, ribbon graph diagrams [18] contain half-twists, and
there is a move of twisting a vertex as indicated in Fig. 30, that involve half twists
of ribbons merging at a vertex. From the topological correspondence of the twist 0
to a full twists as in Fig. 26, such a hypothetical half twist, which we denote by v/,
would be required to satisfy v/# o v/ = @ (thus the notation). We have not found
such a morphism in braided Frobenius algebras constructed in Theorem 5.2, and
raise a question: For the twists (§ and ©) defined in this section for the braided
Frobenius algebras constructed in Theorem 5.2, are there half twists v/# and vO?
We point out a curious fact that the composition of a half-twist of a vertex in
Fig. 30 twice is a full twist of a vertex represented by Fig. 25, which is satisfied by
the braided Frobenius algebras constructed in this paper.

Fig. 30. Twisting a vertex of a ribbon.
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