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Abstract: Net-zero energy communities (NZECs) are critical to assuring the
sustainability and resilience of modernized power systems. System modeling helps
overcome technical challenges in designing and operating NZEC:s. In this paper, we
present an open-source NZEC virtual testbed in Modelica based on a real NZEC in
Florida, USA. This testbed consists of two sets of models: (1) higher-fidelity physics-
based models that consider the interaction between subsystems of the studied NZEC
and capture fast dynamics, and (2) lower-fidelity data-driven models that require
fewer resources to establish and/or run. All models are validated against
measurements from this real NZEC. In addition, this testbed includes a simulation
framework that streamlines the processes for simulation and thus allows the use of
developed models to form a virtual testbed. To demonstrate the usage of the virtual
testbed, a case study is conducted where a building-to-grid integration control is
evaluated via simulation. The evaluation results suggest that the tested control
significantly smooths the power draw of the studied community and does not
sacrifice thermal comfort to a great extent.

Keywords: Net-Zero Energy Communities, Virtual Testbed, Modelica, Building-to-
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1 Introduction

From an energy perspective, a community is a set of buildings that are served by the same energy
systems, e.g., electricity generation or space heating/cooling systems. Achieving energy-efficient
communities is critical in promoting environmentally sustainable and resilient cities (Sebastiano
Marasco 2012, Omidreza Saadatian 2013). One way to do so is through net-zero energy
communities (Sesil Koutra 2018). According to Peterson, Torcellini et al. (2015), “A net-zero
energy community is an energy-efficient community where, on a source energy basis, the actual
annual delivered energy is less than or equal to the on-site renewable exported energy.” A net-zero
energy community (NZEC) usually consists of energy generation from renewable sources (e.g.,
solar, wind); energy distribution through electric- and thermal-distribution systems; energy usage
by space conditioning, lighting, and a wide range of miscellaneous loads; energy storage by
electric cars and other devices; and interaction with the electric power system. Achieving net-zero
energy at the end-use side is critical to realizing the sustainability and resilience of modernized
power systems (Hachem-Vermette, Guarino et al. 2018). Traditionally, net-zero energy is mainly
studied at the building level because buildings are major consumers of electricity (Lu, Wang et al.
2015). However, NZECs provide significant economic and environmental advantages over net-
zero energy buildings, such as greater flexibility to accommodate large energy infrastructures and
richer load diversity to reduce the design capacity of energy systems (Hadia Awad 2018).
Because of those advantages, various efforts in designing and building NZECs have been
reported. One example is the West Village, California, USA. (Gaiser and Stroeve 2014). The West
Village is an all-electric campus that consists of solar photovoltaic (PV) arrays, a bio-digester
generator, and heat pumps with backup electric heaters. The PV arrays produce the main power,
the generator provides additional electricity supply, and the heat pumps generate the domestic hot
water (DHW). Although the West Village is intended to achieve the NZEC goal, according to its
annual report (UC Davis West Village 2014), its renewable energy generation only covered 82%
of its energy demand during 2013-2014. Another example is the Historic Green Village (HGV)
on Anna Maria Island, Florida, USA. The HGV is a small NZEC consisting of five mixed-use
commercial buildings (retail, including a bakery and general store; office; and residences). The
community achieved its net-zero energy goal in 2014. Section 2 of this paper provides a detailed

introduction to the HGV.



Despite these encouraging applications, designing and operating an NZEC is challenging,
primarily because of the coupling relationships between subsystems within NZECs. An NZEC is
a complex combination of multiple subsystems, usually including renewable energy generation;
heating, ventilation, and air conditioning (HVAC); refrigeration; DHW; and other miscellaneous
equipment. These subsystems interact with one another, as elaborated by Hye Soo Suh (2019). For
example, to reduce the energy used by the DHW system, the waste heat from the HVAC system
is used to preheat the water supply for the DHW system (Miranda, Huang et al. 2015). Thus, when
evaluating the performance of the DHW system, it is necessary to simultaneously consider the
HVAC operations. In addition, an NZEC typically needs to achieve multiple objectives (Hirushie
Karunathilake 2019), such as reducing emissions, minimizing demand charges, and
accommodating grid supply interruptions. These objectives pose challenges to the design process
because a multi-objective optimization needs to be solved to make trade-offs among these
requirements, especially when sizing each subsystem to assure economic feasibility. These
objectives also complicate the operation process. For example, to minimize demand charges with
energy storage capacity, research suggests that building system control parameters should be
continuously updated according to the operation conditions (Muruganantham, Gnanadass et al.
2017).

System modeling is widely used in the literature to better understand the characteristics of
community scale energy systems, as summarized by Andrew Lyden (2018) . Examples of applying
system modelling to support the design and operation of NZECs are listed in Table 1. However,
gaps are also identified in existing system modeling. For example, the interaction between systems
from different domains tends to be ignored. Because an NZEC includes heterogeneous,
overlapping subsystems that span multiple, distinct physical domains, it is necessary to model all
the domains as a whole to understand their interactions and interdependencies (Wetter 2011). In
addition, fast dynamics are sometimes excluded from the modeling. Given the importance of
controls to the system operation, modeling of the transient control processes is indispensable
(Wetter 2011). Therefore, to better evaluate how the above factors influence the design and
operation of NZECs, an accurate representation of the fast dynamics is necessary. Furthermore,
validation results regarding those models are seldom reported in the literature, limiting the

usability of those models.



Table 1. Review of current research for NZEC

Considering

Fast Dynamic

Studied Community Modeling Scope cross-disciplinary
) _ Modeling?
interactions
A dummy community, Belgium (De | DHW system (Modelica (Modelica | Only models for the DHW v
es
Coninck, Baetens et al. 2014) Association)]) system
' ' ' ' - Building system (eQuest) Separate  models  for
West Village, California, USA (Gaiser o )
- PV system (PolySun and SAM) building, electrical, and | No
and Stroeve 2014)
- DHW system (Building America Report) DHW systems
- Combined heat and power system
. o - Small-scale wind turbine system Coupled models  for
Qingshan Lake District in Hangzhou, . L .
- Solar photovoltaic system building and electrical | No
China (Lu, Yu et al. 2014)
- Solar thermal heater system systems
(MATLAB (MathWorks)])
- Space heating, cooling, and ventilation
system (in-house code)
A dense neighborhood and a low- . .
) - Appliances, cooking, and DHW system | Separate models for
density suburban neighborhood in . o )
. ) ) (estimated based on the number of | building and electrical | No
Neupré, Belgium (Marique and Reiter ) . ) o
inhabitants in the building) systems
2014)
- On-site energy production system
(Townscope)
A dummy community, Calgary, | - DHW, heating/cooling, PV system Coupled models  for
Alberta, Canada (Hachem-Vermette, (TRNSYYS) thermal and  electrical | Yes
Cubi et al. 2015) - Lighting and equipment system | systems
(EnergyPlus)
. . . . Only models for buildin
A village in Graubiinden, Switzerland Building System (EnergyPlus) y g Yes
(Orehounig, Mavromatidis et al. 2014) system
Dummy communities located in 5 | - DHW, cooling demand (EnergyPlus) Separate  models  for
climate  zones (Vazquez-Canteli, | - Heat pump, energy storage, battery building and electrical | Yes
Kéampfetal. 2019) (reduced-order models) systems
Two residential buildings located in ) ) o Separate  models  for
downtown Austin, TX - Space heating, cooling system (CitySim) building and electrical | Yes
- Lighting system (CitySim) systems

(Vazquez-Canteli, Ulyanin et al. 2019)

In this paper, we present an open-source NZEC virtual testbed in Modelica based on a real

NZEC, the HGV. This testbed consists of two sets of models: (1) higher-fidelity physics-based
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models that consider the interaction between subsystems of the studied NZEC and capture fast
dynamics, and (2) lower-fidelity data-driven models that require fewer resources to establish
and/or run. All models are validated against measurements from this real NZEC. The open-source
NZEC testbed has been publicly released at https://bitbucket.org/sbslab-zuo/scc-nzec. In addition,
this testbed includes a simulation framework that streamlines the simulation processes and thus
allows the use of developed models to form a virtual testbed. To demonstrate the usage of the
virtual testbed, a case study is conducted where a building-to-grid integration control is evaluated
via simulation.

This paper contributes to the literature as follows. First, we develop and validate an open-
source NZEC virtual testbed. This testbed can meet different requirements for designing and
operating NZECs and provides great flexibility in terms of model selection and integration for
simulation and optimization. Specifically, This NZEC virtual testbed allows considering three
types of buildings: office, residential, and retail buildings; and one kind of distributed energy
resource: PV panels. Second, we performed a comprehensive evaluation on a demand-response
control strategy with this virtual testbed. Compared to similar evaluations in the literature, this one
is more comprehensive as it employs more detailed system models. This evaluation reveals new
issues that have not been reported in the literature before to our best knowledge.

The rest of the paper is organized as follows. First, we provide a detailed introduction to
the HGV. We then discuss how we realize the virtual testbed with different models and a software
framework. After that, we present the evaluation of a building-to-grid integration control with the

proposed virtual testbed. Finally, we present our conclusions and discuss future work.

2 Historic Green Village

2.1 Overview

Located on Anna Maria Island, Florida, USA, the HGV is a small community (2,776 m?) that
consists of two retail stores, one commercial office, and two residences, as shown in Figure 1. The
climate of Anna Maria Island is categorized as Zone 2A, which is hot and humid (ASHRAE 2007).
The average solar radiation is around 19.33 W/m? (Wilcox 2012), providing a significant resource

for renewable energy. In addition, by employing aggressive measures in energy efficiency (e.g.,



cool roofs, Low-E glass, extra insulation, and waste heat recovery from water-source heat pumps),
the HGV achieved its net-zero energy goal in 2014 after operating for two and a half years

(beginning in June of 2011), as shown in Figure 2.

Figure 1. HGV on Anna Maria Island, FL.

The HGV has three major energy systems: a solar PV electric generation subsystem, a solar
thermal DHW subsystem, and a ground source heat pump (GSHP) subsystem. The solar PV system
generates electricity during daylight hours. Excess generation is sold to the utility provider and
purchased from the utility as needed. The GSHP subsystem provides both cooling and heating to
all buildings in the community. During cooling-dominated periods, the GSHPs also supplement
the DHW requirements. The solar thermal DHW subsystem provides domestic water. Excess hot
water generated during the day is stored in a tank. The building subsystem represents the energy
usage of the five buildings for different activities. All five subsystems are interconnected. For
instance, the buildings are conditioned by heat pumps, which are powered by electricity from either

the PV panels or the utility.

150,485
= 102,828 105133 119,448 y 118,096 116,582
p ’
Wi 222 % % %
2011 2012 2013 2014
Il Annual Electricity Generation # Annual Electricity Demand

Figure 2. The electricity generation and demand of the HGV.



2.2 Energy Subsystems

2.2.1 Solar PV Generation

The solar PV system generates on-site electric power. To achieve net-zero energy, PV panels are
installed on building roofs, two solar carports, and a neighboring warehouse building. The

configuration of the PV system is shown in Table 2. In total, the PV system is 612.09 m? with a

total peak capacity of 60 kW.

Table 2. PV system specifications.

Rated
L PV Panel | Array Array Rated Module
Building | py DC/AC
Area Tilt Azimuth Efficiency
Name Group Conversion
[m’] [°] [l [“o]
Efficiency
15.36 30.0 -45 14.9 0.8
Thelma A
15.36 15.0 45 14.9 0.8
46.08 5 -45 14.9 0.8
Rosedale B 38.40 5 -45 14.9 0.8
25.60 30 45 14.9 0.8
Sears C 51.20 20.0 -45 14.9 0.8
Pickle Fish | D 29.34 5.0 -45 16.0 0.8
17.93 10.0 45 16.0 0.8
19.56 5.0 45 16.0 0.8
Pillsbury E
13.04 5.0 -45 16.0% 0.8
9.78 10.0 45 16.0 0.8
North
NC 84.48 5.0 -45 14.9 0.8
Carport
South
SC 96.00 5.0 -45 14.9 0.8
Carport
Warehouse | W 149.96 5.0 45 16.0 0.8

AC is alternating current; DC is direct current.



2.2.2 Utility-provided Power and Buildings

The utility subsystem is treated as a virtual battery. If the solar panels meet the electricity load of
the NZEC, the excess electricity “charges” the utility subsystem by feeding the electricity to the
power grid; if on-site production is insufficient to meet the HGV load, the utility subsystem
“discharges” the electricity by drawing electricity from the power grid to the HGV, as shown in
Figure 2. By having the utility as a virtual battery with inexhaustible capacity, one avoids the high
cost of installing on-site energy storage systems. In addition, each building in the HGV is equipped
with miscellaneous electric equipment, including lighting, refrigeration, food preparation

(dishwasher, coffee maker, and dryer), hot water, and miscellaneous equipment and plug loads.

Grid
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Figure 3. Schematic of the utility distribution system.

2.2.3 Ground Source Heat Pump

As shown in Figure 4, the GSHP subsystem consists of a water loop that connects nine water-to-
air heat pumps in the buildings, five refrigerator racks, and a heat exchanger linked to a ground
source geothermal system. The nine heat pumps provide cooling and heating to the buildings. The
heat pumps’ cooling capacities vary from 5.4 kW to 17.3 kW. The total cooling capacity of the
nine heat pumps is 87.3 kW. Depending on the building cooling/heating loads, some buildings



may have two or three heat pumps. On the waterside, each heat pump has two dedicated circulating
water pumps. This water loop also supplies direct cooling for the five refrigeration units.

The GSHP subsystem consists of one sink well and one source well. Those wells penetrate
a layer of limestone rock at 137 m (450 ft) deep, where the underground water has a constant
temperature of 26.7°C (80 °F). A variable speed well pump controls the flow rate of the extracted
groundwater through the heat exchanger to maintain the temperature of the outlet water from the
heat exchanger in the water loop. In cooling mode, when the outlet water temperature exceeds
28.3 C (83°F), the well pump speeds up from 20% to 100% of the maximum speed to reduce the
water temperature. In heating mode, when the outlet water temperature is below 23.9 C (75 F), the

well pump speeds up from 20% to 100% of the maximum speed to increase the water temperature.

GSHP1 GSHP2 GSHP3 GSHP4 GSHPS GSHP6 GSHP7 GSHP8 GSHP9

Refrigerator
Rack

sdurng
Supemnaar)

A

0l

Y A

Y

Heat
Exchanger

IPAA NUIS

Figure 4. Schematic of a GSHP subsystem in the HGV.

2.2.4 Domestic Hot Water

The DHW system serves one retail store (Pickle Fish; Table 2). In this system, the makeup water
from the municipal water is preheated by a solar collector to around 37.8 °C (100 °F) and is then
stored in a tank with a capacity of 0.6 m* (120 gallons). When makeup water is needed, the water

is pumped to another tank where heat is recovered from the two GSHPs (HP8 and HP9) and



absorbed by the makeup water. When the recovered heat is not available, an electric backup heater

is activated to provide more heat.

3 System Modeling
3.1 Model Architecture

As mentioned above, the HGV contains different subsystems. We package the models within each
subsystem into one subsystem model, while the energy/mass/information connections between
different subsystems are then modeled with corresponding information buses. The decomposition
of the HGV results in a model architecture, as shown in Figure 5. This architecture has three
advantages: (1) subsystem models can be easily isolated for calibration or testing purposes; (2)
connections between subsystems can be managed in a flexible and scalable way; and (3) each
subsystem can be assigned a dedicated solver so that each subsystem can have unique simulation

time steps to capture internal dynamics at lower computational costs.

Renewable Energy Subsystem Grid Subsystem
PV I m Wind .
Panel | Turbine [} Grid
J
Buildings | INEGET Domestic Hot Water Subsystem
Subsystemh——l l JE— l
i, B0, B8, '\ N
) ‘w"—/ ‘_'"'-_/ *““L/ Solar
Building t 1 t Heate
ﬁ u

Electricity
Domestic Hot Water

Heating /Cooling Air

Heating /Cooling Water
(Ground-coupled Heat Pump Subsystem Heat Exchanger Borehole

w
I
=
[T

Recovered Heat

Figure 5. The exchange and communication of different subsystem models in the HGV.

3.2 Model Methods

It is generally preferable to have high-fidelity physics-based models when detailed information of
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the studied systems is required. Having such models, however, may not always be practical.
Physics-based models require a detailed understanding of the studied system and impose a
significant computational demand (Braun and Chaturvedia 2002). In a real-world setting, the
necessary conditions may be difficult to meet. For example, occupancy has a significant influence
on building energy demand and thus should be considered in load modeling. However, the
stochastic nature of occupancy in time and space (Feng, Yan et al. 2015) makes it difficult to model
accurately. Computational fluid dynamics models are effective in modeling thermal comfort levels
but are very computationally intensive. This limits their applicability to real-world adaptive
controls (Zuo and Chen 2010). In addition, physics-based models may require detailed operating
data to calibrate the parameters. Such data may be inaccessible due to a lack of meters or sensors.
The data-driven models, on the other hand, are often more suitable when resources are limited.
They can be built without any information regarding physics. They are usually computationally
efficient because they often contain only linear equations. Further, they can be developed with
limited types of data, although the accuracy of the models is directly related to the number of
training data points available (Braun and Chaturvedia 2002).

Given the pros and cons of physics-based models and data-driven models, we believe it is
desirable to have a hybrid model that includes both physics-based models and data-driven models.
The physics-based models can be used to model the most critical subsystems, or those with more
known and detailed operating data, when computational resources permit. The data-driven models
can be used to model systems that lack either a good physics-based model or detailed operating
data, or where computational performance is a limiting factor. In this study, we used Modelica to
implement the physics-based models. Modelica is an equation-based, object-oriented modeling
language for dynamic systems. Examples of building-related modeling with Modelica include the
modeling of building envelopes, a data center cooling system, a single-zone cooling system, a
DHW system, and chiller plants (Nouidui, Phalak et al. 2012, Zuo, Wetter et al. 2014, Huang,
Malara et al. 2016, Zuo, Wetter et al. 2016).

3.3 System Models

Applying the model structure and the model methods from the previous two sections, we created
models for the entire HGV in a hierarchical fashion. Figure 6 shows the top-level model, which

mainly includes the following five subsystem models: renewable energy generation, grid,
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buildings, water-source heat pumps, and information bus. The top-level model is implemented in
Modelica. The data and signals can be exchanged using the bus connectors that exist in Modelica.

The following sections discuss the lower-level models in more detail.

Weather bus
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Irradiation aHI i
information % P\P/V uri
‘ % Power Grid
DNI _ InfBus S InfBus
buiLoa :hEﬂPum Information
m GSHP bus
- us “--': InfBus
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e
H-t
ey DHW

domHotWat

Figure 6. Diagram of top-level models for the HGV.

(1) Renewable Energy Generation

Figure 7 shows the model diagram for the entire PV subsystem, which is composed of
models for the eight arrays shown in Table 2. For each PV array, we developed a dedicated model
for each array. The direct current (DC) output of the array is converted to alternating current (AC)
through an inverter. The AC output is aggregated to one output port terminal to connect with other
subsystem models. In addition, the PV energy production information is transferred to other
subsystem models for further control purposes via the data bus, which is an expandable connector

for data communication.
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Figure 7. Diagram of Modelica models for the PV subsystem.

We create both a physics-based model and a data-driven model for the PV array. For the physics-
based model, we used the PVSimpleOriented model in the Modelica Buildings Library (Wetter,
Zuo et al. 2014). This model calculates the electrical power, P, generated by the PV panel using

the following equation:

P = AfacenGnpcacs (1D

where A is the area of each PV panel, f,.; is the fraction of the aperture area, 1 is the PV panel
efficiency, G is the total solar irradiation, and npc4cis the efficiency of the conversion between

DC and AC. In this model, G is the sum of direct and diffuse irradiation and is calculated by:
G = Gpif + Gpyrs (2)
where Gp;r and Gp;, are the sums of the diffuse and direct irradiation on a tilted surface,

respectively.
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Gpir = Max(0, cos (incAng)HDirNor, 3)

where incAng is the solar incidence angle on the surface and HDirNor is the direct normal

radiation.
Gpir = Gsiypif + Geropif> (4)

where Ggyypir and Ggropir are the hemispherical diffuse solar irradiation on a tilted surface from
the sky and hemispherical diffuse solar irradiation on a tilted surface from the ground, respectively.

For the data-driven model, we employed a forward backpropagation neural network model
(Hecht-Nielsen 1989). As shown in Figure 8, there are four neurons (x4, x5, X3, X4 ) and one output
layer with one output (y;) in this neural network model. In addition, there is also one hidden layer
with 12 neurons. For the PV panel modeling, we select x4, x;, x3, and x4 as the direct normal
radiation, diffuse horizontal solar radiation, global horizontal radiation, and the power generation
of the PV panel a half-hour before the current time, respectively. Variable y; is the power
generation of the PV panel at the studied time. This neural network model is implemented with
MATLAB and more detailed settings are listed in Table 3. To enable data exchange between
MATLAB and the Modelica environment during runtime, we utilize the Python interface in the

Modelica Buildings Library and the MATLAB Engine API for Python (Mathworks 2017).

Table 3. Detailed settings of the neural network model for the PV panel

Number of input layer nodes 4

Number of output layer nodes 1

Number of Hidden layer nodes 12

Neuron transfer function logsig, purelin

Learning function Learngd (Gradient descent weight and bias learning
function)

Performance function Msereg (weighted mean square deviation)

Network training function Trainbr (Bayesian regularization)

Weight initialization method Initnw (Nguyen-Widrow method)

Maximum training time 2000 Epochs

Target error 107
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Figure 8. The structure of the neural network model.

(2) Power Grid

In this research, we used the Electrical AC.OnePhase.Sources.Grid model in the Modelica
Buildings Library to build the physics-based model for the utility-supplied power. The input for
this model is a fixed voltage signal, while the output will be the power supplied by the utility at a
point of common coupling (PCC) to the HGV electric distribution system. We define a convention
that the power is positive if real power is consumed from the grid and negative if it is flowing out
of the PCC. We did not build a data-driven model for the utility distribution system because we

do not have sufficient historical data to characterize the distribution system behavior.

(3) Buildings

The equipment in the HGV can generally be categorized as having either easy load pattern
recognition or difficult load pattern recognition. As an example of an easily recognizable pattern,
Figure 9 shows the load profile of the lighting equipment in a retail building for 20 days. We can
see that all the days share the same pattern: from 9:00 to 17:00, the lighting load is maintained
around 300 W, and the rest of time, the lighting is close to zero. From this, we can easily build
simple data-driven models for such equipment. For an example of a load pattern that is difficult to

understand, Figure 10 shows the load profile of fridges in a restaurant building for 20 days. We
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can see that the fridge power load changes randomly, mainly due to the cycling control of the

compressors. For simplification, we assume the loads for this equipment are always constant.
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Figure 9. Electricity load profiles of lighting equipment in a retail building (each line represents

one day of data).
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Figure 10. Electricity load profiles of fridges in a restaurant building (each line represents one

day of data).
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(4) GSHP Subsystem

The GSHP subsystem is the major energy load type in the HGV. We create both physics-based
and data-driven models for the GSHP subsystem. When creating the physics-based model, we
respect the real topology of the GSHP subsystem, which results in a top-level model for the GSHP
subsystem, shown in Figure 11. In this top-level model, the major components include a weather
bus, internal heat gain, a condenser water loop, a heat recovery loop, zone controllers, and GSHPs.
The weather bus component provides external disturbances, while the internal heat gain
component estimates internal disturbances in the GSHP operation. The condenser water loop
component and the heat recovery loop component are modeled as constant flow loops with
constant speed pumps. In addition, the GSHP module contains sub-models, as shown in Figure 12,
including one heat pump model and the thermal zone model. Both models are from the Modelica
Buildings Library; readers can find more information in (Wetter, Zuo et al. 2014). Specifically,

the thermal zone model calculates the power of each GSHP using

TQU
Php = Php,nomPLR ' COPnom/(m €carnot€PLR (PLR))a ()

where Pep, nom 15 the nominal power of the GSHP, PLR is the partial load ratio (the ratio of the
cooling load handled by the GSHP to its nominal capacity), COP,,,, is the GSHP’s coefficient of
performance at the nominal condition, and T,,,, and T,,,, are the temperatures in the evaporator
and condenser sides of the GSHP, respectively. The €.4,n0¢ 1 the Carnot effectiveness (assumed

to be constant), and p;; is the operation effectiveness at partial loads, which is a function of the
PLR:
ep,r(PLR) = ¢; + ¢, PLR + ¢3PLR? + (1 — ¢; — ¢, — ¢3)PLR3, (6)

where ¢4, ¢, c3 are constant coefficients to mimic the internal capacity control of each GSHP.
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In addition, we employ a neural network model to establish a data-driven model for the
GSHP subsystem. The structure of the neural network model for the geothermal subsystem is the
same as that for the PV subsystem, as shown in Figure 8. However, x4, x,, x5, and x, are different
because they represent the day type, the hour index in one day, the outdoor dry bulb temperature,
and the power of the heat pump in the previous hour, respectively. Table 3 shows the definitions
of each day type. For more details regarding day type, refer to (Huang, Zuo et al. 2016). We do
not have a dedicated power meter for HP 4, HP 5, HP 8, and HP 9; instead, there is one aggregated
meter for HP 4 and HP 5 and one aggregated meter for HP 8 and HP 9. Thus, we must model HP
4 and HP 5 as one heat pump and HP 8 and HP 9 as another heat pump.

Table 4. Day type categories in the HGV.

Index Day Category Name Description

1 Weekday in Peak Season Weekday from December 15 to May 14
2 Weekend in Peak Season Weekend from December 15 to May 14
3 Weekday in Non-Peak Season Weekday from May 15 to December 14
4 Weekend in Non-Peak Season Weekend from May 15 to December 14

(5) DHW Subsystem

We create only a physics-based model for the DHW subsystem due to the lack of operation data
for developing a data-driven model. We established the physics-based model based on the design
specification and engineering judgment of the DHW system. Figure 13 shows the top-level model
for the DHW subsystem. The major components include the city water module, the solar collector,
the water usage profile, and the backup heater. We build the models for the above modules again
with the Modelica Buildings Library. For simplicity, we assume water usage, pump power, and

heater efficiency are constant.
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Figure 13. Diagram of Modelica models for the DHW subsystem.
3.4 Validation

We validate the developed model with data from the HGV. For data acquisition, we installed web
servers with 1224 current transformers in each electric service panel. This allows us to log circuit-
level power demand and generation and upload data to a cloud-based application that can aggregate
the data by building and load type (HVAC, lighting, refrigeration, etc.). Solar radiation data was
obtained from an authoritative source, the National Solar Radiation Database (NSRDB) (The
Renewable Resource Data Center), at a resolution of 4 km by 4 km using geostationary satellites.
When validating the models, we use the developed system models to predict the power for a test
period of 1 week (Aug 25-31, 2014) for each subsystem. Then, we demonstrate the power
prediction results at the community level. For the DHW system, no validation is conducted due to

the lack of historical data.

3.4.1 Renewable Energy Generation

Figure 14 shows the aggregated power results for the PV subsystem, which demonstrate that the
data-driven models are quite close to the measurements, except occasionally near noon. The
predictions from the physics-based models are significantly lower than the measurements, and the

deviation can be up to 17%.
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Figure 14. Comparison of the predicted and measured aggregated PV power generation.

3.4.2 Building System

As shown in Figure 15, although the prediction can capture the general pattern of the measurement,
relatively large deviations exist. This means that the simple method we used to model the

equipment in the second category may be oversimplified.
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Figure 15. Comparison of the predicted and measured miscellaneous electric equipment

power at the aggregated level.
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3.4.3 GSHP

Figure 16 shows the aggregated power results for the GSHP subsystem. In general, the predictions
by both the physics-based models and the data-driven models match the measurement pattern well.
However, for some time intervals, there are relatively large deviations in both models. These

deviations are up to 18% for the data-driven model and up to 30% for the physics-based models.
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Figure 16. Comparison of the predicted and measured aggregated heat pump power.

3.4.4 Community

Figure 17 shows the aggregated power results for the entire community from the data-driven
models, but the pump energy consumption in the DHW subsystem is not included in these results.
Negative power means that power generation exceeds power demand, while positive power means
that power generation is insufficient to meet power demand. At the community level, we can see
that the prediction closely matches the measurement. It is worth noting that the aggregated power

for the entire community turns out to be a typical “duck curve,” i.e., after times of high solar
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generation, the grid must rapidly increase power output around sunset to compensate for the drop
in solar generation. The “duck curve” may cause load-supply balance issues (Denholm, O’Connell
et al. 2015). An energy storage system or a peak load shaving or shifting strategy can resolve this

1ssue.
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Figure 17. Comparison of the predicted and measured aggregated power for the HGV.

4 Simulation Framework

As shown in Figure 18, this framework is designed to facilitate the use of the models and is
composed of four modules: pre-processing, modeling, optimization, and post-processing. The pre-
processing module processes the input data for the virtual testbed. For instance, gaps may exist
during the data collection process. In this case, the pre-processing module is used to fill the gaps

through interpolation to provide continuous input for the dynamic simulation. The modeling
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module simulates all the models developed for the studied NZEC, while the optimization module
performs model-based optimizations using the input data as well as the objective functions.
Various optimization engines can integrated into this virtual testbed, such as the Python-based
pyOpt framework (Perez, Jansen et al. 2012), GenOpt (Wetter 2004), and the MATLAB
Optimization Toolbox. Those optimization engines can be used to implement advanced control
strategies, such as model prediction control, with arbitrary control objectives. Alternatively, those
optimization engines can be also replaced with rules-based controllers. The post-processing
module processes the results from simulation and optimization based on predefined metrics.

This framework automates the process of identifying the optimal design and the optimal
operation scheme for the HGV. Specifically, in the design phase, architects and engineers can
compare the simulation results of various designs to further enhance the design. In the operation
phase, facility managers can improve the operation by altering the optimal control variables or by
changing demand-side management strategies. It is worth mentioning that we performed numerical
tests on the proposed framework on a Desktop (Intel® Core™ i9-10980XE CPU (3.0GHz) and 32
GB memory, Window 10 64-bite) and found an annual simulation (control sampling interval: 15

min) takes 1,340 seconds.
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Figure 18. Simulation framework.
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5 Case Study

In this case study, we demonstrate the use of the developed models and the simulation framework
as a virtual testbed for evaluating a building-to-grid integration method that adjusts the thermostat

settings to smooth the power draw of NZECs from the power grid.

5.1 Testing Control Method

The control method smooths the power draw of NZECs from the grid, as defined in:

n

J = argmin (Z'PD‘i — Pc;,z|>. @)

i=1
where Pp, ; is the power demand of NZECs and P ; is the power generation of NZECs at time step
i. A smooth power draw helps the power grid achieve a balance between power supply and

demand.

As illustrated in Figure 19, this control method is a distributed control strategy and contains
both campus-level control and building-level controls. The campus-level control takes the

measured power draw as an input and generates a price of electricity at time step i, by:
i
A =2+ DA k(Pp; —Pgy) +1 Z(PDJ- -P:) | (8)
j=1
where Aq is the base price, 44 is the maximum changing range for the price, and k and I are

parameters. Equation (8) is essentially a proportional-integral control that uses the measured power

draw as feedback to adjust the price signal.

25



Measured Power Draw

l

Electricity Price Electricity Price

Thermostat Setpoint for Building 1 Thermostat Setpoint for Building n

Figure 19. Proposed control method.

The building-level control establishes a mapping between the electricity price and the
thermostat setpoint, as illustrated in Figure 20. Only the cooling mode is considered for simplicity.
We can see that, in general, the thermostat setpoint is proportional to the electricity price. However,
the thermostat setpoint is only allowed to vary in a range of [Tger g — kAT, Tger o + kAT], where
Tset 0 1s the nominal setpoint and AT is the maximum deviation from the nominal setpoint.
Additionally, for each building, the parameter k is determined based on occupant preference. If
the occupants highly value thermal comfort, then k approaches the minimum value of 0; otherwise,

k is closer to the maximum value of 1.
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set,0
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Figure 20. Mapping between the electricity price and thermostat setpoint.
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5.2 Deployment of Testing Control Method in the Virtual Testbed

To evaluate the proposed control method, we deploy it in the virtual testbed. Specifically, the
control method is implemented in Python and coupled with the virtual testbed via the socket
connection. The virtual testbed periodically (every 5 minutes) sends the power information to the
proposed control method, which then returns the setpoint. Additionally, as shown in Figure 17,
power generation is usually much larger than power demand in the HGV, meaning the PV
subsystem is oversized and making it very difficult to achieve a smooth power draw. To provide a
fair evaluation, we ignore the PV groups E, NC, SC, and W to reduce the capacity of PV
generation. Furthermore, we employ the physics-based models of the renewable energy
generation, power grid, GSHP, and DHW subsystems and the data-driven models for other
subsystems in the evaluation. The simulation period is set to be a typical summer day, July 27,
2014, and measured weather data is used as the major input. The k value for each GSHP is

randomly selected between 0.6 and 0.9 to reflect diversity in occupant preferences.

5.3 Results and Discussion

Figure 21 illustrates the power draw of the HGV with and without the control method. We can see
that the power draw varies dramatically throughout the testing day in the baseline scenario. The
power draw reaches its minimum value of —7 kW around 11:00 and reaches its maximum value of
15 kW around 19:00. Specifically, the power draw becomes negative from 8:00 to 18:00, which
means the extra power generation must be absorbed by the power grid. In the control scenario
where the proposed method is implemented, the control method achieves the control objective
from approximately 8:00 to 18:00 because the power draw equals zero during this period. To do
this, the control method varies the setpoints of all GSHPs from 21.5 C to 23.5 C. Because of
different k values, however, each GSHP has a dedicated setpoint trajectory. For the remaining
time, because there is very little or no power generated by the PV systems, the power grid is still
larger than zero even though the setpoints are already set at the maximum values. This suggests
that the HGV has little power flexibility that can be utilized during those periods. Figure 22
compares the results during the control scenario and the testing scenarios. We can see that the
control scenario uses more power from 8:00 to 17:00 and less power for most of the remaining

hours.
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Figure 21. Power draw (top) and cooling temperature setpoint (bottom) under the baseline and
under control.

As a result, the accumulated energy consumption in the control scenario is less than that in
the baseline scenario before 11:00 and larger than that in the baseline scenario after 11:00. It is
worth mentioning that the energy consumption for the testing day in the control scenario is larger
than that in the baseline scenario at the end of the testing day. This suggests that providing gird

service may lead to more energy consumption by buildings.
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Figure 22. Power and energy consumption of the HGV under the baseline and under control.
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Figure 23 shows the details of how one GSHP operates under the control scenario and the
baseline scenario. Under the baseline scenario, the zone temperature is quite close to the setpoint
for most of the time. The speed ratio of the compressor varies from 0 to 0.9, and the peak value
occurs at around 12:00. On the other hand, in the control scenario, the setpoint is set to be 23.5 °C
from 0:00 to 8:00. In that case, because the temperature is lower than the setpoint, the compressor
is shut off. From 9:00 to 18:00, the setpoint decreases, leading to a peak speed ratio of almost 1.

After 17:00, the setpoint increases again, and the compressor is shut off accordingly.
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Figure 23. Power and energy consumption of the HGV under the baseline and under control.

6 Conclusion and Future Work

In this paper, we proposed a virtual testbed for designing and operating NZECs. The virtual testbed
consists of a series of system models and a software framework. The system models are developed
with physics-based and data-driven modeling methods, respectively, and the framework is
designed to streamline simulation and optimization. We compared the prediction power results
with the measurements from a real NZEC, and the outcome suggests that (1) in general, the system
models achieve good accuracy in predicting power. For the community-level model, the model
can track the trajectory of the power for the testing week while the R? value is 0.95. However, the
accuracy of the subsystem models is relatively lower. For example, The deviation of the prediction

by the PV subsystem model from the measurement can be up to 17%. (2) For PV system modeling,
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the data-driven models perform better than the physics-based models. The reason for this
difference is the variability of the information used in the models that should be related to model
characteristics. (3) For miscellaneous electric equipment modeling, the load patterns of some
equipment are randomly distributed. (4) The aggregated load and solar generation profiles of the
HGYV indicate that there is an inherent imbalance between energy demand and supply. Exploring
opportunities to reduce coincident peak demand of electric and thermal loads can reduce the cost
of achieving energy resilience at the community and grid scales. Beyond comparing the prediction
and measurement results, we also applied the virtual testbed to evaluate building-to-grid
integration control. Based on the evaluation results, applying this control in the HGV to address
the “duck curve” issue is a promising avenue; furthermore, the studied control respects the
performance of the occupants, which can simplify control deployment.

Compared to similar modeling tools in the literature, this virtual testbed has three major
advantages: 1) it is the only modeling tool that is based on a real community and validated against
the real measurement. Thus, this virtual testbed can better support the NZEC design and operation
with more reliable test results. 2) it provides great flexibility in terms of model selection to meet
the requirements of specific applications. This virtual testbed has a hierarchical model structure
and includes both physics-based and data-driven models. Users can customize the testing model
based on the focus to balance the accuracy and complexity. 3) it simplifies the process for
deploying design methods and control strategies to the simulation environment. This virtual
testbed contains software components to streamline the process for running simulations and/or
optimization. Therefore, parametric studies or model-based design/optimization can be easily set
up.

The research described in this paper focuses on establishing a foundation for exploring the
design and operations of an NZEC. With additional resources, a series of studies can be conducted
based on the testbed developed here. For example, control strategies with other operational
constraints, such as minimal operation/utility costs, minimal emissions, can be evaluated. Smart
thermostats and occupancy sensors would allow us to develop adaptive control strategies that
maximize on-site solar energy consumption, demonstrate the ability to reduce coincident peak
electric and thermal loads, reduce demand charges, and participate in demand-response programs.

More distributed energy resources and energy storage devices can be added to the virtual testbed.
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Detailed electricity models will be considered to model different operation modes of the
community, including “island mode”. Occupancy-related studies should be conducted to help us
better understand how occupancy affects the operation of building systems. In the future, it would
be helpful to distinguish between weather and occupant effects for different load types. Additional
operating data and smart controls can allow system designers to correctly size mechanical systems
and energy (thermal and chemical) storage systems. Facility operators can devise operational and
control strategies to preheat and precool spaces based on typical load patterns, weather and
occupancy forecasts, and available distributed energy resources.

To support the studies on a large scale, there are additional: 1) to generate heterogeneous
building models with a limited number of real buildings, methods need to be developed to diversify
the building parameters. In addition, the building systems, such as the ground source condenser
water loop, need to be re-sized or even re-designed to accommodate more buildings. 2) the
numerical performance of the virtual testbed may need to be re-evaluated to understand how the
required computing resources vary by the scale of the studied community. Based on the evaluation

results, advanced solvers can be selected to meet the requirement of the supporting studies.
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