6} usenix
& THE ADVANCED

COMPUTING SYSTEMS
\ ASSOCIATION

FlexTOE: Flexible TCP Offload
with Fine-Grained Parallelism

Rajath Shashidhara, University of Washington; Tim Stamler, UT Austin;
Antoine Kaufmann, MPI-SWS; Simon Peter, University of Washington

https://www.usenix.org/conference/nsdi22/presentation/shashidhara

This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4-6, 2022 » Renton, WA, USA
978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc Ellall deala

.% King Abdullah University of

Science and Technology

FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism

Rajath Shashidhara! Tim Stamler?
"University of Washington

Abstract

FlexTOE is a flexible, yet high-performance TCP offload en-
gine (TOE) to SmartNICs. FlexTOE eliminates almost all host
data-path TCP processing and is fully customizable. FlexTOE
interoperates well with other TCP stacks, is robust under
adverse network conditions, and supports POSIX sockets.
FlexTOE focuses on data-path offload of established connec-
tions, avoiding complex control logic and packet buffering in
the NIC. FlexTOE leverages fine-grained parallelization of the
TCP data-path and segment reordering for high performance
on wimpy SmartNIC architectures, while remaining flexible
viaamodular design. We compare FlexTOE on an Agilio-CX40
to host TCP stacks Linux and TAS, and to the Chelsio Termi-
nator TOE. We find that Memcached scales up to 38% better
on FlexTOE versus TAS, while saving up to 81% host CPU
cycles versus Chelsio. FlexTOE provides competitive perfor-
mance for RPCs, even with wimpy SmartNICs. FlexTOE cuts
99.99th-percentile RPC RTT by 3.2x and 50% versus Chelsio
and TAS, respectively. FlexTOE’s data-path parallelism gen-
eralizes across hardware architectures, improving single con-
nection RPC throughput up to 2.4x on x86 and 4x on BlueField.
FlexTOE supports C and XDP programs written in eBPF. It
allows us to implement popular data center transport features,
such as TCP tracing, packet filtering and capture, VLAN strip-
ping, flow classification, firewalling, and connection splicing.

1 Introduction

TCP remains the default protocol in many networks, even
as its CPU overhead is increasingly a burden to application
performance [3, 17, 46]. A long line of improvements to soft-
ware TCP stack architecture has reduced overheads: Careful
packet steering improves cache-locality for multi-cores [17,
24, 45], kernel-bypass enables safe direct NIC access from
user-space [3, 46], application libraries avoid system calls for
common socket operations [17], and fast-paths drastically re-
duce TCP processing overheads [19]. Yet, even with these opti-
mizations, communication-intensive applications spend up to
48% of per-CPU cycles in the TCP stack and NIC driver (§2.1).

Offload promises further reduction of CPU overhead. While
moving parts of TCP processing, such as checksum and seg-
mentation, into the NIC is commonplace [54], full TCP offload
engines (TOEs) [6, 7, 33] have so far failed to find widespread
adoption. A primary reason is that fixed offloads [56] limit pro-
tocol evolution after deployment [9, 29, 36]. Tonic [2] provides
building blocks for flexible transport protocol offload to FPGA-
SmartNICs, but FPGA development is still difficult and slow.

We present FlexTOE, a high-performance, yet flexible of-
fload of the widely-used TCP protocol. FlexTOE focuses on

3

Antoine Kaufmann Simon Peter!

2UT Austin ~ 3MPI-SWS

scenarios that are common in data centers, where connections
are long-lived and small transfers are common [29]. FlexTOE
offloads the TCP data-path to a network processor (NPU)
based SmartNIC, enabling full customization of transport
logic and flexibility to implement data-path features whose
requirements change frequently in data centers. Applications
interface directly but transparently with the FlexTOE datap-
aththrough the libTOElibrary that implements POSIX sockets,
while FlexTOE offloads all TCP data-path processing (§2.1).
TCP data-path offload to SmartNICs is challenging. Smart-

NICs support only restrictive programming models with strin-

gent per-packet time budgets and are geared towards massive

parallelism with wimpy cores [26]. They often lack timers,
as well as floating-point and other computational support,
such as division. Finally, offload has to mask high-latency
operations that cross PCle. On the other hand, TCP requires
computationally intensive and stateful code paths to track
in-flight segments, for reassembly and retransmission, and to
perform congestion control [2]. For each connection, the TCP
data-path needs to provide low processing tail latency and
high throughput and is also extremely sensitive to reordering.

Resolving the gap between TCP’s requirements and Smart-

NIC hardware capabilities requires careful offload design to

efficiently utilize SmartNIC capabilities. Targeting FlexTOE

at the TCP data-path of established connections avoids com-
plex control logic in the NIC. FlexTOE’s offloaded data-path is
one-shot for each TCP segment—segments are never buffered
in the NIC. Instead, per-socket buffers are kept in per-process
host memory where libTOE interacts with them directly. Con-
nection management, retransmission, and congestion con-
trol are part of a separate control-plane, which executes in
its own protection domain, either on control cores of the

SmartNIC or on the host. To provide scalability and flexi-

bility, we decompose the TCP data-path into fine-grained

modules that keep private state and communicate explicitly.

Like microservices [29], FlexTOE modules leverage a data-

parallel execution model that maximizes SmartNIC resource

use and simplifies customization. We organize FlexTOE mod-
ules into a data-parallel computation pipeline. We also reorder
segments on-the-fly to support parallel, out-of-order process-
ing of pipeline stages, while enforcing in-order TCP segment
delivery. To our knowledge, no prior work attempting full

TCP data-path offload to NPU SmartNICs exists.

We make the following contributions:

o We characterize the CPU overhead of TCP data-path pro-
cessing for common data center applications (§2.1). Our
analysis shows that up to 48% of per-CPU cycles are spent in
TCP data-path processing, even with optimized TCP stacks.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 87

e We present FlexTOE, a flexible, high-performance TCP of-
fload engine (§3). FlexTOE leverages data-path processing
with fine-grained parallelism for performance, but remains
flexible via a modular design. We show how to decompose
TCP into a data-path and a control-plane, and the data-path
into a data-parallel pipeline of processing modules to hide
SmartNIC processing and data access latencies.

e We implement FlexTOE on the Netronome Agilio-CX40
NPU SmartNIC architecture, as well as x86 and Mellanox
BlueField (§4). Using FlexTOE design principles, we are the
first to demonstrate that NPU SmartNICs can support scal-
able, yet flexible TCP data-path offload. Our code is avail-
able at https://tcp-acceleration-service.github.io/FlexTOE.

e We evaluate FlexTOE on a range of workloads and com-
pare to Linux, the high-performance TAS [19] network
stack, and a Chelsio Terminator TOE [6] (§5). We find that
the Memcached [32] key-value store scales throughput up
to 38% better on FlexTOE than using TAS, while saving
up to 81% host CPU cycles versus Chelsio. FlexTOE cuts
99.99th-percentile RPCRT T by 3.2x and 50% versus Chelsio
and TAS respectively, 27% higher throughput than Chel-
sio for bidirectional long flows,and an order of magnitude
higher throughput under 2% packet loss than Chelsio. We
extend the FlexTOE data-path with debugging and auditing
functionality to demonstrate flexibility. FlexTOE maintains
high performance when interoperating with other network
stacks. FlexTOE’s data-path parallelism generalizes across
platforms, improving single connection RPC throughput
up to 2.4X on x86 and 4x on BlueField.

2 Background

We motivate FlexTOE by analyzing TCP host CPU processing
overheads of related approaches (§2.1). We then place Flex-
TOE in context of this and further related work (§2.2). Finally,
we survey the relevant on-path SmartNIC architecture (§2.3).

2.1 TCP Impact on Host CPU Performance

We quantify the impact of different TCP processing approaches
on host CPU performance in terms of CPU overhead, execu-
tion efficiency, and cache footprint, when processing common
RPC-based workloads. We do so by instrumenting a single-
threaded Memcached [32] server application using hardware
performance counters (cf. §5 for details of our testbed). We use
the popular memtier_benchmark [51] to generate the client
load, consisting of 32 B keys and values, using as many clients
as necessary to saturate the server, executing closed-loop
KV transactions on persistent connections. Table 1 shows a
breakdown of our server-side results, for each Memcached
request-response pair, into NIC driver, TCP/IP stack, POSIX
sockets, Memcached application, and other factors.

In-kernel. Linux’s TCP stack is versatile but bulky, lead-
ing to a large cache footprint, inefficient execution, and high
CPU overhead. Stateless offloads [54], such as segmentation

Linux Chelsio TAS FlexTOE
Module

ke % ke % ke % ke %
NIC driver 0.71 6 1.28 14 0.18 5 0 0
TCP/IP stack 4.25 35 040 4 144 43 0 0
POSIX sockets 2.48 21 261 29 0.79 23 0.74 44
Application 1.26 10 1.31 16 0.85 26 0.89 53
Other 3.42 28 3.28 37 0.09 3 0.04 3
Total 12.13 100 8.89 100 3.34 100 1.67 100
Retiring 4.60 38 243 27 1.66 48 0.77 46

Frontend bound 3.53 29 152 17 0.46 13 034 21
Backend bound 3.40 28 4.68 53 1.24 36 0.46 27
Bad speculation 0.55 5 0.26 3 013 4 0.09 6

Instructions (k) 16.18 8.14 6.26 2.93
IPC 1.33 0.92 1.85 1.75
Icache (KB) 47.50 73.43 39.75 19.00

Table 1. Per-request CPU impact of TCP processing.

and generic receive offload [12], reduce overhead for large
transfers, but they have minimal impact on RPC workloads
dominated by short flows. We find that Linux executes 12.13 kc
per Memcached request on average, with only 10% spent in
the application. Not only does Linux have a high instruction
and instruction cache (Icache) footprint, but privilege mode
switches, scattered global state, and coarse-grained locking
lead to 62% of all cycles spent in instruction fetch stalls (fron-
tend bound), cache and TLB misses (backend bound), and
branch mispredictions (cf. [19]). These inefficiences result in
1.33 instructions per cycle (IPC), leveraging only 33% of our
4-way issue CPU architecture. Linux is, in principle, easy to
modify, but kernel code development is complex and security
sensitive. Hence, introducing optimizations and new network
functionality to the kernel is often slow [29, 42, 43].

Kernel-bypass. Kernel-bypass, such as in mTCP [17] and
Arrakis [46], eliminates kernel overheads by entrusting the
TCP stack to the application, but it has security implica-
tions [52]. TAS [19] and Snap [29] instead execute a protected
user-mode TCP stack on dedicated cores, retaining security
and performance. By eliminating kernel calls, TAS spends
only 800 cycles in the socket API—31% of Linux’s API over-
head. TAS also reduces TCP stack overhead to 34% of Linux.
TAS reduces Icache footprint, front and back-end CPU stalls,
improving IPC by 40% versus Linux, and reducing the total
per-request CPU impact to 27% of Linux. However, kernel-
bypass still has significant overhead. Only 26% of per-request
cycles are spent in Memcached—the remainder is spent in
TAS (breakdown in §C).

Inflexible TCP offload. TCP offload can eliminate host
CPU overhead for TCP processing. Indeed, TOEs [7] that of-
fload the TCP data-path to the NIC have existed for a long
time. Existing approaches, such as the Chelsio Terminator [6],
hard-wire the TCP offload. The resulting inflexibility prevents
data center operators from adapting the TOE to their needs

88 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

and leads to a slow upgrade path due to long hardware devel-
opment cycles. For example, the Chelsio Terminator line has
been slow to adapt to RPC-based data center workloads.
Chelsio’s inflexbility shows in our analysis. Despite drasti-
cally reducing the host TCP processing cycles to 10% of Linux
and 28% of TAS, Chelsio’s TOE only modestly reduces the
total per-request CPU cycles of Memcached by 27% versus
Linux and inflates them by 2.6X versus TAS. Chelsio’s design
requires interaction through the Linux kernel, leading to a
similar execution profile despite executing 50% fewer host
instructions per request. In addition, Chelsio requires a so-
phisticated TOE NIC driver, with complex buffer management
and synchronization. Chelsio’s design is inefficient for RPC
processing and leaves only 16% of the total per-request cycles
to Memcached—6% more than Linux and 10% fewer than TAS.

FlexTOE. FlexTOE eliminates all host TCP stack overheads.
FlexTOE’s instruction (and Icache) footprint is at least 2x
lower than the other stacks, leading to an execution profile
similar to TAS, where 46% of all cycles are spent retiring
instructions. In addition, 53% of all cycles can be spent in
Memcached—an improvement of 2X versus TAS, the next
best solution. The remaining cycles are spent in the POSIX
sockets API, which cannot be eliminated with TCP offload.

FlexTOE is also flexible, allowing operators to modify the
TOE at will. For example, we have modified the TCP data-
path many times, implementing many features that require
TOE modification, including scalable socket APIimplemen-
tations [24, 45], congestion control protocols [1, 34], scalable
flow scheduling [53], scalable PCle communication proto-
cols [44], TCP tracing [13], packet filtering and capture (tcp-
dump and PCAP), VLAN stripping, programmable flow clas-
sification (eBPF [30]), firewalling, and connection splicing
similar to AccelTCP [37]. All of these features are desirable
in data centers and are adapted frequently.

2.2 Related Work

Beyond the TCP implementations covered in §2.1, we cover
here further related work in SmartNIC offload, parallel packet
processing, and API and network protocol specialization.

SmartNIC offload. On-path SmartNICs (§2.3), based on
network processor units (NPUs) and FPGAs, provide a suitable
substrate for flexible offload. Arsenic [47] is an early example
of flexible packet multiplexing on a SmartNIC. Microsoft’s Cat-
apult [48] offloads network management, while Dagger [22]
offloads RPC processing to FPGA-SmartNICs. Neither offloads
a transport protocol, like TCP. AccelTCP [37] offloads TCP
connection managementand splicing [28] to NPU-SmartNICs,
but keeps the TCP data-path on the host using mTCP [17].
Tonic [2] demonstrates in simulation that high-performance,
flexible TCP transmission offload might be possible, but it
stops short of implementing full TCP data-path offload (in-
cluding receiver processing) in a non-simulated environment.
LineFS [20] offloads a distributed file system to an off-path

SmartNIC, leveraging parallelization to hide execution laten-
cies of wimpy SmartNIC CPUs and data access across PCle.
Taking inspiration from Tonic and LineFS, but also from actor,
and microservice-based approaches presented in iPipe [26],
E3 [27], and Click [23, 38], FlexTOE shows how to decompose
the TCP data-path into a fine-grained data-parallel pipeline to
support full and flexible offload to on-path NPU-SmartNICs.

Parallel packet processing. RouteBricks [8] parallelizes
across cores and cluster nodes for high-performance routing,
achieving high line-rates but remaining flexible via software
programmability. Routing relies on read-mostly state and is
simple compared to TCP. FlexTOE applies fine-grained par-
allelization to complex, stateful code paths.

Specialized APIs and protocols. Another approach to
lower CPU utilization is specialization. R2P2 [21] is a UDP-
based protocol for remote procedure calls (RPCs) optimized
for efficient and parallel processing, both at the end-hosts and
in the network. eRPC [18] goes a step further and co-designs
an RPC protocol and API with a kernel-bypass network stack
to minimize CPU overhead per RPC. RDMA [49] is a popular
combination of a networking API, protocol, and a (typically
hardware) network stack. iWARP [50], in particular, lever-
ages a TCP stack underneath RDMA, offloading both. These
approaches improve processing efficiency, but at the cost of
requiring application re-design, all-or-nothing deployments,
and operational issues at scale [11], often due to inflexibil-
ity [36, 56]. FlexTOE instead offloads the TCP protocol in a
flexible manner by relying on SmartNICs. Upper-layer proto-
cols, such as iWARP, can also be implemented using FlexTOE.

2.3 On-path SmartNIC Architecture

On-path SmartNICs!, such as Marvell Octeon [5], Pensando
Capri [10, 55], and Netronome Agilio [39, 40], support mas-
sively parallel packet processing with a large pool of flow pro-
cessing cores (FPCs), but they lack efficient support for sophis-
ticated program control flow and complex computation [26].
We explore offload
to the NFP-4000 NPU,
used in Netronome Ag-
ilio CX SmartNICs [39].
We show the relevant
architecture in Figure 1.
Like other on-path Smart-
NICs, FPCs are orga-
nized into islands with
local memory and pro-
cessing resources, akin
to NUMA domains. Is-
lands are connected in a
mesh via a high-bandwidth interconnect (arrows in Figure 1).

PCIe Gen3 x8

General Purpose Islands x5

Network Block Interface nei

MAC 4o6be
Figure 1. NFP-4000 overview.

IMellanox BlueField [31] and Broadcom Stingray [4] are off-path SmartNICs
that are not optimized for packet processing [26].

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 89

The PCle island has up to two PClIe Gen3 x8 interfaces and a
DMA engine exposing DMA transaction queues [41]. FPCs
can issue up to 256 asynchronous DMA transactions to per-
form IO between host and NIC memory. The MAC island
supports up to two 40 Gbps Ethernet interfaces, accessed via
a network block interface (NBI).

Flow Processing Cores (FPCs). 60 FPCs are grouped into
five general-purpose islands (each containing 12 FPCs). Each
FPC is an independent 32-bit core at 800 MHz with 8 hard-
ware threads, 32 KB instruction memory, 4 KB data memory,
and CRC acceleration. While FPCs have strong data flow pro-
cessing capabilities, they have small codestores, lack timers,
as well as floating-point and other complex computational
support, such as division. This makes them unsuitable to exe-
cute computationally and control intensive TCP functionality,
such as congestion, connection, and complex retransmission
control. For example, congestion avoidance involves com-
puting an ECN-ratio (gradient). We found that it takes 1,500
cycles (1.9 us) per RTT to perform this computation on FPCs.

Memory. The NFP-4000 includes multiple memories of var-
ious sizes and performance characteristics. General-purpose
islands have 64KB of island-local scratch (CLS) and 256 KB
of island target memory (CTM), with access latencies of up
to 100 cycles from island-local FPCs for data processing and
transfer, respectively. The internal memory unit (IMEM) pro-
vides 4 MB of SRAM with an access latency of up to 250 cycles.
The external memory unit (EMEM) provides 2 GB of DRAM,
fronted by a 3 MB SRAM cache, with up to 500 cycles latency.

Implications for flexible offload. The NFP-4000 sup-
ports a broad range of protocols, but the computation and
memory restrictions require careful offload design. As FPCs
are wimpy and memory latencies high, sequential instruction
execution is much slower than on host processors. Conven-
tional run-to-completion processing that assigns entire con-
nections to cores [3, 17, 19] results in poor per-connection
throughput and latency. In some cases, it is beyond the fea-
sible instruction and memory footprint. Instead, an efficient
offload needs to leverage more fine-grained parallelism to
limit the per-core compute and memory footprint.

3 FlexTOE Design
In addition to flexibility, FlexTOE has the following goals:

e Low tail latency and high throughput. Modern dat-
acenter network loads consist of short and long flows.
Short flows, driven by remote procedure calls, require low
tail completion time, while long flows benefit from high
throughput. FlexTOE shall provide both.

e Scalability. The number of network flows and applica-
tion contexts that servers must handle simultaneously is
increasing. FlexTOE shall scale with this demand.

To achieve these goals and overcome SmartNIC hardware
limitations, we propose three design principles:

1. One-shotdata-path offload. We focus offload on the TCP
RX/TX data-path, eliminating complex control, compute,
and state, thereby also enabling fine-grained paralleliza-
tion. Further, our data-path offload is one-shot for each
TCP segment. Segments are never buffered on the NIC,
vastly simplifying SmartNIC memory management.

2. Modularity. We decompose the TCP data-path into fine-
grained, customizable modules that keep private state and
communicate explicitly. New TCP extensions can be im-
plemented as modules and hooked into the data-flow, sim-
plifying development and integration.

3. Fine-grained parallelism. We organize the data-path
modules into a data-parallel computation pipeline that
maximizes SmartNIC resource use. We map stages to FPCs,
allowing us to fully utilize all FPC resources. We employ
TCP segment sequencing and reordering to support par-
allel, out-of-order processing of pipeline stages, while en-
forcing in-order segment delivery.

Decomposing TCP for offload. We use the TAS host TCP
stack architecture [19] as a starting point. TAS splits TCP
processing into three components: a data-path, a control-
plane, and an application library. The data-path is respon-
sible for scalable data transport of established connections:
TCP segmentation, loss detection and recovery, rate control,
payload transfer between socket buffers and the network,
and application notifications. The control-plane handles con-
nection and context management, congestion control, and
complex recovery involving timeouts. Finally, the application
library intercepts POSIX socket API calls and interacts with
control-plane and data-path using dedicated context queues
in shared memory. Data-path and control-plane execute in
their own protection domains on dedicated cores, isolated
from untrusted applications, and communicate through effi-
cient message passing queues.

FlexTOE offload architecture. In FlexTOE we adapt this
architecture for offload, by designing and integrating a data-
path running efficiently on the SmartNIC (§3.1). The FlexTOE
control-plane can run on the host or on a SmartNIC control
CPU, with the same functionality as in TAS (cf. §D). The
FlexTOE control-plane additionally manages the SmartNIC
data-path resources. Similarly, our application library (lib-
TOE) intercepts POSIX socket calls and is dynamically linked
to unmodified processes that use FlexTOE, and communicates
directly with the data-path.

Figure 2 shows the offload architecture of FlexTOE, with a
host control-plane (each box is a protection domain). libTOE,
data-path, and control-plane communicate via pairs of con-
text queues (CTX-Qs), one for each communication direction.
CTX-Qsleverage PCle DMA and MMIO or shared memory for
SmartNIC-host and intra-host communication, respectively.

90 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Control-plane
libTOE ror-p
POSIX Interpose

PAYLOAD-BUFs II

Legacy
Applications

Application I/F Mgmt.
onnection Control
Congestion Policy

CTX-Qs CTX-Qs Kernel
Host } IPC I I_
——————————————————————— PCle ==--=======-=------f-----.
SmartNIC

Data-path

Segment Generation & Transmission Payload Transfer

Application Notification

Loss Detection & Recovery Flow Scheduling

Flow
State

Figure 2. FlexTOE offload architecture (host control-plane).

FlexTOE supports per-thread context queues for scalability.
Each TCP socket keeps receive and transmit payload buffers
(PAYLOAD-BUFs) in host memory. libTOE appends data for
transmission into the per-socket TX PAYLOAD-BUF and noti-
fies the data-path using a thread-local CTX-Q. The data-path
appendsreceived segments to the socket’s RX PAYLOAD-BUF
after reassembly and libTOE is notified via the same thread-
local CTX-Q. Non-FlexTOE traffic is forwarded to the Linux
kernel, which legacy applications may use simultaneously.

3.1 TCP Data-path Parallelization

To provide high offload performance using relatively wimpy
SmartNIC FPCs, FlexTOE has to leverage all available paral-
lelism within the TCP data-path. In this section, we analyze
the TAS host TCP data-path to investigate what parallelism
can be extracted. In particular, the TCP data-path in TAS has
the following three workflows:

e Hostcontrol (HC): When an application wants to transmit
data, executes control operations on a socket, or when
retransmission is necessary, the data-path must update the
connection’s transmit and receive windows accordingly.

e Transmit (TX): When a TCP connection is ready to send—
based on congestion and flow control—the data-path pre-
pares a segment for transmission, fetching its payload from
a socket transmit buffer and sending it out to the MAC.

o Receive (RX): For each received segment of an established
connection, the data-path must perform byte-stream re-
assembly—advance the TCP window, determine the seg-
ment’s position in the socket receive buffer, generate an
acknowledgment to the sender, and, finally, notify the ap-
plication. If the received segment acknowledges previously
transmitted segments, the data-path must also free the
relevant payload in the socket transmit buffer.

Host TCP stacks, such as Linux or TAS, typically process
each workflow to completion in a critical section accessing
a shared per-connection state structure. HC workflows are
typically processed on the program threads that trigger them,
while TX and RX are typically triggered by NIC interrupts
and processed on high-priority (kernel or dedicated) threads.

For efficient offload, we decompose this data-path into an
up to five-stage parallel pipeline of processing modules: pre-
processing, protocol, post-processing, DMA, and context queue

B8 -
O Cip - =1 =1

Figure 3. Per-connection data-path workflows. Protocol is
atomic. Other stages may be replicated for parallelism.

s[5 (5] 6] N [[~
[() [) [

(o] [(] I =] [
Time

Figure 4. HC pipeline: Transmit, FIN, and retransmit.

Retransmit

(Figure 3). Accordingly, we partition connection state into
module-local state (cf. §A). The pipeline stages are chosen
to maximize data-path parallelism. Pre-processing accesses
connection identifiers such as MAC and IP addresses for seg-
ment header preparation and filtering. The post-processing
block handles application interface parameters, such as socket
buffer addresses and context queues. These parameters are
read-only after connection establishment and enable coordi-
nation-free scaling. Congestion control statistics are collected
by the post-processor, but are only read by forward stages and
can be updated out-of-order (updates commute). The protocol
stage executes data-path code that must atomically modify
protocol state, such as sequence numbers and socket buffer
positions. It is the only pipeline hazard—it cannot execute in
parallel with other stages. The DMA stage is stateless, while
context queue stages may be sharded. Both conduct high-
latency PCle transactions and are thus separate stages that
execute in parallel and scale independently.

We run pipeline stages on dedicated FPCs that utilize local
memory for their portion of the connection state. Pipelining
allows us to execute the data-path in parallel. It also allows us
to replicate processing-intensive pipeline stages to scale to
additional FPCs. With the exception of protocol processing,
which is atomic per connection, all pipeline stages are repli-
cated. To concurrently process multiple connections, we also
replicate the entire pipeline. To keep flow state local, each
pipeline handles a fixed flow-group, determined by a hash on
the flow’s 4-tuple (the flow’s protocol type is ignored—it must
be TCP). We now describe how we parallelize each data-path
workflow by decomposing it into these pipeline stages.

3.1.1 Host Control (HC). HC processing is triggered by
a PCle doorbell (DB) sent via memory-mapped 10 (MMIO)
by the host to the context queue stage. Figure 4 shows the
HC pipeline for two transmits (the second transmit closes the
connection) triggered by libTOE, and a retransmit triggered
by the control-plane. HC requests may be batched.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 91

B [[[
=

Time

Figure 5. TX pipeline sending 3 segments.

The context queue stage polls for DBs. In response to a
DB, the stage allocates a descriptor buffer from a pool in NIC
memory. The limited pool size flow-controls host interac-
tions. If allocation fails, processing stops and is retried later.
Otherwise, the DMA stage fetches the descriptor from the
host context queue into the buffer (Fetch). The pre-processor
reads the descriptor, determines the flow-group, and routes
to the appropriate protocol stage (Steer). The protocol stage
updates connection receive and transmit windows (Win). If
the HC descriptor contains a connection-close indication, the
protocol stage also marks the connection as FIN (Fin). When
the transmit window expands due to the application sending
data for transmission, the post-processor updates the flow
scheduler (FS) and returns the descriptor to the pool (Free).

Retransmissions in response to timeouts are triggered by
the control-plane and processed the same as other HC events
(fastretransmits due to duplicate ACKs are described in §3.1.3).
The protocol stage resets the transmission state (Reset) to the
last ACKed sequence number (go-back-N retransmission).

3.1.2 Transmit(TX). Transmissionis triggered by the flow
scheduler (SCH) when a connection can send segments. Fig-
ure 5 shows the TX pipeline for 3 example segments.

The pre-processor allocates a segment in NIC memory
(Alloc), prepares Ethernet and IP headers (Head), and steers
the segment to the flow-group’s protocol stage (Steer). The
protocol stage assigns a TCP sequence number based on con-
nection state and determines the transmit offset in the host
socket transmit buffer (Seq). The post-processor determines
the socket transmit buffer address in host memory (Pos). The
DMA stage fetches the host payload into the segment (Pay-
load). After DMA completes, it issues the segment to the NBI
(TX), which transmits and frees it.

3.1.3 Receive (RX). Figure 6 shows the RX pipeline for 3
example segments, where segment #3 arrives out of order.

Pre-processing. The pre-processor first validates the seg-
ment header (Val). Non-data-path segments? are filtered and
forwarded to the control-plane. Otherwise, the pre-processor
determines the connection index based on the segment’s 4-
tuple (Id) that is used by later stages to access connection
state. The pre-processor generates a header summary (Sum),
including only relevant header fields required by later pipeline
stages and steers the summary and connection identifier to
the protocol stage of its flow-group (Steer).

ZData—path segments have any of the ACK, FIN, PSH, ECE, and CWR flags
and they may have the timestamp option.

Seq #1. [Val]] [Sum) [Steer IR [ECN) [Stamp] [Ack] [Stats) [Payioad] [1X] [Notiy] [Free]
seg#3 [Val]] [Sum) [Steer] [[Stats) [Fayioad]
seq #2 IVa) (1] (i) [SEeer] I [ECN) [S¥armp) [Ack] [Stats] [Payioad) [¥X] [Wotiy] [Free]

Time

Figure 6. RX pipeline receiving 3 segments, 1 out of order.

Protocol. Based on the header summary, the protocol stage
updates the connection’s sequence and acknowledgment
numbers, the transmit window, and determines the segment’s
position in the host socket receive payload buffer, trimming
the payload to fit the receive window if necessary (Win). The
protocol stage also tracks duplicate ACKs and triggers fast
retransmissions if necessary, by resetting the transmission
state to the last acknowledged position. Finally, it forwards a
snapshot of relevant connection state to post-processing.

Out-of-order arrivals (segment #3 in Figure 6) need special
treatment. Like TAS [19], we track one out-of-order interval
in the receive window, allowing the protocol stage to perform
reassembly directly within the host socket receive buffer. We
merge out-of-order segments within the interval in the host
receive buffer. Segments outside of the interval are dropped
and generate acknowledgments with the expected sequence
number to trigger retransmissions at the sender. This design
performs well under loss (cf. §5.3).

Post-processing. The post-processor prepares an acknowl-
edgment segment (Ack). FlexTOE provides explicit conges-
tion notification (ECN) feedback and accurate timestamps for
RTT estimation (Stamp) in acknowledgments. It also collects
congestion control and transmit window statistics, which it
sends to the control-plane and flow scheduler (Stats). Finally,
it determines the physical address of the host socket receive
buffer, payload offset, and length for the DMA stage. If ibTOE
is to be notified, the post-processor allocates a context queue
descriptor with the appropriate notification.

DMA. The DMA stage first enqueues payload DMA de-
scriptors to the PCle block (Payload). After payload DMA
completes, the DMA stage forwards the notification descrip-
tor to the context queue stage. Simultaneously, it sends the
prepared acknowledgment segment to the NBI (TX), which
frees it after transmission. This ordering is necessary to pre-
vent the host and the peer from receiving notifications before
the data transfer to the host socket receive buffer is complete.

Context queue. If necessary, the context queue stage al-
locates an entry on the context queue and issues the context
queue descriptor DMA to notify libTOE of new payload (No-
tify) and frees the internal descriptor buffer (Free).

3.2 Sequencing and Reordering

TCP requires that segments of the same connection are pro-
cessed in-order for receiver loss detection. However, stages in
FlexTOE’s data-parallel processing pipeline can have varying
processing time and hence may reorder segments. Figure 7

92 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

T Seg #1 [Aifod][Fead] [Steer] [[Fos] [Payioad] [iX
TxSeg#2 [Alioe] [Head) [Steer| I [Pos] [Fayioad] (7

RX Seg #1 (V] [(S (e [(W) (S (k] (St [Payfoad] i [Notiy] [Fres]
RX Seg #2 (vat) (][Steer]
X Seg #3 [Riise][Fiea] (Stesr] XX [Fos| [Fayioad] [7x]

Time

Figure 7. Undesirable pipeline reordering (red arrows).

shows three examples on a bidirectional connection where
undesirable segment reordering occurs.

1. TX. TX segment #1 stalls in DMA across a congested PCle
link, causing it to be transmitted on the network after TX
segment #2, potentially triggering receiver loss detection.

2. RX. RX segment #1 stalls in flow identification during
pre-processing, entering the protocol stage later than RX
segment #2. The protocol stage detects a hole and triggers
unnecessary out-of-order processing.

3. ACK. TX segment #3 is processed after RX segment #1 in
the protocol stage. RX segment #1 generates an ACK, but
RX post-processing is complex, resulting in TX segment
#3 with a higher sequence number being sent before ACK
segment #1.

To avoid reordering, FlexTOE’s data-path pipeline sequences
and reorders segments if necessary. In particular, we assign a
sequence number to each segment entering the pipeline. The
parallel pipeline stages can operate on each segment in any
order. The protocol stage requires in-order processing and we
buffer and re-order segments that arrive out-of-order before
admitting them to the protocol stage. Similarly, we buffer and
re-order segments for transmission before admitting them to
the NBI. We leverage additional FPCs for sequencing, buffer-
ing, and reordering.

3.3 Flexibility

Data center networks evolve quickly, requiring TCP stacks to
be easily modifiable by operators, not just vendors [29, 42, 43].
Many desirable data center features require TOE modification
and are adapted frequently by operators. FlexTOE provides
flexibility necessary to implement and maintain these fea-
tures even beyond host stacks such as TAS, by relying on a
programmable SmartNIC. To simplify development and modi-
fication of the TCP data-path, FlexTOE provides an extensible,
data-parallel pipeline of self-contained modules, similar to
the Click [38] extensible router.

Module API. The FlexTOE module API provides develop-
ersone-shotaccess to TCP segments and associated meta-data.
Meta-data may be created and forwarded along the pipeline
by any module. Modules may also keep private state. For scal-
ability, private state cannot be accessed by other modules
or replicas of the same module. Instead, state that may be
accessed by further pipeline stages is forwarded as meta-data.

The replication factor of pipeline stages and assignment
to FPCs is manual and static in FlexTOE. As long as enough
FPCs are available, this approach is acceptable. Operators

can determine an appropriate replication factor that yields
acceptable TCP processing bandwidth for a pipeline stage
via throughput microbenchmarks at deployment. Stages that
modify connection state atomically may be deployed by in-
serting an appropriate steering stage that steers segments of
a connection to the module in the atomic stage, holding their
state (cf. protocol processing stage in §3.1).

XDP modules. FlexTOE also supports eXpress Data Path
(XDP) modules [14-16], implemented in eBPF. XDP modules
operate on raw packets, modify them if necessary, and out-
put one of the following result codes: (i) XDP_PASS: Forward
the packet to the next FlexTOE pipeline stage. (ii) XDP_DROP:
Drop the packet. (iii) XDP_TX: Send the packet out the MAC.
(iv) XDP_REDIRECT: Redirect the packet to the control-plane.

XDP modules may use BPF maps (arrays, hash tables) to
store and modify state atomically [25], which may be modified
by the control-plane. For example, a firewall module may store
blacklisted IPs in a hash map and the control-plane may add
or remove entries dynamically. The module can consult the
hash map to determine if a packet is blacklisted and drop it.
XDP stages scale like other pipeline stages, by replicating the
module. FlexTOE automatically reorders processed segments
after a parallel XDP stage (§3.2).

Using these APIs, we modified the FlexTOE data-path many
times, implementing the features listed in §2.1 (evaluation
in §5.1). Further, ECN feedback and segment timestamping
(cf. §3.1.3) are optional TCP features that support our conges-
tion control policies. Operators can remove the associated
post-processing modules if they are not needed.

By handling atomicity, parallelization, and ordering con-
cerns, FlexTOE allows complex offloads to be expressed using
few lines of code. For example, we implement AccelTCP’s
connection splicing in 24 lines of eBPF code (cf. Listing 1 in
the appendix). The module performs a lookup on the seg-
ment 4-tuple in a BPF hashmap. If a match is not found, we
forward the segment to the next pipeline stage. Otherwise,
we modify the destination MAC and IP addresses, TCP ports,
and translate sequence and acknowledgment numbers using
offsets configured by the control-plane, based on the connec-
tion’s initial sequence number. Finally, we transmit. FlexTOE
handles sequencing and updating the checksum of the seg-
ment. Additionally, when we receive segments with control
flags indicating connection closure, we atomically remove
the hashmap entry and notify the control-plane.

3.4 Flow Scheduling

FlexTOE leverages a work-conserving flow scheduler on the
NIC data-path. The flow scheduler obeys transmission rate-
limits and windows configured by the control-plane’s conges-
tion control policy. For each connection, the flow scheduler
keeps track of how much data is available for transmission
and the configured rate. Transmission rates and windows

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 93

are stored in NIC memory and are directly updated by the
control-plane using MMIO.

We implement our flow scheduler based on Carousel [53].
Carousel schedules alarge number of flows using a time wheel.
Based on the next transmission time, as computed from rate
limits and windows, we enqueue flows into corresponding
slots in the time wheel. As the time slot deadline passes, the
flow scheduler schedules each flow in the slot for transmission
(§3.1.2). To conserve work, the flow scheduler only adds flows
with a non-zero transmit window into the time wheel and
bypasses the rate limiter for uncongested flows. These flows
are scheduled round-robin.

4 Agilio-CX40 Implementation

This section describes FlexTOE’s Agilio-CX40 implementa-
tion. Due to space constraints, the x86 and BlueField ports
are described in detail in §E. FlexTOE’s design across the dif-
ferent ports is identical. We do not merge or split any of the
fine-grained modules or reorganize the pipeline across ports.

FlexTOE is implemented in 18,008 lines of C code (LoC).
The offloaded data-path comprises 5,801 lines of C code. We
implement parts of the data-path in assembly for performance.
libTOE contains 4,620 lines of C, whereas the control path
contains 5,549 lines of C. libTOE and the control plane are
adapted from TAS. We use the NFP compiler toolchain version
6.1.0.1 for SmartNIC development.

Driver. We develop a Linux FlexTOE driver based on the
igb_uio driver that enables libTOE and the control plane to
perform MMIO to the SmartNIC from user space. The driver
supports MSI-X based interrupts. The control-plane regis-
ters an eventfd for each application context in the driver.
The interrupt handler in the driver pings the corresponding
eventfd when an interrupt is received from the data-path for
the application context. This enables libTOE to sleep when
waiting for IO and reduces the host CPU overhead of polling.

Host memory mapping. To simplify virtual to physical ad-
dress translation for DMA operations, we allocate physically
contiguous host memory using 1G hugepages. The control-
plane maps a pool of 1G hugepages at startup and allocates
socket buffers and context queues out of this pool. In the fu-
ture, we can use the IOMMU to eliminate the requirement of
physically contiguous memory for FlexTOE buffers.

Context queues. Context queues use shared memory on
the host, but communication between SmartNIC and host
requires PCle. We use scalable and efficient PCle communica-
tion techniques [44] that poll on host memory locations when
executing in the host and on NIC-internal memory when exe-
cuting on the NIC. The NIC is notified of new queue entries
via MMIO to a NIC doorbell. The context queue manager noti-
fies applications through MSI-X interrupts, converted by the
driver to an eventfd, after a queue has been inactive.

4.1 Near-memory Processing

An order of magnitude difference exists in the access latencies
of different memory levels of the NFP-4000. For performance,
itis critical to maximize access to local memory. The NFP-4000
also provides certain near-memory acceleration, including
a lookup engine exposing a content addressable memory
(CAM) and a hash table for fast matching, a queue memory
engine exposing concurrent data structures such as linked
lists, ring buffers, journals, and work-stealing queues. Finally,
synchronization primitives such as ticket locks and inter-FPC
signaling are exposed to coordinate threads and to sequence
packets. We build specialized caches at multiple levels in the
different pipeline stages using these primitives. Other NICs
have similar accelerators.

Caching. We use each FPC’s CAM to build 16-entry fully-
associative local memory caches that evict entries based on
LRU. The protocol stage adds a 512-entry direct-mapped
second-level cache in CLS. Across four islands, we can ac-
commodate up to 2K flows in this cache. The final level of
memory is in EMEM. When an FPC processes a segment, it
fetches the relevant state into its local memory either from
CLS or from EMEM, evicting other cache entries as neces-
sary. We allocate connection identifiers in such a way that we
minimize collisions on the direct-mapped CLS cache.

Active connection database. To facilitate connection in-
dex lookup in the pre-processing stage, we employ the hard-
ware lookup capability of IMEM to maintain a database of
active connections. CAM is used to resolve hash collisions.
The pre-processor computes a CRC-32 hash on a segment’s 4-
tuple to locate the connection index using the lookup engine.
The pre-processor caches up to 128 lookup entries in its local
memory via a direct-mapped cache on the hash value.

FPC mapping. FlexTOE’s pipeline fully leverages the Ag-
ilio CX40 and is extensible to further FPCs, e.g. of the Agilio
LX [40]. For island-local interactions among modules, we
use CLS ring buffers. CLS supports the fastest intra-island
producer-consumer mechanisms. Among islands, we rely on
work-queues in IMEM and EMEM.

We use all but one general-purpose islands for the first three
stages of the data-path pipeline (protocol islands). Each island
manages a flow-group. While protocol and post-processing
FPCs are local to a flow-group, pre-processors handle seg-
ments for any flow. We assign 4 FPCs to pre-/post-processing
stages in each flow-group. Each island retains 3 unassigned
FPCs that can run additional data-path modules (§5.1).

On the remaining general-purpose island (called service
island), we host remaining pipeline stages and adjacent mod-
ules, such as context queue FPCs, the flow scheduler (SCH),
and DMA managers. DMA managers are replicated to hide
PCle latencies. The number of FPCs assigned to each function-
ality is determined such that no functionality may become a

94 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

bottleneck. Sequencing and reordering FPCs are located on a
further island with miscellaneous functionality.

Flow scheduler. We implement Carousel using hardware
queues in EMEM. Each slot is allocated a hardware queue.
To add a flow to the time wheel, we enqueue it on the queue
associated with the time slot. Note that the order of flows
within a particular slot is not preserved. EMEM support for a
large number of hardware queues enables us to efficiently im-
plement a time wheel with a small slot granularity and large
horizon to achieve high-fidelity congestion control. Convert-
ing transmission rates to deadlines requires division, which is
not supported on the NFP-4000. Thus, the control-plane com-
putes transmission intervals in cycles/byte units from rates
and programs them to NIC memory. This enables the flow
scheduler to compute the time slot using only multiplication.

5 Evaluation
We answer the following evaluation questions:

o Flexible offload. Can flexible offload improve throughput,
latency, and scalability of data center applications? Can we
implement common data center features? (§5.1)

e RPCs. How does FlexTOE’s data-path parallelism enable
TCP offload for demanding RPCs? Do these benefits gener-
alize across hardware architectures? Does FlexTOE provide
low latency for short RPCs? Does FlexTOE provide high
throughput for long RPCs? To how many simultaneous
connections can FlexTOE scale? (§5.2)

e Robustness. How does FlexTOE perform under loss and
congestion? Does it provide connection-fairness? (§5.3)

Testbed cluster. Our evaluation setup consists of two 20-
core Intel Xeon Gold 6138 @ 2 GHz machines, with 40 GB
RAMand 48 MB aggregate cache. Both machinesare equipped
with Netronome Agilio CX40 40 Gbps (single port), Chelsio
Terminator T62100-LP-CR 100 Gbps and Intel XL710 40 Gbps
NICs. We use one of the machines as a server, the other as a
client. As additional clients, we also use two 2x18-core Intel
Xeon Gold 6154 @ 3 GHz systems with 90 MB aggregate cache
and two 4-core Intel Xeon E3-1230 v5 @ 3.4 GHz systems
with 9 MB aggregate cache. The Xeon Gold machines are
equipped with Mellanox ConnectX-5MT27800 100 Gbps NICs,
whereas the Xeon E3 machines have 82599ES 10 Gbps NICs.
The machines are connected to a 100 Gbps Ethernet switch.

Baseline. We compare FlexTOE performance against the
Linux TCP stack, Chelsio’s kernel-based TOE?, and the TAS
kernel-bypass stack?. TAS does not perform well with the
Agilio CX40 due to aslow NIC DPDK driver. We run TAS on the
Intel XL.710 NIC, as in [19], unless mentioned otherwise. We
use identical application binaries across all baselines. DCTCP
is our default congestion control policy.

3Chelsio does not support kernel-bypass.
4TAS [19] performs better than mTCP [17] on all of our benchmarks. Hence,
we omit a comparison to mTCP and Accel TCP [37], which uses mTCP.

N

’g —®- Linux - TAS
g . ¥ Chso = FledOE | et 0
Fl -
R B N S
- S
g 4 e
SR T A G P e i et o i ¢ -
= o A e e e LTSI ITR s 1
= g B o s

2 4 6 8 10 12 " "

Cores

Figure 8. Memcached throughput scalability.

Server: Linux Server: Chelsio Server: TAS
LTI - = i

il i

Server: FlexTOE
100 ——

75

50 == Linux
----- Chelsio
—-= TAS

—— FlexTOE

CDF

25

200 300 O 100 200 300 O 100 200 300 O 100 200 300
Latency (us)

Figure 9. Latency of different server-client combinations.

5.1 Benefit of Flexible Offload

Application throughput scalability. Offloaded CPU cy-
cles may be used for application work. We quantify these
benefits by running a Memcached server, as in §2.1, varying
the number of server cores. Figure 8 shows that, by saving
host CPU cycles (cf. Table 1), FlexTOE achieves up to 1.6x
TAS, 4.9% Chelsio, and 5.5 Linux throughput. FlexTOE and
TAS scale similarly—both use per-core context queues. The
Agilio CX becomes a compute-bottleneck at 12 host cores.
Linux and Chelsio are slow for this workload, due to system
call overheads, and do not scale well due to in-kernel locks.

Low (tail) latency. We repeat a single-threaded version of
the same Memcached benchmark for all server-client network
stack combinations. Latency distributions are shown in Fig-
ure 9. We can see that FlexTOE consistently provides the low-
est median and tail Memcached operation latency across all
stack combinations. Offload provides excellent performance
isolation by physically separating the TCP data-path, even
though FlexTOE’s pipelining increases minimum latency in
some cases (cf. §5.2).

Flexibility. Unlike fixed offloads and in-kernel stacks, Flex-
TOE provides full user-space programmability via a module
API, simplifying development. Customizing FlexTOE is sim-
ple and does not require a systemreboot. For example, we have
developed logging, statistics, and profiling capabilities that
can be turned on only when necessary. We make use of these
capabilities during development and optimization of FlexTOE.
We implemented up to 48 different tracepoints (including ex-
amples from bpftrace [13]) in the data-path pipeline, tracking
transport events such as per-connection drops, out-of-order
packets and retransmissions, inter-module queue occupan-
cies, and critical section lengths in the protocol module for
various event types. Table 2 shows that profiling degrades
data-path performance versus the baseline by up to 24% when
all 48 tracepoints are enabled. We also implement tcpdump-
style traffic logging, including packet filters based on header

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 95

Build Throughput (MOps)
Baseline FlexTOE 11.35
Statistics and profiling 8.67
tcpdump (no filter) 6.52
XDP (null) 10.87
XDP (vlan-strip) 10.83

Table 2. Performance with flexible extensions.

250 Cycles/Message 1000 Cycles/Message

32 128 512 2K 32 128 512 K

Message Size (bytes)
Figure 10. RPC throughput for saturated server.

Message Size (bytes)

fields. Logging naturally has high overhead (up to 43% when
logging all packets). FlexTOE provides the flexibility to imple-
ment these features and to turn them on only when necessary.

Furthermore, new data-plane functionality leveraging the
XDP API may be dynamically loaded into FlexTOE as eBPF
programs. eBPF programs can be compiled to NFP assembly.
This level of dynamic flexibility is hard to achieve with an
FPGA as it requires instruction set programmability (over-
lays [52]). We measure the overhead of FlexTOE XDP support
by running a null program that simply passes on every packet
without modification. We observe only 4% decline in through-
put. Common XDP modules, such as stripping VLAN tags
on ingress packets, also have negligible overhead. Finally,
connection splicing (cf. Listing 1 in the appendix) achieves
a maximum splicing performance of 6.4 million packets per
second, enough to saturate the NIC line rate with MTU-sized
packets, leveraging only idle FPCs.

5.2 Remote Procedure Calls (RPCs)

RPCs are an important but difficult workload for flexible of-
fload. Latency and client scalability requirements favor fast
processing engines with large caches, such as found in CPUs
and ASICs. Neither are available in on-path SmartNICs. We
show that flexible offload can be competitive with state-of-
the-art designs. We then show that FlexTOE’s data-path par-
allelism is necessary to provide the necessary performance.

Typical RX / TX performance. We start with a typical
server scenario, processing RPCs of many (128) connections,
produced in an open loop by multiple (16) clients (multiple
pipelined RPCs per connection). To simulate application pro-
cessing, our server waits for an artificial delay of 250 or 1,000
cycles for each RPC. We run single-threaded to avoid the net-
work being a bottleneck. We quantify RX and TX throughput
separately, by switching RPC consumer and producer roles
among clients and servers, over different RPC sizes.

5We are compute-limited by our Agilio CX. Using an Agilio LX, like Accel TCP,
would allow us to achieve even higher throughput.

[N
=1
=]

= (inux =Em Chelsic mmm TAS m=mm FlexTOE .

100 i i i I
0 -Il I--l I--l III II-I II-I lll

32 64 128 256 512 1024 2048
Message Size (bytes)

Figure 11. Median, 99p and 99.99p RPC RTT.

Latency (us)

Figure 10 shows the results. For 250 cycles of processing
overhead, FlexTOE provides up to 4x better throughput than
Linux and 5.3% better throughput than Chelsio when receiv-
ing. For 2KB message size, both TAS and FlexTOE reach
40 Gbps line rate, whereas Linux and Chelsio barely reach
10 Gbps and 7 Gbps, respectively. When sending packets, the
difference in performance between Linux and FlexTOE is
starker. FlexTOE shows over 7.6x higher throughput over
both Linux and Chelsio for all message sizes. The gains remain
at over 2.2x as we go to 1,000 cycles/RPC. Performance of
TAS and FlexTOE track closely for all message sizes. This is
expected as the single application server core is saturated by
both network stacks (TAS runs on additional host cores).

We break down this result by studying the performance sensi-
tivity of each TCP stack, varying each RPC parameter within
its sensitive dynamic range. For these benchmarks, we evalu-
ate the raw performance of the stacks, without application
processing delays.

RPC latency. A client establishes a single connection to
the server and measures single RPC RTT. Figure 11 shows the
median and tail RTT for various small message sizes (stacked
bars). The inefficiency of in-kernel networking is reflected
in the median latency of Linux, which is at least 5x worse
compared to other stacks. For message sizes < 256 B, Flex-
TOE’s median latency (20 us) is 1.4x Chelsio’s median latency
(14 us) and 1.25x TAS’s median latency (16 us). FlexTOE’s
data-path pipeline across many wimpy FPCs increases me-
dian latency for single RPCs. However, FlexTOE has an up
to 3.2 smaller tail compared to Chelsio and nearly constant
per-segment overhead as the RPC size increases. In case of
a 2KB RPC (larger than the TCP maximum segment size),
FlexTOEFE’s latency distribution remains nearly unchanged.
FlexTOE'’s fine-grain parallelism is able to hide the processing
overhead of multiple segments, providing 22% lower median
and 50% lower tail latency than TAS.

Per-connection throughput. In this setup, a client trans-
fers a large RPC message to the server. In the first case (Fig-
ure 12a), the server responds with a 32 B response whereas in
the second case (b), the server echoes the message back to the
client (TAS performance is unstable with messages > 2 MB in
this case—we omit these results). In the short-response case,
Chelsio performs 20% better than the other stacks—Chelsio is
a 100 Gbps NIC optimized for unidirectional streaming. How-
ever, it has 20% lower throughput as compared to FlexTOE in

96 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

{a) Unidirectional

{b) Bidirectional

N
(=)

’g == Linux == TAS
P e e Chelsic —— FlexTOE
)
5 20
<3
g FETToSEEEE R
[G] P
0
128K 512K oM 8M 32M 128K 512K oM 8M 32M

Message Size (Bytes)

Figure 12. Large RPC throughput with varying RPC size.

Message Size (Bytes)

20
== Linux ==+= Chelsic == TAS == FlexTOE

Throughput (mOps)
>

Connections (K)

Figure 13. Connection scalability benchmark.

the echo case. Other stacks cannot parallelize per-connection
processing, leading to limited throughput®, while FlexTOE’s
throughput is limited by its protocol stage. FlexTOE currently
acknowledges every incoming packet. For bidirectional flows,
this quadruples the number of packets processed per second.
Implementing delayed ACKs would improve FlexTOE’s per-
formance further for large flows.

Connection scalability. We establish an increasing num-
ber of RPC client connections from all 5 client machines to a
multi-threaded echo server. To stress TCP processing, each
connection leaves a single 64 B RPC in-flight. Figure 13 shows
the throughput as we vary the number of connections. This
workload is very challenging for FlexTOE as it exhausts fast
memory and prevents per-connection batching, causing a
cache miss at every pipeline stage for every segment. Up to 2K
connections, FlexTOE shows a throughput of 3.3% Linux. TAS
performs 1.5% better than FlexTOE for this workload. Flex-
TOE is compute-bottlenecked’ at the protocol stage, which
uses 8 FPCs in this benchmark. Agilio CX caches 2K connec-
tions in CLS memory. Beyond this, the protocol stage must
move state among local memory, CLS, and EMEM. EMEM’s
SRAM cache isincreasingly strained as the number of connec-
tions increases. FlexTOE’s throughput declines by 24% as we
hit 8k connections and plateaus beyond that®. TAS’s fast-path
exhibits better connection scalability, as it has access to the
larger host CPU cache, while Linux’s throughput declines
significantly. Chelsio has poor performance for this workload,
as epoll () overhead dominates.

Benefit of data-path parallelism. To break down the
impact of FlexTOE’s data-parallel design on RPC performance,

*With multiple unidirectional flows, all stacks achieve line rate (Figure 15b).
"We expect that running FlexTOE on the Agilio LX with 1.2 GHz FPCs—
1.5% faster than Agilio CX—would boost the peak throughput to match TAS
performance. Agilio LX also doubles the number of FPCs and islands. It would
allow us to exploit more parallelism and cache more connections.

8While we evaluate up to 16K connections, FlexTOE can leverage the 2 GB
on-board DRAM to scale to 1M+ connections.

Design Throughput Latency (us)

(Mbps) 50p 99.99p
Baseline 79.32 1 1,179 6,929
+ Pipelining 3,640.49 46 183 684
+ Intra-FPC parallelism 8,194.34 103 128 148
+ Replicated pre/post 11,086.93 140 94 106

+ Flow-group islands 22,684.69 286 46 58

Table 3. FlexTOE data-path parallelism breakdown.

5

- 13.3 S
g 10.4 TAS-nocopy
Q10 m FlexTOE
;g_ 6.6 FlexTOE-scalar
[=2]
g ° 39] 3.6
S o 1.7 14 iz 1
0 [| - — EE]

1448 1024 512 256 128 64
MSS (Bytes)

Figure 14. FlexTOE benefits on BlueField SmartNIC.

we repeat the echo benchmark with 64 connections, with each
connection leaving a single 2 KB RPC in-flight (to be able to
evaluate both intra and inter connection parallelism). Table 3
shows the performance impact as we progressively add data-
path parallelism. Our baseline runs the entire TCP processing
to completion on the SmartNIC before processing the next
segment. Pipelining improves performance by 46X over the
baseline. As we enable 8 threads on the FPCs (2.25% gain),
we hide the latency of memory operations and improve FPC
utilization. Next, we replicate the pre-processing and post-
processing stages, leveraging sequencing and reordering for
correctness, to extract 1.35X improvement and finally, with
four flow-group islands, we see a further 2x improvement. We
can see that each level of data-path parallelism is necessary,
improving RPC throughput and latency by up to 286x.

Do these benefits generalize? We investigate whether
data-path parallelism provides benefits across platforms. In
particular, we investigate single connection throughput of
pipelined RPCs across a range of maximum segment sizes
(MSS) on a Mellanox BlueField [31] MBF1IM332A-ASCAT
25 Gbps SmartNIC and on a 32-core AMD 7452 @ 2.35 GHz
host with 128 GB RAM, 148 MB aggregate cache, and a conven-
tional 100 Gbps ConnectX-5 NIC. We use a single-threaded
RPC sink application, running on the same platform’. We
compare TAS’s core-per-connection processing to FlexTOE’s
data-parallelism. We replicate each of FlexTOE’s pre and post
processing stages 2X, resulting in 9 FlexTOE cores. Further
gains may be achievable by more replication. To break down
FlexTOE’s benefits, we also compare to a FlexTOE pipeline
without replicated stages (FlexTOE-scalar), using 7 cores.

Figure 14 shows BlueField results. FlexTOE outperforms
TAS by up to 4x on BlueField (and 2.4x on x86). Depending
on RPC size, FlexTOE accelerates different stages of the TCP
data path. For large RPCs, FlexTOE accelerates data copy to

°BlueField is an off-path SmartNIC that is not optimized for packet processing
offload to host-side applications (§2.3).

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 97

{a) Small RPCs

{b) Large flows

= Linux
""" Chelsio
== TAS
FlexTOE

sriSTHIUITTIIm
'

4 3 2 1 0 40 30 20 10 0
Goodput (Gbps) Goodput (Gbps)

Figure 15. Throughput, varying packet loss rate.

socket payload buffers. To show this, we eliminate the step in
TAS (TAS-nocopy), allowing TAS to perform at 0.5x FlexTOE
on BlueField (and identical to FlexTOE on x86). For smaller
RPCs, TAS-nocopy benefits diminish and FlexTOE supports
processing higher packet rates. FlexTOE-scalar achieves only
up to 2.3x speedup over TAS on BlueField (and 1.47X on x86),
showing that only part of the benefit comes from pipelining.
Finally, FlexTOE speedup is greater on the wimpier BlueField,
resembling our target architecture (§2.3), than on x86. To
save powerful x86 cores, some stages may be collapsed, even
dynamically (cf. Snap [29]), at little performance cost.

5.3 Robustness

Packet loss. We artificially induce packet losses in the
network by randomly dropping packets at the switch with a
fixed probability. We measure the throughput between two
machines for 100 flows running 64 B echo-benchmark as we
vary the loss probability, shown in Figure 15a. We configure
the clients to pipeline up to 8 requests on each connection to
trigger out-of-order processing when packets are lost. Flex-
TOE’s throughput at 2% losses is at least twice as good as TAS
and an order of magnitude better than the other stacks for this
case. We repeat the unidirectional large RPC benchmark with
8 connections and measure the throughput as we increase
the packet loss rate. For this case (b), Chelsio has a very steep
decline in throughput even with 107*% loss probability. Linux
is able to withstand higher loss rates as it implements more
sophisticated reassembly and recovery algorithms, including
selective acknowledgments—FlexTOE and TAS implement
single out-of-order interval tracking on the receiver-side and
go-back-n recovery on the sender. FlexTOE’s behavior under
loss is still better than TAS. FlexTOE processes acknowledg-
ments on the NIC, triggering retransmissions sooner, and its
predictable latency, even under load, helps FlexTOE recover
faster from packet loss. We note that RDMA tolerates up to
0.1% losses [35], while eRPC falters at 0.01% loss rate [18].
Unlike FlexTOE, RDMA discards all out-of-order packets on
the receiver side [35]. TAS [19] provides further evaluation
of the benefits of receiver out-of-order interval tracking.

Fairness. To show scalability of FlexTOE’s SCH (§3.4), we
measure the distribution of connection throughputs of bulk
flows between two nodes at line rate for 60 seconds. Figure 16
shows the median and 1st percentile throughput of FlexTOE
and Linux as we vary the number of connections. For FlexTOE,
the median closely tracks the fair share throughput and the tail

210 _
_E:; —-5_5.\.\
&l Py —— —— '~_,\. e
S o5 | — Linux(50p) T, S
=] ~
2 = Linux (1p}) '\.
3 —— FlexTOE (50p) \.\
8 FlexTOE (1p) N o ¢ e e = e e -
0.0
64 128 256 512 1024 2048

Connections

Figure 16. Throughput distribution at line rate.

Tpt.(G) Lat. 99.99p (ms) JF1
deg. #con. on off on off on off
4 16 951 947 5.98 11.58 098 0.95
4 64 951 923 1075 4439 096 0.73
4 128 948 8.96 13.74 64.25 0.99 0.53
10 10 3.66 1.04 2.50 18.26 095 0.78
20 20 176 0.36 7.35 138.32 095 0.46

Table 4. FlexTOE congestion control under incast.

is 0.67x of the median. Linux’s fairness s significantly affected
beyond 256 connections. Jain’s fairness index (JFI) drops to
0.36 at 2K connections for Linux, while FlexTOE achieves 0.98.
Above 1K connections, Linux’ median throughput is worse
than FlexTOE’s 1st percentile.

Incast. We simulate incast by enabling traffic shaping on
the switch to restrict port bandwidth to variousincast degrees
and we configure WRED to perform tail drops when the switch
buffer is exhausted. In this experiment, the client transfers
64 KB RPCs and the server responds with a 32 B response on
each connection. As shown in Table 4, control-plane-driven
congestion control in FlexTOE is able to achieve the shaped
line rate, maintain low tail latency, and ensure fairness among
flows under congestion. Disabling it causes excessive drops,
inflating tail latency by 18.8x and skewing fairness by 2x.

6 Conclusion

FlexTOE is a flexible, yet high-performance TCP offload en-
gine to SmartNICs. FlexTOE leverages fine-grained paral-
lelization of the TCP data-path and segment reordering for
high performance on wimpy SmartNIC architecture, while re-
maining flexible via a modular design. We compare FlexTOE
to Linux, the TAS software TCP accelerator, and the Chelsio
Terminator TOE. We find that Memcached scales up to 38%
better on FlexTOE versus TAS, while saving up to 81% host
CPU cycles versus Chelsio. FlexTOE provides competitive
performance for RPCs, even with wimpy SmartNICs, and is
robust under adverse operating conditions. FlexTOE’s API
supports XDP programs written in eBPF. It allows us to im-
plement popular data center transport features, such as TCP
tracing, packet filtering and capture, VLAN stripping, flow
classification, firewalling, and connection splicing.

Acknowledgments. We thank the anonymous reviewers
and our shepherd, Brent Stephens, for their helpful comments
and feedback. This work was supported by NSF grant 1751231.

98 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(10]

(11]

[12]

(13]
(14]

(15]

(16]

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center TCP (DCTCP). In Proceedings of the 2010
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’10, pages 63-74, New York, NY, USA, 2010. Association for
Computing Machinery.

Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer
Rexford, David Walker, and David Wentzlaff. Enabling programmable
transport protocols in high-speed NICs. In Proceedings of the 17th
USENIX Conference on Networked Systems Design and Implementation,
NSDI "20, pages 93-110, USA, 2020. USENIX Association.

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating
system for high throughput and low latency. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
OSDI 14, pages 49-65, USA, 2014. USENIX Association.

Broadcom. Broadcom Stingray SmartNICs. https://www.broadcom.
com/products/ethernet-connectivity/smartnic/ps225, 2018.

Cavium. Cavium OCTEON Development Kits. https://cavium.com/
octeon-software-develop-kit.html, 2018.

Chelsio Communications. ~ T6 ASIC: High performance, dual
port unified wire 1/10/25/40/50/100Gb Ethernet controller.
https://www.chelsio.com/wp-content/uploads/resources/Chelsio-
Terminator-6-Brief.pdf, 2017.

Andy Currid. TCP offload to the rescue: Getting a toehold on TCP
offload engines—and why we need them. Queue, 2(3):58-65, May 2004.
Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
SylviaRatnasamy. RouteBricks: Exploiting parallelism to scale software
routers. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, SOSP °09, pages 15-28, New York, NY, USA, 2009.
Association for Computing Machinery.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure
accelerated networking: SmartNICs in the public cloud. In Proceedings
of the 15th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI ’18, pages 51-64, USA, 2018. USENIX Association.
Michael Galles and Francis Matus. Pensando distributed services archi-
tecture. IEEE Micro, 41(2):43-49, 2021.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu
Padhye, and Marina Lipshteyn. RDMA over commodity ethernet at
scale. In Proceedings of the 2016 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 16, pages 202-215, New
York, NY, USA, 2016. Association for Computing Machinery.

Intel Corporation. Intel 82599 10 GbE controller datasheet. Revision 3.4,
November 2019. https://www.intel.com/content/www/us/en/ethernet-
controllers/82599-10-gbe-controller-datasheet.html.

IO Visor Project, Linux Foundation. bpftace: High-level tracing lan-
guage for Linux eBPF. https://github.com/iovisor/bpftrace, 2021.

10 Visor Project, Linux Foundation. XDP: express data path. https:
//www.iovisor.org/technology/xdp, 2021.

Jakub Kicinski and Nicolaas Viljoen, Netronome Systems. ebpf hard-
ware offload to smartnics: cls bpfand xdp. https://www.netronome.com/
media/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf, 2021.
Jakub Kicinski and Nicolaas Viljoen, Netronome Systems. Xdp
hardware offload: Current work, debugging and edge cases.
https://www.netronome.com/media/documents/viljoen-xdpoffload-

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

talk_2.pdf, 2021.

Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong,
Sunghwan Thm, Dongsu Han, and KyoungSoo Park. mTCP: A highly
scalable user-level TCP stack for multicore systems. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI ’14, pages 489-502, USA, 2014. USENIX Association.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. Datacenter
RPCs can be general and fast. In Proceedings of the 16th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI '19, pages

1-16, USA, 2019. USENIX Association.

Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. TAS: TCP acceleration
as an OS service. In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys "19, New York, NY, USA, 2019. Association for Computing

Machinery.

Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, Dejan
Kosti¢, Youngjin Kwon, Simon Peter, and Emmett Witchel. LineFS:
Efficient SmartNIC offload of a distributed file system with pipeline

parallelism. In Proceedings of the 28th ACM Symposium on Operating
Systems Principles, SOSP *21, pages 756-771, New York, NY, USA, 2021.
Association for Computing Machinery.

Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2P2: Making rpcs first-class datacenter citizens. In Proceed-
ings of the 2019 USENIX Annual Technical Conference, USENIX ATC 19,
pages 863-879, USA, 2019. USENIX Association.

Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina
Delimitrou. Dagger: Efficient and fast RPCs in cloud microservices

with near-memory reconfigurable NICs. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 21, pages 36-51, New York,
NY, USA, 2021. Association for Computing Machinery.

Bojie Li, Kun Tan, Layong (Larry) Luo, Yanging Peng, Renqian Luo,
Ningyi Xu, Yonggiang Xiong, Peng Cheng, and Enhong Chen. ClickNP:
Highly flexible and high performance network processing with recon-
figurable hardware. In Proceedings of the 2016 Conference of the ACM
Special Interest Group on Data Communication, SSIGCOMM ’16, pages

1-14, New York, NY, USA, 2016. Association for Computing Machinery.
Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu,
and Yuanchun Shi. Scalable kernel TCP design and implementation
for short-lived connections. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pages 339-352, New York, NY, USA,
2016. Association for Computing Machinery.

Linux. bpf(2) — linux manual page. https://man7.org/linux/man-
pages/man2/bpf.2.html, 2021.

Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon

Peter, and Karan Gupta. Offloading distributed applications onto Smart-
NICs using IPipe. In Proceedings of the 2019 Conference of the ACM
Special Interest Group on Data Communication, SSIGCOMM ’19, pages

318-333, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo

Phothilimthana. E3: Energy-efficient microservices on SmartNIC-
accelerated servers. In Proceedings of the 2019 USENIX Annual Technical
Conference, USENIX ATC 19, pages 363-378, USA, 2019. USENIX As-
sociation.

David A. Maltz and Pravin Bhagwat. TCP splice application layer proxy
performance. Journal of High Speed Networks, 8(3):225-240, January
2000.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean

Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C.
Evans, Steve Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow, Michael Ryan,
Kevin Springborn, Paul Turner, Valas Valancius, Xi Wang, and Amin

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 99

(30]

(34]

(35]

(36]

(37]

(38]

(39]
(40]

(41]

(42]

(43]

(4]

Vahdat. Snap: A microkernel approach to host networking. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pages 399-413, New York, NY, USA, 2019. Association for
Computing Machinery.

Steven McCanne and Van Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. In Proceedings of the 1993
USENIX Winter Conference, USENIX *93, page 2, USA, 1993. USENIX
Association.
Mellanox. Mellanox BlueField Platforms. http://www.mellanox.
com/related-docs/npu-multicore-processors/PB_BlueField_Ref_
Platform.pdf, 2018.

memcached. Memcached, 2020. https://memcached.org/.

Microsoft. Information about the TCP Chimney offload, receive side
scaling, and network direct memory access features in Windows Server
2008. https://docs.microsoft.com/en-US/troubleshoot/windows-
server/networking/information-about-tcp-chimney-offload-rss-
netdma-feature.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. TIMELY: RTT-based congestion control for the
datacenter. In Proceedings of the 2015 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 15, pages 537-550,
New York, NY, USA, 2015. Association for Computing Machinery.
Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind
Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revisiting net-
work support for RDMA. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SSIGCOMM 18,
pages 313-326, New York, NY, USA, 2018. Association for Computing
Machinery.

Jeffrey C. Mogul. Tcp offload is a dumb idea whose time has come. In
Proceedings of the 9th USENIX Conference on Hot Topics in Operating
Systems, HotOS ’03, page 5, USA, 2003. USENIX Association.
YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. AccelTCP: Accelerating network applications with
stateful TCP offloading. In Proceedings of the 17th USENLX Conference on
Networked Systems Design and Implementation, NSDI °20, pages 77-92,
USA, 2020. USENIX Association.

Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek.
The Click modular router. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles, SOSP ’99, pages 217-231, New York,
NY, USA, 1999. Association for Computing Machinery.

Netronome. Netronome Agilio CX SmartNIC. https://www.netronome.
com/products/agilio-cx/, 2018.

Netronome. Netronome Agilio LX SmartNIC. https://www.netronome.
com/products/agilio-Ix/, 2018.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audze-
vich, Sergio Lopez-Buedo, and Andrew W. Moore. Understanding
PCle performance for end host networking. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM 18, pages 327-341, New York, NY, USA, 2018. Association
for Computing Machinery.

Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su, Yongqiang Xiong, Tao
Wang, Dongsu Han, and Keith Winstein. NetKernel: Making network
stack part of the virtualized infrastructure. In Proceedings of the 2020
USENIX Annual Technical Conference, USENIX ATC 20, USA, 2020.
USENIX Association.

Zhixiong Niu, Hong Xu, Dongsu Han, Peng Cheng, Yonggiang Xiong,
Guo Chen, and Keith Winstein. Network stack as a service in the cloud.
In Proceedings of the 16th ACM Workshop on Hot Topics in Networks,
HotNets-XVI, pages 65-71, New York, NY, USA, 2017. Association for
Computing Machinery.

NVM Express Workgroup. NVM Express: Base specifica-
tion. https://nvmexpress.org/wp-content/uploads/NVM-Express-1_
4a-2020.03.09-Ratified.pdf, 2020.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Mor-
ris. Improving network connection locality on multicore systems. In
Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 337-350, New York, NY, USA, 2012. Association for
Computing Machinery.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. In Proceedings of the 11th USENILX
Symposium on Operating Systems Design and Implementation, OSDI "14,
pages 1-16, Broomfield, CO, October 2014. USENIX Association.

L Pratt and K. Fraser. Arsenic: a user-accessible gigabit ethernet in-
terface. In Proceedings of the 20th Annual Joint Conference of the IEEE
Computer and Communications Society, volume 1 of INFOCOM 01,
pages 67-76 vol.1, 2001.

Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA 14, pages 13-24. IEEE
Press, 2014.

RDMA Consortium. Architectural specifications for RDMA over
TCP/IP. http://www.rdmaconsortium.org/.

Renato J. Recio, Paul R. Culley, Dave Garcia, Bernard Metzler, and Jeff
Hilland. A Remote Direct Memory Access Protocol Specification. RFC
5040, October 2007.

Redis Labs. memtier_benchmark: Load generation and bechmarking
NoSQL key-value databases. https://github.com/RedisLabs/memtier_
benchmark, 2020.

Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S.
Berger, James C. Hoe, Aurojit Panda, and Justine Sherry. We need
kernel interposition over the network dataplane. In Proceedings of the
2021 Workshop on Hot Topics in Operating Systems, HotOS ’21, pages 152—
158, New York, NY, USA, 2021. Association for Computing Machinery.
Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,
Carlo Contavalli, and Amin Vahdat. Carousel: Scalable traffic shaping
at end hosts. In Proceedings of the 2017 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 17, pages 404-417,
New York, NY, USA, 2017. Association for Computing Machinery.
Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaes-
tle. We need to talk about NICs. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems, HotOS *13, page 1, USA,
2013. USENIX Association.

Pensando Systems. Pensando DSC-25 distributed services
card. https://pensando.io/wp-content/uploads/2020/03/Pensando-
DSC-25-Product-Brief.pdf, 2020.
The Linux Foundation. toe.
networking/toe.

https://wiki.linuxfoundation.org/

100

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Field Bits Description

Pre-processor (connection identification)—15B:

peer_mac 48 Remote MAC address
peer_ip 32 Remote IP address
local|remote_port 32 TCP ports

flow_group 2 hash(4-tuple) % 4
Protocol (TCP state machine)—43B:

rx|tx_pos 64 RX/TX buffer head
tx_avail 32 Bytes ready for TX
rx_avail 32 Available RX buffer space
remote_win 16 Remote receive window
tx_sent 32 Sentunack. TX bytes
seq 32 TCP seq. number

ack 32 TCP remote seq. number
ooo_start]|len 64 Out-of-order interval
dupack_cnt 4 Duplicate ACK count
next_ts 32 Peer timestamp to echo
Post-processor (ctx queue, congestion control)—51B:
opaque 64 App connection id
context 16 Context-queue id
rx|tx_base 128 RX/TX buffer base
rx|tx_size 64 RX/TX buffer size
cnt_ackb|ecnb 64 ACK’d and ECN bytes
cnt_fretx 8 TFast-retransmits count
rtt_est 32 RTT estimate

rate 32 TXrate

Table 5. Connection state partitions (total: 108B).

A TCP Connection State Partitioning

To enable fine-grained parallelism, we partition connection
state across pipeline stages. Table 5 shows the per-connection
state variables, grouped by pipeline stage. Pre-processor state
contains connection identifiers (MAC, IP addresses; TCP port
numbers). Protocol state contains TCP windows, sequence
and acknowledgment numbers, and host payload buffer posi-
tions. Post-processor state contains host payload buffer and
context queue locations, and data-path congestion control
state. DMA and context queue stages are stateless.

In aggregate, each TCP connection has 108 bytes of state,
allowing us to offload millions of connections to the SmartNIC.
In particular, we can manage 16 connections per protocol FPC,
512 connections per flow-group, and 16K connections in the
EMEM cache. Using all of EMEM, we can support up to 8M
connections.

B Connection Splicing Implementation

We implement AccelTCP’s connection splicing in 24 lines of
eBPF code. Listing 1 shows the entire code.

C TASTCP/IP Processing Breakdown

Table 6 shows a breakdown of the per-packet TCP/IP pro-
cessing overheads (summarized as TCF/IP stack in Table 1) in
TAS for the Memcached benchmark conducted in §2.1. For

BPF_MAP_HASH_DECLARE (splice_tbl, SPLICE_MAX_FLOWS, \
sizeof (struct pkt_4tuple_t), sizeof(struct tcp_splice_t));

int bpf_xdp_prog(struct xdp_md* ctx)

{
struct tcp_splice_t state;
struct pkt_hdr_t *hdr = BPF_XDP_ADDR(ctx->data);
struct pkt_4tuple_t xkey = &hdr->ip.src;

// Filter non-IPv4/TCP segments to control-plane
if (!segment_ipv4_tcp(hdr))
return XDP_REDIRECT;

// Connection Control: Segments with SYN, FIN, RST
// Atomically remove map entry and forward to control-plane
if (segment_tcp_ctrlflags(hdr)) {
BPF_MAP_DELETE_ELEM(splice_tbl, key);
return XDP_REDIRECT;
3

if (BPF_MAP_LOOKUP_ELEM(splice_tbl, key, &state) < 0)
return XDP_PASS; // Send to data-plane

patch_headers(hdr, &state);
return XDP_TX; // Send out the MAC
}

void patch_headers(struct pkt_hdr_t *hdr,
struct tcp_splice_t *state)
{
hdr->eth.src = hdr->eth.dst;
hdr->eth.dst = state->remote_mac;
hdr->ip.src = hdr->ip.dst;
hdr->ip.dst = state->remote_ip;
hdr->tcp.sport = state->local_port;
hdr->tcp.dport = state->remote_port;

hdr->tcp.seq += state->seq_delta;
hdr->tcp.ack += state->ack_delta;

Listing 1. Connection splicing with XDP in FlexTOE.

each request, TAS performs loss detection (and potentially
recovery) that involves processing the incoming request seg-
ment, generating an acknowledgement for it, and additionally,
processing the acknowledgement for the response segment,
consuming 42% of the total per-packet processing cycles. TAS
spends 9% of the total cycles to prepare the response TCP seg-
ment for transmission and an additional 12% to schedule flows

Function Cycles %
Segment generation 130 9
Loss detection (and recovery) 606 42
Payload transfer 10 1
Application notification 381 26
Flow scheduling 172 12
Miscellaneous 141 10
Total 1,440 100

Table 6. Breakdown of TCP/IP stack overheads in TAS.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 101

based on the rate configured by the congestion control proto-
col. TAS spends 26% of per-packet cycles interacting with the
application, to notify when a request is received, to admit a
response for transmission, and to free the transmission buffer
when it is acknowledged. For small request-response pairs
(32B in this case), the payload copy overheads are negligible.

D Control Plane

FlexTOE'’s control plane is similar to that of existing approaches

that separate control and data-plane activities, suchas TAS [19].

Using it, we implement control-plane policies, such as con-
gestion control, per-connection rate limits, per-application
connection limits, and port partitioning among applications
(cf. [52]). We briefly describe connection and congestion con-
trol in this appendix. Retransmissions are described in §3.1.1
and §3.1.3. TAS [19] provides further description and eval-
uation of the control plane (named “slow-path” in the TAS

paper).

Connection control. Connection control involves com-
plex control logic, such as ARP resolution, port and buffer
allocation, and the TCP connection state machine. The data-
path forwards control segments to the control-plane. The
control-plane notifies libTOE of incoming connections on
listening ports. If the application decides to accept() the
connection, the control-plane finishes the TCP handshake,
allocates host payload buffers and a unique connection in-
dex for the data-path. It then sets up connection state in the
data-path at the index location. Similarly, libTOE forwards
connect () calls to the control-plane, which establishes the
connection. On shutdown (), the control-plane disables the
connection and removes the corresponding data-path state.

Congestion control. FlexTOE provides a generic control-
plane framework to implement different rate and window-
based congestion control algorithms, akin to that in TAS [19].
The control-plane runs a loop over the set of active flows to
compute a new transmission rate, periodically. The interval
between each iteration of the loop is determined by the round-
trip time (RTT) of each flow. In each iteration, the control-
plane reads per-flow congestion control statistics from the
data-path to calculate a new rate or window for the flow. The
rate or window is then set in the data-path flow scheduler
(§3.4) for enforcement. We also monitor retransmission time-
outs in the control iteration. FlexTOE implements DCTCP [1]
and TIMELY [34] in this way.

E FlexTOE x86 and BlueField Ports

We have ported the FlexTOE data-path to the x86 and Blue-
Field platforms. FlexTOE’s design across the different ports
is identical. We do not merge or split any of the fine-grained
modules or reorganize the pipeline across ports. FlexTOE’s
decomposition, pipeline parallelism, and per-stage replica-
tion all generalize across platforms. Both ports are also almost

identical to the Agilio-CX40 implementation (cf. §4) and were
completed within roughly 2 person-weeks, demonstrating the
great development velocity of a software TCP offload engine.
We describe the implementation differences of each port to
the Agilio-CX40 version in this section.

Hardware cache management. The hardware-managed
cache hierarchies of x86 and BlueField obviate the need for
software-managed caching that was implemented on Agilio.
Instead of leveraging near-memory processing acceleration
of the NFP-4000 (cf. §4.1), our ports implement multi-core
ring buffers, flow lookup and packet sequencers in software.
The more powerful x86 and BlueField cores make up for the
difference in performance.

Symmetric core mapping. Unlike the NFP-4000, where
FPCs are organized into islands, cores on x86 and BlueField
have mostly symmetric communication properties, so the as-
signment of modules to cores is arbitrary and the manual FPC
mapping step is omitted. However, we note that core map-
ping may still be beneficial, for example to leverage shared
caches and node locality on multi-socket x86 systems. Each
instance of a module runs on its own core. Apart from the
six fine-grained pipeline modules: pre-processing, protocol,
post-processing, DMA, context queue, and SCH shown in Fig-
ure 3, the ports utilize an additional netif module to inter-
face with DPDK NIC queues to receive and transmit packets.
Therefore, FlexTOE-scalar uses 7 cores and the FlexTOE-2x
configuration uses 2 additional cores to replicate the pre and
post-processing stages for a total of 9 cores.

Context queues use only shared memory. Our x86 and
BlueField ports currently only support applications running
on the same platform as FlexTOE. Hence, context queues al-
ways use shared memory rather than DMA. The correspond-
ing DMA pipeline stage executes the payload copies in soft-
ware using shared memory, rather than leveraging a DMA
engine.

Platform-specific parameters. The replication factor of
each pipeline stage is platform dependent. Stage-specific
microbenchmarks on each platform can determine it. Our
generalization experiments (§5.2) are designed to show that
FlexTOE’s data-parallelism can improve single connection
throughput. Hence, we configure only one instance of the
FlexTOE data-path pipeline in these versions (no flow-group
islands—we do not process multiple connections in these ex-
periments). Each port’s pipeline uses the same number of
stages as the Agilio-CX40 version, but we set different repli-
cation factors for the pre and post processing stages on x86
and BlueField (no replication and 2X replication). We do not
attempt to find the optimal replication factor for best perfor-
mance nor compact stages to reduce wasted CPU cycles.

102 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

