
SFS: Smart OS Scheduling for Serverless Functions
Yuqi Fu

University of Virginia
Charlottesville, VA, USA

jwx3px@virginia.edu

Li Liu
George Mason University

Fairfax, VA, USA
lliu8@gmu.edu

Haoliang Wang
Adobe Research

San Jose, CA, USA
hawang@adobe.com

Yue Cheng
University of Virginia

Charlottesville, VA, USA
mrz7dp@virginia.edu

Songqing Chen
George Mason University

Fairfax, VA, USA
sqchen@gmu.edu

Abstract—Serverless computing enables a new way of building
and scaling cloud applications by allowing developers to write
fine-grained serverless or cloud functions. The execution duration
of a cloud function is typically short—ranging from a few
milliseconds to hundreds of seconds. However, due to resource
contentions caused by public clouds’ deep consolidation, the
function execution duration may get significantly prolonged
and fail to accurately account for the function’s true resource
usage. We observe that the function duration can be highly
unpredictable with huge amplification of more than 50⇥ for
an open-source FaaS platform (OpenLambda). Our experiments
show that the OS scheduling policy of cloud functions’ host server
can have a crucial impact on performance. The default Linux
scheduler, CFS (Completely Fair Scheduler), being oblivious to
workloads, frequently context-switches short functions, causing
a turnaround time that is much longer than their service time.

We propose SFS (Smart Function Scheduler), which works en-
tirely in the user space and carefully orchestrates existing Linux
FIFO and CFS schedulers to approximate Shortest Remaining
Time First (SRTF). SFS uses two-level scheduling that seamlessly
combines a new FILTER policy with Linux CFS, to trade off
increased duration of long functions for significant performance
improvement for short functions. We implement SFS in the Linux
user space and port it to OpenLambda. Evaluation results show
that SFS significantly improves short functions’ duration with a
small impact on relatively longer functions, compared to CFS.

Index Terms—Cloud computing, Operating systems, Perfor-
mance evaluation

I. INTRODUCTION

Serverless computing, or Function-as-a-Service (FaaS), en-
ables a new way of building and scaling applications and ser-
vices by allowing developers to break traditionally monolithic
server-based applications into finer-grained cloud functions.
Developers write function logic while the service provider
performs the notoriously tedious tasks of provisioning, scaling,
and managing the backend servers [28] that the functions run
on. Serverless computing solutions are growing in popularity
and finding their way into both commercial clouds (e.g.,
AWS Lambda [3], Azure Functions [4], and Google Cloud
Functions [7], etc.) and open-source projects (e.g., Open-
Lambda [31, 13], OpenWhisk [55]). Popular uses of serverless
computing today are event-driven and stateless applications
such as web/API serving, image processing, and batch ETL
(extract, transform, load) [1].

The execution duration of a cloud function is typically
short–ranging from a few milliseconds (ms) to a few sec-
onds [48]. Therefore, FaaS providers charge users at a fine
granularity. For example, AWS Lambda bills on a per invo-
cation basis ($0.02 per 1 million invocations) and charges the
usage of bundled CPU-memory resources by rounding up the
function’s execution duration to the nearest 1 ms with a rate
of $0.0000166667 per second for each GB of memory.

This fine-grained pricing model would be advantageous and
fair to FaaS users if the execution duration of a function
does not vary much (ideally one would expect that to be
equivalent to the turnaround time as if the function was exe-
cuted on a dedicated machine). This is particularly important
considering the short-lived and highly heterogeneous nature
of cloud functions: a majority of cloud functions have short
execution duration while the execution times of all functions
span seven orders of magnitude (from ms to hundreds of sec-
onds). However, due to resource contentions caused by public
clouds’ deep consolidation, function execution duration—the
turnaround time that measures the time when a function starts
execution till the time when the function finishes execution
and returns—gets prolonged and fails to accurately account for
the actual resource usage of a successfully finished function.
This covertly leads to overcharges to the users and potentially
making them game the system in the long run [27].

Admittedly, function execution duration amplification may
be caused by contentions from various levels of resources
including CPU cache, CPU, memory, and network. However,
our study shows that the CPU scheduling policy of host
machines, e.g., the widely-used Linux CPU scheduling policy,
Completely Fair Scheduler or CFS, can have a crucial impact
on the execution duration of cloud functions hosted therein,
therefore, a function scheduler must incorporate the unique
FaaS workload patterns.

How to mitigate this amplification for short-job-dominant
FaaS workloads is an open challenge, which, to the best of
our knowledge, has not been well investigated. On a similar
note, there are no well-defined performance SLOs (service
level objectives) for short-job-dominant FaaS applications; one
potential example SLO can be: “X% of function invocations

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

must be finished within a soft/hard-bounded ratio with respect
to the duration that this function would observe if running in
an ideally isolated environment”.

Our key observation in this paper is that a majority of
cloud functions in production FaaS workloads are short-lived
with a wide spectrum of execution duration; the default Linux
scheduler, CFS, frequently context-switches short functions,
causing unfairly long waiting time, and therefore, longer
turnaround time than they should have.

CFS is general-purpose and workload-oblivious, attempting
to achieve CPU-task-level fairness: CPU tasks, no matter long-
running or short-lived, get proportional share of the CPU
resource under fine-grained time slices. This causes all CPU
tasks with same priority to spend “fair” amounts of time
waiting to be rescheduled. This inevitably leads to severely
imbalanced function run-time effectiveness (RTE), a new effi-
ciency metric that we define to capture the ratio of function
service time (aggregate CPU time) to end-to-end turnaround
time (sum of the aggregate CPU time and the waiting time).

This motivates us to adopt Shortest Remaining Time First
(SRTF)—a preemptive version of shortest job first (SJF)—
which always schedules jobs that will complete the quickest.
However, it is impossible to directly apply SRTF as it is an
offline algorithm. To this end, we present SFS, a user-space
function scheduler that minimizes turnaround time for short-
function-intensive FaaS workloads. SFS works entirely in
the user space, leveraging existing kernel scheduling policies
(FIFO and CFS) to approximate SRTF. For this purpose, SFS
adopts two-level scheduling: at the top level, SFS uses a new
FILTER (FIFO-like) algorithm that schedules functions in the
order they are enqueued and preempts them if they do not
finish in a dynamically changing time slice; at the bottom
level, those filtered functions from the top level continue in
Linux CFS. This way, short functions can execute in their
entirety without any context switch, or with minimum context
switches if needed, in order to finish faster. The objective is
to minimize the function execution duration and maximize the
RTE metric such that the “pay-per-use” promise is delivered
and unfair overcharges are reduced.

SFS presents a novel and practical user-space scheduling
solution that bridges the divide between custom, user-space
scheduling and kernel scheduling: existing OS scheduling
is FaaS-workload-oblivious and thus affects function perfor-
mance; SFS utilizes historical workload statistics obtained
in the user space to make informed scheduling decisions
by automatically steering underlying OS scheduling policies.
SFS strikes a balance between waiting time and request
service time. SFS is transparent to existing FaaS platforms
and requires minimum modifications for them to use SFS.
SFS is also OS-scheduler-agnostic and does not require kernel
modifications.

In summary, this paper makes the following contributions:
• Through a performance characterization study on an open-

source FaaS platform (OpenLambda), we identify efficiency
problems of existing Linux schedulers (CFS, FIFO, and RR)
on serverless function scheduling.

• We design a new scheduler, SFS, which approximates SRTF.
SFS features a novel FILTER algorithm in the user space
that dynamically steers existing OS schedulers based on
workload patterns to enable more efficient scheduling for
FaaS workloads.

• We implement SFS as a standalone, user-space scheduler
that can be easily ported with existing FaaS platforms.

• We perform extensive evaluation on standalone SFS and
an SFS-ported OpenLambda. Results show that SFS sig-
nificantly outperforms CFS: SFS improves turnaround time
of short functions by two orders of magnitude against CFS
with very small user-space overhead.
SFS targets the overall performance of a majority of func-

tions that are short-lived. Experimental results show that SFS
improves the execution duration of 83% of the functions by
49.6⇥ on average compared to CFS; for the remaining 17% of
the functions that are relatively longer, they run 1.29⇥ longer
on average under SFS than CFS. SFS is open sourced and
publicly available at https://github.com/ds2-lab/SFS.

II. BACKGROUND

A. FaaS Overview
Serverless computing handles virtually all system adminis-

tration tasks, making it easier for users to deploy and scale
their cloud applications and services [35]. FaaS providers
offer a flexible interface for defining cloud functions, which
allows developers to focus on core application logic using
languages such as Python, JavaScript, Java, Go, and others.
FaaS providers in turn auto-scale function executions in a
demand-driven manner, hiding tedious server configuration
and management tasks from the users.

Cloud functions are deployed and executed in virtualized
environments such as containers or virtual machines (VMs) for
isolation and safety. A typical workflow of function deploy-
ment and execution works as follows. Step 1: A user submits
the function code (via either a web interface or packaged
.zip/container image files) to the FaaS platform for function
creation. Step 2: The user executes the created function by
sending an HTTP invocation request to a FaaS scheduler.
Step 3: the FaaS scheduler forwards the invocation request to a
FaaS worker that is running on a resource-rich host machine.
Step 4: The FaaS worker creates a virtualized environment
and installs the necessary dependencies for the virtualized
environment before the function can be started. Step 5: After
all previous steps are successfully completed, the FaaS worker
sends the function request to the host OS, which in turn starts
the function execution as an OS process.

While there are already extensive studies focusing on reduc-
ing functions’ cold startup penalty (Step 2-4 in last paragraph)
in FaaS [48, 17, 42, 41, 22, 25], in this paper, we aim to fill
the missing gap by focusing on the “last mile” efficiency of
function execution, i.e., OS scheduling, in Step 5.
B. OS Task Scheduling

Cloud functions are eventually scheduled and executed by
a host OS. Functions typically have a short execution duration
and small CPU-memory footprint, making FaaS workloads

https://github.com/ds2-lab/SFS

increasingly consolidated. For example, a large bare-metal
machine with 96 CPU cores, 384 GB of memory, and multi-
TBs of NVMe SSDs can easily host tens of thousands of, if
not more, function instances [16]. This statistical multiplexing
makes it feasible for a FaaS provider to execute thousands of
function processes concurrently on a single host.
Basic Scheduling Policies. First in, First out (FIFO) and
Round-Robin (RR) are among the most basic scheduling poli-
cies. They have different tradeoffs. When a FIFO task starts
running, it runs to completion1. Similar to FIFO, core-granular
scheduling [38] designates a single core to a function and
allows it to run to completion. However, also like FIFO, core-
granular scheduling may hurt response time when the system
is highly consolidated and under high utilization with a line
of queued tasks. RR can be used to optimize responsiveness.
RR runs a CPU task for a time slice and then switches to the
next queued task. However, since the execution of a CPU task
is divided into multiple slices, RR sacrifices turnaround time.
Proportional-Share Scheduling. Proportional-share schedul-
ing is a type of CPU scheduling algorithms commonly used
by today’s OSes including VM scheduling and Linux schedul-
ing. Proportional-share scheduling focuses on fairness and
attempts to guarantee that each CPU task obtains a certain
percentage of CPU time based on the task’s priority. Well-
known examples of proportional-share scheduling include lot-
tery scheduling [60], Xen’s credit scheduler [18, 15], and
Linux’s default scheduler CFS. CFS is the de facto, and
the most commonly-used open-source OS task scheduler in
productive environments including public clouds [2, 8, 10] and
companies [32, 58].

Given its popularity and prevalence, we choose Linux’s
general-purpose CFS scheduler as a baseline and briefly de-
scribe how it works. In fact, the two virtualization techniques
commonly used by today’s FaaS platforms, containers and
KVM-based VMs, both rely on CFS for OS task scheduling.
For example, Docker containers [5] are used by open source
FaaS platforms such as OpenLambda [31], OpenWhisk [55],
and OpenFaaS [11], while AWS Lambda’s Firecracker mi-
croVM [16] uses KVM for managing Lambda functions.
Linux CFS. CFS proportionally divides the physical time into
fine-grained time slices among all CPU tasks based on their
weights (priorities). CFS tracks the CPU time usage of each
task using a virtual runtime (vruntime) scheme. vruntime
records the CPU time that a CPU task has used weighted
by its priority. In a multi-core system, each physical CPU
core has its own runqueue, which is a red-black (RB) tree
ordered by vruntime. A task will first be assigned by CFS
to a runqueue; the task’s location in the runqueue RB tree
determines roughly when in the future it can execute; at each
scheduling tick (i.e., the end of a time slice), CFS picks the
next task that has the smallest vruntime from the RB tree. As
the FaaS workload is increasingly consolidated, it is common
to have thousands of concurrently running function processes

1Modern OSes must handle sophisticated situations such as I/O and priority.
A FIFO task, once started, continues to run until it voluntarily yields control
over CPU, blocks, or is preempted by a higher priority CPU task.

that multiplex the limited amount of CPU cores on the host
machine. Therefore, the weight of a task simply indicates a
relative CPU share, but not an absolute CPU share that a
user would expect the function to get based on the function’s
resource configuration. Once preempted, the task needs to wait
in the runqueue for its next turn to run. While waiting, the
task’ vruntime does not tick.

III. WHY IS CFS A POOR MATCH?

Run-time Effectiveness (RTE). CFS is a poor match for
the emerging, short-function-intensive FaaS workloads, which
values turnaround time. The fundamental mismatch comes
from CFS’ lack of workload awareness: CFS ensures a fair
proportion of CPU time to all the CPU tasks but does not
distinguish if a CPU task is long-running or short-lived. How-
ever, this application-level knowledge is critical to application
performance, especially if applications mostly consist of short
jobs, e.g., a FaaS workload [48]. Under a proportional-share
scheduler such as CFS, the fairness is defined as follows:
within a given time interval, all CPU tasks, if with the
same priority, are assigned the same amount of CPU time
to execute. We argue in this work, while it is “fair” to all
CPU tasks from the low-level OS perspective, such “fairness”
may inevitably create unfairness to the user-level applications
– in our case these contained in the FaaS workload, since the
waiting time may be disproportional to the execution time,
considering the execution time diversity of FaaS workloads.
In fact, FaaS workloads have unique characteristics that make
existing Linux’s “fair” scheduler actually unfair. Cloud func-
tions feature a long spectrum of execution duration (§IV-A).
Short functions with an execution duration of several ms to
tens of ms are more sensitive to waiting time than longer
functions that execute for, say tens of seconds. A mixture
of such short and long functions co-located in the same
server could spend roughly equal amounts of time waiting
in runqueues before those short functions finish, resulting
in disproportionally long waiting time. To quantify this affect,
we define a new efficiency metric in this paper, function Run-
Time Effectiveness (RTE) as follows:

RTE =

P
CPU

i

turnaroundtime
(1)

where CPU
i means the CPU time allocated to this function

in the i
th round before the function returns. Thus, effectively,

RTE reflects the ratio of the service time to the turnaround
time. An RTE of 1 is the theoretically highest that a function
could achieve, meaning that the function runs to completion
without being preempted, so higher scores are better. Further-
more, RTE also indicates if a FaaS user has been overcharged.
The closer an RTE to 1, the less overcharges that a user
had to pay. For ideally CPU-intensive functions, an RTE of
1 indicates that the user is not overcharged at all. However,
one should note that, in practice, it is not common to have
functions with pure CPU bursts; therefore, an RTE score
achieved under zero interference, though smaller than 1, would
still represent a best-case baseline for comparison purposes.

Fig. 1: CDF of the average function execution duration of Azure
Functions traces.

Tradeoffs. Efficiently scheduling short and long jobs is a
decades-old problem [64, 47, 24, 51, 30, 29, 36, 43]. Long
jobs’ performance will get affected under priority scheduling
that approximates SRTF. The challenge is how to balance the
tradeoff between the performance improvement for short jobs
and performance loss for long jobs. We revisit this problem
from a new angle—minimizing severely disproportional wait-
ing time for short functions by trading off disproportionally-
increased turnaround time for long functions—in the context
of serverless function scheduling. That is, SFS aims to trade a
smaller impact on long functions for significant performance
improvement for short functions, a huge win for the short ones
and a much smaller (relative) penalty for the longer ones.

IV. MOTIVATION

A. Azure Functions Workloads
The Azure Functions workload datasets [48] are by far

the only publicly available FaaS workload traces that we
have access to. The traces were collected during a two-week
period, containing the average, minimum, maximum execution
duration breakdown per function and invocation counts per
function sampled at each one-minute interval. We analyzed the
distribution of the average execution duration of all function
invocations in the two-week period (Figure 1). We observe that
the function execution duration spans a total of seven orders
of magnitude; specifically, about 37.2%, 57.2%, and 99.9% of
the functions have an average execution duration shorter than
300 ms, 1 second, and 224 seconds, respectively.
Observation 1: While real-world FaaS workloads have a
mixture of short and long functions, a majority of them are
extremely short-lived and latency-sensitive. Optimizing the
execution duration of these short functions will provide a huge
benefit for the overall performance of FaaS platforms.
B. OpenLambda Measurement

We next measured the performance of an Azure-sampled
FaaS workload on OpenLambda. We generated the workload
based on the Azure Functions workload datasets [48]. Since
our focus is on single-server scheduling, we downscaled the
original trace by sampling the execution duration and request
inter-arrival times of 49, 712 function requests from Day 1.
More details about workload generation are described in §VII.

We configured OpenLambda to use 12 CPU cores and
Linux’s real-time (RT) schedulers, SCHED_FIFO (FIFO) and

SCHED_RR (RR), as well as Linux’s default proportional-share
scheduler, SCHED_NORMAL (CFS). We tested the workload
with two load levels, an average load of 80% over all 12 cores,
and an average of 100% load, and compared OpenLambda’s
performance against an offline oracle scheduler SRTF. SRTF
always selects the job with the smallest remaining time to
execute. SRTF is optimal as it assumes a priori knowledge of
function duration. IDEAL scheduling represents the ideal sce-
nario where there are infinite resources with zero contention.

Figure 2 shows the performance and RTE results. In cal-
culating the RTE, the aggregate CPU time of a function is
measured under the IDEAL scenario while the turnaround
time of the function is measured under the workload. From
this figure, we have the following observations. (1) SRTF,
as an offline scheduling policy in favor of short jobs, is
provably optimal for turnaround time [21]; SRTF approached
the IDEAL performance, which was achieved with infinite
resources. (2) None of Linux’s three CPU schedulers was able
to offer good performance under both the 80% and 100% load
under practical FaaS workloads (Figure 2(a)); CFS performed
the best among all Linux scheduling policies, but still, there
were about 11.4% and 89.9% of the function requests that
achieved an RTE score < 0.2 (Figure 2(b)). This explains
why SRTF outperformed CFS: with the same service time,
functions were preempted more under CFS, causing longer
waiting times. (3) Under the 100% load, functions executed
more than one order of magnitude slower under CFS than
SRTF, with a 40th and 70th percentile slowdown of 16⇥
and 24⇥, respectively, again, because of the dominant waiting
time. (4) RT schedulers offered the worst performance: FIFO
performed the worst due to the “convoy effect”, where short
functions were blocked behind long functions.
Observation 2: Approximating the offline oracle SRTF by
improving the run-time effectiveness will promise a significant
performance boost for short serverless functions.

V. SFS DESIGN

Our study in §IV shows that cloud functions often suffer
high execution duration amplifications. Among all scheduling
strategies, SRTF is promising (than CFS). This motivates the
design of a new scheduler SFS to prioritize short functions.
In this section, we present the design principle and challenges
of SFS, followed by the design details.

A. Design Goals and Challenges
To prioritize short functions, a priority-based scheduler is

needed. However, as described earlier in §II-B, proportional-
share schedulers such as CFS are designed for optimizing
fairness for long-running jobs and avoiding starvation. To
achieve such goals when multiple concurrently running jobs
are consolidated on a single server, CFS squeezes the time
slice for each competing job and proportionally shares the
physical CPU time among them. This leads to a significantly
prolonged “scheduling cycle”: a job that has used up its time
slice is descheduled and must wait for a long time before it
gets rescheduled. For short jobs, this prolonged waiting time

(a) Execution duration distribution. (b) Run-time effectiveness (RTE) distribution.

Fig. 2: Performance and RTE of an Azure-sampled workload on OpenLambda with different scheduling policies and different loads.

hurts turnaround time: they could have finished much earlier
without preemption if given a long-enough time slice.

Our motivational study from Figure 2 shows that SRTF can
achieve much better performance than CFS. SRTF provides
a theoretical lower bound in terms of turnaround time for
short-function-dominant FaaS workloads because SRTF allows
a short-enough function to be scheduled instantly and run
to completion without preemption. However, SRTF is not
practical as it assumes a priori knowledge about job duration.

Our goal is to design an online scheduler that approximates
SRTF. We achieve this goal by addressing the following
challenges. First, cloud functions are much shorter with a
typical duration ranging from tens of ms to several seconds,
and FaaS workloads exhibit transient overload. Such workload
characteristics pose a challenge in designing effective prioriti-
zation strategies, which should prioritize short functions in a
timely manner with minimal impact on longer functions.

Second, existing FaaS platforms use a client-server-based
microservice architecture, where clients issue HTTP invoca-
tion requests to execute cloud function instances hosted by
backend FaaS servers. Our design must provide a transparent
and portable function scheduler that requires no or minimum
modification of existing FaaS platforms while being OS-
scheduler-agnostic. That is, even if the FaaS platform uses
CFS or other OS-level proportional scheduling schemes, short
functions should gain higher priority than longer functions.
Thus, a second challenge is how to design an efficient and
practical function scheduler, which (1) works entirely in the
user space and does not require kernel modifications, (2) works
alongside (rather than replacing) OS schedulers and exploits
(whenever needed) OS scheduling properties such as work
conservation to provide better support for FaaS workloads,
(3) while being transparent to FaaS servers.
B. Design Overview

Typically, a FaaS platform uses a client-server architecture
as depicted in Figure 3: a directly-user-facing gateway for-
wards HTTP invocation requests from users to a backend
FaaS server that hosts requested function instances. To be
transparent and portable to existing FaaS platforms, we design
SFS by following a black-box approach. A backend FaaS
server dispatches function invocations to the underlying OS.

User

Gateway
HTTP

invocation
requests

HTTP
invocation
requests

Backend server

SFS scheduler
OS

Fig. 3: Overview of a typical FaaS platform deployment.

SFS assumes the existence of such a backend FaaS server.
SFS serves as a user-space middle layer between a FaaS
server and the OS (Figure 3), intercepting function requests
and performing function scheduling for the FaaS server.

Figure 4 illustrates the overall function scheduling flow.
SFS orchestrates Linux’s existing schedulers (FIFO and CFS)
in the user space. SFS adopts two-level scheduling that
seamlessly combines a FIFO-like scheduling policy based
on Linux FIFO at top level and a kernel-space scheduling
policy offloaded to Linux CFS at bottom level. The top-
level scheduler schedules function requests by the order in
which they are enqueued in the global queue and filters out
those longer functions that are not finished in a (dynamically
configurable) time slice. This way, the top-level scheduler
effectively serves as a FILTER2. Under SFS, a function’s
lifespan may experience one or two phases: a FILTER phase
and/or a CFS phase. A function by default starts in FILTER
mode. SFS dynamically adapts a time slice parameter S

(discussed later) using a sliding window approach and uses S

to bound a function’s execution in FILTER mode. This way,
SFS approximates SRTF. SFS is inherently work-conserving
following a single queue model: SFS workers fetch requests
whenever they are idle. To minimize context switches, SFS
guarantees that a function that is executing in FILTER mode
would be preempted only if it has used up the time slice or it
is waiting for an event (e.g., I/O).
Scheduling Flow. Next, we describe the main components and
the scheduling flow of SFS as illustrated in Figure 4:

1. A backend FaaS server, serving as a client, dispatches
function invocation requests, launches requested functions
in a virtualization environment in OS, and sends the
information of the dispatched function requests (tuples of

2FILTER: First In but Longer jobs To Extra Runqueue.

Backend FaaS server

Worker 2 Worker 3 Worker N

CFS pool

…

I/O

Monitor Enqueue function requests

Statistics in
sliding window

FILTER
pool

Fetch function requests

Functions use up time slice:
Demote the unfinished to CFS pool

Overload detected: Demote
functions to CFS pool

Re-enqueue
blocked function

Generated
time slice S Function

returns

1

Generate
time slice3

4.3

2

4.1

4.2 4.4

U
se

r
Ke

rn
el

Global
queue

<IDreq, Tinv>

…
Worker 1

Fig. 4: SFS architecture. SFS’ components are highlighted in
condensed bold font.

unique function request ID and the invocation timestamp)
to SFS’ global queue.

2. Multiple SFS workers, each responsible for scheduling
function requests on a separate CPU core, concurrently
fetch function requests from the global queue whenever
workers are free. Note a non-empty global queue indicates
that all cores are busy serving requests. Each SFS worker is
responsible for intercepting the dispatched function process
by using the tuple information fetched from the queue and
scheduling the function using FILTER policy. This way,
each function by default starts execution in FILTER mode,
unless otherwise specified (§V-E). This effectively forms
a FILTER pool of multiple SFS workers. Functions that
are executing under FILTER mode naturally gain higher
priority than those under CFS mode. To realize this, SFS
changes a running function process’ OS scheduling policy
to FIFO (SCHED_FIFO), which has higher static priorities
than CFS (SCHED_NORMAL) processes [12].

3. Each SFS worker stores the following statistics information
in memory: (1) function request ID and its invocation
timestamp, which is initially recorded in the global queue
when the function request was submitted, and (2) function
execution timestamp, which is the time when the func-
tion starts execution. An SFS monitor periodically re-
calculates a global time slice parameter S based on the
collected statistics (§V-C). Next, we describe several cases
of the function execution.

4.1. The ideal case is that a short function finishes execution and
returns before using up S. This way, the SFS worker marks
its completion, removes the corresponding entry from the
global queue, fetches the next function request, and restarts
the time slice timer.

4.2. The SFS worker keeps track of the runtime of the FILTER
function, forcibly preempts it if its time slice expires, and
demotes it to CFS.

4.3. If a function is blocked by some event, e.g., an I/O event,
the worker will instantly preempt its execution and add it

back to the global queue (§V-D).
4.4. If an SFS worker detects a transient overload by observing

increasing queuing delay (above a certain threshold), it
temporarily disables FILTER and directly schedules next
requests using CFS (§V-E).

C. Dynamically Adapting Time Slices
While it may be impossible to design a perfect scheduler

that assigns a precise time slice that perfectly matches the
remaining execution duration of any job, SFS uses a simple
yet effective heuristic approach based on queuing theory to
estimate and dynamically adapt the time slice parameter S.

The time slice parameter presents an interesting tradeoff
between queuing delays and the turnaround time of the work-
load. On the one hand, an (improperly) short time slice value
would reduce global queuing delays of outstanding function
requests but unnecessarily cause a longer turnaround time due
to increased context switches. CFS falls to this end of the
spectrum. On the other hand, an (unnecessarily) long time slice
value may reduce number of context switches but increase
global queuing delays, and as a result, hurt turnaround time.

Therefore, we use queuing theory to set the time slice.
For this purpose, we can model a multi-core scheduler as a
multi-server queuing system—an M/G/c model according to
Kendall’s notation—using the following equation:

⇢ =
�

cµ
(2)

where � is the arrival rate of the requests, µ is the service
rate of a single core, c is the number of cores used, and ⇢

is the traffic intensity per core (i.e., per-core utilization). We
can thus use the utilization metric ⇢ as a measure of queuing
delay: if ⇢ is greater than one, meaning the arrival rate � is
larger than the aggregate service rate cµ, the length of SFS’
global queue will grow without bound. Intuitively, adapting
the service rate µ based on the changing � can bound ⇢, thus
the overall queuing delay. However, in practice, µ is solely
determined by the workload and the capacity of the underlying
hardware. Therefore, SFS enforces a global time slice to cap
the duration for how long any function may run in FILTER
mode. SFS dynamically changes the time slice in response
to the variable request arrival rate, which is estimated using
historical IATs.

Following Equation 2, SFS keeps track of a small sliding
window of last N requests’ inter-arrival times (IATs) to
determine the time slice parameter S. For a single-core system,
SFS calculates the average IAT of last N functions, IAT , and
uses it as the feedback to dynamically tune S. With c cores,
S = IAT ⇤ c. Intuitively, S is used to bound the service rate
µ of Equation 2, which in turn affects the traffic intensity
⇢; ⇢ further affects the queuing delay of function requests
that are executing under FILTER mode, and therefore, SFS
uses the historical IAT information to strike a balance between
queuing delay and execution time. When a global S is selected,
SFS guarantees that all functions whose execution duration is
shorter than S run to completion without being preempted.
SFS re-calculates a new S for every N function requests that

has been enqueued in order to provide dynamic adaptation to
workloads. N is configurable and we choose 100 as N in our
evaluation.

There may always be functions that are not able to fin-
ish before the time slice elapses. To solve this issue, SFS
uses a single-level FILTER pool concatenated with CFS to
approximate SRTF. SFS steers Linux FIFO directly from the
user space and builds the FILTER policy as a high-priority
queue for short functions. SFS transparently leverages CFS as
a black-box, lower-priority queue for longer functions. Note
that functions running in CFS share the same set of cores as
those running in FILTER mode. Starvation is mitigated since
CFS is work-conserving and can immediately schedule any
demoted functions on any available CPU core.

D. Handling I/Os
Since SFS is a user-space scheduler, it cannot transparently

handle kernel-level tasks such as context switches, interrupts,
and preemptions, etc. That is, an SFS worker could be waiting
for a blocked function that has already been preempted due to
an I/O event. This leads to sub-optimal decision-making with
regard to function timekeeping and time slice estimation. To
solve this issue, SFS workers track the kernel-level process
status of the function by periodically issuing a polling request
to the OS. When a function is in its CPU burst, its kernel-level
status is in running mode. Whenever a function changes its
kernel-level status from running to sleep, the SFS worker
detects this transition, stops its timekeeping and records the
unused time slice, reduces its priority, and schedules the next
available function from the global queue. Note that, when a
high-priority function blocks by I/O, CFS automatically sneaks
in and executes other functions that have been filtered by SFS.
This guarantees seamless work conservation. When the status
of a waiting function changes to runnable, SFS adds it back
to global queue. When this function gets rescheduled in the
FILTER pool, it will execute until it completes or it uses up
the rest of the time slice. We use 4 ms as the polling interval.
We evaluate this scheme in §VIII-B and its overhead in §IX-B.

E. Handling Overload
Real-world FaaS workloads exhibit highly bursty and un-

predictable load patterns [48, 61]. Alibaba Function Compute
workload analysis reports transient spikes of concurrent invo-
cations to the same function [61]. When an increasing number
of short functions get piled up at global queue in a very short
time (increasing arrival rate � in Equation 2), the service rate
of SFS’ FILTER pool, cµ, cannot catch up with the workload
spike. This transient (temporary) overload leads to increased
traffic intensity, ⇢, therefore, increased queuing delay and even
function request drop. Reducing the time slice of the FILTER
pool helps little in this scenario. This is because a FILTER
time slice shorter than that of CFS would cause more context
switches than CFS; as a result, the piled-up FIFO function
requests from the transient overload create backlog that cannot
be quickly consumed by FILTER workers (see Figure 12(a) as
an example). To solve this issue, SFS temporarily switches to
CFS when any SFS worker detects increasing queuing delay of

the function request that it is about to schedule using FILTER.
As long as the queuing delay lowers back to normal, SFS
workers roll back to the normal scheduling flow.

This strategy, though simple, is in fact very effective because
of the following reasons. Offloading accumulated functions to
CFS alleviates high queuing delays in the FILTER pool by
draining the backlog more quickly. Since overload is tran-
sient, regular load coming after that can then be serviced by
SFS’ default, time-slice-based FILTER pool first, thus, short
functions experience no further queuing delays and can finish
in one round before the time slice expires. Those function
requests that are offloaded during the overload to CFS are
eventually complete thanks to CFS’ work conservation. An
SFS worker detects overload if the queuing delay is at least
O ⇥ S. We set O as 3 empirically. We evaluate the efficacy
of this strategy in §VIII-B.

VI. SFS IMPLEMENTATION

We have implemented SFS as a standalone, user-space
function scheduler in Go. We have also ported SFS to an
open-source FaaS platform OpenLambda [31]. Porting SFS
to OpenLambda required a very small engineering effort: we
modified/added 29 lines of Go/Python code in OpenLambda
worker and sandbox server to interface with SFS.
Standalone SFS. We implemented the SFS global queue
structure using Go’s built-in, thread-safe channel. SFS workers
are goroutines (a lightweight user-level thread of execution
managed by the Go runtime), which are responsible for
dispatching and scheduling function processes in the FILTER
pool. Function invocation requests are pushed into the global
queue channel by an external, backend FaaS server (Figure 3-
4). SFS implements the switching from FILTER pool to CFS
pool by using Linux schedtool [14]. Function invocation
requests are executed in sandboxed processes scheduled by
either SFS workers or the CFS scheduler.

We chose to implement a global queue instead of using
a per-core-queue (i.e., multi-queue) design because a single
global queue guarantees natural work conservation with good
load balancing across all CPU cores. It is demonstrated that
a per-core-queue design has multiple downsides, e.g., severe
load imbalance, core under-utilization, and degraded perfor-
mance [44]. In our current implementation, the global queue is
implemented using a Go channel (with nanosecond enqueue/d-
equeue latency under multi-threaded environments), which is
capable of handling up to 100 CPU cores each running tasks
with a duration from ms to seconds. A single global queue,
however, might become a bottleneck if assuming hundreds of
CPU cores and microsecond-level function execution duration.
Since the server hosts deployed by a typical FaaS provider
may have up to 100 vCPUs [16], our global queue design is
an appropriate solution.

SFS workers are work-conserving: each worker is blocked
on global queue and fetches a function request whenever the
queue has entries to consume. To implement FILTER policy,
SFS workers use schedtool to change a running function
process’ OS scheduling policy from CFS (SCHED_NORMAL) to

OL worker

OL worker

…

HTTP sandbox servers

func

func

func

…

SFS
scheduler

<pid, Tinv>

<pid, Tinv>

<pid, Tinv>

OpenLambda

HT
TP

 in
vo

ca
tio

n
re

qu
es

ts

Fig. 5: Porting SFS to OpenLambda. OL: OpenLambda.

FIFO (SCHED_FIFO). When the server is under low utilization,
a function that is dispatched by the FaaS server may execute in
CFS for a very short period of time (hundreds of microseconds,
depending on the communication overhead between the FaaS
server and SFS). Under this situation, CFS performs the same
as SFS due to zero contention. A non-empty global queue
indicates that all CPU cores are busy serving function requests;
if so, newly dispatched functions are internally queued at OS-
level run queues (§II-B) as CFS jobs have inherently lower
priority than actively running FIFO jobs. SFS workers preempt
a FIFO function’s execution by using schedtool to assign
it a lower priority. SFS workers detect blocking events by
periodically (4 ms) polling the function process’ OS status
using a go process utilities library gopsutil [9].

SFS is designed to be, in principle, portable to any open
source FaaS platforms such as OpenLambda [31], Open-
Whisk [55], and OpenFaaS [11], as they all share the same
client-server architecture. To demonstrate the portability, we
have ported SFS to OpenLambda. As shown in Figure 5,
a backend OpenLambda deployment consists of two compo-
nents: (1) a cluster of OpenLambda workers that are respon-
sible for receiving function invocation requests, performing
sandbox auto-scaling, and tracking statistics, and (2) a cluster
of HTTP servers that manage function sandboxes. In our
implementation, we chose Docker containers as the function
sandbox. On-demand container provisioning (i.e., cold start)
incurs high overhead. Therefore, we disabled auto-scaling
and pre-warmed enough function containers to simulate a
stable-phase FaaS backend so as to accurately quantify the
performance of schedulers.
Porting SFS to OpenLambda. We modified OpenLambda’s
HTTP sandbox server to communicate with SFS scheduler
using UDP: whenever a sandbox server dispatches a function
request to OS, it sends to SFS a UDP message containing
function process PID and invocation timestamp.

VII. EXPERIMENTAL METHODOLOGY

Setup. We developed and tested SFS on CloudLab [23]. We
evaluated SFS and SFS-ported OpenLambda on two AWS
EC2 VMs: a small, c5a.4xlarge VM with 16 vCPUs and
64 GB memory (standalone SFS), and a large, bare-metal,
m5.metal EC2 instance with 96 vCPUs and 384 GB memory
(OpenLambda). The goal of using a large bare-metal machine
is to simulate a similar FaaS deployment environment used by
major FaaS providers such as AWS Lambda [16].

FaaSBench. We have built a FaaS workload generator called
FaaSBench, which creates FaaS workloads modeled after
the Azure Functions workload [48]. FaaSBench is highly
configurable along the following dimensions: (1) FaaSBench
configures per-function behaviors by using a Fibonacci (fib)
function with two knobs: an integer knob N for controlling
the compute time, and a boolean knob IO that toggles the
I/O operation (if set true) to simulate I/O-intensive functions.
The distributions of (2) function duration and (3) requests’
inter-arrival times (IATs) are also configurable.

TABLE I: Probability distribution of func-
tion duration ranges and the corresponding
fib Ns. Note ranges are non-contiguous
and each missing range has less than 1%
probability in Azure traces (Day 1).

Probability Duration N

40.6% 0-50 ms 20-26
9.8% 50-100 ms 27-28
6.8% 100-200 ms 29
22.7% 200-400 ms 30-31
15.7% � 1550 ms 34-35

Generating FaaS
Workloads. We
based the Azure
Functions traces
to generate testing
workloads. The
original Azure
traces contain the
execution duration,
memory sizes,
and invocation
timestamps of 82, 375 unique function applications spanning
a period of 14 days. To downscale, we generated the
distribution of function execution duration based on Day
1’s invocation statistics. We found that the duration roughly
follows a multimodal distribution, where about 40.6%, 22.7%,
and 15.7% of invocations fall in a duration (unit of ms) range
of (0, 50], [200, 400), and [1550,1), respectively. We built a
table that maps the range of execution duration recorded in
Day 1 to fib’s Ns (Table I), and then used Azure function
duration distribution to generate Ns using FaaSBench. For
example, fib with an N between 20-26 finishes execution
in less than 45 ms, therefore, we programmed FaaSBench
to generate fib functions with an N between 20-26 with a
probability of 40.6%. FaaSBench can also generate different
duration distributions (results omitted due to page limit).

The released Azure trace datasets only contain the high-level
statistical breakdown information that describes the function
execution behaviors. To make sure that our study captures the
original Azure Functions workload as accurately as possible,
we took the 50th percentile execution duration as the expected
execution time for a function. This way, our benchmark rules
out outliers that do not represent the typical behaviors of the
original workload.

To configure IATs of the generated workload, we randomly
sampled 100 unique function applications, each with a total
invocation count greater than 200 on Day 1, and extracted the
IAT statistics. We then replayed the first 10, 000 invocation
requests by strictly following the extracted IAT patterns.
This is to guarantee that our generated workload preserves
similar load patterns as real-world, production workloads. In
addition to modeling existing trace’s IATs, FaaSBench can also
generate Poisson and uniform IATs. We ran each test multiple
times and results had negligible variation across runs.

Goals. Our evaluation aims to answer the following questions:

Fig. 6: Performance CDF. Fig. 7: RTE CDF.

Fig. 8: Percentile breakdowns of function execution duration.

• How does SFS perform under various loads (§VIII-A)?
• How do different SFS configurations affect its performance

(§VIII-B)?
• How does an SFS-ported FaaS platform (OpenLambda)

perform (§IX)?

VIII. EVALUATING STANDALONE SFS

In this section, we evaluate SFS as a standalone function
scheduler using FaaSBench. The goal of evaluating standalone
SFS is to better understand the true performance characteris-
tics of task scheduling without the extra overhead introduced
by a FaaS platform.

A. SFS Efficiency under Various Loads
We first test SFS under different loads using the Azure-

sampled workload generated by FaaSBench, which follows
the duration distribution of Azure traces (Table I) with a
Poisson IAT distribution. We adjusted the IAT of the generated
workload proportionally to simulate different loads ranging
from 50% to 100% of overall CPU utilization across all CPU
cores. Figure 6 reports the CDF of the execution duration. SFS
performed almost the same as CFS under the lowest 50% load
and slightly outperformed CFS under medium loads when the
load increased from 65% to 80%. SFS’ marginal improvement
was obtained because of a higher RTE. As shown in Figure 7,
about 93% and 88% of all function requests receive an RTE
� 0.95 under a load of 65% and 80%, respectively, indicating
that these functions run to completion without any context
switch under SFS (with a very short queuing delay when the
request was initially submitted). CFS is workload-oblivious,
which introduces more context switches; under a load of 65%
and 80% with CFS, only 55% and 35% of all function requests

receive an RTE score � 0.95, where a lower RTE translates
to prolonged waiting time.

An interesting observation is that SFS maintains almost
identical performance for 83% of the function requests across
all load levels. In other words, at least 83% of the function
requests can achieve optimal execution duration and an RTE
score of almost 1 even under a high load where all CPUs are
100% utilized.

Under CFS, the same set of functions, on the other hand,
saw dramatically increased execution duration because of
prolonged waiting time (Figure 7). This result demonstrates
SFS’ efficacy in sustaining dynamic FaaS workloads.

The performance gain of shorter functions under SFS does
not come for free: there is always a tradeoff in balancing
the scheduler efficiency for short and long jobs [64]. SFS
observed slightly higher tail latency. For the 17% relatively
long functions, SFS observed an average increase of 1.29⇥
in execution duration compared to CFS under the 100% load.
The 99.9th percentile latency of SFS under 80% load is only
47.1% higher than that of CFS (Figure 8). CFS, while being
a proportional-share scheduler, does suffer long tail latency
even under relatively lower load; this can be seen from the
fact that the 99.9th percentile latency of CFS increases from
3.3 seconds under the 50% load to 22.1 seconds under the
65% load; though the increase of the 99.9th percentile tail
latency under SFS is slightly higher than that under CFS.

Interestingly, SFS achieved a consistent medium (50th
percentile) latency of 0.1 second across all load levels, while
CFS’ medium latency increases as the load increases. Longer
functions could be potentially offloaded to relatively lighter-
loaded FaaS servers by the global FaaS scheduler to mitigate
the performance impact, which we plan to investigate as part
of our future work.

More importantly, even under a 100% load, SFS offers short
functions consistently competitive performance comparable to
a performance level that would have been achieved under
less stringent load situations, say 65%–90% load. This would
bring desired benefits for both parties, including mitigated
overcharges for FaaS users and higher resource utilization
(thus reduced deployment costs) for FaaS providers.
B. Sensitivity Analysis
Impact of Time Slice Configurations. Next, we conduct a
sensitivity test by varying the time slice parameters S. We

Fig. 9: Adaptive time slice tuning vs.
statically fixed time slices.

Fig. 10: Timeline of time slice changes vs. IATs
during the whole workload.

Fig. 11: Handling I/O. SFS was config-
ured to use different polling intervals.

fixed S to 50, 100, 200 and compared against SFS’s dynamic
adaptation heuristic. Figure 9 shows that none of the three
statically configured S led to optimal performance. SFS’s
adaptive strategy yields better performance than a static S of
100 ms and 200 ms by adapting S based on the last 100
observed IAT samples. This is because a long, fixed time slice
inevitably increased queuing delay of waiting functions.

Figure 10 depicts the timeline of the adaptation. Having
a smaller, fixed S as short as 50 ms resulted in better
performance for around 30% short function requests compared
to SFS, but at the same time, it suffered from significantly
prolonged duration for the rest of 70% requests. SFS struck a
good balance of queuing delays and service time, leading to
better overall performance.
Handling I/O. To evaluate how SFS handles I/O events in
functions, we toggled the I/O knob for 75% of the function
requests, for which we added a single I/O operation at the
beginning of the function execution; the added I/O operation
took X ms, where X was randomized drawn from a range
between 10 to 100 ms. As shown in Figure 11, I/O-oblivious
SFS had worse performance, because FILTER pool wasted
time slice credit waiting for the I/O to be served, causing
them to be filtered out to CFS. In contrast, SFS was able to
detect I/O-caused waiting by using periodic status polling. We
varied the polling interval from 1 ms to 8 ms and found that
the performance was not sensitive to the polling frequency.
Handling Overload. We finally test the effectiveness of
SFS’s hybrid strategy to handle the transient overload. The
Azure-sampled workload exhibits transient overloads, which
can be spotted from the five queuing delay spikes shown in
Figure 12(a). Note we only measured the time a function spent
waiting in SFS’ global queue. With overload detection dis-
abled, SFS suffered significantly long queuing delays. Spiked
queuing delays took long to diminish because the normal
workload coming after the temporary load spikes caused a
longer backlog of requests. By detecting the sudden increase
of queuing delay, SFS temporarily switched to CFS. This
helped quickly consume the backlog from the global queue
so that normal load coming after the spikes can be served by
using SFS’s default FILTER pool. A direct effect is a smooth
queuing delay curve (Figure 12(a)) and considerable reduction
of turnaround times for about 50% of function requests (Fig-
ure 12(b)). More importantly, Figure 12(b) demonstrates that

CFS or FILTER policy alone (SFS with overload detection
disabled) is not sufficient to handle transient overload; SFS’s
hybrid strategy effectively combines the best of both policies
to achieve minimum turnaround time.

IX. OPENLAMBDA EVALUATION

A. End-to-End Efficiency

We used FaaSBench to generate a more comprehensive
FaaS workload, which includes three function applications:
Fibonacci sequence (fib), markdown generation (md), and
sentiment analysis (sa). As mentioned, fib calculates a
sequence of N Fibonacci numbers and is CPU-heavy. . md
reads a JSON file from the function’s local storage and
transfers it to the markdown format; md’s execution is I/O-
intensive. sa reads a file that contains a sentiment vocabulary
dictionary and then predicts the sentimentality given a target
sentence; sa is both CPU-intensive and I/O-intensive. This
workload reused the same function duration distribution and
IAT distribution of the Azure-sampled workload. OpenLambda
was deployed to use 72 cores of the EC2 bare-metal instance,
following an architecture depicted in Figure 5. We varied
the IAT to generate three load levels: 80%, 90%, and 100%.
The OpenLambda deployment introduced extra overhead at
various levels, including the OpenLambda worker servers
and the HTTP sandbox servers. These overheads diminished
the performance benefits of SFS to some extent; however,
as we will show, SFS can still provide huge performance
improvement for the majority of functions that are short.

Figure 13 and 14 report the distributions of function execu-
tion duration and RTE. The functions ran on average 14.1%
longer with OpenLambda+CFS under 80% load than Open-
Lambda+SFS under the same load. When the load increased,
OpenLambda+CFS started to see performance degradation,
while OpenLambda+SFS achieved almost identical perfor-
mance under all the three loads. As shown in Figure 15,
OpenLambda+SFS observed a 99th percentile duration of
4.75 seconds, a 1.65⇥, 4.04⇥, and 7.93⇥ speedup compared
to OpenLambda+CFS under the load of 80%, 90%, and
100%, respectively. We also measured the number of context
switches occurred under the three loads. Figure 16 shows
the normalized context switches for each function request.
Under the 80% and 100% load, more than 99% of function
requests scheduled by CFS had more context switches than

(a) Timeline of queuing delays. (b) CDF of function duration.

Fig. 12: Effect of SFS’s overload handling mechanism. SFS w/o hybrid refers to SFS’s baseline implementation with the hybrid
FILTER+CFS mode disabled (see §V-E).

Fig. 13: Performance CDF. Fig. 14: RTE CDF.

Fig. 15: Percentile breakdowns of function execution
duration.

Fig. 16: The ratio of CFS context switches to that
of SFS.

SFS. For about 85% of requests, CFS suffered 10⇥ more
context switches than SFS.
B. SFS Overhead

SFS incurs a small runtime overhead. There are two sources
of overhead: (1) SFS uses goroutines as scheduling workers:
function scheduling incurs some overhead; (2) SFS workers
perform periodic polling to check the kernel status of the func-
tion process. The polling overhead is the dominant overhead.

TABLE II: SFS’ (relative) CPU overhead in
support of a 72-core OpenLambda deployment.

Interval min average medium max
1 ms 1.6% 3.8% 3.8% 6.2%
4 ms 1.3% 3.6% 4.0% 6.2%
8 ms 1.4% 3.4% 3.9% 6.6%

Table II shows
SFS’ CPU
usage in
the 72-core
OpenLambda
tests. With a

polling interval of 4 ms, SFS’ average CPU usage was
259.8% for the Azure-sampled workload, meaning that
an extra of 2.6 cores were needed in order to boost a
72-core OpenLambda deployment, a relative overhead of
only 2.6/72 = 3.6%. About 74.4% of the total overhead was
for periodic status polling, while the rest of 25.6% was for
scheduling activities.

X. DISCUSSION

In this section, we discuss the limitations and possible future
directions of SFS.
Impact of Function Cold Start. Significant function cold
start costs may offset the benefit of SFS, especially for short
functions. Optimizing the cold start cost of serverless functions
is an important and challenging problem that has drawn great

attention from the community. Commercial FaaS platforms
use sandbox and runtime caching extensively to mitigate the
impact of cold start on function performance [62, 63]. The
Azure Functions workload analysis [48] reports that even a
naive keep-alive function warmup policy can guarantee zero
cold start for around 50% of the function applications; with
even smarter policies [48, 25, 46], the cold start rate could be
further reduced to less than 10% for all the function requests
served on a single function host server. We foresee that most
if not all the function requests would be executed without a
cold start penalty with the recent advancement in cold start
optimization [22, 39, 50, 41, 42, 61]; this makes the OS-level
function scheduling—the “last mile” of a function request—a
practical and urgent research problem that demands effective
solutions like SFS.
Why User-Space? SFS is designed to be a standalone, user-
space function scheduler, which can be transparently plugged
into existing FaaS platforms. While a kernel implementation
of SFS would certainly work, with possibly less runtime
overhead but much higher engineering efforts, a user-space
implementation offers future-proof flexibility by retaining all
the desirable properties of existing Linux scheduling facil-
ities. With decades of research in datacenter workload co-
location [59, 56, 40, 45, 26], soon we will see co-location of
production FaaS workloads with other cloud computing work-
loads. CFS, as the battle-tested, general-purpose scheduling
solution for a wide range of workloads, would still play a key
role in balancing the CPU resource usage. SFS is designed
to co-exist with and complement an existing OS scheduler
in these scenarios. Moreover, co-location of highly diverse
workloads is likely to cause more intense CPU contention,
thus demanding future research.

XI. RELATED WORK

Scheduling Short and Long Jobs. Improving turnaround time
by approximating SRTF is a well-known approach that has
been investigated in many domains [47, 24, 51, 30, 29]. A
series of systems use request sizes as the hint to approximate
SRTF. Size-based scheduling gives preference to requests
for small files targeting web servers serving static HTTP
requests [30]. Similarly, Harchol-Balter et al. applied SRTF
to webserver request scheduling based on sizes of Linux
kernel socket buffers [29]. Inspired by these works, SFS
presents a practical priority scheduler that addresses many of
the challenges in emerging, real-world FaaS workloads.
Scheduling for Fine-grained I/O Workloads. Shenango [43],
Shinjuku [36], and ZygOS [44] use scheduling techniques such
as core re-allocation, preemption, and work-stealing. These
techniques optimize tail latency of small key-value requests
whose service time is highly predictable; Shenango and Shin-
juku assume long jobs co-located with small key-value request
serving jobs—batch applications or range queries—whose
application type is either known ahead or can be obtained
from packet inspection. In contrast, SFS does not assume a
priori knowledge about function types or execution time but
instead requires a very small amount of historical statistics for
online time slice adjustment.

Serverless Function Scheduling. Centralized, core-granular
scheduling [38] uses two-level scheduling: it uses centralized
scheduling to eliminate queue imbalance and core granular
scheduling to reduce the interference caused by proportional-
share. Core-granular scheduling assumes: (1) non-preemption,
meaning a function, once scheduled to a worker core, runs
to completion (i.e., running in FIFO), and (2) massive dis-
tributed resources, meaning the scheduler can always find
available cores to schedule a function request. SFS shares
similar goals but targets a local server scheduling environment,
where the OS scheduling plays a critical role. Another line
of work is focused on distributed or FaaS platform-level
function scheduling [52, 53, 33, 57, 65] by using function
placement optimization, low-latency I/Os, data locality, and
reinforcement learning. Serverless dataflow frameworks use
variants of cluster scheduling techniques [20, 19, 34, 49, 54]
for serverless workflow applications. These works use the
Linux scheduler for “last mile”, OS-level task scheduling and
would benefit from SFS.
User-defined Scheduling. Syrup [37] and ghOSt [32] allow
developers to implement application-specific scheduling poli-
cies directly in the user space. Syrup uses the eBPF [6] maps
data structure to support user-kernel communication, while
ghOST uses message queues and transactions for user-kernel
communication. A user-defined policy may, however, observe
significant user-kernel communication cost if the application
needs frequent user-level scheduling adjustment; this is the
case for serverless scheduling, where the time slice needs to
be frequently and dynamically tuned by the scheduler.

XII. CONCLUSION

Serverless computing promises fine-grained resource man-
agement, accounting, and billing at the milliseconds level.
However, in practice, FaaS workloads are highly heteroge-
neous and latency-sensitive, and have shown great volatility
in execution durations. In this work, we have shown, via the
design and implementation of a user-space scheduler SFS
and empirical evaluation, that SFS, by approximating SRTF
scheduling, can significantly reduce the execution duration of
short functions. SFS approximates SRTF with a dynamic and
adaptive time slice in a first-level, global queue to combine
the best worlds of FIFO and RR, while defaulting to the
underlying OS-level scheduler in the second-level queue. SFS
is transparent and can be easily ported to existing FaaS
platforms. as we have demonstrated through an open-source
FaaS platform OpenLambda. We hope that SFS will inspire
new OS-level scheduling policies attuned to FaaS applications
and open doors to new, FaaS-oriented SLO rules. SFS is
available at: https://github.com/ds2-lab/SFS.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their
valuable comments and suggestions that improved the paper.
This work is sponsored in part under an NSF CAREER Award
CNS-2045680, CCF-1919075, CCF-1919113, OAC-2106446,
CMMI-2134689, CNS-2007153, an Adobe Research gift, and
an AWS CloudBank grant.

https://github.com/ds2-lab/SFS

REFERENCES

[1] 2018 Serverless Community Survey: huge growth
in serverless usage. https://serverless.com/blog/
2018-serverless-community-survey-huge-growth-usage/.

[2] Amazon Web Services. https://aws.amazon.com/.
[3] AWS Lambda. https://aws.amazon.com/lambda/.
[4] Azure Functions. https://azure.microsoft.com/en-us/

services/functions/.
[5] Docker. https://www.docker.com/.
[6] eBPF Project. https://ebpf.io/.
[7] Google Cloud Functions. https://cloud.google.com/

functions/.
[8] Google Cloud Platform. https://cloud.google.com/.
[9] gopsutil. https://github.com/shirou/gopsutil.

[10] Microsoft Azure Cloud. https://azure.microsoft.com/
en-us/.

[11] OpenFaaS. https://www.openfaas.com/.
[12] sched(7) — Linux manual page. https://man7.org/linux/

man-pages/man7/sched.7.html.
[13] The OpemLambda Project. https://open-lambda.org/.
[14] Ubuntu Mannuals: schedtool. https://wiki.xenproject.org/

wiki/Credit_Scheduler.
[15] Xen Credit Scheduler. http://manpages.ubuntu.com/

manpages/trusty/man8/schedtool.8.html.
[16] Alexandru Agache, Marc Brooker, Alexandra Iordache,

Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtualiza-
tion for serverless applications. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 419–434, Santa Clara, CA, February
2020. USENIX Association.

[17] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel
Stein, Klaus Satzke, Andre Beck, Paarijaat Aditya, and
Volker Hilt. SAND: Towards high-performance server-
less computing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 923–935, Boston,
MA, 2018. USENIX Association.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003.

[19] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar,
Panruo Wu, and Yue Cheng. Wukong: A scalable
and locality-enhanced framework for serverless parallel
computing. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 1–15, New York,
NY, USA, 2020. Association for Computing Machinery.

[20] Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue
Cheng. In search of a fast and efficient serverless
dag engine. In 4th International Parallel Data Systems
Workshop (PDSW 2019), 2019.

[21] Edward G Coffman Jr and Leonard Kleinrock. Com-
puter scheduling methods and their countermeasures. In
Proceedings of the April 30–May 2, 1968, spring joint
computer conference, pages 11–21, 1968.

[22] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 467–481, New York, NY,
USA, 2020. Association for Computing Machinery.

[23] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang, Glenn Ricart, Larry Landweber, Chip
Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin
Kar, and Prabodh Mishra. The design and operation
of CloudLab. In Proceedings of the USENIX Annual
Technical Conference (ATC), pages 1–14, July 2019.

[24] D. H. J. Epema. An analysis of decay-usage scheduling
in multiprocessors. In Proceedings of the 1995 ACM
SIGMETRICS Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIGMET-
RICS ’95/PERFORMANCE ’95, page 74–85, New York,
NY, USA, 1995. Association for Computing Machinery.

[25] Alexander Fuerst and Prateek Sharma. Faascache:
Keeping serverless computing alive with greedy-dual
caching. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, page
386–400, New York, NY, USA, 2021. Association for
Computing Machinery.

[26] Panagiotis Garefalakis, Konstantinos Karanasos, Peter
Pietzuch, Arun Suresh, and Sriram Rao. Medea: Schedul-
ing of long running applications in shared production
clusters. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, pages 4:1–4:13, New York,
NY, USA, 2018. ACM.

[27] Samuel Ginzburg and Michael J Freedman. Server-
less isn’t server-less: Measuring and exploiting resource
variability on cloud faas platforms. In Proceedings of
the 2020 Sixth International Workshop on Serverless
Computing, pages 43–48, 2020.

[28] Jim Gray. Why do computers stop and what can be done
about it?, 1985.

[29] Mor Harchol-Balter, Nikhil Bansal, Bianca Schroeder,
and Mukesh Agrawal. Implementation of srpt scheduling
in web servers. 04 2001.

[30] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal,
and Mukesh Agrawal. Size-based scheduling to im-
prove web performance. ACM Trans. Comput. Syst.,
21(2):207–233, May 2003.

[31] Scott Hendrickson, Stephen Sturdevant, Tyler Har-
ter, Venkateshwaran Venkataramani, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Serverless com-
putation with openlambda. In 8th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 16), Denver,
CO, June 2016. USENIX Association.

[32] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://aws.amazon.com/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.docker.com/
https://ebpf.io/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/
https://github.com/shirou/gopsutil
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.openfaas.com/
https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://open-lambda.org/
https://wiki.xenproject.org/wiki/Credit_Scheduler
https://wiki.xenproject.org/wiki/Credit_Scheduler
http://manpages.ubuntu.com/manpages/trusty/man8/schedtool.8.html
http://manpages.ubuntu.com/manpages/trusty/man8/schedtool.8.html

Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg
Rombakh, Paul Turner, and Christos Kozyrakis. Ghost:
Fast & flexible user-space delegation of linux scheduling.
In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 588–604,
New York, NY, USA, 2021. Association for Computing
Machinery.

[33] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient
and scalable serverless computing for latency-sensitive,
interactive microservices. In Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS 2021, page 152–166, New York, NY, USA,
2021. Association for Computing Machinery.

[34] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99In Proceedings of the 2017 Sympo-
sium on Cloud Computing, SoCC ’17, pages 445–451,
New York, NY, USA, 2017. ACM.

[35] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Sto-
ica, and David A. Patterson. Cloud programming simpli-
fied: A berkeley view on serverless computing. Technical
Report UCB/EECS-2019-3, EECS Department, Univer-
sity of California, Berkeley, Feb 2019.

[36] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for microsecond-scale
tail latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345–360, Boston, MA, February 2019. USENIX Asso-
ciation.

[37] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-defined scheduling
across the stack. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, SOSP
’21, page 605–620, New York, NY, USA, 2021. Associ-
ation for Computing Machinery.

[38] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Centralized core-granular scheduling for
serverless functions. In Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC ’19, page 158–164,
New York, NY, USA, 2019. Association for Computing
Machinery.

[39] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng,
Chuhao Xu, Deze Zeng, Zhuo Song, Tao Ma, Yong Yang,
Chao Li, and Minyi Guo. Help rather than recycle:
Alleviating cold startup in serverless computing through
Inter-Function container sharing. In 2022 USENIX An-
nual Technical Conference (USENIX ATC 22), pages 69–
84, Carlsbad, CA, July 2022. USENIX Association.

[40] Qixiao Liu and Zhibin Yu. The elasticity and plasticity in
semi-containerized co-locating cloud workload: A view
from alibaba trace. In Proceedings of the ACM Sym-

posium on Cloud Computing, SoCC ’18, page 347–360,
New York, NY, USA, 2018. Association for Computing
Machinery.

[41] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna
Edupuganti, Naren Nayak, and Vadim Sukhomlinov. Ag-
ile cold starts for scalable serverless. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
19), Renton, WA, July 2019. USENIX Association.

[42] Edward Oakes, Leon Yang, Dennis Zhou, Kevin
Houck, Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 57–70,
Boston, MA, 2018. USENIX Association.

[43] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving high
CPU efficiency for latency-sensitive datacenter work-
loads. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 361–
378, Boston, MA, February 2019. USENIX Association.

[44] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 325–341, 2017.

[45] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, New York, NY, USA, 2012.
Association for Computing Machinery.

[46] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari.
Icebreaker: Warming serverless functions better with het-
erogeneity. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’22, page
753–767, New York, NY, USA, 2022. Association for
Computing Machinery.

[47] Bianca Schroeder and Mor Harchol-Balter. Web servers
under overload: How scheduling can help. ACM Trans.
Internet Technol., 6(1):20–52, February 2006.

[48] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and op-
timizing the serverless workload at a large cloud provider.
In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 205–218. USENIX Association, July
2020.

[49] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan
Pu, Benjamin Recht, Ion Stoica, Jonathan Ragan-Kelley,
Eric Jonas, and Shivaram Venkataraman. Serverless
linear algebra. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC ’20, page 281–295,
New York, NY, USA, 2020. Association for Computing
Machinery.

[50] Wonseok Shin, Wook-Hee Kim, and Changwoo Min.

Fireworks: A fast, efficient, and safe serverless frame-
work using vm-level post-jit snapshot. In Proceedings
of the Seventeenth European Conference on Computer
Systems, EuroSys ’22, page 663–677, New York, NY,
USA, 2022. Association for Computing Machinery.

[51] Armando P. Stettner. The Design and Implementation of
the 4.3BSD UNIX Operating System. Addison-Wesley
Longman Publishing Co., Inc., USA, 1988.

[52] Amoghavarsha Suresh, Gagan Somashekar, Anandh
Varadarajan, Veerendra Ramesh Kakarla, Hima Upad-
hyay, and Anshul Gandhi. Ensure: Efficient schedul-
ing and autonomous resource management in serverless
environments. In 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems
(ACSOS), pages 1–10, 2020.

[53] Amoghvarsha Suresh and Anshul Gandhi. Fnsched: An
efficient scheduler for serverless functions. In Proceed-
ings of the 5th International Workshop on Serverless
Computing, WOSC ’19, page 19–24, New York, NY,
USA, 2019. Association for Computing Machinery.

[54] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner,
and Siddharth Lanka. Sequoia: Enabling quality-of-
service in serverless computing. In Proceedings of the
11th ACM Symposium on Cloud Computing, SoCC ’20,
page 311–327, New York, NY, USA, 2020. Association
for Computing Machinery.

[55] Markus Thömmes. Squeezing the milliseconds: How to
make serverless platforms blazing fast! https://goo.gl/
zvqtBP.

[56] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: The next generation.
In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[57] Gustavo Totoy, Edwin F Boza, and Cristina L Abad. An
extensible scheduler for the openlambda faas platform.
Min-Move’18, 2018.

[58] Paul Turner, Bharata B Rao, and Nikhil Rao. Cpu

bandwidth control for cfs. In Proceedings of the Linux
Symposium, pages 245–254, 2010.

[59] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Computer
Systems, EuroSys ’15, pages 18:1–18:17, New York, NY,
USA, 2015. ACM.

[60] Carl A. Waldspurger and William E. Weihl. Lottery
scheduling: Flexible proportional-share resource manage-
ment. In Proceedings of the 1st USENIX Conference
on Operating Systems Design and Implementation, OSDI
’94, page 1–es, USA, 1994. USENIX Association.

[61] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang,
Haoran Yang, Huiba Li, Rui Du, and Yue Cheng. Faas-
net: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 443–457. USENIX Association, July
2021.

[62] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar,
Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov,
Feng Yan, and Yue Cheng. InfiniCache: Exploiting
ephemeral serverless functions to build a Cost-Effective
memory cache. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), pages 267–281, Santa
Clara, CA, February 2020. USENIX Association.

[63] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas
Ristenpart, and Michael Swift. Peeking behind the
curtains of serverless platforms. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 133–146,
Boston, MA, 2018. USENIX Association.

[64] Adam Wierman and Bert Zwart. Is tail-optimal schedul-
ing possible? Oper. Res., 60(5):1249–1257, sep 2012.

[65] Hanfei Yu, Athirai A. Irissappane, Hao Wang, and Wes J.
Lloyd. Faasrank: Learning to schedule functions in
serverless platforms. In 2021 IEEE International Con-
ference on Autonomic Computing and Self-Organizing
Systems (ACSOS), pages 31–40, 2021.

https://goo.gl/zvqtBP
https://goo.gl/zvqtBP

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We evaluate SFS (standalone) and an SFS-port Openlambda as de-
scribed in Section 8 and 9.

We set up two AWS EC2 VMs: a small, c5a.4xlarge VM with 16
vCPUs and 64 GB memory for standalone SFS, and a large, bare-
metal, m5.metal EC2 instance with 96 vCPUs and 384 GB memory
for SFS-ported OpenLambda. The goal of using a large bare-metal
machine is to simulate a similar FaaS deployment environment
used by major FaaS providers such as AWS. Given that there are
82,375 unique functions in Azure trace, we generate downsized
FaaS workloads from Day 1, and we build a simple FaaSBench to
generate about 10,000 Fibonacci (fib) function tasks. FaasBench is
configurable. One can configure the behaviors of generated function
workload using the following two configuration parameters: an
integer parameter N for controlling the compute time of each fib
function, and a boolean parameter IO that toggles the I/O operation
(if set true) to simulate I/O activities.

We evaluate SFS standalone using various load levels. We change
the average IAT ratio defined in the workload reading module to
control overall CPU utilization. On the small VM (c5a.4xlarge) with
16 vCPU, we configure SFS standalone to use 12 vCPU. The work-
load configuration file specifies the function name, program, pa-
rameters, submission time, and invocation id for each function. For
example, a workload record can be "fib1 fib.py 27 5 1". This simple
configuration record encodes a Fibonnaci function job that executes
fib.py with a parameter of 27 (i.e., calculate the 27𝑡ℎ Fibonnaci se-
quence number) at time 1 (unit of millisecond). To enable variable
load, we allow users to configure the load level by changing the IAT
ratio in the readTrace module. We evaluate the performance under
an IAT ratio from 7 to 13, which leads to average CPU utilization
from 50% to 100%.

For sensitivity analysis, we optionally disable various optimiza-
tion components in SFS, including IO handling, overhead handling,
and time slice configuration. We provide details about how to dis-
able each component on Github. For IO handling analysis, we use
FaaSBench to generate IO-intensive function workload and evalu-
ate performance under 3 levels of polling intervals: 1ms, 4ms, and
8ms. For overhead handling, we evaluate queuing delays with and
without the hybrid strategy. To evaluate the efficiency of the adap-
tive time slice mechanism, we compare adaptive time slices with a
fixed time slices ranging from 50ms, 100ms, to 200ms.

When evaluating SFS-port OpenLambda (OL), we focus on end-
to-end efficiency and overhead. We evaluate an SFS-ported OL on a
96-vCPU VM (m5.metal), where we set up 64 OL workers for high
concurrency. To reduce task request overhead, we build an HTTP
client to submit function requests. We assign each OL worker a
specific port ranging from 5003 to 5066. The client stores a map
that maps the OL workers to ports and submits function jobs as
configured in a provided trace file. EachOLworker is responsible for
the same amount of tasks that run asynchronously. We configure 72
vCPU to be used by OL and set the IAT ratio from 1 to 3 to achieve
an average CPU utilization between 50% and 100%. During the

workload, we run trace-cmd to profile scheduled events. Overhead
is monitored by go pprof tools.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://github.com/ds2-lab/SFS
Artifact name: SFS
Citation of artifact: fishercht1995. (2022). ds2-lab/SFS: test0.0

(test0.0). Zenodo. https://doi.org/10.5281/zenodo.6588689
Reproduction of the artifact with container: In the repository, we

provide detailed instructions to build the experiment environment
and reproduce evaluation experiments.

To get started, SFS requires the following dependencies:
(1) Operating System: Ubuntu 20.04
(2) go version == 1.17.2
(3) schedtool version == v1.3.0

Grant SFS scheduler the permission to access large-amount of files
simultaneously by ulimit -n 1024000We provide a docker image
that executes a sample of workloads under CFS and SFS, you would
simple run the container by

docker run –privileged –name test –mount
type=bind,source="$(pwd)"/result,target=/result
fuyuqi1995/sfs

We also provide local SFS built by
go build && ./test.sh
Local SFS-port OpenLambda requires three sessions worked

together
(1) install openlambda

make imgs/lambda make install
./create.sh && python cp_default.py && python
replace.py

(2) initial SFS scheduler
go build go run main.go

(3) submit a workload by HTTP client
go build go run run.go

We have lots of sensitivity analysis on evaluation section, here we
provide how we make configurations.

(1) Adaptive time slice. To disable Adaptive time slice you can
comment out line 351 in SFS-standalone/sfs.go and you could
configure a fix time slice by change initial value on line 337.

(2) Overhead handling. To disable hybrid strategy, you can com-
ment out line 348 of SFS-standalone/sfs.go.

(3) IO handling. To disable IO handling, you can comment out
line 352 in SFS-standalone/sfs.go

(4) IAT rate. You could configure IAT rate on line 45 in SFS-
standalone/readTrace.go

Details of installing local SFS-standalone and SFS-port OpenLambda
are available at

https://github.com/ds2-lab/SFS

	Introduction
	Background
	FaaS Overview
	OS Task Scheduling

	Why is CFS a Poor Match?
	Motivation
	Azure Functions Workloads
	OpenLambda Measurement

	SFS Design
	Design Goals and Challenges
	Design Overview
	Dynamically Adapting Time Slices
	Handling I/Os
	Handling Overload

	SFS Implementation
	Experimental Methodology
	Evaluating Standalone SFS
	SFS Efficiency under Various Loads
	Sensitivity Analysis

	OpenLambda Evaluation
	End-to-End Efficiency
	SFS Overhead

	Discussion
	Related Work
	Conclusion

