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Abstract: Reactivity controlled compression ignition (RCCI) mode offers high thermal effi-
ciency and low nitrogen oxides (NOx) and soot emissions. However, high cyclic variability at
low engine load and high pressure rise rates at high loads limit RCCI operation. Therefore, it
is important to control the combustion event in an RCCI engines to prevent abnormal engine
combustion. To this end, combustion in RCCI mode was studied by analyzing the heat release
rates calculated from the in-cylinder pressure data at 798 different operating conditions. Five
distinct heat release shapes are identified. These different heat release traces were characterized
based on start of combustion, burn duration, combustion phasing, maximum pressure rise rate,
maximum amount of heat release, maximum in-cylinder gas temperature and pressure. Both
supervised and unsupervised machine learning approaches are used to classify different types
of heat release rates. K-means clustering, an unsupervised algorithm, could not cluster the
heat release traces distinctly. Convolution neural network (CNN) and decision trees, supervised
classification algorithms, were designed to classify the heat release rates. The CNN algorithm
showed 70% accuracy in predicting the shapes of heat release rates while decision tree resulted
in 74.5% accuracy in predicting different heat release rate traces.
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1. INTRODUCTION that reduces fuel rich zones inside the combustion chamber

Increased air pollution and stringent emission regulations ~ Which prevents soot formation (Agarwal et al., 2017).
have shifted the focus of automotive manufacturers and
researchers towards advanced combgstlon technologies for )0 qas including intake air heating, variable compression
better fuel economy and lower emissions. Low temperature  1,4i6 variable valve actuation, exhaust gas recirculation
combustlgn (LTC) is one of the advanced combustion (EGR), dual fuels, split fuel injections, and direct dual
technologies evolved over the last two decades. As the  fuel stratification (Shaver et al., 2004; Batool et al., 2022a;
name suggests, combustion temperatures in LTC engine Ry of al., 2012; Wissink and Reitz, 2015). Homogeneous
are usually low enough to prevent NOx formation (Batool charge compression ignition (HCCI), premixed charge
et al., 2022b). Furthermore, lean air-fuel mixture and early compression ignition (PCCI), partially premixed charge
injection of fuel result in more premixed air-fuel mixture compression ignition (PPCI), and reactivity controlled
compression ignition (RCCI) are the common LTC modes.

Several strategies have been proposed to achieve LTC

* This work is supported by the United States National Science Combustion in RCCI mode is achieved by using two fuels
Foundation (awards #1762520 and #1762595) and the U.S Depart- of different reactivity. The premixed ratio of two fuels
ment of State, Bureau of Educational and Cultural Affairs, Fulbright d the ini . . f hich .. fuel id
Program. and the injection timing of high reactivity fuel provide
better control means to adjust the combustion process

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.11.248



602 Radhika Sitaraman et al. / IFAC PapersOnLine 55-37 (2022) 601-607

in RCCI (Dempsey, 2013). However, RCCI operation is
limited due to high MPRR which causes engine knock-
ing at high load and high cyclic variability at low load
(Aliriamezani et al., 2021). Therefore, it is important to
understand the combustion in an RCCI engine by analyz-
ing the in-cylinder pressure data. Heat release rate traces
provide most of the information about the combustion
performance parameters. These combustion performance
parameters include start of combustion (SOC), crank angle
for 50% heat release (CA50), burn duration (BD), indi-
cated thermal efficiency (9ina,¢n). In addition, controlling
heat release helps in reducing MPRR and RCCI cyclic
variability. Heat release rate is predominantly affected by
the variations in the operating conditions. Injection timing
of fuel affects the rate of heat release and the HC and
CO emissions (Kanda et al., 2005). Effects of injection
timing in a dual fuel LTC operation on heat release rate
were investigated by Kokjohn et al. (2012). The study
suggested that injection timings around -145 CAD aTDC
led to rapid combustion. Retarding the injection timing
to -50 CAD aTDC resulted in reduced heat release rate.
However, reducing the injection timing further (around -
15 CAD aTDC) resulted in an abrupt early stage heat
release with a tail towards the end of heat release (Kokjohn
et al., 2012). Premixed ratio of dual fuels also affects the
combustion. A study investigated the effects of variation
in the premixed ratio of gasoline and diesel fuels (Lee
et al., 2019). They found that prolonged ignition delay
was observed for the dual fuel with the highest quantity
of gasoline. This resulted in increased indicated efficiency
when compared with diesel combustion while reduction in
NOx emissions was observed (Lee et al., 2019).

In order to optimize the combustion in the RCCI engine
for maximum indicated thermal efficiency, lower engine-
out emissions, reduced MPRR and cyclic variability, it
is important to control rate of heat release. This can be
done by identifying the shapes of heat release rate as
a function of engine operating conditions. The focus of
this work is to employ machine learning (ML) algorithms
for the identification of the type of heat release rate.
Various combustion metrics listed in Fig. 1 can be analyzed
with ML techniques. ML techniques have been utilized for
engine modeling and control (Bidarvatan and Shahbakhti,
2014). Feedforward neural network (FFNN) and radial
basis function neural network (RBFNN) were used for the
dual-fuel HCCI engine modeling to predict the indicated
mean effective pressure (IMEP), thermal efficiency, in-
cylinder pressure, net total heat released and engine-
out emissions (Rezaei et al., 2015). In (Batool et al.,
2021), classification algorithms were developed to model
coefficient of variation of indicated mean effective pressure
(COViMmEp) for HCCT and RCCI modes. Nonlinear model
predictive controllers were developed to control CA50 and
IMEP while limiting COVyyvgp below 3% (Batool et al.,
2021).

To the best of the authors’ knowledge, this is the first
study undertaken to develop a learning based classification
method to identify different types of heat release in RCCI
engine operation. This classification is based on an exten-
sive engine study including 798 different engine operating
conditions. The contributions of this work are as follows:

(1) An unsupervised learning method, namely k-means
clustering, is used for the identification of different
heat release rate shapes using normalized heat release
rate data;

(2) A supervised learning algorithm, namely convolution
neural networks (CNN), is used to classify different
heat release shapes using normalized heat release rate
data;

(3) Another supervised learning algorithm, namely de-
cision tree, is used to develop an algorithm for the
classification of heat release rates based on the engine
operating conditions.

Table 1. Range of operating conditions

Parameters Range
Engine speed, N (RPM) 800-2300
Intake manifold pressure, Ppan (kPa) 96
Intake manifold temperature, Tp,., (°C) 40-100
Start of injection, SOI (CAD bTDC) 15-100
Premixed ratio, PR (-) 20-60
Fuel quantity, FQ (mg/cycle) 9-40

2. RULE-BASED CLASSIFICATION OF HEAT
RELEASE RATE IN RCCI

A 2.0L, 4-cylinder gasoline direct injection GM engine was
used in this study. RCCI data was collected by running the
engine under wide open throttle condition using iso-octane
and n-heptane as dual fuels. The premixed ratio of the two
fuels is determined by:

Miso LHVigo (1)
misoLHViso + mnhepLHVnhep

where m;s, and My, hep are the masses of iso-octane and n-
heptane, respectively, LHVis, and LHV 1, represent the
lower heating values of iso-octane and n-heptane, respec-
tively. Table 1 shows the range of operating conditions of
the RCCI engine data used in this study.

PR =

Based on the shape, five different heat release rate patterns
were observed in RCCI engine operation. These shapes
can be caused by variations in the fuel stratification, fuel
reactivity gradient and equivalence ratio gradient. The
identified heat release rate patterns can be classified based
on the fractions of early and late heat release rate. This
classification serves as the basis for developing supervised
and unsupervised learning algorithms for identification of
heat release types. For rule-based classification, different
heat release rate shapes were sorted by identifying the
crank angles of the start and end of the main heat release.

Fraction of early heat release is calculated as a percentage
of the total cumulative heat release from the start of
injection (SOI) to the start of main heat release (SOM)
with respect to the total amount of energy of the fuel
injected. Fraction of early heat release is determined using
(2). Similarly, cumulative late heat release is calculated
from the crank angle corresponding to the end of main
stage heat release (EOM) to the crank angle corresponding
to 90% of heat release (CA90). Then, the fraction of late
heat release is computed w.r.t. the total amount of energy
of the injected fuel using (3).
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The threshold values for the fractions of early and late
heat release were determined based on the experimental
data. The rule-based classification logic is shown in Fig. 3
using fractions of early and late heat release rates. In this
approach, if the fraction of early heat release is < 5% while
the fraction of late heat release is < 17%, then the HRR
belongs to type-1. If the fraction of early heat release is >
7%, then the HRR is classified as type-2. If the fraction
of early heat release is < 5%, however, the fraction of late
heat release is > 23%, then the HRR is identified as type-
3. If the fraction of early heat release is < 5% while the
fraction of late heat release is > 17% and < 23%, then the
HRR is classified as type-4. If the fraction of early heat
release is > 5% and < 7%, then the HRR is identified as
type-5. These fractions of HR can be used to control RCCI
engine operation (Sitaraman et al., 2022).

Five distinct types of heat release (HR) traces are shown in
Fig. 4. Type-4 shows the transition phase between type-
1 and type-3 while type-5 shows the transition between
type-1 and type-2.

Type-2

Type-4

Type-3

Fig. 3. Flowchart of classification algorithm for HR shapes
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Fig. 4. Identified shapes of heat release rate traces

Summary of the count of HRR traces identified into each
type is shown in Table 2.

2.1 Characteristics of HRR Types

Based on the experimental data, heat release rate traces
were analyzed on the basis of combustion performance
parameters. Table 3 shows the average values of the
combustion parameters characterizing each heat release
rate type. Type-1 is characterized by its shorter burn
duration and higher MPRR compared to other types.
This can be associated with the single stage combustion
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Table 2. Summary of the classified HRR traces

Type of HRR traces | Count of traces
Type 1 131
Type 2 71
Type 3 373
Type 4 162
Type 5 61

event in type-1. Moreover, type-1 HRR corresponds to
the SOI ranging between 35-60 CAD bTDC which may
cause fuel stratification. Li et al. (2016) made a similar
observation for gasoline fuel (RON 87) in which start of
injection in the range of 35 to 50 CAD (bTDC) caused
rapid HRR due to mixture stratification. The maximum
in-cylinder gas temperature and pressure were higher
in type-1 combustion events as compared to the other
types. Type-2 HRR showed the most advanced start of
combustion and combustion phasing followed by type-5
HRR. The SOI range associated with types 2 and 5 is
mainly between 60-100 CAD bTDC. The air-fuel mixture
in type-2 and type-5 are well premixed which resulted in
advanced combustion. Even with advanced combustion,
type-2 showed lower mean MPRR as compared to type-1.
This can be explained by the fact that type-2 and type-5
showed staged combustion. That is why the magnitude of
peak heat release is lower in type-2 and type-5 as compared
to type-1. Types 3 and 4 HRR are characterized as main
stage heat release followed by a diffusion type heat release
rate. Type-3 showed relatively low Prax, Timax, HRmax
and MPRR followed by type-4. A shorter burn duration in
type-4 as compared to type-3 can be the reason of slightly
higher magnitudes of Pax, Tmax, HRmax and MPRR in
type-4 HRR. The main purpose of this classification and
characterization is to achieve optimal engine operation.
The optimal engine operation may target for the maximum
thermal efficiency and low engine-out emissions while
preventing high MPRR. Among different types of HRR,
type-2 showed the maximum indicated thermal efficiency
with the maximum ignition delay. Ignition delay is defined
as the time between start of injection and the onset of
combustion. Higher ignition delay means more premixed
air-fuel mixture which helps in preventing NOx formation
Lee et al. (2019). However, due to more premixing, some of
the operating conditions resulted in higher MPRR which is
not a favorable condition. Therefore, for the required load
and speed, selection of an optimal HRR type is important
to provide a safe engine operation.

3. CLASSIFICATION METHODS FOR
IDENTIFICATION OF HRR SHAPES

3.1 Unsupervised Learning using K-means Clustering

K-means clustering is a popular technique for clustering
problem, where each centroid represents a data point in
a 2-dimensional data frame. In this study, the centroid
corresponds to a complete HRR trace. K-means clustering
starts with random initialization of centroids, ¢y, ca,...,Ck,
of heat release rate data. K is initialized to 5 based on
the aim of clustering the HRR traces into five bins. To

Table 3. Characteristics of HRR types based
on average combustion parameters

Parameters HRR Types
1 2 3 4 5

CA10 (CAD 44 -2.7 3.8 4.8 0.7
aTDC)
(

CA50 (CAD 7.6 4.6 7.4 8.0 5.4
aTDC)

BD (CAD) | 12.2 | 16.7 | 21.2 | 18.0 | 174
MPRR 5.7 52 | 4.0 | 44 | 4.2
(bar/CAD)

Tmaz (K) 1780 | 1509 | 1542 | 1592 | 1446
Pmax 4204 | 3998 | 3561 | 3697 | 3723
(kPa)

HRpax 115.6 | 106.7 | 79.2 | 87.8 | 84.2
(J/CAD)

achieve the centroid convergence, the following two steps
are iterated:

(1) In the first step, each data point is designated based
on the minimum Euclidean distance to the closest
centroid, i.e.,

. 2
argmin (z - c¢;) (4)

where C' is the collection of centroids, ¢; is the i'"
centroid and z is the data point to be assigned to a
cluster.

(2) In the second step of the sequence, centroids are
recalculated as the mean of data points assigned to
its cluster until the convergence is achieved. .S; is the
set of data points assigned to i*" cluster.

Ci

= @ * Ewiesixi (5)
Algorithm stops iteration when no more data points switch
between the clusters and the sum of euclidean distance
becomes minimum. Based on the operating conditions,
each HRR trace resulted in different peak heat release
which affect the clustering. Therefore, HRR traces were
normalized to cluster them based on shape rather than
magnitude. Normalized heat release traces are input to the
algorithm. The algorithm identifies the centroids for the
cluster through the complete length of the heat release rate
vector. Centroids are chosen randomly at the beginning
of the classification and the euclidean distance of each
trace from the centroid is calculated. Traces with the least
distance from the centroid are clustered in a bin. From
the clustered traces, centroid is recalculated. The process
is repeated until the centroid and clustered traces remain
the same after consecutive iterations. K-means clustering
approach was used to classify data into 5 bins.

3.2 Supervised Learning using CNN

In supervised learning approach, convolutional neural net-
work is a subset of artificial neural networks. Convolutional
neural network (CNN) has been proved to be effective
for image recognition. 1D CNN is used for identifying
heat release rate traces. It is built as a combination of
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series of layers to extract the prominent features of the
inputs and assign them to corresponding output labels.
The CNN takes the 1D vector of HRR trace and passes
it across multiple layers of convolutional, pooling and a
fully connected layer to obtain output. Output here is
the probability of five different classification bins which
best represent the HRR traces. First layer of 1D CNN is a
convolutional layer with an activation function, in which
elements from the data, as per kernel dimension are taken
and multiplied with the filter weights. It is summed up as
a single element in the feature vector. The kernel slides
all through the input data and elements of the the feature
vector are obtained. The number of filters depicts multiple
combinations of weights of the filter to extract features
from input data. Each of these combinations result in a
feature vector. All the feature vectors together constitute
the convolutional layer.

Pooling is used to reduce the spatial dimension of the
feature vector to reduce the computational time. Since,
pooling operates individually on each of the feature vec-
tors, the dimensions of maps reduce but the number of
maps remains the same. In the final layer, global average
pooling is used, where it reduces the complete dimension
of the feature vector in to a single value. A dense layer is a
fully connected neural network layer where each node on
the input is connected to a node on the output. A dropout
layer is very similar to dense layer except that when the
layer is used, the activation is set to zero for some of the
nodes randomly to avoid over fitting.

Training of neural network is achieved by adjusting the
filter values through back propagation process. During
the training process, initially the weights of the filter are
randomly assigned and the output probabilities also end
up as random values in the forward pass. The error of the
output layer is calculated based on Eq. (6), referred to as
loss or total error (L). In order to have the predicted and
actual label to be the same, the loss has to be minimum.

L:z%(T—O)Z, (6)

where T refers to the target probability and O refers to the
output probability. By using back propagation method,
the gradients of the error to weights in the network are
adjusted to minimize error. By using gradient descent, the
filter weights are minimized. Weight update is carried out
based on Eq. (7).

dL

W =W (7)
where W is the weight, W; is the initial weight and 7 is
the learning rate of the network. If the learning rate is set
too high, it results in large jumps and makes it difficult
to reach the optimized point. The process of forward
pass is followed by loss calculation and backward pass,
respectively. A trained model is achieved by carrying out
500 iterations.

When the same HR shape is input to the trained model,
the probability results of the predicted label are more
aligned with the actual label. Thus, the model has learnt
to process the particular heat release trace to the corre-
sponding label. Through the process of training, only the
weights of the filter and connection weights are updated.
However, the structure of the network such as number of

filters and filter size, remains the same. For supervised
learning approach, 65% of the data is used for training the
model and the rest 35% is used to evaluate the trained
model.

1D CNN model was built and tested using keras in python.
In CNN approach, a filter of length 9 with 32 features is
used. Exponential linear unit (ELU) is used as activation
function. Maximum pooling is used in the CNN structure
built for heat release trace identification. It helps to reduce
dimension of feature map in patches. The layer at end is
connected completely to its earlier activation layers.

Table 4. Data dimensions through layers of

CNN
Layer (type) Output Shape  Param #
“ConviD1 T (None, 292, 32) 320
Max pooling 1 (None, 97, 32) 0
ConviD 2 (None, 91, 64) 14400
Max pooling 2 (None, 30, 64) 0
Convl1D 3 (None, 26, 128) 41068
Global avg. pooling (None, 128) 0
Dropout 1 (None, 128) 0
Dense 1 (None, 5) 645
Lambda 1 (None, 5) 0

Total trainable parameters: 56,453

3.8 Supervised Learning using Decision Trees

Decision tree is one of the powerful supervised learning
algorithms. High accuracy and interpretability are the
important characteristics of the decision tree algorithm.
Decision tree involves sequential hierarchical decisions
which lead to final classification. The modelling process
involves two main steps: (i) induction and (ii) pruning.
Induction is a process in which a decision tree is built,
but the nature of training process results in overfitting.
Through the process of pruning, unnecessary structures
from the decision tree are removed to prevent overfitting.

Decision tree consists of nodes, edges/branches and leaf
nodes. Each node assesses an evaluation condition of a
certain feature. Edges/Branch refers to the outcome of a
node which connects with another node. Finally, leaf nodes
refer to the final outcome resulting in the class labels.
For classification of heat release rate traces, recursive
binary splitting is used at every node. To calculate the
accuracy of split at each node, cost of split is evaluated.
For classification, a perspective of the goodness of the split
is determined by evaluating the cost function (Gini Index
Function) given by

G =1-k(ps”), (8)
where pj, is the magnitude of the class inputs correspond-
ing to a particular group. High level of purity (pg) is
achieved when the value of G is small. Information gain
measures the concept of a single class segregation. Decision
tree algorithm evaluates all the features for the highest
value of information gain at every node which becomes
the evaluation condition for each node. Equation (9) is
used to calculate gain:
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Gain(S, A) = Entropy(S)-

Sy
ZValues(A) ||S|| 'Ent’rOpy(SU )

9)
where S refers to set of occurrences, A represents the
features. When A becomes equal to a particular classifi-
cation value, then S, denotes the subset of S. Values(A)
represents the possible values of A in the training data
set. Entropy is a measure of uncertainty in the random
variable. It also depicts the impurity of the collection. At
each node, the same step is evaluated till all the classes
are achieved as leaf node.

To apply the decision tree method on HRR data, MAT-
LAB predefined function fitctree is employed which uses
binary recursive approach. In order to train the model,
two major inputs are provided. One of the inputs is the
features and other are the labels of the classification. In
HRR classification, engine control inputs including engine
speed, start of injection of DI fuel, total fuel quantity, pre-
mixed ratio and intake manifold temperature are selected
as features. The output is the true labels for traces iden-
tified initially for training the model. The decision tree
approach is prone to overfitting issue, hence the number
of leaf nodes was restricted to a maximum of 12, to avoid
overfitting.

4. RESULTS AND DISCUSSIONS

The models are trained using K-means clustering, CNN
and decision tree algorithms. The performance of the
trained models is evaluated by using the testing data.
Figure 5 shows the results of HRR clustering in 5 different
bins using K-means clustering algorithm. By comparing
Fig. 4 and 5, we can not see any clear distinction between
the shapes of heat release rates clustered by K-means
algorithm. K-means clustering is an unsupervised ML ap-
proach which cluster the data points together without any
prior knowledge of output labels. Furthermore, alignment
of traces and centroid of bins changed with multiple it-
erations. This made it hard to identify the differences in
the heat release patterns. Thus, it is difficult to justify the
unique characteristics of each bin.

By evaluating with the testing data, the prediction accu-
racy of CNN mode is 70%. The prediction accuracy of the
model is documented by using a confusion matrix, which
provides a comparison between the actual and prediction
values as shown in Fig. 6. Diagonal elements of the matrix
depict the traces in which true label from the data and
predicted labels of the model are the same. The higher the
value of the diagonal elements, the better is the prediction
accuracy of the model.

Once the decision tree model is determined, the prediction
accuracy of the trained model is evaluated using testing
data. The summary of the true label and predicted value
is shown in Fig. (7). The prediction accuracy of the model
is 74.5%, with diagonal elements signifying the predictions
tallying with the true label. By comparing the performance
of CNN with K-means clustering it can be observed that
the CNN algorithm showed better prediction accuracy.
This can be explained by the fact that supervised learning
algorithms have prior knowledge about the class labels
incorporated which leads to a better prediction. By using
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Fig. 6. Prediction summary of the HRR shapes by the
model trained using CNN algorithm

the CNN trained model, the type of heat release rate can
be determined by providing the normalized heat release
rate traces as inputs without calculating the fractions of
early and late heat release rate. Furthermore, the decision
tree model can determine the type of combustion event
based on the control inputs to realize the different types
of heat release rate in the RCCI mode.

5. SUMMARY AND CONCLUSIONS

In this work, heat release rate traces of an RCCI engine
obtained at about 800 different operating conditions were
classified using classification techniques. To develop clas-
sification models, supervised and unsupervised ML algo-
rithms were adopted to identify different types of heat
release traces. The main findings are:

e Based on the experimental data, five different types
of heat release rate were identified using two pa-
rameters including fractions of early and late heat
release. Type-1 is a single stage heat release with
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Fig. 7. Prediction summary of the HRR shapes by the
model trained using decision tree algorithm

shorter burn duration. Type-2 HR shows predomi-
nant low temperature heat release followed by main
stage combustion. In type-3, main stage heat release
is followed by diffusion type combustion. Type-4 HR
shows transition between type 1 and 3 heat release.
Type-5 HR shows transition between type 1 and 2
heat release rates.

e K-means clustering algorithm could not identify dis-
tinct patterns of heat release rates. This can be
explained by the fact that this algorithm does not
have any information about the output labels. There-
fore, supervised learning algorithms were preferred for
HRR shape classification.

e Convolution neural networks (CNNs) were used to
classify five different types of heat release rate. Nor-
malized HRR traces were used as inputs to the model
to determine the type of heat release rate. By using
the trained model, the heat release patterns can be
identified with a prediction accuracy of 70%.

e Decision trees were used to identify the heat release
types on the basis of control inputs. The control
inputs include start of injection of directly injected
fuel, total fuel quantity, pre-mixed ratio and intake
manifold temperature and engine speed. The model
can predict five different HRR types with an overall
prediction accuracy of 74.5%.

In our future work, selected classification algorithms will
be used to develop the linear parameter varying (LPV)
control oriented models to control RCCI engine operation
based on early and late heat release.
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