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Abstract: Reactivity controlled compression ignition (RCCI) technology not only offers high
thermal efficiency but also produces low nitrogen oxides (NOx) and soot emissions. However,
it is imperative to control the combustion in RCCI engines to prevent high pressure rise rates
and combustion instability. In this study, a model-based control framework is developed to
optimize the RCCI operating mode. To this end, the effects of variations in the premixed ratio,
start of injection timing and fuel equivalence ratio on the combustion dynamics are analyzed by
examining the heat release rates. Three distinct heat release rate patterns are identified together
with two transition zones. Heat release rate traces are grouped together as a function of fractions
of early and late heat release rates. Based on a classification algorithm, the fractions of early
and late heat release rate are identified as scheduling variables for the data-driven modeling of
an RCCI engine. Linear regression is used to model the fractions of early and late heat release.
These models are then used to train linear parameter varying (LPV) models using least-squares
support vector machine (LS-SVM). Using the learned LPV model, a model predictive controller
(MPC) scheme is then developed for a 2-liter 4-cylinder RCCI engine to control combustion
phasing (CA50) and indicated mean effective pressure (IMEP) while limiting the maximum
pressure rise rate (MPRR) to avoid engine knocking. The simulation results show that the
designed controller is capable of limiting MPRR below 6 bar/CAD while tracking CA50 and
IMEP with average errors of 1.2 CAD and 6.2 kPa, respectively.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
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1. INTRODUCTION

Low temperature combustion (LTC) modes are among the
advanced combustion technologies that offer high thermal
efficiency and ultra-low NOx and soot emissions. NOx is

high combustion temperatures usually > 2200 K while
the combustion temperatures are mostly in the range of
1400-2100 K in LTC engine (Maurya, 2018). In an LTC
engine, combustion temperatures are usually low (Hanson

formed when the diffusion flame front comes in contact
with the premixed charge (Dec, 1997). However, soot
formation is associated with the fuel rich zones of the
fuel plume (Dec, 1997). Furthermore, NOx is formed at

* This work is supported by the United States National Science
Foundation (awards #1762520 and #1762595) and the U.S Depart-
ment of State, Bureau of Educational and Cultural Affairs, Fulbright
Program.

and Reitz, 2015). In addition, soot formation is prevented
by highly premixed and lean air-fuel mixtures while NOx
formation is prevented by having a premixed volumetric
combustion (Agarwal et al., 2017). Multiple concepts of
LTC and their combustion control are demonstrated by
researchers (Agarwal et al., 2017; Hanson and Reitz,
2015; Batool et al., 2022b) using either single fuel or a
combination of two fuels.
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Reactivity controlled compression ignition (RCCI) is
among the LTC modes in which combustion is attributed
to the reactivity gradient of the dual fuels. When compared
with homogeneous charge compression ignition (HCCI),
RCCI mode provides additional control levers such as
difference in reactivity of both fuels, start of injection
timing of the higher reactivity fuel and the ratio of both
low reactivity and high reactivity fuels for combustion
control (Batool et al., 2022a). Due to premixed air-fuel
mixtures in the LTC modes, the auto-ignition of air-fuel
mixture usually results in very high maximum pressure
rise rates (MPRR) which can cause engine knocking. How-
ever, through optimal control of injection timing of high
reactivity fuel and premixed ratio, high MPRR can be
prevented. Model-based control of RCCI mode can be
utilized for safe engine operation while ensuring optimal
engine operation. Control oriented models (COMs) suit-
able for controller design are categorized as either physics-
based engine models or data-driven models. The physics-
based engine models can be calibrated using experimental
data, which is time consuming. As an alternative, data
driven approaches have gained significance. In data driven
approaches, the relationship between inputs and outputs
of the system is modeled, without complex physics based
modeling of the system (Solomatine et al., 2008).

Various combustion metrics such as heat release rate
(HRR), start of combustion (SOC), combustion phasing
(CA50), burn duration (BD), indicated mean effective
pressure (IMEP), maximum pressure rise rate (MPRR),
and coefficient of variation of indicated mean effective
pressure (COVyppp) can be analyzed with machine learn-
ing techniques. Multiple machine learning techniques have
been explored to build engine models that are compatible
for internal combustion engines (ICEs) controls. Machine
learning algorithms used to model LTC engine include
feedforward neural network (FFNN) (Rezaei et al., 2015),
radial basis function neural network (RBFNN) (Rezaei
et al., 2015; Wong et al., 2013), artificial neural network
(ANN) Bidarvatan and Shahbakhti (2014), kernel based
extreme learning machine (ELM) (Wong et al., 2013),
least-squares support vector machine (LS-SVM) (Wong
et al., 2013), and support vector machines (SVM) clas-
sification algorithms (Batool et al., 2021). Early and high
rate of heat release can cause high pressure rise rates while
late heat release can result in incomplete combustion. In
addition, optimum heat release shape enables an RCCI
engine to obtain the maximum brake thermal efficiency.
Therefore, this study is based on control of RCCI mode for
optimal engine operation by controlling the rate of heat
release. This is achieved by developing an RCCI engine
model as a function of fractions of early and late heat
release for the control of CA50 (crank angle where 50%
heat is released) and IMEP while limiting MPRR.

To the best of the authors’ knowledge, this is the first study
undertaken to develop a learning based engine model based
on the heat release types to control the combustion in
an RCCI engine. Linear parameter varying (LPV) models
are developed using support vector machines (SVM). This
learning-based model is used to develop an MPC scheme
for a 4-cylinder RCCI engine to control load and CA50
while limiting MPRR. The main contributions of this work
include:

(1) Modeling of fractions of early and late heat release
using multivariable regression to represent different
types of heat release rates;

(2) Development of control-oriented linear parameter
varying (LPV) models as a function of fractions of
early and late heat release. Least-square support vec-
tor machine (LS-SVM) is used to train the LPV
models;

(3) Development of an MPC framework based on the
LPV models for RCCI combustion to control CA50
and IMEP while limiting MPRR;

(4) Validation of disturbance rejection performance of the
controller in the presence of measurement uncertainty
to track CA50 and IMEP while limiting MPRR.

The organization of paper is as follows: Section 2 includes
the experimental setup and the range of data collected.
Section 3 explains the different types of heat release rates
observed in RCCI engine. Section 4 provides the details
about the modeling of RCCI engine using lease square
support vector machines algorithm. Section 5 describes the
model predictive control framework. Results and discus-
sions are provided in section 6. Section 7 summarizes the
major findings of this work.

2. DATA-DRIVEN MODELING OF RCCI

In this study, a 2.0L, 4-cylinder gasoline direct injection
GM engine coupled with a 460hp AC dynamometer was
used. Iso-ocatne and n-heptaner were the dual fuels used
to achieve RCCI engine operation. The details about the
experimental setup can be found in Batool et al. (2021).
The range of operating conditions of the RCCI engine data
used in this study is shown in Table 1.

Table 1. Operating range of RCCI engine op-

eration
Parameters Range
Engine speed, N (RPM) 800-2,300
Intake temperature, T, (°C) 40-100

Manifold pressure, P, (kPa) 96

Start of injection, SOI (CAD bTDC) | 15-100
Premixed ratio, PR (-) 20-60
Fuel quantity, FQ (mg/cyc) 9-40

Based on the shape, five different heat release rate patterns
were observed in RCCI engine operation. Rule based
classification of heat release rate traces was carried out
based on the subject knowledge. The classified data form
the basis for developing a supervised machine learning
control oriented model. In order to classify the data, the
crank angles at the start and end of main heat release were
identified and logged manually for each of the HRR traces,
as shown in Fig. 1.

The percentage of heat released before the main stage
combustion event was calculated based on the crank angles
associated with the start of injection (SOI) and the start of
main heat release (SOM). This percentage of heat release
is termed as fraction of early heat release (HRcqriy)-
Similarly, the percentage of heat release between the crank
angle of the end of main stage heat release (EOM) and the
crank angle corresponding to 90% of heat release (CA90)
are calculated. This percentage of heat release is termed
as fraction of late heat release (H Rjq¢e). Fractions of early
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Fig. 1. Heat release rate trace with start and end of main
heat release (HR) depicted

and late heat release are determined using (1) and (2),
respectively.

Cumulative HR |35

Energy in the injected fuel

HRo4r1y = 100 (1)

. CA90
HRypo = Ctumulatwe HR |EOM . ‘1
Energy in the fuel quantity injected

00 (2)

The HRR traces are classified based on the fraction of
early and late heat release values. Using decision trees,
complete classification is achieved. The threshold values
for different types of heat release rate were determined by
analyzing the experimental data. If the fraction of early
heat release is < 5% and the fraction of late heat release is
< 17%, then the HRR is classified as Type-1. If the fraction
of early heat release is > 7%, then the HRR is classified
as Type-2. If the fraction of early heat release is < 5%
and the fraction of late heat release is > 23%, then the
HRR is classified as Type-3. If the fraction of early heat
release is < 5% and the fraction of late heat release is >
17% but < 23%, then the HRR is classified as Type-4. If
the fraction of early heat release is > 5% but < 7%, then
the HRR is classified as Type-5. The details about the five
different heat release patterns and their characteristics can
be found in Sitaraman et al. (2022).

Summarized are few traces from each classification type in
Fig. 2, depicting 3 classification bins. In addition to these
three basic types, two more HR shapes were identified
as Type-4 and Type-5 which represented the combustion
phase transition between the three HRR types shown in
Fig. 2.

In RCCI engine, heat release rate pattern changes with
change in the operating conditions, i.e., engine speed, in-
take manifold pressure and temperature and manipulated
variables (fuel quantity, SOI and PR). Hence, it is evident
that heat release pattern variation is a multi-dimensional
data frame. To model complex heat release in the RCCI
engine, we used linear parameter varying (LPV) state-
space representation to capture nonlinear engine behavior.
This LPV state-space model is then used for combustion
control. Thus, we need to identify the scheduling parame-
ters for the LPV model that can represent the nonlinearity
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Fig. 2. Sample heat release rate traces for three main HRR
patterns

of the RCCI engine. With proper selection of a scheduling
variables, details of change in HRR pattern of the engine
can be decoded. Fractions of early and late HR are iden-
tified as scheduling variables for the LPV modeling of the
engine.

Multi-variable linear regression technique is used to model
the scheduling variables. The best line fitting data was
evaluated by using a cost function. Cost function is a sum
of squares of vertical distance from each data point to the
predicted value by the fitted line divided by number of ob-
servations. The cost function is described in terms of mean
square error (MSE). By minimizing the cost function, the
coefficients of the best fit line were determined. Start of
injection, premixed ratio, fuel quantity and engine speed
were selected as input parameters to model the fractions of
early and late HR using regression. Multiple combinations
were evaluated to model fractions of early and late HR
and the accuracy of different models was compared on
the basis of the R-square value. Upon evaluating different
regression models, two functions with the best R? values
were determined

HReoriy = f(SOI,PR,FQ,N), (3)

HRlate:g(SOI7PR7FQ7N)' (4)

The R? value of fraction of early heat release is 69.6 while
the R? value of fraction of late heat release is 80.4. The
identified combustion classifiers are used as scheduling
parameters to build an LPV model of the RCCI engine.
By using combustion classifiers as scheduling variables for
the LPV models, the information of combustion type is
incorporated into RCCI engine model. LS-SVM is then
used for identification of an LPV model as a function of
fractions of early and late heat release. The classification
of heat release types with experimental values of fraction
of early HR and fraction of late HR is shown in Fig. 3.

3. LS-SVM FOR LPV MODEL LEARNING

SVM regression approach is used to identify the state
space matrices of the engine model in the LPV framework.
Following state-space representation is considered

Xi+1 = A(pr) Xk + B(pr) Uy + K (pr ) ex (5)
Yy = C(pr) X + D(pi)Ug + e
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Fig. 3. Classification of experimental data based on frac-
tions of early and late HR

where X represents states of the system, Y is the mea-
surable output, U is the control input, p represents the
scheduling parameter, and e represents stochastic white
noise. A(px), B(px), C(px), D(pr) and K(py) represent
the state space matrices of the system which vary as a
function of the parameter py. Equation (5) is restructured
as

er =Y — C(pr) Xx — D(pr)Ug.- (6)
Eq. (5) can be rewritten as follows by substituting ey:
Xi1 = A(pr) X, + B(pe) Up + K (p1,) Yy ™
Yy = C(pe) Xk + D(pr) Uy + e

where

A= A(pr) = K (pr)C(pr), (8)
B = B(px) - K (pr)D(pr).

The plant matrices A (py,), B(px), C(px), D(px) and K (py)
are computed using support vector machine approach. By
taking the training data into SVM framework, the plant
matrices are transformed using weighing matrices (W),
regression vectors or features (¢).

Following is obtained by representing the regression vector
(¢) as a function of basis function (P)

X1 = Wi @1 (pr) X + WaPa(pr) Uy + W3 Ps(pr) Yi + €,
Yi = Wa®@s(pr) Xy + Ws®5(pr ) Uy + (i,

9)

where € and ( represent the residual error. Details on the

learning of the LPV model can be found in (Rizvi et al.,
2015).

Transient engine data is required to identify the state space
LPV model. Transient engine data was collected from the
experimentally validated RCCI engine model (Raut, 2017;
Basina et al., 2020) by varying operating conditions and
the control inputs to the engine as shown in Fig. 4. SOI
of the DI fuel, FQ and PR are the engine manipulated
variables changed during the test. Engine speed was kept
constant at 1000 rpm.

3.1 RCCI Engine Modeling
Using the LS-SVM approach, combustion parameters are

predicted by developing the state space LPV model. States
of the system (X) are:

X =[CAS0 MPRR Tye Pwc IMEP]",  (10)

where Ts,. and P, are the temperature and pressure at
start of combustion. Manipulated Variables of the system
(U) are:

U=[SOI FQ PR]". (11)
Scheduling parameters of the system (p) are:

P=[p p2]" . (12)

where p; is the fraction of early HR and p, is the fraction
of late HR. Output of the system (V) is :

Y =[CA50 MPRR IMEP]".

(13)
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Fig. 4. Manipulated variables of the RCCI engine at N =
1000 RPM, T,,4n = 333 K and P4, = 96.5 kPa.

Figure 4 shows the manipulated variables of the RCCI
engine. The range of manipulated variables also defines the
range of the training data set used for the RCCI engine
model. Furthermore, the input parameters are varied such
that the data covers all the HR types.

In Fig. 5, the comparison of prediction and measured
values of the RCCI engine is shown. 35% of the data used
for testing is shown in the plot. The LPV model is able to
predict CA50, MPRR and IMEP with RMSE of 0.4 CAD,
0.5 bar/CAD and 9.6 kPa, respectively.

4. MODEL PREDICTIVE CONTROL DESIGN

An MPC controller is designed for combustion control
of the RCCI engine. The MPC framework is developed
based on the LPV model to predict future outputs and
optimize the manipulated variables based on the defined
cost function. During the RCCI engine operation, the
system matrices at any instant are derived as a function
of p1 (fraction of early HR) and pe (fraction of late
HR). Prediction of states and outputs of the optimization
problem is achieved for certain future time steps. The
control horizon and prediction horizon are selected as 20
and 10 engine cycles, respectively.

A quadratic problem (QP) is developed which is optimized
for the identification of manipulated variables of the sys-
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Fig. 5. Comparison of measured and modelled output of
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tem. Constraints on manipulated variables, their rate of
change, states and outputs of the system are added. Cost
function of the optimization problem is defined as the sum
of three terms in the current design as

J(Zk) :Jy(Zk)+JAu(Zk)+Je(Zk)v (14)

where z; is the QP decision variable over the control
interval, k is the current control interval, J, refers to out-
put reference tracking, Ja, refers to manipulated variable
tracking, and J, refers to constraint violation. Output
reference tracking is achieved by the controller cost as

ny 2

[r;(k+i|k) - yj(k+z|k)]} (15)

1.7

in which p represents the prediction horizon, n, refers to
the number of plant outputs, z; is the decision variable of
the QP as
z,{ = [u(k|k)T u(k + 1|k)T u(k+p-— 1|k)T ek] ,
(16)
and r;(k +ilk) and y,;(k + i|k) denote the reference and
predicted value of the j** plant output at the i*” step of

the prediction horizon, respectively. Furthermore, 57; refers
;18 the
step of

to the scale factor for the j** plant output and W?’

tuning weight for the j'” plant output at the i*"

the prediction horizon.

The second term in the cost function that keeps the rate
of change of manipulated variables of the system is:
Au
{ = [w;(k +ilk) - uatarget(k+l|k))]}
(17)

where n, refers to the number of manipulated variables,
s refers to the scaling factor for the j¢ plant output and

J
Au

4,
variable rate of change at the ¢
horizon.

2
nq p—1

UNICOEDIDY

j=11=0

is the tuning weight for the j*"
th

w plant manipulated

step of the prediction
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Fig. 6. Schematic of the designed LPV-MPC controller for
the RCCI engine

Table 2. Summary of constraints applied on
manipulated variables and outputs of the
adaptive MPC

. Minimum Maximum
Variable

constraint constraint
SOTI (CAD bTDC) 32 45
FQ (mg/cycle) 18 27
PR (-) 0 40
CA50 (CAD aTDC) -10 30
IMEP (kPa) 500 1000
MPRR (bar/CAD) 0 6

The designed controller employs the term J. to measure
the violation of constraints as

Je(21) = pec (18)
where € is the slack variable at control interval k, and p
represents the penalty weight associated with it. The max-
imum and minimum limits set on the plant outputs, ma-
nipulated variables and the rate of change of manipulated
variables predominantly constitute the explicit constraints
associated with the MPC. The upper and lower bounds of
the constraints applied are presented in Table 2

5. RESULTS AND DISCUSSIONS

Control structure of the designed MPC controller is shown
in Fig. 6. MPC is used to track the outputs, CA50
and IMEP of the system and to limit MPRR by using
SOI, fuel quantity and PR as manipulated variables.
Physics-based engine model is used as the plant (Raut,
2017). The weights of the allowed rate of change of
manipulated variables and outputs are tuned to achieve
required tracking performance. A Kalman filter is used to
predict the unmeasured states of the engine. The CA50
and IMEP reference trajectories are determined from
the engine speed and the torque request to the engine
electronic control module.

Fig. 7 shows the tracking performance of the designed
controller. The desired reference trajectories for CA50
and IMEP were changed from 5 to 12 CAD aTDC and
IMEP from 525 kPa to 650 kPa, respectively. The system
tracked the change in outputs by keeping MPRR less
than 6 bar/CAD. The changes in manipulated variables
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and scheduling parameter of the LPV system were also
evaluated in the various cases.
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Fig. 7. Tracking capability of the designed controller to
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In Fig. 7, the tracking ability of designed controller to fol-
low the desired change in both CA50 and IMEP was eval-
uated. Controller was able to track CA50 and IMEP with
RMSE of 1.2 CAD and 6.2 kPa while limiting MPRR to 6
bar/CAD. The controller showed faster IMEP tracking for
a step change while a slower response for a step change in
CA50 was observed. The slow CA50 tracking response can
be mainly attributed to the controller action responsible to
keep the MPRR below the set limit. However, the CA50
response can be improved by relaxing the constraint on
MPRR to a higher value (e.g., 8 bar/CAD). Figure 8
shows the controller action for tracking CA50 and IMEP
while limiting MPRR. The control actions stay within the
set constraints. Figure 9 represents the fractions of early
HR (P1) and late HR (P2) representing different types
of heat release rates resulting from the control actions.
The fractions of early and late HR are the scheduling
parameters for the LPV state space models. For the first

30 engine cycles, H Ry is between 5-7% which means
the resulting heat release rate is type-5. When the desired
IMEP changes to 650 kPa, the resulting control actions
lead to type-1 heat release rate with HReqriy < 5% and
HRyute < 17%. When there is a step change in desired
CA50 at 60" engine cycle, H Reariy becomes < 5% while
HRyte is > 17% and < 23%, resulting in type-4 heat release
rate.

(b)

20 40 60 80 100
Engine Cycle (#)

Fig. 9. Variation in fractions of early HR (P1) and late HR
(P2) while tracking desired CA50 and IMEP with the
MPRR limit of 6 bar/CAD

Figure 10 shows the tracking capability of the designed
controller for the RCCI engine in the presence of measure-
ment uncertainties. The measurement uncertainties were
added to the outputs of the physics-based engine model.
Based on the actual experimental data, the measurement
uncertainty of +1 CAD, +28.1 kPa and +0.6 bar/CAD were
added to CA50, IMEP and MPRR, respectively. RMSE
observed in tracking CA50 and IMEP were 2.2 CAD and
17.3 kPa | respectively. The maximum pressure rise rate
observed was 6.4 bar/CAD. Error in tracking had gone up
due to uncertainty in the outputs. In 83" engine cycle, a
violation in the MPRR constraint was observed because
of the saturation of the manipulated variables as shown
in Fig. 11. The controller comes into action to bring the
MPRR within the desired limit in subsequent cycles.

6. SUMMARY AND CONCLUSION

In this research work, a control-oriented model of an
RCCI engine is developed based on different heat release
rate shapes. Major engine inputs leading to different heat
release shapes were identified. The parameters including
fraction of early heat release and fraction of late heat re-
lease were used as scheduling variables to obtain an linear
parameter varying representation of the RCCI engine in
state-space domain using kernel-based system identifica-
tion method. A multi-input multi-output MPC framework
is designed to control the CA50 and IMEP while limiting
MPRR below 6 bar/CAD. A summary of findings includes:

e Using Support Vector Machine (SVM) approach, an
LPV model representation for the RCCI engine was
learned. The model was validated with the data gen-
erated by the detailed RCCI engine dynamic model.
It was able to predict CA50, IMEP and MPRR with
RMSE of 0.4 CAD, 16.6 kPa and 0.4 bar/CAD, re-
spectively.
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e The controller was able to track CA50 and IMEP with
MPRR constraint of 6 bar/CAD with SOI, PR and
fuel quantity as manipulated variables. It was able to
track CA50 and IMEP with RMSE of 1.2 CAD and
6.2 kPa, respectively.

e Robustness of the MPC was also evaluated by the
addition of measurement uncertainties to the outputs
of the detailed physics-based dynamic engine model.
The MPC controller was able to track CA50 and
IMEP with RMSE of 2.2 CAD and 17.3 kPa with
a constraint of 6 bar/CAD on MPRR.

Future work includes testing of the designed controller on
the actual engine setup.
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