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Abstract: Combustion cyclic variability in an internal combustion engine leads to cyclic
variations in the engine torque output and emissions. Combustion cyclic variability is often
characterized by coefficient of variation of indicated mean effective pressure (COVippp) that
is used as an indicator of combustion stability. These cyclic variations are inevitable and cannot
be completely eliminated but can be controlled to allow stable engine operation. This work
focuses on control oriented modeling of COVyp pp to limit engine cyclic variations in low
temperature combustion (LTC) modes. COVypgp is generally stochastic in nature; thus, a
data-driven approach is used to develop a predictive model of COVyppp for Homogeneous
Charge Compression Ignition (HCCI) and Reactivity Controlled Compression Ignition (RRCI)
modes. This work presents the development of a cycle-by-cycle model predictive controller for a
2.0 liter multi-mode LTC engine. Physics-based control-oriented models for combustion phasing
(CA50) and IMEP are augmented with the new data-driven COVjpgp model to limit the
cyclic variations below 3% for HCCI and RCCI modes. These models are then used to design
closed-loop non-linear model predictive controllers to control CA50 and IMEP while constraining

COVypEp to ensure stable engine operation for varying load conditions.
Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Advanced combustion modes including low temperature
combustion offers high thermal efficiency and low engine-
out emissions. Premixed mixtures in LTC modes reduce
the local fuel rich zones which prevents very high peak in-
cylinder gas temperatures that in turn, helps in restricting
oxides of nitrogen (NOx) formation. The LTC engines can
offer thermal efficiency comparable to the conventional
diesel engines and produce NOx, and PM emissions sub-
stantially less than conventional diesel engines. This work
focuses on the two common LTC modes i.e.; homogeneous
charge compression ignition (HCCI) and reactivity con-
trolled compression ignition (RCCI).

Combustion control in the LTC modes is important to
avoid knock and too high maximum pressure rise rate,
partial burns and misfires. Combustion phasing (C A50)
and indicated mean effective pressure (IMEP) are the
common controlled parameters in the LTC modes. In
addition, combustion in LTC modes is mainly restrained
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by high cyclic variations and maximum pressure rise rate.
Large cyclic variations are usually observed at low loads in
LTC modes Yao et al. (2016). That is why, peak pressure
rise rate Bengtsson et al. (2006) and cyclic variability
Hellstrom et al. (2014) are important control parameters
that need to be monitored for safe and stable engine
operation.

Combustion variations on cycle-to-cycle basis are indi-
cated by the coefficient of variation of indicated mean
effective pressure (COVippp). High cyclic variations in
IMEP result in engine speed fluctuations and affect the
noise, vibration and harshness (NVH) performance of a
vehicle Qilun et al. (2016). Moreover, cyclic variability
increases engine-out emissions Di Mauro et al. (2019).
In addition, desirable ultra-lean engine operations with
high thermal efficiency are prone to high cyclic variations.
Therefore, it is important to minimize combustion cyclic
variations to achieve stable combustion in order to allow
the maximum thermal efficiency, and lower engine-out
emissions. This study focuses on model based control of
HCCI and RCCI modes by constraining COViypp to
limit the cyclic variations in the combustion to ensure
stable engine operation.
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Several studies have been conducted to evaluate the pa-
rameters responsible for these cyclic variations in LTC
engines. Jia et al. (2015) studied the cyclic variations
in the LTC modes with main focus on dual fuel RCCI
combustion. The study suggested that cyclic variations in
RCCI combustion can be reduced by retarding the injec-
tion timing, increasing the injection pressure and using
boosted intake pressure. Low exhaust gas recirculation
(EGR) rate, high equivalence ratio and high intake tem-
perature provide lower cyclic variations in HCCI mode
Shahbakhti and Koch (2008). Kalghatgi et. al. showed a
linear regression model using C'A50 and equivalence ratio
(¢) to differentiate low and high cyclic variability for HCCI
combustion Kalghatgi and Head (2006). Hellstrom et. al.
developed proportional integral (PI) and linear quadratic
Gaussian (LQG) controllers to regulate C'A50 in order to
reduce cyclic variability in HCCI engine operation Hell-
strom et al. (2014). In another study, C A50 was adjusted
to ensure stable RCCI combustion and limiting COVyep
for varying load and speed conditions Raut et al. (2018).

To the best of the authors’ knowledge, this is the first
study undertaken to develop a learning based engine
cyclic variability classifier to create a predictive model
and nonlinear MPC for LTC engines to control load and
CAB0 while stabilizing the engine combustion. This paper
focuses on developing an approach to categorize stable
and unstable combustion into different classes on the basis
of the COVrprpp using supervised learning algorithm for
HCCI and RCCI modes. The contributions of this work
include:

(1) Development of a control oriented predictive model
for COV7pgp using supervised learning classification
algorithm for HCCI and RCCI combustion modes;

(2) Development of a nonlinear MPC for an HCCI engine
regulating C'A50 to ensure stable combustion while
delivering requested IM E P;

(3) Development of a nonlinear MPC for an RCCI
engine to control CA50, IMEP and constraining
COVimEPp.

2. EXPERIMENTAL SETUP AND DATA

A GM 2.0L, 4-cylinder gasoline direct injection EcoTec
engine coupled with a 460hp AC dynamometer is used in
this study. The original engine is modified to include two
port-fuel injection (PFI) systems and one direct injection
(DI) system. The engine is run at wide open throttle under
naturally aspirated conditions without external exhaust
gas recirculation. An air heater is used to pre-heat the
intake air to the desired temperature. In-cylinder gas pres-
sure is measured with a resolution of 1 CAD using PCB
piezoelectric pressure transducers. A dSPACE MicroAuto-
Box (MABX) is used as the engine control unit. A Xilinx
Spartan-6 field propgrammable gate array (FPGA) is used
for the real time feedback of combustion parameters. More
details about the engine instrumentation can be found in
reference Kannan (2016).

In HCCI mode, both iso-octane and n-heptane are injected
during the exhaust stroke of the previous cycle via two
PFI systems. While in RCCI mode, iso-octane is injected
during intake stroke via PFI and n-heptane is directly

injected during the compression stroke. The premixed
ratio of the two fuels is calculated using (1):

PR = misoLHViso (1)
IniSOLH\[iSO + mnhepLHVnhep
where, mjso and Mmppep are the mass of injected iso-
octane and n-heptane, respectively. LHViy, and LHV ep
are the lower heating values of iso-octane and n-heptane,
respectively.

Operating conditions of the engine data used in this study
are shown in Table 1. These include 210 steady state HCCI
operating points and 300 steady state RCCI operating
points.

Table 1. Range of experimental data used in
this paper for developing control models for
HCCI and RCCI modes

Parameters HCCI RCCI
TAT (°C) 40-100 40-80
Pran (kPa) 96 96
Engine Speed (RPM) 800-1600 | 800-2200
PR (-) 0-40 10-40
SOI (CAD bTDC) 450 20-60
Equivalence ratio, ¢(-) | 0.32-0.67 [ 0.32-1.00

The engine data is recorded for 100 consecutive cycles at
different steady state operating conditions. The COVyypp
is a measure of variability in the IM EP and is defined as
the ratio of standard deviation of IM EP to the mean of
IMEP. It is calculated by:

COVinpp(%) = Z2EE S 100. 2)
HIMEP

where, urypp and orypp are the mean and standard
deviation of IM E P, respectively.

The in-cylinder pressure data from all operating conditions
are analyzed and combustion parameters are determined.
Figure 1 shows in-cylinder pressure traces for 100 con-
secutive engine cycles running in HCCI mode. It shows
unstable combustion with partial burns and misfire in a
number of the engine cycles for HCCI mode. This unstable
combustion results in very high COVjpgp of 10.8%. High
cyclic variations may occur due to slower burning cycles
which result in reduced work output. In this work, a
predictive model is developed to confine the engine cyclic
variations below 3%.

3. DATA-DRIVEN MODELING OF COVipypp

In this work, machine learning classification is used to
develop a model to predict engine combustion stability
level based on COVipepp. The data can be classified
into three distinct classes based on COVyyrgp to indicate
stable, semi-stable and unstable combustion. Each class
is provided with combustion stability index (CSI) based
on COVipygp. The data points with COVyypp < 3% are
grouped into class-I having CSI of 1. These data points
showed stable and complete combustion.Class-II consists
of data points with 3 < COViypp < 5% with CSI of 2.
These include engine operation with some of the cycles
have abnormal combustion (e.g., high MPRR or light
knocking). Depending on engine load, an engine can tol-
erate COViyep by 5% without any major oscillations in
torque delivery or vehicle driveability concerns. Therefore,



836 Sadaf Batool et al. / IFAC PapersOnLine 54-20 (2021) 834-839

(%)
a

Complete
combustion

w
o
T

n
&1
T

n
o
T

Partial burn

o
T

In-Cylinder Gas Pressure (bar)
>

o
T

-150 -100 -50 0 50 100 150
Crank Angle (°aTDC)

Fig. 1. In-cylinder pressure traces for 100 consecutive
steady-state cycles of HCCI engine operating at FQ
= 11.2 (mg/cycle), PR = 20 (-), Tman = 353 (K);
COViyep = 10.8%, CSI = 3

class-1I is considered semi-stable. The data points having
COVipyep > 5% are grouped into class-IIT with CSI of
3 to represent unstable combustion, see Fig. 1. Class-
IIT contains some data points with misfire and/or partial
burns. Partial burn usually occurs when the burning rate
is sufficiently slow and combustion is not completed by the
time exhaust valves open Heywood (1988).

Classification is a supervised machine learning algorithm
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Fig. 2. Classification of engine combustion stability using
support vector machines for COV;ygp data

which categorizes the data into different classes. There
are various algorithms which can be used for classifica-
tion such as logistic regression, support vector machines
(SVMs), neural networks (NN), Naive Bayes, K nearest
neighbors (KNN), boosted decision trees and random de-
cision forests. We investigated SVM, KNN, Naive Bayes
and neural networks classifiers and their accuracy were
compared. In this study, support vector machine (SVM)
is used for multi-class classification based on providing
the best prediction accuracy. SVM works well with small
data sets Pasupa and Sunhem (2016). SVM is a vector
space based machine learning approach that maximizes the
margin between two classes Cortes and Vapnik (1995). The
COVipgp predictive modeling is formulated as a non-
linear multi-class classification problem as the classes are
linearly inseparable. SVM maps the data (x; € RP) in the
input space (X) to a feature space F:

F=A{¢(z): z; € X} 3)

N
f(z) = Zwiéb(ﬂﬁ) + Bo (4)
i=1

The linearly inseparable data in the input space (X) can
be linearly separated in the feature space (F) Cristianini
(2000). These linear boundaries provide better separation
and translates into nonlinear boundaries in the input space
(X) Hastie T. (2009). The classifier is given by:

G(x) = sign(f(x)) (5)

Lagrange dual objective function is of the form:

N N N

1

Lp =max Zl o; — B Zl Zl aiajyiyj(¢(xi)a ¢(93j)) (6)
1= =1 7=

Subject to the constraints

Zyjaj:O; 0<a; <C (1)
J
The dual optimization problem is solved by maximizing
Lp using quadratic programming. The solution of the
optimization problem is given by:

flz) = Z aiyi(6(x), d(x:)) + Bo (8)

where, a;, By and y; are the Lagrange multipliers, bias and
class labels, respectively. C is box constraint to limit the
values of Lagrange multiplier.

yif(zi) =1 (9)
The transformation to feature space (F) and computa-
tion of their corresponding inner product can be com-
putationally expensive. Therefore, kernel trick is used to
compute the inner products in the feature space without
any transformation using kernel function. The commonly

used nonlinear kernel functions in the SVM are polynomial
(10), radial basis (Gaussian) (11) and sigmoid.

K(mi’mj) = (1 + (xivmj))d
K (zi, ;) = exp(—v||z; — j|?

3.1 COVippp Modeling for HCCI and RCCI Modes

For HCCI and RCCI modes, SVM is used to train the
model for COVipypp classification using linear, polyno-
mial and radial basis kernel functions. Combustion param-
eters including C' A50, burn duration (BD), peak pressure
(Pmax), location of peak pressure (8pmaz), IMEP, max-
imum pressure rise rate (M PRR), location of maximum
pressure rise rate (0pprr), premixed ratio (PR), fuel
quantity, intake air temperature and engine speed were
initially used in developing COVjygp classifier for both
modes. C'A50 has a linear relationship with (6pq.) and
(0rprR). Pmaz, M PRR and engine speed didn’t improve
the prediction accuracy of the model. Therefore, this study
uses C'A50, IMEP, premixed ratio, fuel quantity and
intake air temperature as features to develop a control
oriented model for the COViprgp for the HCCI mode.
However, SOI is also used as a feature for classification in
RCCI mode. HCCI engine data for 210 different operating
conditions are used for training and testing. Engine data
at 300 different steady state operating conditions are used
for RCCI mode. 72% of the data is used for training the
model and the remaining 28% is used for testing. The
data is standardized before training because of different
scales of the predictor variables. The classification models
for each mode are tuned by optimizing the kernel scale
and box constraint (C). The choice of C is a trade-off
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between variance and bias. The models are trained using
10 fold cross validation approach to prevent over-fitting.
Sequential minimal optimization is used as a solver for the
optimization problem. The radial basis (Gaussian) kernel
function (11) showed better results for HCCI mode as
compared to linear and cubic polynomial kernel functions.
The trained classification model of HCCI consists of three
classifiers, one for each class using one-vs-all classification
technique. Due to imbalanced data set, the classes with
small data size are oversampled. The confusion matrix for
the test data set of HCCI is shown in Fig. 3a. Class-I and II
show one misclassified data point for each class while class-
IIT shows 100% accuracy. Overall, the developed model
shows 96.5% accuracy in predicting engine CSI (combus-
tion stability index).

For RCCI mode, the cubic kernel function (10) showed
better results as compared to linear and Gaussian kernel
functions. The trained model is validated for 80 different
test conditions, as shown in Fig. 3b. The test data for class-
T and III show 100% prediction accuracy. However class-11

shows two misclassifications with prediction accuracy of
92.8%.

(a) Test data - HCCI (b) Test data - RCCI
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Fig. 3. Confusion matrix for COVygp classification for
HCCI and RCCI modes
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Fig. 4. Schematic of nonlinear MPC and plant model

4. NON-LINEAR MODEL PREDICTIVE CONTROL
DEVELOPMENT

To control cycle-by-cycle CA50 and IMEP, experimen-
tally validated control oriented models (COMs) are used
from our prior works Raut et al. (2018); Bidarvatan et al.
(2015). The objective of this work is to control C'A50 and
IM E P while ensuring combustion stability by limiting the
COVipep below 3%. For both HCCI and RCCI modes,
COMs are augmented with data-driven models to con-
strain COVyp gp. Crank angle for 50% fuel mass fraction

burned (C'A50), temperature at start of combustion (Tse.),
pressure at start of combustion (Ps,.) and indicated mean
effective pressure (IMEP) are chosen as the states of the
MIMO nonlinear HCCI and RCCI COMs. The outputs
for both HCCI and RCCI modes are CA50, IMEP and
COVipEgp- The control structure is shown in Fig. 4.

The nonlinear COM of HCCI and RCCI modes can be
represented as follows:

2(k+1) = f(x(k), u(k)) (12)
y(k) = f(z(k)) (13)

2 =[CA50 Tewe Piwe IMEP]" (14)
urcor = [PR FQ)" (15)
urcer =[SOl FQ PR]" (16)

y = [CA50 IMEP COVingp)" (17)

The developed COMs are used in a nonlinear model
predictive control (NMPC) platform to control the LTC
engine in HCCI and RCCI modes. The NMPC uses real-
time iterative optimization of the plant model over a finite
number of time steps and yields an optimized control
strategy for a provided reference input. The first element
of the optimal control sequence is provided as a feedback
control for the next sampling interval. The prediction and
control horizons for both HCCI and RCCI modes are
chosen to be 5 and 3 engine cycles, respectively. The cost
function is designed by penalizing the control efforts and
least square error of reference tracking as shown in (18)

Y1

J=> 5 (¥e — Rs)TQ(Yx — Rs) + UF RU,

k=1
subject to the constraints on COViypp and actuators
limits

where:

(18)

h(z(k),u(k)):CSI—1=0 (19)

ACO?’LSU S BCOYLS (20)

where Q and R are the tuning weights. Combustion sta-
bility index (CSI) is used to specify the classes that is
based on COVyprgp. Constraint h(x(k),u(k)) is a nonlin-

ear equality constraint on COVyppp which is given by
(21) and (22) for HCCI and RCCI modes, respectively.

CSlgcer = hHCC’I('JJ(k)aUHCCI(k)) (21)

CSIrccr = hrecr(@(k), urccr(k)) (22)
Rs is the reference signal for C A50 and IM EP available
for next 5 time steps.

Rs = [CA50,e; IMEP,.4]" (23)

This nonlinear programming problem (NLP) is solved in
Matlab by using “fmincon” command and specifying se-
quential quadratic programming (SQP) algorithm. SQP
solves this minimization problem with an active nonlinear
constraint. SQP is an iterative approach to search for a
local optimal solution Meadows (1997). The QP subprob-
lem is formulated to account for the local properties of the
NLP for each iteration step using quasi-Newton method.
The subproblem is of the following form:

1
. T T
min VJi, . AU + iAU HAU

over AU € R"™
subject to

(24)
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Fig. 5. Controller response for reference tracking of CA50
and IMEP with and without constraint on COVjpypp
for RCCI mode.

h(l’k, ug) + Vh(l‘k, UO)TAU =0 (25)

g(xk, U()) + Vg(:rk, ’LL())TAU < 0 (26)
The solution of this subproblem is used to form a new
iteration.

UG+1)=U@)+aAU(k) (27)
where, « is a scale factor that determines the length of
the search step in direction of AU. « is determined by line
search approach subject to the decrease in original NLP
merit function. H is the positive definite Hessian matrix,
computed by taking the second derivative of J(x(k),u(k))
w.rt U.

5. RESULTS AND DISCUSSIONS
5.1 Results for RCCI Mode

In RCCI, there are three control knobs available to control
combustion. C'A50 can be controlled by adjusting either
SOI or PR. Fuel quantity is used to control IM EP. Con-
straint on COVyppp is added along with the actuator
constraints. Figures 5 and 6 show the controller perfor-
mance with and without constraint on COVygp. During
first 300 cycles, the controller is capable of tracking C' A50
and IMEP but the optimal solution lies in the region
of unstable combustion as the constraint on COViygp is
inactive. However, when the constraint on COViygp is
activated, the controller adjusts the premixed ratio while
tracking C A50 and I M EP to provide an optimal solution
in the region of stable combustion, as shown in Fig. 5
during 300-600 cycles. Moreover, the controller is capable
of reference tracking C'A50 and I M EP with settling time
of one engine cycle.

5.2 Results for HCCI Mode

Nonlinear MPC controller is implemented in Matlab for
the reference tracking of CA50 and IMEP while con-
straining COVyppp for HCCI mode. The outputs and
states are computed using engine plant model and pro-
vided as feedback to the controller. In HCCI mode,
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Fig. 6. Control inputs of the NMPC for the results in Fig.
5

premixed ratio, fuel quantity and manifold temperature
are the available control actuators. Manifold temperature
shows very slow response; thus, it cannot be used to
control the parameters on cycle-to-cycle basis. PR is used
as manipulated variable to control CA50, and IMEP is
controlled by adjusting the fuel quantity. Figures 7 and
8 show the controller response for tracking C A50 and
IM E P with and without constraint on COV7ygp. For the
first 100 cycles, when the IM EP is 250 kPa and C A50 is
13 CAD (aTDC), the model predicts unstable combustion
as the combustion stability index is 3. This means that
the COVipgp for these 100 cycles is greater than 5%.
For the next 100 cycles, the combustion is stable as CSI is
1 (COVimep <3%). However, the controller shows good
performance for reference tracking of CA50 and IMEP.
It takes one engine cycle to reach the targeted IMEP
while C'A50 takes four engine cycles to reach the reference
value. For cycles 301-600, the constraint on COVyypp is
activated. The controller tracks IM E P well but it adjusts
CA50 such that the combustion stability index remains
1. As shown in Fig. 7, when the constraint on COVyypp
becomes active, premixed ratio regulates C'A50 to avoid
constraint violation. Hence, COVjygp stays below 3%
ensuring stable combustion.

6. CONCLUSIONS

In this work, a data-driven predictive model of combustion
stability classification is developed for the low temperature
combustion (LTC) modes in a 2-liter 4-cylinder engine.
The engine data at 510 operating conditions were used
to develop and assess the model. Support vector machine
(SVM) is used to classify COViypp and create a pre-
dictive model of the engine combustion stability. C' A50,
IMEP, premixed ratio, fuel quantity, intake manifold
temperature and start of injection (for RCCI only) are
used as predictors to classify COVipypp into three dif-
ferent classes including class-1 consisting of COViypp <
3%, class-II with 3 < COViyep < 5% and class-111 with
COViargp > 5%. Experimental data with COViypp >
5% mostly showed either partial burn or misfire. The de-
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veloped combustion stability models for both LTC modes
show more than 97% prediction accuracy.

Using the combustion stability models, closed-loop nonlin-
ear model predictive controllers are designed for HCCI and
RCCI combustion modes. The optimal control action is
determined using SQP algorithm. The nonlinear MPC con-
troller for HCCI is capable of tracking C A50 and IM EP
in the absence of constraint on COV;ypp and regulates
C A50 whenever needed for keeping the combustion stable.
For the RCCI mode, SOI and fuel quantity are used
to control CA50 and IMEP. In the presence of active
constraint on COVyyrpp, the designed controller adjusts
premixed ratio to ensure stable combustion during engine
load changes. These allow the multi-mode LTC engine to
run stably in both HCCI and RCCI modes.
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