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Abstract

We prove that some time Euler schemes for the 3D Navier—Stokes equations modified
by adding a Brinkman—Forchheimer term and a random perturbation converge in
L%(£2). This extends previous results concerning the strong rate of convergence of
some time discretization schemes for the 2D Navier Stokes equations. Unlike the 2D
case, our proposed 3D model with the Brinkman—Forchheimer term allows for a strong
rate of convergence of order almost 1/2, that is independent of the viscosity parameter.
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1 Introduction

An incompressible fluid flow dynamic can be described by the so-called incompress-
ible Navier—Stokes equations (NSEs). The fluid flow is defined by a velocity field
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u and a pressure term 7 that evolve in a very particular way. These equations are
parametrized by the viscosity coefficient v > 0. Many questions are open in the 3D
setting. In this paper, we will focus on the 3D incompressible Navier—Stokes equa-
tions with a smoothing term of Brinkman—Forchheimer type, in a bounded domain
D = |0, L]3 of R3, and subject to an external forcing defined as:

u —vAu+ - Vyu+alul®®u+ Ve = Gu)dW in (0,T) x D,
divu =0 in (0,7) x D, (1.1)

fora > 0, € [1, +00) and some terminal time 7" > 0. The process u : £2 x [0, T'] x
D — R? is the velocity field with initial condition uo in D, and periodic boundary
conditions u(t,x + Lv;) = u(t,x) on (0,T) x oD, where v;, i = 1,2, 3 denotes
the canonical basis of R3, and 7 : 2 x [0, T] x D — R is the pressure. Note that
similar computations using the restriction to a bounded domain as a technical step
would enable to deal with D = R3 (with no boundary condition). In order to focus on
the main issue, this will not be treated here.

Here G is a diffusion coefficient with global Lipschitz conditions and linear growth
and the driving noise W is a Wiener process defined of a filtered probability space
(82, F, (F),P). In 2D, there is an extensive literature concerning the deterministic
NSEs and we refer to the books of Temam; see [27, 28] for known results. The stochas-
tic setting has also been widely investigated in dimension 2, see [19] for some very
general results and the references therein. Unique global weak and strong solutions (in
the PDE sense) are constructed for both additive and multiplicative noise, and without
being exhaustive, we refer to [11, 15].

Global well posedness in the 3D case is a famous open problem, and can be proved
with some additional smoothing term such as either a Brinkman—Forchheimer nonlin-
earity to model porous media, or some rotating fluid term. Let us mention that these
models can be used with some anisotropic viscosity, that is no viscosity in one direction
(see e.g. [10, 14]). The stochastic case has been investigated as well by several authors
among which Flandoli et al.; see for example [18] for an account of remaining open
problems. The anisotropic 3D case with a stochastic perturbation has been studied in
[20] for rotating fluids, and in [6] for a Brinkman—Forchheimer modification.

Numerical schemes and algorithms were introduced to best approximate and con-
struct solutions for PDEs. A similar approach has started to emerge for stochastic
models, in particular SPDEs, and has known a strong interest by the probability com-
munity. Many algorithms based on either finite difference, finite elements or spectral
Galerkin methods (for the space discretization), and on either Euler, Crank—Nicolson
or splitting schemes (for the temporal discretization) have been introduced for both
the linear and nonlinear cases. Their rates of convergence have been widely investi-
gated. The literature on numerical analysis for SPDEs is now very extensive. Models
having either linear, global Lipschitz properties or more generally some monotonicity
properties are well developed in an extensive literature, see [3, 4]. In this case the
convergence is proven to be in mean square. When nonlinearities are involved that
are not of Lipschitz or monotone type, a rate of convergence in mean square is more
difficult to obtain. Indeed, because of the stochastic perturbation, there is no way of
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using the Gronwall lemma after taking the expectation of the error bound because
it involves a nonlinear term that is usually in a quadratic form. One way of getting
around it is to localize the nonlinear term in order to get a linear inequality, and then
use the Gronwall lemma. This gives rise to a rate of convergence in probability, that
was first introduced by Printems [26].

Discretizations of the 2D stochastic Navier—Stokes equations with a multiplicative
noise were investigated in several papers. The following ones provide a rate of con-
vergence in probability of time implicit Euler or splitting schemes [5, 12, 13, 17].
The Euler scheme is coupled with a finite element space discretization. Note that [17]
tackles the problem of weak convergence, that is convergence in distribution, while
in case of an additive noise [11] proves almost sure and mean square convergence
without giving an explicit rate.

Strong (i.e. L2(2)) convergence for a time splitting scheme, for an implicit time
Euler scheme—coupled with a finite elements approximation—of the stochastic 2D
Navier—Stokes equations were proven in [7, 8] for either a multiplicative noise or an
“additive” noise. In the latter case a polynomial (suboptimal) speed of convergence is
proven.

In [9], strong convergence of a space-time discretization (implicit Euler scheme
in time and finite elements approximation in space) for stochastic 2D Navier—Stokes
equations on the torus with an additive noise is studied. The rate of convergence is
“optimal”, namely almost 1/2 in time and 1 in space. However, since exponential
moments of the H!-norm of the solution is used, some constraints on the strength of
the noise have to be imposed. In the additive case, no localization is needed and the
argument is based on a direct use of the discrete Gronwall lemma.

In this paper, we study a time implicit Euler scheme (5.1) for a stochastic
3D Navier—Stokes equation with a modification, by adding a smoothing term of
Brinkman—Forchheimer type. Unlike the 2D case—and thanks to this extra term—
neither localization nor exponential moments are needed, and we obtain the “optimal”
convergence rate with no constraint on the noise and the viscosity. For technical rea-
sons, we only have to assume that the exponent « of the Brinkman—Forchheimer term
|u|**u in (1.1) belongs to the interval [1, %]. The proof is based on a careful study
of the time regularity of the solution in both the L? and H'! norms, and the discrete
Gronwall lemma.

The paper is organized as follows. Section 2 describes the functional setting of
the model. In Sect. 3 we describe the stochastic perturbation, state the global well
posedness of the solution to (1.1) and its moment estimates in various norms. If the
exponent « = 1 we have to impose that the coefficient a is “large”. The way the
Brinkman—Forchheimer term helps to obtain estimates for the bilinear part is described
in Sect. 7.1 of the Appendix. The proof of the existence and uniqueness relies on a
Galerkin approximation. It is quite classical, similar to the anisotropic case described
in [6]. The proof is sketched in Sects. 7.2 and 7.3 of the Appendix for the sake of
completeness. Section 4 is devoted to the moment time increments of the solution to
(1.1)in L? and H'; the results are crucial to obtain the optimal strong convergence
rate. In Sect. 5 we describe the fully implicit time Euler scheme, prove its existence
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and some moment estimates. Finally, in Sect. 6 we prove the strong (that is L>(£2))
convergence rate of this scheme.

As usual, except if specified otherwise, C denotes a positive constant that may
change throughout the paper, and C(a) denotes a positive constant depending on
some parameter a.

2 Notations and preliminary results

Let D = [0, L]? with periodic boundary conditions, L.? := L? (D)3 (resp. Wkp =
Wk-P(D)3) be the usual Lebesgue and Sobolev spaces of vector-valued functions
endowed with the norms || - ||Le (resp. || - [lyyr.r). If p = 2, set HF := W52 and we
denote by || - ||x the HX norm, k = 0, 1, .. .; note that || . [|o = || - [l2. In what follows,
we will consider velocity fields that have zero divergence on D. Let H (resp. V) be
the subspace of > (resp. H') defined by

H:={uecl?:divu=0 weakly in D with periodic boundary conditions},
Vi=HNW"2

H and V are separable Hilbert spaces. The space H inherits its inner product denoted
by (-, -) and its norm || - ||z from L?. The norm in V, inherited from W2, is denoted
by || - |lv; we let (-, -)y denote the associated inner product. Moreover, let V’ be the
dual space of V with respect to the pivot space H, and (-, -) denotes the duality between
V' and V.

Let /T : L> — H denote the Leray projection, and set A = —IT A with its domain
Dom(A) = W22 N H.

Let b : V3 — R denote the trilinear map defined by

b(ui, uz, uz) := [D ([u1(x) - V]ua(x)) - u3(x) dx,

which by the incompressibility condition satisfies b(uy, uz, u3) = —b(uy, u3, us) for
u; € V,i = 1,2, 3. There exists a continuous bilinear map B : V x V + V' such
that

(B(uy,uz), u3y = b(uy,ur,u3), forallu; eV, i=1,2,3.
The map B satisfies the following antisymmetry relations:
(B(ui,uz), uz) = —(B(ur,uz), uz), (B(ui,u2),u2) =0, Vuj €V. (2.1)
Foru,v € V,set B(u,v) := I ([u-V]v).

In dimension 3, the Gagliardo—Nirenberg inequality implies that for p € [2, 6],
H' ¢ L?; more precisely

1 3 1 1
2 s s ~ 2 2 1
lullps < Callullfy IVullf; and flullps < Cs llullf, IVullf,, Yu € HY, (2.2)
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for some positive constants Cs and Cy.
Furthermore, the Gagliardo—Nirenberg inequality implies that H? c L7 for any
p € [2, 00), and for u € H?

luliLe < C(p) | Auls?

_ 3,1 1
" o p=5(3-7) @3

Note that for p = 6 we have B(6) = % Furthermore, ||u|Le~ < C|lu|pe foru € H2.
Let « € (1,+400) and let f,g,h : D — R be regular functions. Given any

positive constants gg and £1 and some constant C,, depending on «, the following upper

estimates are straightforward consequences of the Holder and Young inequalities

fle<x>g<x)h<x>|dx < 11081 | oo Dlg1' =% e, 2. 2.4)

&1 2 C
< eollhl7, e lr1gl;. + —ligl?,.  (2.5)
a—1
£0€;

Let 27 = 2 x[0, T]be endowed with the product measure dPQds on FQB(0, T).
The following functional notations will be used throughout the paper. Set

Xo= L®(0,T; HYNL*O0,T; V)N L*¥2(0, T] x D; R%), (2.6)
Xo= L2 L0, T; H)) N L*(2; L*(0, T; V)) N L* (27 x D; RY), (2.7)
X, = L®(0,T; V)N L*O0, T; DomA) N {u ([0, TIx D —> R :

T
/O [l IP%2 + [ lu @ Vu@)|; . ]dr < oo}, 2.8)
Xy = L*(2; L0, T; V)) N L*(2; L*(0, T; Dom A)) N {u :Qr xD—>R:

T
E /0 (@42 + [lu@)* Va7 Jdr < oo}, 29)

3 Global well posedness and first moment estimates

For technical reasons, we assume that the initial condition uq belongs to L”(£2; V') for
some p € [2, oo], and only consider strong solutions in the PDE sense. We prove that
the stochastic 3D Navier—Stokes equation with Brinkman—Forchheimer smoothing
(1.1) has a unique solution on any time interval [0, 7] and prove moment estimates of
this solution. This requires some hypotheses on the driving noise W and the diffusion
coefficient G.
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3.1 The driving noise and the diffusion coefficient

Let (ex,k > 1) be an orthonormal basis of H whose elements belong to H? =
W?22(D; R3) and are orthogonal in V. Let H,, = span(ey, ..., e,) and let P, (resp.
P,) denote the orthogonal projection from H (resp. V) onto H,,. Furthermore, given
i # j we have

(Aei s e]') = (Ve,- s Vej) =0

since the basis {e,}, is orthogonal in V. Hence~ Au € 'H,, for every u € 'H,.
We deduce that for u € V we have P,u = P,u. Indeed, forv € H, andu € V:

(Pyu,v) = (u,v), and (VPuu, Vv) = —(Pyu, Av) = —(u, Av) = (Vu, Vv). (3.1)

Hence given u € V, we have (P,u, v)y = (u, v)y for any v € H,,.

Let K be a separable Hilbert space and Q be a symmetric, positive trace-classe
operator on K. Let (W (t), t € [0, T]) be a K -valued Wiener process with covariance
operator Q, defined on the probability space (§2, F, (F;), P). Let {¢;};>1 denote an
orthonormal basis of K made of eigenfunctions of Q, with eigenvalues {g;};>1 and
TrQ =} ;.1 qj < oo.Then

W) =Y Ja B0, Vel T,

=1

where {8;};>1 are independent one-dimensional Brownian motions defined on
(82, F, (F), P). For details Eoncerning this Wiener process we refer to [16].

Let L = L(K; H) (resp. L = L(K; V)) be the space of continuous linear operators
from K to H (resp. V) with norm || . ||z (resp. || . || 7).

The noise intensity of the stochastic perturbation G : V — £ which we putin(1.1)
satisfies the following classical growth and Lipschitz conditions (i) and (ii). Note that
due to the 3D framework, we have to impose growth conditions both on the || - ||~
and || - || 7 norms.

The diffusion coefficient G satisfies the following assumption:

Condition (G) Assume that G : V — L satisfies the following conditions:

(i) Growth condition There exist positive constants K;, K i, 1 = 0,1, such that

IG@)I7 < Ko+ Killuly, YueH, (3.2)
IG@)I% < Ko+ Killullyy, VueV. (3.3)

(ii) Lipschitz condition There exists a positive constant L such that

IGw) — GW)|% < Lllu—vll}, Vu,veH. (3.4)
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We define a weak pathwise solution (that is strong probabilistic solution in the weak
deterministic sense) of (1.1) as follows:

Definition 1 We say that Eq. (1.1) has a strong solution if:

— u is an adapted V-valued process which belongs a.s. to X7,
— Pas.wehaveu € C([0, T]; V), and

t 13
(u(t), d)) + U/o (Vu(s), Vd))ds —I—/O ([u(s) -Viu(s), ¢>ds
'
+ a/ f lu(s, x)*%u(s, x)¢ (x)dxds
0 JD
t
= (1o, ®) + /0 (¢, Gu(s)dW (s))
forevery t € [0, T]and every ¢ € V.

3.2 Global well-posedness and moment estimates of the solution

We next prove that if E(||u0||‘\‘,) < 00, then (1.1) has a unique solution « in AX7.

Theorem2 Let o € [1,400), and for « = 1 suppose that 4va > 1. Let uy €
L2P(82; V), for some p € [1, 00), be independent of W, and G satisfy the growth and
Lipschitz conditions (G). Then Eq. (1.1) has a unique solution in X such that a.s.
u € C([0, T); V). Furthermore,

B( sup fuly / | Au)]2.dr+ / lu()1352dr) = C[1+E(luol)].

1€[0,T]
3.5

The proof, which is quite classical, is sketched in Sect. 7.3 of the Appendix.

4 Moment estimates of time increments of the solution
In this section we prove moment estimates for various norms of time increments of the
solution to (1.1). This will be crucial to deduce the speed of convergence of numerical

schemes. Let ug € L2P(£2; V) for some p € [2,00) and u be the solution to (1.1),
that is

t t
u(t) = S()ug — / St —s)B(u(s), u(s))ds —a / St — s)H|u(s)|2°‘u(s)ds
0 0
t
+ / St —5)Gu(s))dW(s), Vtel0,T], Pas. “.1)
0

where S(r) = e~/ is the analytic semi group generated by the Stokes operator A

multiplied by the viscosity v. Then (see e.g. [13, Lemma 2.2] and [26, Lemma 2.1]),
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forb>0andt € [0, T],

”Abe_WA ”,C(]Lz;]Lz) = C(b’ U) t_b’ (42)
”A_b(ld — eV HL(Lz;Lz) < C(b,v)1°, 4.3)

for some positive constants C (b, v) and C (b, v).
The following regularity result for the bilinear term will be crucial in the proof of
time regularity.

Lemma 1 (i) There exists a positive constant M such that
1 1
IA™4 B, w2 < MIA2ullf> < Mllully,, VueV. (44)

(i) For$ € (0, 3),

IAT B(u, )2 < C||Au||ILZ Yu € Dom(A). (4.5)

i,

Proof (i) Using [21, Lemma 2.2] we deduce that given positive constants 8, 6, p such
that0 <8 <1+432,0>0,p>0suchthatp+8 > 4 and8+60 + p > 2, there
exists a constant M := M (8, 0, p) such that for u, v regular enough

IAT B, v)|lp2 < M||A%u|| 2||APv]|y2.

Choosing § = }‘, 0=p= %, we deduce (4.4).
(ii) For u € H2, we have

||A—SB(u,u>||Lz=sup{/D|w||u||¢|dx;: 9l < 1.

In dimension 3, the Sobolev embedding theorem (see e.g. [1, Theorem 7.57, p.
217]) implies W# 7 (D) C LI(D)if3 > Bp,B>0,1 <p<3andp <qg <
=5 ﬂp Hence for § € (0, 4) choosing B =28, p =2 and q =3 648, we obtain
W22(D) = H¥ (D) C L4(D). Let p = 4 then 1 5+ I+ 5 = 1, and the Holder
inequality yields

1A B, )2 < ClIVullp2llullys-
|4+5

This concludes the proof of (4.5). O

The Gagliardo—Nirenberg inequality (2.3) implies |lu|l 5 < C ||Au||]L2 || |

The following result proves regularity of the Brinkman—Forchheimer term. To have
aregularity similar to that of the bilinear term, we have to impose some restriction on
the exponent «.

Lemma2 Leta € [1, %].
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(i) there exists a positive constant C such that
A~ 4(|u|2a M < Cllul3t!, Yuev. (4.6)

(ii) Furthermore, for any § € (0, %) there exists C > 0 such that

| A7 (juu) | < C||Au||ILZ 2 llu ||2V°‘+ Vi eDom(A). (47

Proof We use once more the Sobolev embedding theorem WA 7 (D) c L"(D) if
3>8p,B>0,1l<p<3andp=<r =<3 ﬁp

(i) Choosing B = 1, p =2 and r = 3, we obtain W2-2(D) = H2(D) C L3 (D),
while B = 1, p = 2 and r € [2, 6] yields H' (D) c L"(D). Given u € H!, we
have

1
A4 (uPeu) ] = sop { [ o Peucnpcodr s ol <1).
D
Using Holder’s inequality with exponents 2,6 and 3, we obtain for § € [zlp %)

-1 2 2 20+1
A7 (lulu) || > < sup{llull?% ulpslidls = Il 1 <1} < Cllully*™,
L L 2

where the last upper estimate is a consequence of the inequality 4« € [4, 6]. This
completes the proof of (4.6).
(i1) As in the proof of Lemma 4.1 (ii) we choose ¢ = ﬁ to ensure H? < L7 and

p= % The Holder and Gagliardo—Nirenberg inequalities imply

1A= uP w2 = sup | / Pl < Ipllzps =< 1] < Nl Nl Il

IA

3 1
Is Ly
CIIMII]LmIIAMIIﬁz llullfs

Sincea € [1, %], the Sobolev embedding H! ¢ LY for y € [4, 6] concludes the proof.
O

The following proposition gives upper estimates for moments of time increments
of the solution to the stochastic 3D modified Navier Stokes equation u defined in
equation (4.1).

Proposition 3 Let ug be Fo-measurable and let a € [1, %] with4va > 1 ifa = 1.
Suppose that the diffusion coefficient G satisfies Condition (G) and let u be the solution
to (1.1). Then for A € (0, %) we have

(i) Suppose ug € LPtVP(Q:V) for some p € [2,00). There exists a positive
constant C :== C(T,a, p, TrQ) such that for0 <t <thpb < T,

E(llu(t2) — u@)%) < Clta — 02 [1 + E(lluoll 7). (4.8)
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(ii) Let N > 1 be an integer and fork = 0, ..., N set ty = ]% Then there exists
C:=C(T,a,TrQ, A) > 0 (independent of N ) such that for p(A) = % and
up € LPM(2; V)

N

L
E(Zf IV Gu(s) = ) I; + 1V uls) = ute;—0)E Jds)
j=17tm
< c(%)n [1 +E(||uo||€<”)]. 4.9)

Proof The proof relies on a semi-group argument.
(1) Let#; < t; belong to the time interval [0, T']. Then u(#y) —u(t;) = Zj‘: 1 Ti, where

T\ = S(t2)up — S(t1)uo,

1

%)
T = —/ Sty — s)Bu(s), u(s))ds +/ S(t1 — s)Bu(s), u(s))ds,
0 0

151

15
Ty = —a/2 Stz — ) (lu(s)[*u(s))ds —|—a/ Sty — 5)(lu(s)1*u(s))ds,
0 0
t t
T4=/25(t2—s)G(u(s))dW(s)—/lS(t1 — )G (u(s)dW(s).
0 0

Then using (4.3) and the upper estimate sup, (o 71 [S() [l £.2.1.2) < 00 we deduce

ITile = | StDA™2[S(2 — 1)) — 1d] A ug |,

< CISE g 12 — 112 A% uollz < C Itz — 11]? fluolly-
Hence taking expected values, we deduce for every p € [2, 00)
E(ITill},) < CP 2 — nl: E([luoll})- (4.10)
Furthermore, 75> = —T,1 — 122, where
1
Ty, = /0 S(t1 — $)[S(t2 — 11) — 1] Bu(s). u(s))ds.

n
o= / Sty — s)B(u(s), u(s))ds.
1
Using the Minkowski inequality, (4.2), (4.3) and (4.4), we deduce that for ¢ € (O, ‘l‘),

n
IT2,1llp2 < / IA€S(t) —5) A=GO[S(t, — 11) — 1d]
0
x A3 B(u(s), u(s)) |l 2ds
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a1

3

< Clop—n|""* sup IIM(S)IIZVf (t — )" '*ds.
s€[0,11] 0

Hence (3.5) implies that if E(||u0||%,p) < oo for some p € [1, 00), we have
3_
E(IT2.117,) < C(T) [t — 11| 5P [1+ Efuol3]- (4.11)
The Minkowski inequality, (4.2) and (4.4) imply
2o _1
172202 < / A4S —s)A™ 4 B(u(s), u(s))ll2ds
n

15 1
C sup [u(®)y | (2 —s)"4ds.
s€ln,n] 51

IA

Using once more (3.5) we deduce that if E(||u0||%/p) < oo for some p € [1, 00),
3
E(IT2.21%,) < C 2 — 11371 + Elluol3]- @.12)

A similar decomposition yields 73 = —a(Tg,l + T3,2), where

1
T3 = /0 St — s)[S(t2 — 1) — Id]lu(s)|2“u(s)ds,
t
T3, = /2 Sty — $)|u(s)|*u(s)ds.
1

The Minkowski inequality and the upper estimates (4.2), (4.3) and (4.6) imply that for
e (0.1).

1
T / 1A= S — 5) A=G-9[S(12 — 1y) — 1d]
0

< A7 () u(s))llp2ds

3_ n i
< Clo—1]3"% sup ||u(s)||2V“+1/ (t1 — )1y,
s€[0,11] 0

and the upper estimate (3.5) implies that for p € [1, 00),
3_
E(IT3.1175) < C [t — 11|57 [1+ Efluo |7+ 7]. (4.13)
The Minkowski inequality and the upper estimates (4.2) and (4.6) imply

2 1 -1 2
173,212 5/ IA%S(ry = )AT 2 (Ju(s)|“*u(s)) Il 2 s
41
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) 1 3
< cm/ (h — ) Fu@ 3 ds < C(D)n — 17 sup uls) 3T
1 s€lty, ]

Then using once more (3.5) we obtain for p € [1, 00),
3
E(IT5.217,) < C(T, p)la — 1137 [1+ Efuoly**V7]. (4.14)
A similar decomposition of the stochastic integral yields 74 = T4 1 + T4,2, where
n
Iy = / St — 9)[S(t2 — 1) — 1] G (u(s)d W (s),
0
n
Ty = / Sty — )G (u(s)dW(s).
1

The Burkholder—Davis—Gundy inequality, the growth condition (3.2), (4.2) and (4.3)
imply for e € (0, 1) and p € [1, 00),

A

131
BT < ¢ E(| [ 150 = 9[s6 - - 6w Trods|)

IA

n 1
c, k| /O IS = )12z,
(Ll p
X A7 = 1) = 1d] 13202 IGWDIE TrQ ds|)
< Cp(TrQ)” iy = 0|27 [ K + KPE( sup u@)l3)]
s€[0,11]
n p
X (/ (1 —s)_1+2£ds)
0
< C(T, p,TrQ) [t — 1117297 [1 + E(lluol3)]. (4.15)
where the last upper estimate is deduced from (3.5).

Finally, using once more the Burkholder-Davis—Gundy inequality, sup, o 1)
ISl g2:1.2) < 00, the growth condition (3.2) and (3.5), we obtain for p € [1, 00)

2
E(ITs2l35) < €, E(

%) 2 P
[ 156 -96aenizmods|”)
n

IA

C, (TrQ)” E(

)

Cp (TrQ)? |t — 11 [”[1 + E(lluoll3)]. (4.16)

n
ft 1S(t2 = )11 2,12 [Ko + Killu(s) 113 ]ds
1

IA

The upper estiimates (4.10)—(4.16) conclude the proof of (4.8).
(i) For 1 < j < N,s € [tj—1,t;) we have Vu(t;) — Vu(s) = Z?Zl Ti (s, J),
where

T1 (s, j) = VS(tj)ug — VS(s)uo,
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N

lj
Tr(s, j) = —f VSt —r)Bu(r), u(r))dr +/ VS(s —r)Bu(r), u(r))dr,
0 0
Ij K
Ts(s, j) = —a/ VS(t; — ) (Ju()**u(r))dr + a/ VS(s — r)(lu(r) **u(r))dr
0 0

N

Ij
Tu(s, j) = f S(t; —r)VGu)dW (r) — / S(s — r)VGu@r))dW(r).
0 0
Using the upper estimates (4.2) and (4.3) we obtain
1
IT1 (s, DIz = 1A°S(s) A7 [S(t; —5) —1d]AZugll> < Cs™°1t; — s [luolly

for any § € (0, 1]. Therefore, given any § € (0, %), we deduce

Nt T2 T T\28
Z/’ 116, I ads = €(57) uuonéfo s Pas=c@.n(5) Iuolf. (4.17)
j=171j-1

As in the proof of (i), let 75 (s, j) = —(Tz,l(s, J)+Taa(s, j)), where

Ti(s, j) = /SVS(S — M[S(t; — ) — 1] B(u(r), u(r))dr,
0

1
Tro(s, j) = / VSt —r)Bu(r), u(r))dr.

s

The Minkowski inequality and the upper estimates (4.2), (4.3) and (4.5) imply for
§€(0,5)andy € (0, 5 — &)

Z f 1T2,1(s, )32 ds
l‘, 1

< Z/, ]ds f |AZHHY S(s — r) A~ Y[S(t;—s)— 1d]

j=1

2
x AT B(u(r), u(r))dr||]L2dr}

T\ s (L §—5 §+5 2
— _ (5+6+y) 1 7
(3) Z/t, lds{/()(s AP Au el dr

IA

T\2r § 1
—_ — )y~ (atety)
< C( ) / ds(/o (s—r)y ‘2 dr)
' — 23-9) 2(3+6)
< ([ =m0 aue) ) sup uely Y @as)

0 rel0,T]
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where in the last upper estimate, we have used the Cauchy—Schwarz inequality with

respect to the measure (s — r)_%_‘s_y Lo,s)(r)dr.
Since [ (s — )"+ g5 < [T 5@t g5 = (T, 8, y) forany r € [0, T),

and fg (s — r)_(%+‘§+”)dr < C(T, 48, y)foranys € [0, T), using the Fubini theorem,
Holder’s and Jensen’s inequalities with respect to d P with conjugate exponents %H
1

and %6 , we deduce
I

N I T \2y
E Toa(s, DI ds < C(— ) C(T, 8,
;f 17216 DIiZds = €(5) €T 8.7)

T T
2(3+95) 203-8) 1
<E( sup fu()ly? / drl|Au()ll 2" / (s = )~y

rel0,T] 0 -

T2y 2(5+43) lys
= ¢(5) cas pE( swp Juen, )}
N ref0,T]

T 5 %,5
x {IE / I Au(r)||dr } .
Leta e (0,4),8 =152 € (0, }) and y € (0, 3 —28). Using (3.5) we infer

N 1j T\ 2\
B(3 [ 1t itas) = cs () [1+ B (ol )] @)
=17

tji—1

621
=

Using the Minkowski inequality, (4.2), (4.5) and Holder’s inequality for the measure

1[,/._]’,/](s)ds with conjugate exponents p; = % and pr = SL-HS we have pz(%+8) <
T i~ 7

1 for § € (0, §), and deduce

N o .
> [ it iidas
j=17t

Nt 1j 1
< CZ/ ds[/ |A2T2S@t; —r) A‘“B(u(r>,u(r))HIder}2
j:1 tj,1 s
N 1j Ij —(Lts) 35 345 2
CZ/ ds{f (1 = A1 Ny |
j=1 rj—1 N

5 N tj 2
C sup ||M(V)||‘2/+252/ (/ (t; _r)*Pz(%H)dr)Pz
=1

rel0,T] tj—1 K

IA

tj

IA

2

.
x (f’ ||AL¢(r)||§chir)pl ds
S
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L5
< ¢ s el () Z/

tj 2
ds(/ ||Au(r)||§2dr) g
lj—l

ref0,7T] 1Vt
The Holder inequality for the counting measure on {1, ..., N} with conjugate expo-
pLo_
nents 5 = ﬁ and 6 yields
o T\i-? 3+28
Y[t DiZaas < car. 8)( ) s ol
j=1 tj—1 rel0,7]

3

3.5
x Z/ ||Au(r)||izdr}4 N
tji—1

T 5 3.5
=c@o(y) s el fo | Aur) 3, ar}’

rel0,T]

Holder’s inequality with respect to d P with conjugate exponents 3 and — 1mp11es

- I
EZ/,J 1IITz,z(s,j)II]Zdess C(T,S)(%)l 26!1&3( wp (40| 110;1865)}4+5

rel0,T]
T 3_5
< 1E / lAu())?,dr )t . (4.20)
{E( ), 1auizar))
Let 1 € (0, 2) and 8 = =2 € (0, 4) The inequalities (4.19), (4.20) and (3.5) imply

=3 )] 4.21)

N lj T \2A
12 L T
E;/t ATt s = € 0(5)” 1+ (ol
A similar decomposition yields T3(s, j) = —a(73,1(s, j) + T32(s, j)), where
N
Ts5.1(s, j) =/0 VS(s —r)[St; —s) — 1] (Ju@) **u(r))dr

1j
Tya(s. j) = / VS(t; — ) (lu () Pu(r)dr

The Minkowski inequality and the upper estimates (4.2), (4.3), (4.7) imply for § €
(0, })andy € (0,5 —9),

S
ITs.1(5. )l < / | A3+ 5(s — r) AV[S(j — ) — 1d]
0

x A7 (lu(r)P*u() || dr
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' - 79 204145
< C(r,-—s)V/ (s =)~ AU L lu)ly T dr.
0

Therefore, given § € (0, %) and y € (0, % —9)

N
S [t s = ¢ / {f (s = " EF Au(ry 37

j=17%-1

2+—w 2
s )y }ds,

which is similar to (4.18) replacing the exponent % + § of |lu(r)|lv by 2o + ‘l‘ + 4.
Therefore, we deduce for § € (0, }‘)

16a+24-88

EZ/:, 1 |T3,1(S,]')||]i2ds < C(T,5)<%)l_ [1 —|—E(||M0||V T+43 )] (4.22)

The Minkowski inequality, (4.2) and (4.7) imply for 6 € (0, %)

,
Zf 173265, )12, ds < Z/ as{ [ s
tj—1 ti—1 N

x A*5(|u(r>|2°‘u(r))Hder}

2+«M 2
< CZ[ ds / (tj—r)" z+‘”||Au(r>||Lz lu@)ly }
=170t
The arguments for proving (4.20) imply
T \1-258 16042485\ 3 Ly
EZ T izds < o) (B sup o, )]
=171j-1 ref0,T1]
T 3
x |E / lAu() I dr) 1 (4.23)
(B[, 1aueniar)]

The inequalities (4.22), (4.23) and (3.5) imply that for A € (0, ) and § = 152 ¢

0. ).
EZ/IJl||T3(Ssj)||izdSSC(T,a,k)( ) [l—i—E(”uO”P(A))] 424
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Finally, the stochastic integral can be decomposed as follows: Ty(s,j) =
T41(s, j) + Tu(s, j), where

Tyq(s, j) = /OS(s =[St —s) = 1d]VG(u(r))dW(r),

Zj
Tyo(s,j) = f St; —r)VGu@r)dw(r).

The L2(.Q)-isometry, (4.2), (4.3) and the growth condition (3.3) imply for § € (0, %)

N
EY [ TG, DIE.ds

j=1"1-1

rj—1

N s
= EZ/IdS/O ”A%_SS(S _r)HZC(]LZ;]Lz)
j=1"4

lj

/SH S(s = N[St; —5) —1d]A? G(r)) |5 TrQ drds
0

rj—1

x [A~GI[s(t; — ) — 1d] |2z IG@E)I%TrQ dr

T s
<TrQ E/O dsfo (s =) 2@ — )P [Ko + Ky |u()Iy ]ar

<00 [Ro+ K B sup u()I})] (%)l_za/oTs%ds

rel0,7]

T\ 1-28
=TT o)(5)  [1+EduwlH] (4.25)

Finally, the L? (§2)-isometry, sup, ||S(r) [l z.2.1.2). the growth condition (3.3) and (3.5)
imply

N
B(3 [ WTiat piRds)
j=1701
N
EEZ/
e

lj
2 2
/ 1) = 2 g2 |G@DIETrQ drds
1j L . - )
as [ [Ro+ Rl 1 Jar
— N

j=1 Tj-1

T
=CT.TrQ) & [1+Edluoll3)]- (4.26)
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For o € [1, %] and A € (0, %), 2 < % < pA) = %. Therefore, the upper

estimates (4.17), (4.21), (4.24)—(4.26) imply for A € (0, %)
o [ 2 T2 p)
EY [ 190 —ut)ads = 10100 () [+ E (ol )]
j=1"1i-1
Small changes in the proof of this upper estimate prove that under similar assumptions
[ 2 T\ Pk
Y [ 19— uti-)iEds < e Q.0 () [1+E(molf”) |
j=11i-1

This completes the proof of (4.9). O

Remark 1 Note that the above proof shows that when time increments of the gradient
of the solution are dealt with, due to the term containing the initial condition, one
cannot obtain moments of E(|Ju(z) — u(s) ||%,) uniformly in s, withO <s <t <T.

Furthermore, in order to obtain the “optimal” time regularity, that is almost %, we also
need a time integral.

5 Well-posedness and moment estimates of the implicit time Euler
scheme

We first prove the existence of the fully time implicit time Euler scheme. Fix N €
{1,2,...},1eth = % denote the time mesh, and for j = 0,1, ..., N sett; := j%.

The fully implicit time Euler scheme {1*; k =0, 1, ..., N} is defined by u® = ug
andforp e V

(uk — N oAU + hB(uk, uk) + ha |u*Pouk, gp)
= (G HIWw) —Wwm-D1, ¢), k=1,2,...,N. (5.1)
Set A;W:=W(tj) — W(tj—1), j=1,...,N.

The following proposition states the existence and uniqueness of the sequence
{uk}k:o,_,_, n and provides moment estimates which do not depend on N.

Proposition4 Let o € [1, %] and Condition (G) be satisfied. The time fully implicit
scheme (5.1) has a solution {uk}k:h_,,N € V NH? Furthermore,

N>1

,,,,,

N
T
sup E(k max lu® 13 + v Z ||Auk||]i2
k=1

N
> k12553 + |||uk|“Vuk||iz]) < o0 (5.2)

2~

+
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Proof The proof is divided in two steps.

Step 1: Existence of the scheme We first prove that for fixed N > 1 (5.1) has a
solution in V N IL2**2, For technical reasons we consider a Galerkin approximation.
As in Sect. 3 let {¢;}; denote an orthonormal basis of H made of elements of H? which
are orthogonal in V. Since o € [1, %], the Gagliardo—Nirenberg inequality implies
that H! c L2*+2,

Form =1,2,...letV,, = span (eq,...,e,) C H? andlet P, : V — V,, denote the
projection from V to V,,. In order to find a solution to (5.1) we project this equation
on V,,, that is we define by induction a sequence {u*(m)}x—o... n € Vi such that
u%(m) = Py (ug),andfork =1,...,Nand ¢ € V,,

,,,,,

(u*(m) — u*=1(m), @) + h[v(wk(no, Vo) + (B(u*(m), u*(m)), ¢)

+a (jut )Pt m), 0) | = (G ) AW, ¢). (5:3)
For almost every w set R(0, w) := |[ug(w)| 2. Fix k = 1, N and suppose that
forj =0,...,k—1the ]—',j - measurable random variables 1/ (m) have been defined,

and that

R(j, w) := sup llu’ (m, )|l 2 < oo foralmostevery w.
m>1

We prove that u¥ (m) exists and satisfies a.s. sup,,>1 |l uk(m, w) 2 < oo.Theargument
is based on the following result [22, Cor 1.1, p. 279], which can be deduced from

Brouwer’s theorem.

Proposition5 Let H be a Hilbert space of finite dimension, (., .)y denote its inner
product, and @ : H — H be continuous such that for some 1 > 0,

(@(f), f), =0, forall f e H with| fllg = u.
Then there exists f € H such that ®(f) =0and | fllg < 1.

For w € £2 let cD,’fLw : Viw = V,,, be defined for f € V,, as the solution of

(Pho()9) = (f —u*"'(m. w), )
+h[0(V£.V9) + (PuB(f. ). 9) + a(Pull £ 1), )]
— (PuG W m, 0) AW (@), @), Vo € V.

Then

(@5 (). ) = 112 — (" m, ), £) + WV FI2, + hall £17553
— (GW* " (m, w)) AW (), f).

@ Springer



Stoch PDE: Anal Comp

The Young inequality implies |(u*~!(m, w), f) < %||f||i2 + SNk (m, ®)|7, and
the growth condition (3.2) implies

(G@* = m, w) AW (), £)]

IA

|G = m, )l 2 AW @)l 11 £ 2

1 _
< JIF1E2 + [Ko + Kyl = om, o)1 ] 14 W @)

Hence

(®h (). f) = —IIfIILz——IIu" Ym, )17
— [Ko+ Killu* ' (m, o) 7 ]Il A W (@) [ = 0

if
112 = B2, o) 2= [ Kol kW @) + B2k — 1o (5 + Kil W @)1 )|

Proposition 5 implies the existence of u* (m, w) € V,, such that &, (u*(m, w)) =
and ||uk(m, w) ||]i2 < R%(k, w); note that this element u* (m, w) need not be unique.
Furthermore, the random variable u¥ (m) is Fi,-measurable.

The definition of u* (m) implies that it is a solution to (5.3). Taking ¢ = u¥(m) in
(5.3) and using the Young inequality, we obtain

k)12, + R vl Vi m) |12, + halu® (m)]12%,

L2e+2

= (" m), u* (m)) + (G m) AW, uF (m))

1 1
< ML + 1 g, + Il o)l
+ [Ko + Killu* " m) |13 ] AW 1% -

Hence a.s.

1
sup [Enu’“(m, o)I2, + hv[[Vukm, o) 12, + halu*(m, w>||§°§i‘;]

m>1

< R*(k — 1L, 0)[1 + Ki| AW (@)% ] + Koll AcW (@) 1%

Therefore, for k and almost every w, the sequence {uk(m, )}, is bounded in V N
L22+2; it has a subsequence (still denoted {uk(m, ) }m) which converges weakly in
V NIL22t2 o ¢k (w). The random variable ¢y is F;, -measurable.

Since D is bounded, the embedding of V in H is compact; hence the subsequence
(uF(m, )}y converges strongly to ¢y (w) in L2.

Then by definition u°(m) converges strongly to uo. We next prove by induction on
k that ¢* solves (5.1). Fix a positive integer mq and consider the equation (5.3) for
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k=1,...,N,¢ € Vy,,andm > mg. As m — oo we have a.s.
(¥ (m) —u* "L (m), 9) — (¢* — 0"~ 0).

Furthermore, the antisymmetry of B (2.1) and the Gagliardo—Nirenberg inequality
3 1
gl < CIVglsligl, yield as.

[(B(u*(m) — ¢*, ¢), uF(m))| + |(B(¢*, @), u* (m) — ¢*)|
IV l2 e m) = @ llga [l om)ls + 16" 1]

7 7 1
C llpllgz [ max u* ()l + 1¢* 1y ]l Gm) — ¢*1 > — 0

|(B(* (m), u* (m)) — B@*, ¢, )|
=
=

IA

as m — oo. The inequality (7.8) implies
|(1u* m) 12 u® (m) — 16517 0%, ¢)|
c/|u’<<m)—¢k|(|uk<m)|2“+|¢"|2“) ol dx

C liglluee e (m) — @1z (I e 3% + 16* 7% )
C llgllzze (max o) [ + 1 15) 1 om) — @l — 0

IA

IA

IA

as m — oo. Note that the last upper estimate follows from the inclusion H! c L7 for
pel2,6],anda € [1, %]. Finally, the Cauchy—Schwarz inequality and the Lipschitz
condition (3.4) imply

(G ) AxW, 9) = (G(¢* ") AW, 9)
< el IG@ " ) — G(@* Ml AWk
< VL llgllp2 1 m) — $F i 1AWk — 0

as m — oo. Therefore, letting m — oo in (5.3), we deduce
(65 = 6"+ hvag + hB(#", ") + hals* 9", ) = (GO H AW, ¢)

for every ¢ € V. Since Uy, Vi, is dense in V, we deduce that ¢* is a solution to
5.D).

Step 2: Moment estimates We next prove (5.2) for any {uk }k=o0,....n solution to (5.1).
We first study the L?>-norm of the sequence. Write (5.1) with ¢ = u* and use the
identity (f, f — g) = %[Hf”Lz — ||g||]i2 +If - g||i2]. Using the Cauchy—Schwarz
and Young inequalities, and the growth condition (3.2), this yields fork =1,..., N

1 1 1
k2 k=12 ko k=12 k2 k12042
Sl = S s + St — ™l + v Vatily, + hallu I %012
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= (G Haw b =) + (G aw Wt

1 _
+ 5 [Ko+ Kl “HIE ]I AW Il

+ (G NHaw , u* ).

1
k k—1p2
< Sk =12,

Forany K =1, ..., N, adding the above inequalities for k = 1, ..., K we deduce

K K
K2 k2 20042
10T + 200 Y T IVEH (1T + 2ha Y Wb ITSES < Hluollf
k=1 k=1

K K
+ Y [Ko+ Kl LI AW IR +2) (G Haw, u*™!). (5.4
k=1 k=1

Therefore,
N

k2 k2042
E(, max_ u ||Lz)+2hE<l;[V||VM 12, +all174:2])

IA

K
2B ( max [1uX 12, +20 Y (vt I2; + aldb1252)])
- k=1

N-—1
2E(lluoll? ) + 2hTr(Q) Y [Ko + KiE(|u*[7,)]
k=0

IA

>

+4E< max Z G(uk*I)Akw,uk*I)).
k:l

The Davis and then Young inequalities imply

K
E(lér}(a;(N];(G(uk_l)AkW,uk_l))
N-1 1
<3B({ 3 It 13 [Ko + Kt 1 ]Tr0} )
k=0

=

1 k2 k2
< ZE(,max ||L2)+9E<hTer [Ko + Kullu|12:]).

Il
=)

Hence we deduce

=

1 K 2 k2 k242
EE(lg}f‘?N lu ||L2) +2hIE(];[v||Vu 12, + allu ||IL°;(,+2])
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N—-1
< 2E(lluol},) + 74T KoTrQ + 74K, TrQ Y hE(Ju*[2,).  (5.5)
k=0

Neglecting the sum in the left hand side and using the discrete Gronwall lemma, we
obtain

su E(max K2)<CT,Tr, 2,K,K.
sup B max ¥ |:) < C(T.TrQ. luollZz. Ko. K)

Plugging this upper estimate in (5.5), we obtain

N

T
k2 k2 kj2a+2
sup B max (12, + 5 D [vIVatIZ, +allu2452]) < oo,
N>1 k=0,...,.N jvk_1

.....

A similar argument with ¢ = Au*, integrating by parts, and using Lemma 4 and
inequality (7.14) yields

N
T
k2 , L k2 koo, k2 1) _
sup B( | max, [V, + 7 2 [IAIEs + 17 12:]) = Cate) < 0.

This completes the proof of the proposition. O

6 Strong convergence of the implicit time Euler scheme

Let u be the solution to (1.1) and {u’} j=0,...N solve the fully implicit time Euler
scheme defined in (5.1). Let e; := u(t;) — u/. Using (1.1) and (5.1), we deduce
eo=0andforj=1,..., Nandp e V

N
(ej —ej-1.9) +V/J (Vu(s) — V! , Vo)ds
t

Jj—1

N
+/' (Bu(s), u(s)) — B!, u’), ¢)ds
.

j—1

.
+a / " (lu() P uts) — wd 2ul | p)ds
t

Jj—1

tj .
=/ (IG(u(s)) — Gu/~H1dw(s), ). (6.1
t

Jj—1

Note that since a € [I, %] and H' ¢ L7 for p € [2,6], Holder’s inequality
with exponents 2,3 and 6 implies that the space integral defining the inner prod-
uct (Ju(s)**u(s) — |u/|**u’ , @) is converging for u(s), u/, ¢ € V. The following
convergence theorem is one of the main results of this paper.
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Theorem 6 Suppose that condition (G) holds. Let o € [1, %]; when a = 1, suppose
that 4va(1 A k) > 1, where k > 0 is the constant defined in inequality (7.9).

Fix » € (0, %) and set p(L) = %. Let ug € LPP (82 V), u be the solution to
(1.1) and {u’ }j=0.....N solve the fully implicit scheme (5.1). Then there exists a positive
constant C .= C(v, a, a, k, Tr Q) independent of N such that for N large enough

B( max ) /I + i 191u(e) = ul12,)
] 1
<c () [r+=(moly™)] 62)

Remark 2 Note that the various parameters of the model v, «, @, TrQ only appear in
the multiplicative constant C in the right hand side of (6.2), but not in the exponent
A which can be chosen arbitrarily close to % if ug € V is deterministic, or if ug is a
V-valued Gaussian random variable independent of W.

Proof of Theorem 6 (i) We first suppose that & € (1, %].

Using the identity (6.1) with ¢ = ej, the equality (f, f — g) = %[||f||]i2 -
IIgIIHZAZ + 1 f - g||£2] and the estimate (7.18), we deduce that for some x > 0 we have
forj=1,...,N

1 1
5(||ej 172 — llej—1ll.) + Slles = ej—1l2 + v Ve 112,

7
+arch|[|up)|“e;l, +achlu!|“ejlF, <Y Tju, (6.3)
=1

where by the antisymmetry property (2.1) we have
Tj1 = —/tiw(u(s) —u(t(j)), u(s)), ej)ds
Tjnr= —ftj (B(ej, u(s)), ej)ds,
Tis= / B(u/,u(s) —ul),ej)ds = —/tvtj (B(u!, u(s) —u()), ej)ds,
Tja4= v/ (V(u(s) — u(t))), Ve;)ds |

T)s=—a / () u(s) = (e[ 2u(ty). e;)ds

Tj,6=/ (IGw(s) — G/ =W (s), e; —e;_1),

tji—1
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lj )
Tj,7=f ([Gu(s) — G/ ™H]dW(s), ej_1).
rj—1

We next prove upper estimates of the terms 7 ; for/ = 1, ..., 5, and of the expected
value of Tj ¢ and T} 7.

Using the Holder inequality with exponents 2, 3, 6, the Sobolev embedding H' ¢
1LY and the Gagliardo—Nirenberg inequality (2.2), we deduce for €| > 0

tj
ITjal < / lu(s) — ultp)psIVuls)lipzlle)llLsds
t

Jj—1

tj 1 1
< CeCsllejllm / lu(s) —u) I IVIuls) —u)l I Vuls)li2ds
t

Jj—1

IA

(C6C3)? 1 7
ervhlle; 1% + sup ||u(s>||2v(f luts) = uteIEds)*

de1v  sepo,1] i

tj ) %
< ([ 190 ~ uep1iRds)
t

Jj—1

2 2 g 2
< ervh[lle; 12 + 1Vej12.] + / IVIu(s) — u(e)1I2ds
ti_

i1
(C6C3)4 4 ti 2
+——55 sup |[lu@)ll / llu(s) —u(tj)llids, (6.4)
64€212 sef0.7) v to1 s
where the last inequalities are deduced from the Cauchy—Schwarz and Young inequal-
ities.
LetTjo=—Tj21—Tj22+Tj23, where

] ]
Tj21 =/ (B(ej,u(tj)),8j>ds, Ti22 =/ (B(ej,u(s) —u(tj)),u(tj)>ds
Lj—1 Lj—1

7 .
Ti23= / (B(ej,u(s) —u(q)),u’)ds.
1j-1

The antisymmetry (2.1) implies

(B(ej, u(t),e;) = —(B(ej, ej). u(t))) Z/(e])ki)k(ej)lu(t])ldx

k=1

Hence the upper estimate (2.5) with f = u(¢;);, g = (ej)x and h = 9 (e;); yields for
€, >0
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(B(ej.ut)).ej)] < esz 13k (e)i12, + Z

|||u(tj)zl (el

Cy
2
+ Nl
erv(epak) a1

which implies

C(a,v,a, k)
ITj 2.1 <62vh||Ve]||Lz+ 4 hlllu(tj)l eJII]Ler_—hII ilgs.

e ()T

Using a similar computation based on (2.5) with f = u(t;);, g = (ej)x and h =
Oklu(s) — u(t;)); for k,I = 1,2, 3, summing on k,/ and integrating on the time
interval [¢;_1, t;], we obtain for €&; > 0

1j érak
)2l < / IVIGs) — (e ads + 2 Rl 12,
rj—1

C(a a,K)
+ 2" hej 13,

(€p)aT

Replacing f = u(t;) by f = u’ in the above estimate, we obtain

1 &ak ; C(a,a,
ITj 2.3 </, ||V[u(s)—u(zj)]||izds+Th|||uf|“ej||ﬁz+(jhn ejllfs-
Jj—1 €)

The three previous inequalities imply for €3, €2, € > 0,

Cla,v,a,k) 2C(a, a,kK)
Tjal = [F25 5 [lej12: + e2vn 19,12,
€(€z) -1 (62)‘y
€ ; 2 € é& 2
g e 2+ [ 7+ 5 Jax e 1
1
+2 / IV u(s) — u(p]I 2ds. (6.5)
t

Jj—1

Using once more (2.5) with f = (u/);, g = (ej);and h = 8k([u(s) — u(tj)]l) for
k,I =1,2,3, and summing on k, /, we obtain for €3 > 0,

: €3aK :
[(B(u?, u(s) = u(t), e} = IVIuts) = uCPIIL + == llu/ eI
S e
S e,
(63aK)a v
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Integrating on [¢;_1, t;] we deduce for €3 > 0

ITj 3l < T
(€zar)a-T

N
ejli?, +/" IVIu(s) — u(tp)|I3 ds. (6.6)

tji—1

The Cauchy—Schwarz and Young inequalities imply that for €4 > 0,

v [l
|Tj4l < €avh||Vejl7, + i / IVI(s) — u(t)IIIE 2 ds. (6.7)
t

-1

Since || 1% f — g1*g| < C(@)|f — gl(If1** + |g|**), the Holder inequality with
exponents 2, 3 and 6 implies

[(1u()*uls) — u)**ult;), e;)|
C(a) /R [l ()% + Jue))**luls) — u(t))llejldx

C@[llus)l7% + @)% lluts) — upllzsle)le.

IA

IA

The Sobolev embedding H' ¢ 1L and the Gagliardo—Nirenberg inequality (2.2) yield
fores > 0

Ij 1 1
Tyl < Cl@) sup lu(s) 15 / lejllgn llu(s) — u@p)II2, IV Iuls) — utp)]1li2,ds
NS tji—1
C(Ol)2 tj
< esvh[ne,-niz+||Ve,,~||ﬁ2]+8—/ IVu(s) — u()]ll3 2ds
€V Jij
C(O[)Z tj
sup [lu(s)lIY / lu(s) — utp)llz ds. (6.8)
8esv 50,77 1j-1

where the last upper estimate is deduced from the Holder inequality with exponents
2,4 and 4 and the Young inequality.

Fix J € {1, 2, ..., N}; adding the inequalities (6.3) for j = 1, ..., J, using the
identity egp = O and the upper estimates (6.4)—(6.8) we deduce that for any positive

numbers €;, j =1,...,5, & and €, we have
1 1< J
2 2 2
Sleslite +5 3 llej —ejmtllfz +vh Y IVejlE,
j= Jj=1

J J 7
+ach Y[ ej12, + I (e 12 ] < 32 D7y
=

j=11=6

J
2C(oz a, k) Cla,v,a,k) C
+ [611) + — + QL —}—65]}],1 E ”ej”]iz
(62)“ I €V (&) T (€3akc) o =1
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J
+ (El +te et 65)vh Y 1Vejlits
j=1

- ~ J ~
€ € 2 €2

CsC3)* tj
(Ol p ||u(s>||vzf lu(s) — uep)|22ds
ti—1

646%\}2 5€[0,T]

J
+ €3 . 5
ek h Yl eI
Jj=1

C(a)? y
+ S Ses[lépn llu(s)IIY Z/f, l||u(s) u(tpIlf»ds
v C(a)2 o
+[4+464 Se Z/tj l||V[u(s)—u(t])|||]L2ds. (6.9)

Choose positive €1, €2, 64 and €5 such thate] + €+ €4+ €5 < 5, then choose positive

€, € and €3 such that 46 -+ ff < 1 and 62163 < 1. We deduce the existence of
positive constants C;, i = 1 2,3 depending on v, a, k, € for j =1, ..., 5, & and &,
such that

J

J J

1 1 v

Sleslite+5 > llej —ejmtlifa+ 57 Y IVejlis < Cuk 3 llejli,
j=1

j=1 j=1

+ o1 sup )] Z/, ) = ) 1

s€[0,7T]

J 7
+C3Z/, V) —ulds + 3T
J= j=11=6

Let N be large enough to ensure C 1% < 7. Note that for non negative num-
bers {x(J),y(J);J = 1,..., N} we have %[sup,sN a(J) + sup, <y b(J)] <
sup;<yla(J) + b(J)]. Therefore, using this upper estimate and then taking expected
values in the above inequality, using the Cauchy—Schwarz and Hélder inequalities
with conjugate exponents p, g € (1, o), we deduce

EST

N N
1 1 v
E(maxlles12,) + 7 D Ellej — ej-112) + < h Y E(IVe; 12
& \J=N 4 = 4 =
N—1

<Cih Y EdlejI2,) +E(ZIT1 ol) + B max >°7;7)

j=0 k=1 =" =1

>
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1

+c2{1+E( sup ||u(s)||16“)} {Nh ZIE/

s€[0,T]

tj 1

luts) = utp)lifds )

j—1

+CiE Z/ |V[u(s)—u(t,»)||%L2ds). (6.10)
fji—1

We next find upper estimates of the expected value of the sum of the stochastic terms
T;1,1=6,7.

For j € {1,..., N}, the Cauchy—Schwarz and Young inequalities, the Lipschitz
condition (3.4), the Cauchy—Schwarz and Young inequalities imply for €5 > 0

Zj .
|76l < E(| /t_,_l[G(“(S” — GG TNAW )| e — ej-1ll2)
<ecE(llej —ej_i IIJZLz)

2 1
+ EE/ [Llluts) — w072 + Lllej113.] TrQ ds
13

j-1
TrQ

2
Se Elles-llf)

<esE(llej —ej1llf2) +
LTr

L LT
2¢6

Ij
Ef lu(s) — utj—1)|7, ds. (6.11)
lj-1

Using the Davis inequality and the Lipschitz condition (3.4), we deduce that fore; > 0

Bl—

1 ,
[ 166) = 6 11, 0 ds )
t

j=171-1

3IE< may ||e,||L2 Z/ 1G (u(s)) — (/'*1))||2£Ters}2)
=j= tj—1

IA
—

IA

. IE( max ||e]||]L2)

18LT
rQ Z/ ||u(s)—u<tj_1>||iz+||ej_1||iz]ds), (6.12)
tji—1

where in the last inequality we have used ep = 0 and Young’s inequality.
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Choose €6 = 4—1‘ and €7 = % the upper estimates (6.10)—(6.12) imply

1
T (max||eJ||]L2)+ hZE(HVe]”]Lz)

j=1
N-—1
< (C1+74LTeQ)h Y EdllejlI22)
=0
+CTH+E 16a E/ - »d
> { (s:[L(;PT] lus)lly )] {Z .1|M(S) M(f])”]L 5}

+C(T, L, TrQ)Z/ (llu(s) — utj-)II3-)ds
tj 1

+CE Z / IVIu(s) = u(t)I2.ds ).
tji—1

LetA € (0,1)and set § = ‘—11(1 — A). The moment estimates (4.8) and (4.9) imply

N-1

1
TeE(max e I22) + 7 Zlmnw,ny) < (C1+74LTrQ) ZO Ele;12:)
] =
16a+2+-85
+ O {1+ E(uoll 1)) 1* + C[l + E<I|u0||v 52 )] n* (6.13)

for some constant C := C(T, v, &, a, p, TrQ). Note that for § € (0, 32“;_4) we have

W > 16«. Neglecting the second term in the left hand side of (6.13) and using

the discrete Gronwall lemma, we deduce that, for some positive constants C (resp.
16a+2+85

Cy)dependingon T, v, a, a, TrQ and IE<||u0||V s ) (resp. depending on v, a, a, k)
such that

E(max ||e/||i2> < Ch* \OCIHTALTIOT
JSN

Plugging this inequality in (6.13) we deduce (6.2); this completes the proof when
ae(l, 3.

(i1) We next let « = 1 and assume 4va > 1 and 4vax > 1; we only point out the
differences in the proof.

We have to use a different argument to obtain upper estimates of the terms
{Tj2i,i = 1,2,3} and T} 3. The Cauchy—Schwarz and Young inequalities prove
that for €, €, €2 > 0,

T2l < evh||VejllF, + — hlllut))lel .

4erv
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) 1 [l
|Tj 22l < &R llut)le;ll?, +@f IV[u(s) — u(t)]F ds,
ti—1

_ . 1 [l
Tj 23] < & hlllullejlt, +@/ IV(s) — u(t)1IIF 2ds.
t

J=1

This implies

1 _ 5 .
ITjal < evh||Vejlif, + <E + @) hlluteple; I + & hllulle; 12

1 1

1j
2
st / IVTu(s) — u ()11 ds. 6.14)

Using once more the Cauchy—Schwarz and Young inequalities, we obtain for €3 > 0
i, .12 1 g 2
ITj 3l < eshlllulejll. + e V() —u@p)]lyds. (6.15)
tj,]

The upper estimates (6.4), (6.14), (6.15), (6.7) and (6.8) imply for any positive numbers
€j,j=1,...,5, & and &

J J
1 1
Sleslite +5 > llej —ejmtlita +vh > IVes i
Jj=1 j=1

J J 7
+ax h Z[nm(r,-ne,-niz + |||uf|e,-||§2] <Y > 1
j=1

j=11=6
J J
e +esv]n D les I + (2 +eates)vn Y VeI,
j:l j=1
1 J
(g ta)h ,Zl eIt + (€ +e3) h 121 llu’le;1

CsC3)* V
+ G ||u<s)||vZ/ liuts) = utpligzds
tj 1

64e; V2 ef0.7]

1 1 1 v C(a)2 / 5
I+ =t =+ VIu(s) — u(tp)]l2ds.
gt et mt e e Z | V) —uligads

(6.16)

Fix € € (0, %) such that (1 —2€)?4vax > 1,let e; = 1 —2¢, and then choose positive
numbers €1, €4 and €5 such that €] + €3 + €4 + €5 = 1 — €. Choose €» € (0, eax),
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€> + €3 < ak. The choice of €; and €, implies ﬁ + €» < ak. Therefore,

||eJ||Lz+ Zne, e,_1||Lz+eth||Ve,||Lzsclh Zue,nu

Jj= j=1 j=1
J 7 7 1

+I 3T+ G osup (u)lI Z/ lu(s) — ue))|2.ds
j=11=6 s€[0.7] =17t

Tt
+Cs Z/ IVLu(s) — u())If ds.
17t

Asinthecase o € (1, %],using (6.11) and (6.12) with eg = ‘—ltand € = %,we deduce

1
= (Jsup lesIZ) + 5 ]ZIE(HW,HLZ)
N—1
<(Ci+74LTrQ) h Y Ellejll7,)
j=0
1

+C2T{1+]E< sup ||u(s)||1vﬁ)]2{§:1@/
j=1

1j 1

luts) = ut)lifds |
t€[0,T]

tji—1

N
+ GE(Y [ 191u6) — w1 ds).
j=17t-

We conclude the proof as in the case o € (1, %]. O
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7 Appendix

In this section, we provide the proof of the well-posedness result stated in Sect. 3.
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7.1 Proofs of preliminary estimates

The following results gather some estimates of the bilinear term, and more generally
of the non linear part in (1.1). They are deduced from the Brinkman—Forchheimer
smoothing term. The proofs are somewhat similar to the corresponding ones in [6] in
a different functional setting.

The next lemma gathers further properties of B.

Lemma 3 Suppose that a € [1, +00).

(i) Letu € L0, T; H) N L***2([0, T] x D; R?), v € Xo. Then

T
/0 [(B(u(t), u(1)), v(t))|dt

a=1 atl a1
= ||Vv||L2(0,T;]L2) eSSQSUp”M(I)H]Lg ”u”LgaJrZ([O T1x D;RR3) T2, (7.1)
te[0,T] ’ ’

T
/0 |(B(u(t), u(t)) — B(u(t), v(), u(t) — v(0))|dt < [Vvllr20.7: 1

a—1 a+1

x esssupl|(u — V)l 5 Nlu—vll 5 3
1€[0,7] H L242(10,T)x D;R3)

T% . (7.2)

(ii) Letu € L*(£2; L>(0, T; H)) N L?*1t2(Q2; x D; R3) and v € X,. Then

1

T T 213
B [ 1., vonlds < (B] [ 1900 ia')

x |E(esssup||u(t)||‘;,)}a“_“l{E/Osz/D|u(z,x)|2“+2dx];“ TS (13)

te[0,T]

T
E/o [(B(u(t), u(1)) — B(u(t), v(1)), u(r) — v(1))|dt
_ T 2,1 a=1
a=1 2 1 4 4o
<T% {E\fo 1Vo@12de] | {E(ess supll - o)1)}

te(0,7T]

T 1
x {E/ dt/|(u—v)(t,x)|2“+2dx}z“. (1.4)
0 D

Proof (i) Suppose @ > 1. Using (2.4) with h = 9;v;, f = u; and g = uj, we deduce

3
[(B(u,u),v)| =|— (Bu,v), u)| < Z /D|ui(x)3ivj(x)“j(x)|dx

ij=I

= [T o 1 WP\ ST
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Integrating on the time interval [0, 7] and using the Cauchy—Schwarz inequality,
we obtain

T a1 r 2042 :
|(B(u(t), u(1)), v(t))|dt < esssupllu(t)] ( ||u(f)||Lz“a+zdf>
0 t€[0,T] 0

1
< ( fo IVo@IZdr)°.

Holder’s inequality implies

T 20+2 20+2 w—l

a .

o ”u(t)”]LZa:ert E ||u||L20‘{"+2([0,T]><D;R3) T
This completes the proof of (7.1) fora > 1.

If « = 1, since |[(B(u, u), v)| < ||u“i4 [[Vvll2, a straightforward computation
implies (7.1).

Since (B(u, u) — B(v,v), u—v) = (B(u—v,v), u—v), using the antisymmetry

(2.1) it is easy to see that the upper estimate (7.1) implies (7.2).

(i) Fora > 1 > %, we have 34"‘ > 1. Using Holder’s inequality for the expected

value with exponents 4, 30172 and 2« in (7.1), we deduce

1
I

r 4
E /0 (B, u@), vanldr = [E(1V01F 702 ) |

4(a—1) o—2

X [E(esssup”u(t)” 3a—2 )] =

tel0,T]
e _
x {E/ d;/ |u(r,x)|2"+2dx]2°‘ T% .
0 D
4(a—1)

Since o > % we have = —* < 4; this completes the proof of (7.3) for & > 1.
For o = 1, using the antisymmetry (2.1), and twice the Cauchy—Schwarz inequality,
we deduce

' R Y
E [ |<B(u(t),u(r>),v<z)>ldr§{E / ||Vv<r>||L2dr} (B[ o]

E\f V00 22di| } [E /0 |u(t)||L4dt} .

This completes the proof of (7.3).
A similar argument based on the identity (B(u, u) — B(v,v), u —v) = (B(u —
v, v), u — v) shows (7.4). O

We next prove upper estimates for the gradient of the bilinear term.
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Lemma4 (i) There exists a positive constant C such that for o € (1, 00), some
constant Cy > 0, any constants &g, &1 > 0 we have foru € Xy,

€1 2
KAY2B(u,u), AV?u)| < c[eonAunI@ + EHWWWHLZ

C
1 Vull?:] (1.5)

a—1

£0€]

(ii) Let a = 1; for every € > 0, we have for some constant C > 0 and any u € X
1 2
(AYV2B(u, u), AV2u)| < el AulZy + o[l Vu L. (7.6)

Proof (i) Leta > 1 and u € X;. Then

3
(AV2Bu,u), AV?u) = § / O[ui du ] deujdx = Ty + T,
- D
i,j.k=1

where, using the antisymmetry property (2.1), we get

3
T, = Z /aku,’ Ojuj ogujdx,
i jk=1"D

3

3
=Y / wi O duj dujdx =y (B(u, du), du) = 0.
D

i, j.k=1 k=1
Using integration by parts, we deduce 71 = 71,1 + 11,2, where since divu =0

3 3
Ty, =— Z /;)ak(;aiui)ujakujdxzo,
i=

Jk=1

3
T2 =— Z f Oxu; uj 0;O0pujdx.
ijk=1"D

The inequality (2.5) applied with f = u;, g = 0gu; and h = 0; 0u ; implies

3 3
2 €1 2
Tial = D0 eolddkuslize + > o[l deui 7
i k=1 i k=10
3
Cy 2
+ Y a3,
ijk=1goe;™"

This completes the proof of (7.5).

@ Springer



Stoch PDE: Anal Comp

(i1)) Letoe = 1 and u € X;. Then an integration by parts implies

3
(AY2Bu.uy, AYPuy = /ak[u,-aiuj]akujdx
ijk=1"D

3
— Z / u,'aiuj Aujdx.
D

ij=1

The Cauchy—Schwarz and Young inequalities imply (7.6).

For ¢ € X, set
F(p) = —vAgp — B(p, @) — all|p|**¢. (7.7)

Lemma 2.2 page 415 in [2] provides upper and lower bounds of the non linear
Brinkman—Forchheimer term. Let o € [1, 00); there exist positive constants C and «
such that for u, v € R3

[ u — v**v] < Clu — v (Jul** + [v]**). (7.8)
(lul®u — o) - (u — v) > «lu — v|*(Jul + |v|)2°‘. (7.9)
The following lemma gives upper bounds of F for any « € [1, 00).

Lemma5 Let o € [1, +00).
(i) Letu € Xo, v e L*(0, T; V) N L*%2([0, T] x D: R3). Then

T
fo (F (). v)ldt < C[Ivll.r 1l 20.7-v)
2a+1
+ il L2e2g0, 71x DR 1l 252 10, 71 e

a—1 atl a—1
ol 20.7:v) esssupllu®lly Nl Suio o pyxprsy? =1 (7:10)
te€[0,7T] ’ !

for some positive constant C.
(ii) Letu € Xp, v € L*($2; L*(0, T; V)) N L2**2(27 x D; R3). Then

T
B [ 1E o). vl = [l e

2041
+ ” U||L2a+2(QT XD;R3) ”M ||L2°‘+2(QT><D;R3)

a-l a+l

e + a1
+ ||v||L4(Q;L2(O,T;V)){E(GSS Sup||u(t)||‘}_,)} ||u||L2"+2(QTXD‘R3)T 2a :I
te[0,T] ’

(7.11)

for some positive constant C.
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Proof Integration by parts and the Cauchy—Schwarz inequality imply

T T
v/ (Au(t) , v()|dr = / ‘—V/A%u(z,x)A%v((t,x)dx dt
0 0 D
< vllullzo.r:vylvllL20,7:v)-

20042
2041

Furthermore, Holder’s inequality with conjugate exponents 2« + 2 and yields

T
f ‘/ Iu(t,x)lz"‘u(t,x)v(t,X)dX‘dt5 el ull 2ara
0 D L2+ ([0,T]x D;R3)
X ||v||L2a+2([0,T]><D;R3)'

Using the above upper estimates with the inequality (7.1) concludes the proof of (7.10).
(i1) The upper estimate (7.11) is a straightforward consequence of the upper esti-
mates (7.3), (7.10), the Cauchy—Schwarz and Holder inequalities. O

The next lemma provides estimates of the gradient of F(u) for « € [1, 400).
Note that when o = 1, this requires that the coefficient a in front of the Brinkman—
Forchheimer smoothing term is “not too smal” compared to the viscosity v.

Lemma6 (i) Leta > 1. Forn € (0,v), a € (0, a), there exists a positive constant
C := C(w, n,a) such that foru € X1 andt € [0, T],

t
/(AI/ZF(u(s)), A2u(s))ds
0

t t t
< —n/o ||Au<s)||§zds—a/0 |||u(s)|“W<s>||§zds+C[0 IVu(s)II7 ds.
(7.12)

(ii) Let o = 1 and suppose 4va > 1. Then for n € (0, v — ﬁ) anda = a — m
we have

/0 (A2 F(u(s)), AVu(s))ds < —n /0 t||Au<s>||%L2ds
—Zz/otn|u(s)|°‘Vu(s) Ifads.  (7.13)
Proof (i) Leta € (1, 00). Foru € X, integration by parts implies for a.e. s € [0, ],
V(A2 Au(s), A2u(s)) = —vlAu(s)|2,.
Furthermore,

/ V(lu(s)1**u(s)) - Vu(s)dx
D
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= / [lu()**Vu(s) - Vu(s) + 2alu(s)[* @D (u(s) - Vu(s))z]dx
D

> /D lu(s)[**Vu(s) - Vu(s)dx = |||u(s)|“W(s)||fL2. (7.14)

Hence, using (7.5) with C g9 € (0, v — 1), then ¢ such that C 5710 € (0,a —a),
we deduce that for a.e. s € [0, T'],

(AV2Fu(s)), APu(s)) < —nllAu(s)|7, — a||u()|*Vu @)
+ C(a, 77»51)||V“(S)||]i2~ (7.15)

Integrating this inequality on the time interval [0, #] concludes the proof of (7.12).
(i) Let o = 1. Then using (7.6) and (7.14), we deduce for € > O and s € [0, T']

1
(AV2F (), A'Pu(s)) < = = ) Au@)[172 + —ll|u()| V)l »
4e
— all|u(s)|Vu)| .

Since 4av > 1, forn € (O,v—%),e:v—nand&:a—z‘@]—_mwededuce

(AV2Fu(s)), A'Pu(s)) < —nllAu()|I7 — al|lu(s)|*Vus)|I3,. (7.16)

Integrating on the time interval [0, ¢], we deduce (7.13).

We finally prove upper estimates of increments F'(u) — F (v) for a € [1, 00).

Lemma7 There exists a positive constant k depending on o € [1,+00), and for
n € (0, v) a positive constant C(n), such that foru,v € VN L2‘”2(D; R3),

(Fu) — F@),u—v) < =V — )2, — ax || (ul + o) @ — )|
+ CIVIL2llu = vliF. (7.17)

Proof Using integration by parts, we obtain
V(AW —v),u—v) = —v[[V(u— )7,
The monotonicity property (7.9) implies
a / (lu )P e) = @) Po0) - (u(x) = v(x))dx
D
2
> arc|| (jul + D) @ = v) | - (7.18)
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Finally, Holder’s inequality and the Gagliardo—Nirenberg inequality (2.2) for the L*
norm imply

[{B(u,u) — B(v,v),u —v)| = (B —v,v), u —v)]
2 ~2 3 3
lu —vly4llVollpe < Cillu — vllﬁz V@ — v)llﬁz Vol 2

=
3 4 11 -
< 387 IV@=0)liEs + 7 CRIVIE I — i,
where the last inequality holds for any ¢ > 0 by Young’s inequality. Choosing %8% €
(0, v — 1), we conclude the proof of (7.17). O

We next prove that (1.1) has a unique strong solution in Xj. The outline is quite
classical, based on some Galerkin approximation and a priori estimates.

7.2 Galerkin approximation and a priori estimates

Recall that D is periodic domain of R3. Let (en, n > 1) be the orthonormal basis of H
defined in Sect. 3.1 (that is made of functions in H which are also orthogonal in V).
For every integer n > 1 we set K, := span({y, ..., {y) where {{;};>1 is an ONB of
K mode of eigenfunctions of Q. Let IT, denote the projection from K onto Q'/2(K,,),
and let W, (t) = Z’}Zl Vai¢iBi(t) = I, W(1).

Recall that if H,, = span(ey, ..., e,), the orthogonal projection P, of H onto H,
restricted to V coincides with the orthogonal projection of V onto H,,.

Fix n > 1 and consider the following stochastic ordinary differential equation on
the n-dimensional space H,, defined by u,, (0) = P,ug, and forz € [0, T]and v € Hj:

d(un (1), v) = (PuF (1)), v)dt + (Py G(uy (1)) T, dW (1), v), Pas., (7.19)

where F is defined in (7.7). Then fork =1, ..., n we have fort € [0, T']:
o1
d(un (1), ex) = (PuF (un (1)), ex)dt + Y q? (P Gun(0))Z; , ex) dBj(t), Pas.
j=1

Note that for v € H,, the map u € H,, — (F(u), v) is locally Lipschitz. Indeed,
H? ¢ L2*+2 and there exists some constant C (n) such that ||[v|lz < C(n)||v]ly2 for
v € Hy. Let ¢, ¥, v € H,; integration by parts implies that

[(Ap — Ay, v) < llg = ¥llv vl < CO*lle — Plizz [lvllpe.

In the polynomial nonlinear term, the upper estimate (7.8), the Holder inequality with
exponents =1 20 + 2, and 2« + 2, and the Sobolev embedding H? ¢ L2**2 imply

\ /D (lp(x)**p(x) — |w(x>|2“w<x))v<x>dx\
< C(I91% 2 + 1¥11%+2) 1o — ¥l 2es2 vll2ase
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< CC* @V (lel% + 1¥159) lle — wipe vl

Finally, using integration by parts, the Holder and Gagliardo—Nirenberg inequalities,
we deduce:

(B(g, 9) — By, ), )| = | — (Bl — ¥, v), @) — (B, v), ¢ — )|
< Cllg = ¥lizs(llelips + 1Y lpe) Vol
<ccmllg — iz (lleliz + ¥z vl

Condition (G) implies that the map u € H,, — (\/E (G(u)gj , ek) 1< j,k < n)
satisfies the classical global linear growth and Lipschitz conditions from H,, ton x n
matrices uniformly in ¢ € [0, T']. Hence by a well-known result about existence and
uniqueness of solutions to stochastic differential equations (see e.g. [24]), there exists
a maximal solution u, = ZZ=1(un, ek) ex € H, to (7.19), i.e., a stopping time
7, < T such that (7.19) holds for t < 7y andif 7, < T, ||u,(t)||;2 > oo ast 1 7, .

The following proposition shows that 7, = T a.s., and provides a priori estimates
on norms of u,, which do not depend on .

Proposition7 Let « € [1, 00), and if @ = 1, suppose that 4va > 1.

(i) Let ug be Fo-measurable such that E(||uo||%1) < 00, T > 0and G satisfy (3.2)
and (3.4). Then the evolution equation (7.19) with initial condition P,uy has a

unique global solution on [0, T] (i.e., 7, = T a.s.) with a modification u, €
C([0, T1; Hy). Furthermore, ifE(HuoIﬁ{p) < oo for some p € [1, 00), we have
u, € Xo and

T
2 2 2
supE( sup ||un(r>||4’+/ [l O + i (O 1252 e (0177
n t€[0,T] 0

< C[1+E(luoll;)]. (7.20)

(ii) If E(||u0||%,p) < 00 for some p € [1,00) and G satisfies also (3.3), we have
furthermore

supE( sup un (1157

n tel0,T]
T
+ /O (A1 125 + it 1 Vet D12 | llun D117 2 )

=C[1 +E(||u0|| 7] (7.21)

Proof (i) For fixed N > 0 set tyy := inf{t > 0 : lu,(t)[|lg = N} A 7,7. Itd’s formula
and the antisymmetry property of B imply
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INTN
lun(t A T3 = ||Pnuo||%,—2/0 IVun I 2 + allun ()35 |ds
2
+Y T, (7.22)
where
ATy,
Ti(t) = 2 fo (Gun(5)) AWy (), un(s)),
ATy
(1) = /0 1PuG (un () 1T, 1% ds.

Apply once more the It6 formula to z — z” and z = ||u, (t A ‘(N)H%_[ for p € [2, 00).
We obtain

it ATIIF = | Patoll 3} +ZT(:>

INTN
—2p/0 [ Vun 1125 + allien () 1252 ua() 37 d
(7.23)

where
INTN
T1(t) = 2p /0 (PuG (1 () AWy (5) , () lun ()37 2,
_ INTN 2[) 2
Ta(t) = p /0 1Py G () T 1% [t (5) 17
IANTN 2p— 4
T3(t) = 2p(p — 1) / (G un () TT) 1 (5) | 3 Nt ()11

The growth condition (3.2) implies

- l —
To(t) + T5(1) < pQ2p — 1)/0 [Ko + Kilun(s A t) 3] lun(s A Th) 13272 TrQ ds.

Using the Davis inequality, the growth condition (3.2) and Young’s inequality, we
deduce for 8 € (0, 1),

1

2w 7o) < opE(] [ NG oD T 1 T ds))

S<IAT,

IA

IA

p E(supuun(s ATl

2p—2

Ef [Ko + Killun (s A )17 llun(s A )l TrQ ds.
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Neglecting the first integral in the right hand side of (7.23), using the above upper
estimates of 7; and the Gronwall lemma, we deduce that for g € (0, 1),

supE(sup s (s A ) 7)< C(B. p, Ko, K1, TrO)[1 + E(luoll 3] (724)

n>1 s<T

As N — oo, the sequence of stopping times 7y increasesto 7,; andontheset {7, < T},
we have supg¢(o 7,1 lun(s) |z — oo. Hence (7.24) implies P(t) < T) = 0 and for
almost every w, for N (w) large enough we have ty(,)(w) = T. Plugging the upper
estimate (7.24) in (7.23), we conclude the proof of (7.20).

Note that the above argument based on (7.22) instead of (7.23) proves that if
E(||uo||%1) < oo we have once more Ty (w) = T for N(w) large enough and
a.e. w, and that (7.20) holds for p = 1.

We next prove that u, € &p. Plugging the above upper estimate for p = 1in (7.22),
taking expected values and using Condition (3.2), we obtain

T
E/O [l I + lun ($)[17555]ds < oe.

A similar argument using (7.24) in (7.23) completes the proof of (7.20) when the
H-norm of the initial condition has 2 p moments.

(i1) Taking the gradient of both hand sides of (7.19), using the 1t6 formula and (3.1),
we deduce for Ty := inf{s > 0 : |u,(s)||lyv = N} AT,

IATN

1 ~ 1 1 1
IAZun(t AEN)IT2 = A2 Pauoll7 2 + 2/0 (AZPyF (un(s)), AZun(s)) ds
t/\le 1
+2 / (A3 PGty (5))d Wi (5), AT (5))
0
t/\‘ENl )
+ / 1A2 Py G (un () [Ty || ds
0

IATN

= 1A% Puoll?, +2/ (AT F(uy(5)), A2uy(5)) ds
0
t/\‘f’Nl 1
+2/ (A2 Gt () [T, d W (s), A2y (s))
0

INTN 1 )
+[ A2 Py G (un ()T, |l - ds.
0

Indeed, since u,(s) € V fors <t A Ty, we deduce A%un (s) € H and A% G(u,(s)) €
L(K, H).
Using once more the Itd formula for the function z +— z” for p € [2, 00), we obtain

3
1 ~ 2 1 2 T
IAZu,(t ATV < A2 uollLs + E T; (1)
i=1
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INTN i 1 i 2p-1)
+2 /0 APV un(5)), Abun(s) A1 ()12 s,
(7.25)

where
B INTN 1 | | 2p—1)
Th(1) = ZP/O (A2G(un(s)dWy (), AZuy(s)) 1AZun ()15 ds,

|AZu, ()29 Vs,

INTN
D) = p /0 I1G (un () T, I %

- NN 1 1 2p—2
T3(1) = 2p(p — 1)/0 1(AZ G (un(5)) M) AZun() 1% 1A2un ()L™ ds.
Since

1 1
1(AZG () ITy) Il e k) < 1AZG a2y < IGUn(SN 2k v)s
the growth condition (3.3) and Young’s inequality imply

INTN

L) + T50) < C(p, T, Tr0, Ko, Ri)[1 +/0 (laa DI + 1Vn (0)1172)ds .

The growth condition (3.3), the Gundy and Young inequalities imply that for 8 €
0, D,

IANTN

B(su i) < CE({ [ TR0+ R} 1,012 Tegas )

A

IA

BE( sup llun(s A En)IEA ) + BE( sup [ Van (s A 2177 )

s<t s<t

+C(B.TrQ. Ko, K1 +E(/O [Vun(s A 2 5ds ) |

Let p € (0,v) and a € (0, a). Using (7.12) for « > 1 and (7.13) for « = 1, (7.20)
and the Gronwall lemma, we deduce

E( sup lun)I) = C[1+Eduolli)]

S<Ty

for some positive constant C which does not depend on N and n. For fixed n,
letting N — oo and using the monotone convergence theorem we deduce u, €
L2P(£2; L0, T; V)). Plugging this in (7.25) and taking expected values, we con-
clude the proof of (7.21). O
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7.3 Proof of global well-posedness of the solution

The proof of Theorem 2 is classical and uses the upper estimates (7.2) and (7.4) for
the uniqueness; see e.g. [6] for details.
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