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Abstract
We prove that some time Euler schemes for the 3D Navier–Stokes equations modified
by adding a Brinkman–Forchheimer term and a random perturbation converge in
L2(Ω). This extends previous results concerning the strong rate of convergence of
some time discretization schemes for the 2D Navier Stokes equations. Unlike the 2D
case, our proposed 3Dmodel with the Brinkman–Forchheimer term allows for a strong
rate of convergence of order almost 1/2, that is independent of the viscosity parameter.

Keywords Stochastic Navier–Sokes equations · Time Euler schemes · Strong
convergence · Implicit time discretization · Brinkman–Forchheimer

Mathematics Subject Classification 60H15 · 60H35 · 76D06 · 76M35

1 Introduction

An incompressible fluid flow dynamic can be described by the so-called incompress-
ible Navier–Stokes equations (NSEs). The fluid flow is defined by a velocity field
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u and a pressure term π that evolve in a very particular way. These equations are
parametrized by the viscosity coefficient ν > 0. Many questions are open in the 3D
setting. In this paper, we will focus on the 3D incompressible Navier–Stokes equa-
tions with a smoothing term of Brinkman–Forchheimer type, in a bounded domain
D = [0, L]3 of R

3, and subject to an external forcing defined as:

∂t u − νΔu + (u · ∇)u + a|u|2αu + ∇π = G(u)dW in (0, T ) × D,

divu = 0 in (0, T ) × D, (1.1)

for a > 0, α ∈ [1,+∞) and some terminal time T > 0. The process u : Ω ×[0, T ]×
D → R

3 is the velocity field with initial condition u0 in D, and periodic boundary
conditions u(t, x + Lvi ) = u(t, x) on (0, T ) × ∂D, where vi , i = 1, 2, 3 denotes
the canonical basis of R

3, and π : Ω × [0, T ] × D → R is the pressure. Note that
similar computations using the restriction to a bounded domain as a technical step
would enable to deal with D = R

3 (with no boundary condition). In order to focus on
the main issue, this will not be treated here.

Here G is a diffusion coefficient with global Lipschitz conditions and linear growth
and the driving noise W is a Wiener process defined of a filtered probability space
(Ω,F , (Ft ), P). In 2D, there is an extensive literature concerning the deterministic
NSEs andwe refer to the books of Temam; see [27, 28] for known results. The stochas-
tic setting has also been widely investigated in dimension 2, see [19] for some very
general results and the references therein. Unique global weak and strong solutions (in
the PDE sense) are constructed for both additive and multiplicative noise, and without
being exhaustive, we refer to [11, 15].

Global well posedness in the 3D case is a famous open problem, and can be proved
with some additional smoothing term such as either a Brinkman–Forchheimer nonlin-
earity to model porous media, or some rotating fluid term. Let us mention that these
models can be usedwith some anisotropic viscosity, that is no viscosity in one direction
(see e.g. [10, 14]). The stochastic case has been investigated as well by several authors
among which Flandoli et al.; see for example [18] for an account of remaining open
problems. The anisotropic 3D case with a stochastic perturbation has been studied in
[20] for rotating fluids, and in [6] for a Brinkman–Forchheimer modification.

Numerical schemes and algorithms were introduced to best approximate and con-
struct solutions for PDEs. A similar approach has started to emerge for stochastic
models, in particular SPDEs, and has known a strong interest by the probability com-
munity. Many algorithms based on either finite difference, finite elements or spectral
Galerkin methods (for the space discretization), and on either Euler, Crank–Nicolson
or splitting schemes (for the temporal discretization) have been introduced for both
the linear and nonlinear cases. Their rates of convergence have been widely investi-
gated. The literature on numerical analysis for SPDEs is now very extensive. Models
having either linear, global Lipschitz properties or more generally some monotonicity
properties are well developed in an extensive literature, see [3, 4]. In this case the
convergence is proven to be in mean square. When nonlinearities are involved that
are not of Lipschitz or monotone type, a rate of convergence in mean square is more
difficult to obtain. Indeed, because of the stochastic perturbation, there is no way of
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using the Gronwall lemma after taking the expectation of the error bound because
it involves a nonlinear term that is usually in a quadratic form. One way of getting
around it is to localize the nonlinear term in order to get a linear inequality, and then
use the Gronwall lemma. This gives rise to a rate of convergence in probability, that
was first introduced by Printems [26].

Discretizations of the 2D stochastic Navier–Stokes equations with a multiplicative
noise were investigated in several papers. The following ones provide a rate of con-
vergence in probability of time implicit Euler or splitting schemes [5, 12, 13, 17].
The Euler scheme is coupled with a finite element space discretization. Note that [17]
tackles the problem of weak convergence, that is convergence in distribution, while
in case of an additive noise [11] proves almost sure and mean square convergence
without giving an explicit rate.

Strong (i.e. L2(Ω)) convergence for a time splitting scheme, for an implicit time
Euler scheme—coupled with a finite elements approximation—of the stochastic 2D
Navier–Stokes equations were proven in [7, 8] for either a multiplicative noise or an
“additive” noise. In the latter case a polynomial (suboptimal) speed of convergence is
proven.

In [9], strong convergence of a space-time discretization (implicit Euler scheme
in time and finite elements approximation in space) for stochastic 2D Navier–Stokes
equations on the torus with an additive noise is studied. The rate of convergence is
“optimal”, namely almost 1/2 in time and 1 in space. However, since exponential
moments of the H1-norm of the solution is used, some constraints on the strength of
the noise have to be imposed. In the additive case, no localization is needed and the
argument is based on a direct use of the discrete Gronwall lemma.

In this paper, we study a time implicit Euler scheme (5.1) for a stochastic
3D Navier–Stokes equation with a modification, by adding a smoothing term of
Brinkman–Forchheimer type. Unlike the 2D case—and thanks to this extra term—
neither localization nor exponential moments are needed, and we obtain the “optimal”
convergence rate with no constraint on the noise and the viscosity. For technical rea-
sons, we only have to assume that the exponent α of the Brinkman–Forchheimer term
|u|2αu in (1.1) belongs to the interval [1, 3

2 ]. The proof is based on a careful study
of the time regularity of the solution in both the L2 and H1 norms, and the discrete
Gronwall lemma.

The paper is organized as follows. Section 2 describes the functional setting of
the model. In Sect. 3 we describe the stochastic perturbation, state the global well
posedness of the solution to (1.1) and its moment estimates in various norms. If the
exponent α = 1 we have to impose that the coefficient a is “large”. The way the
Brinkman–Forchheimer term helps to obtain estimates for the bilinear part is described
in Sect. 7.1 of the Appendix. The proof of the existence and uniqueness relies on a
Galerkin approximation. It is quite classical, similar to the anisotropic case described
in [6]. The proof is sketched in Sects. 7.2 and 7.3 of the Appendix for the sake of
completeness. Section 4 is devoted to the moment time increments of the solution to
(1.1) in L2 and H1; the results are crucial to obtain the optimal strong convergence
rate. In Sect. 5 we describe the fully implicit time Euler scheme, prove its existence
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and some moment estimates. Finally, in Sect. 6 we prove the strong (that is L2(Ω))
convergence rate of this scheme.

As usual, except if specified otherwise, C denotes a positive constant that may
change throughout the paper, and C(a) denotes a positive constant depending on
some parameter a.

2 Notations and preliminary results

Let D = [0, L]3 with periodic boundary conditions, L
p := L p(D)3 (resp. W

k,p :=
Wk,p(D)3) be the usual Lebesgue and Sobolev spaces of vector-valued functions
endowed with the norms ‖ · ‖Lp (resp. ‖ · ‖Wk,p ). If p = 2, set H

k := W
k,2 and we

denote by ‖ ·‖k the H
k norm, k = 0, 1, . . .; note that ‖ . ‖0 = ‖ · ‖L2 . In what follows,

we will consider velocity fields that have zero divergence on D. Let H (resp. V ) be
the subspace of L

2 (resp. H1) defined by

H := {u ∈ L
2 : div u = 0 weakly in D with periodic boundary conditions},

V := H ∩ W
1,2.

H and V are separable Hilbert spaces. The space H inherits its inner product denoted
by (·, ·) and its norm ‖ · ‖H from L

2. The norm in V , inherited from W
1,2, is denoted

by ‖ · ‖V ; we let (·, ·)V denote the associated inner product. Moreover, let V ′ be the
dual space of V with respect to the pivot space H , and 〈·, ·〉 denotes the duality between
V ′ and V .

Let Π : L
2 → H denote the Leray projection, and set A = −ΠΔ with its domain

Dom(A) = W
2,2 ∩ H .

Let b : V 3 → R denote the trilinear map defined by

b(u1, u2, u3) :=
∫
D

([
u1(x) · ∇]

u2(x)
) · u3(x) dx,

which by the incompressibility condition satisfies b(u1, u2, u3) = −b(u1, u3, u2) for
ui ∈ V , i = 1, 2, 3. There exists a continuous bilinear map B : V × V �→ V ′ such
that

〈B(u1, u2), u3〉 = b(u1, u2, u3), for all ui ∈ V , i = 1, 2, 3.

The map B satisfies the following antisymmetry relations:

〈B(u1, u2), u3〉 = −〈B(u1, u3), u2〉, 〈B(u1, u2), u2〉 = 0, ∀ui ∈ V . (2.1)

For u, v ∈ V , set B(u, v) := Π
([
u · ∇]

v
)
.

In dimension 3, the Gagliardo–Nirenberg inequality implies that for p ∈ [2, 6],
H

1 ⊂ L
p; more precisely

‖u‖L4 ≤ C̄4 ‖u‖
1
4
L2 ‖∇u‖

3
4
L2 and ‖u‖L3 ≤ C̄3 ‖u‖

1
2
L2 ‖∇u‖

1
2
L2 , ∀u ∈ H

1, (2.2)
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for some positive constants C̄3 and C̄4.
Furthermore, the Gagliardo–Nirenberg inequality implies that H

2 ⊂ L
p for any

p ∈ [2,∞), and for u ∈ H
2

‖u‖Lp ≤ C(p) ‖Au‖β(p)
L2 ‖u‖1−β(p)

L2 for β(p) = 3

2

(1
2

− 1

p

)
. (2.3)

Note that for p = 6 we have β(6) = 1
2 . Furthermore, ‖u‖L∞ ≤ C‖u‖H2 for u ∈ H

2.
Let α ∈ (1,+∞) and let f , g, h : D → R be regular functions. Given any

positive constants ε0 and ε1 and some constantCα depending onα, the following upper
estimates are straightforward consequences of the Hölder and Young inequalities

∫
D

∣∣ f (x)g(x)h(x)
∣∣dx ≤ ∥∥| f ||g| 1α ∥∥

L2α

∥∥|g|1− 1
α

∥∥
L

2α
α−1

‖h‖L2 . (2.4)

≤ ε0‖h‖2L2 + ε1

4ε0

∥∥| f |αg∥∥2L2 + Cα

ε0ε
1

α−1
1

‖g‖2L2 . (2.5)

LetΩT = Ω×[0, T ]be endowedwith the productmeasuredP⊗ds onF⊗B(0, T ).
The following functional notations will be used throughout the paper. Set

X0 = L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ L2α+2([0, T ] × D; R
3), (2.6)

X0 = L4(Ω; L∞(0, T ; H)
) ∩ L2(Ω; L2(0, T ; V )

) ∩ L2α+2(ΩT × D; R
3), (2.7)

X1 = L∞(0, T ; V ) ∩ L2(0, T ;DomA) ∩
{
u : [0, T ] × D → R

3 :
∫ T

0

[‖u(t)‖2α+2
L2α+2 + ∥∥|u(t)|α∇u(t)

∥∥2
L2

]
dt < ∞

}
, (2.8)

X1 = L4(Ω; L∞(0, T ; V )
) ∩ L2(Ω; L2(0, T ; Dom A)

) ∩
{
u : ΩT × D → R

3 :

E

∫ T

0

[‖u(t)‖2α+2
L2α+2 + ∥∥|u(t)|α∇u(t)

∥∥2
L2

]
dt < ∞

}
. (2.9)

3 Global well posedness and first moment estimates

For technical reasons, we assume that the initial condition u0 belongs to L p(Ω; V ) for
some p ∈ [2,∞], and only consider strong solutions in the PDE sense. We prove that
the stochastic 3D Navier–Stokes equation with Brinkman–Forchheimer smoothing
(1.1) has a unique solution on any time interval [0, T ] and prove moment estimates of
this solution. This requires some hypotheses on the driving noise W and the diffusion
coefficient G.
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3.1 The driving noise and the diffusion coefficient

Let (ek, k ≥ 1) be an orthonormal basis of H whose elements belong to H
2 :=

W 2,2(D; R
3) and are orthogonal in V . Let Hn = span(e1, . . . , en) and let Pn (resp.

P̃n) denote the orthogonal projection from H (resp. V ) onto Hn . Furthermore, given
i �= j we have

(Aei , e j ) = (∇ei , ∇e j ) = 0

since the basis {en}n is orthogonal in V . Hence Au ∈ Hn for every u ∈ Hn .
We deduce that for u ∈ V we have Pnu = P̃nu. Indeed, for v ∈ Hn and u ∈ V :

(Pnu, v) = (u, v), and (∇Pnu, ∇v) = −(Pnu, Av) = −(u, Av) = (∇u, ∇v). (3.1)

Hence given u ∈ V , we have (Pnu, v)V = (u, v)V for any v ∈ Hn .
Let K be a separable Hilbert space and Q be a symmetric, positive trace-classe

operator on K . Let (W (t), t ∈ [0, T ]) be a K -valued Wiener process with covariance
operator Q, defined on the probability space (Ω,F , (Ft ), P). Let {ζ j } j≥1 denote an
orthonormal basis of K made of eigenfunctions of Q, with eigenvalues {q j } j≥1 and
TrQ = ∑

j≥1 q j < ∞. Then

W (t) =
∞∑
j=1

√
q j β

j (t) ζ j , ∀t ∈ [0, T ],

where {β j } j≥1 are independent one-dimensional Brownian motions defined on
(Ω,F , (Ft ), P). For details concerning this Wiener process we refer to [16].

LetL ≡ L(K ; H) (resp. L̃ ≡ L(K ; V )) be the space of continuous linear operators
from K to H (resp. V ) with norm ‖ . ‖L (resp. ‖ . ‖L̃).

The noise intensity of the stochastic perturbation G : V → L̃which we put in (1.1)
satisfies the following classical growth and Lipschitz conditions (i) and (ii). Note that
due to the 3D framework, we have to impose growth conditions both on the ‖ · ‖L
and ‖ · ‖L̃ norms.

The diffusion coefficient G satisfies the following assumption:
Condition (G) Assume that G : V → L̃ satisfies the following conditions:

(i) Growth condition There exist positive constants Ki , K̃i , i = 0, 1, such that

‖G(u)‖2L ≤ K0 + K1‖u‖2H , ∀u ∈ H , (3.2)

‖G(u)‖2L̃ ≤ K̃0 + K̃1‖u‖2V , ∀u ∈ V . (3.3)

(ii) Lipschitz condition There exists a positive constant L such that

‖G(u) − G(v)‖2L ≤ L‖u − v||2H , ∀u, v ∈ H . (3.4)
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Wedefine aweak pathwise solution (that is strong probabilistic solution in the weak
deterministic sense) of (1.1) as follows:

Definition 1 We say that Eq. (1.1) has a strong solution if:

– u is an adapted V -valued process which belongs a.s. to X1,
– P a.s. we have u ∈ C([0, T ]; V ), and

(
u(t), φ

) + ν

∫ t

0

(∇u(s),∇φ
)
ds +

∫ t

0

〈[u(s) · ∇]u(s), φ
〉
ds

+ a
∫ t

0

∫
D

|u(s, x)|2αu(s, x)φ(x)dxds

= (
u0, φ) +

∫ t

0

(
φ,G(u(s))dW (s)

)

for every t ∈ [0, T ] and every φ ∈ V .

3.2 Global well-posedness andmoment estimates of the solution

We next prove that if E(‖u0‖4V ) < ∞, then (1.1) has a unique solution u in X1.

Theorem 2 Let α ∈ [1,+∞), and for α = 1 suppose that 4νa > 1. Let u0 ∈
L2p(Ω; V ), for some p ∈ [1,∞), be independent of W , and G satisfy the growth and
Lipschitz conditions (G). Then Eq. (1.1) has a unique solution in X1 such that a.s.
u ∈ C([0, T ]; V ). Furthermore,

E

(
sup

t∈[0,T ]
‖u(t)‖2pV +

∫ T

0
‖Au(t)‖2

L2dt+
∫ T

0
‖u(t)‖2α+2

L2α+2dt
)

≤ C
[
1 + E

(‖u0‖2pV
)]

.

(3.5)

The proof, which is quite classical, is sketched in Sect. 7.3 of the Appendix.

4 Moment estimates of time increments of the solution

In this section we prove moment estimates for various norms of time increments of the
solution to (1.1). This will be crucial to deduce the speed of convergence of numerical
schemes. Let u0 ∈ L2p(Ω; V ) for some p ∈ [2,∞) and u be the solution to (1.1),
that is

u(t) = S(t)u0 −
∫ t

0
S(t − s)B(u(s), u(s))ds − a

∫ t

0
S(t − s)Π |u(s)|2αu(s)ds

+
∫ t

0
S(t − s)G(u(s))dW (s), ∀t ∈ [0, T ], P a.s. (4.1)

where S(t) = e−νt A is the analytic semi group generated by the Stokes operator A
multiplied by the viscosity ν. Then (see e.g. [13, Lemma 2.2] and [26, Lemma 2.1]),
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for b > 0 and t ∈ [0, T ],
∥∥Abe−νt A

∥∥L(L2;L2)
≤ C(b, ν) t−b, (4.2)

∥∥A−b(Id − e−νt A)∥∥L(L2;L2)
≤ C̃(b, ν) tb, (4.3)

for some positive constants C(b, ν) and C̃(b, ν).
The following regularity result for the bilinear term will be crucial in the proof of

time regularity.

Lemma 1 (i) There exists a positive constant M such that

‖A− 1
4 B(u, u)‖L2 ≤ M‖A 1

2 u‖2
L2 ≤ M‖u‖2V , ∀u ∈ V . (4.4)

(ii) For δ ∈ (0, 3
4 ),

‖A−δB(u, u)‖L2 ≤ C‖Au‖
3
4−δ

L2 ‖u‖
5
4+δ

H1 , ∀u ∈ Dom(A). (4.5)

Proof (i) Using [21, Lemma 2.2] we deduce that given positive constants δ, θ, ρ such
that 0 ≤ δ < 1

2 + 3
4 , θ > 0, ρ > 0 such that ρ + δ > 1

2 and δ + θ + ρ ≥ 5
4 , there

exists a constant M := M(δ, θ, ρ) such that for u, v regular enough

‖A−δB(u, v)‖L2 ≤ M‖Aθu‖L2‖Aρv‖L2 .

Choosing δ = 1
4 , θ = ρ = 1

2 , we deduce (4.4).
(ii) For u ∈ H

2, we have

‖A−δB(u, u)‖L2 = sup
{ ∫

D
|∇u| |u| |φ| dx; : ‖φ‖H2δ ≤ 1

}
.

In dimension 3, the Sobolev embedding theorem (see e.g. [1, Theorem 7.57, p.
217]) implies W

β,p(D) ⊂ L
q(D) if 3 > β p, β > 0, 1 < p < 3 and p ≤ q ≤

3p
3−β p . Hence for δ ∈ (0, 3

4 ), choosing β = 2δ, p = 2 and q = 6
3−4δ , we obtain

W
2δ,2(D) = H

2δ(D) ⊂ L
q(D). Let p̄ = 3

2δ ; then
1
p̄ + 1

2 + 1
q = 1, and the Hölder

inequality yields

‖A−δB(u, u)‖L2 ≤ C‖∇u‖L2‖u‖L p̄ .

The Gagliardo–Nirenberg inequality (2.3) implies ‖u‖L p̄ ≤ C‖Au‖
3
4−δ

L2 ‖u‖
1
4+δ

L2 .
This concludes the proof of (4.5). ��
The following result proves regularity of the Brinkman–Forchheimer term. To have

a regularity similar to that of the bilinear term, we have to impose some restriction on
the exponent α.

Lemma 2 Let α ∈ [1, 3
2 ].
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(i) there exists a positive constant C such that

∥∥A− 1
4
(|u|2αu)∥∥

L2 ≤ C‖u‖2α+1
V , ∀u ∈ V . (4.6)

(ii) Furthermore, for any δ ∈ (0, 3
4 ) there exists C > 0 such that

∥∥A−δ
(|u|2αu)∥∥

L2 ≤ C‖Au‖
3
4−δ

L2 ‖u‖2α+ 1
4+δ

V , ∀u ∈ Dom(A). (4.7)

Proof We use once more the Sobolev embedding theorem W
β,p(D) ⊂ L

r (D) if
3 > β p, β > 0, 1 < p < 3 and p ≤ r ≤ 3p

3−β p .

(i) Choosing β = 1
2 , p = 2 and r = 3, we obtain W

1
2 ,2(D) = H

1
2 (D) ⊂ L

3(D),
while β = 1, p = 2 and r ∈ [2, 6] yields H1(D) ⊂ L

r (D). Given u ∈ H
1, we

have

∥∥A− 1
4
(|u|2αu)∥∥

L2 = sup
{ ∫

D
|u(x)|2αu(x)φ(x)dx : ‖φ‖

H
1
2

≤ 1
}
.

Using Hölder’s inequality with exponents 2,6 and 3, we obtain for δ ∈ [ 14 , 3
4 )

∥∥A− 1
4
(|u|2αu)∥∥

L2 ≤ sup{‖u‖2α
L4α‖u‖L6‖φ‖L3 : ‖φ‖

H
1
2

≤ 1} ≤ C‖u‖2α+1
V ,

where the last upper estimate is a consequence of the inequality 4α ∈ [4, 6]. This
completes the proof of (4.6).

(ii) As in the proof of Lemma 4.1 (ii) we choose q = 6
3−4δ to ensure H

2δ ⊂ L
q and

p = 3
2δ . The Hölder and Gagliardo–Nirenberg inequalities imply

‖A−δ(|u|2αu)‖L2 = sup
{ ∫

|u|2α|u|φ : ‖φ‖H2δ ≤ 1
}

≤ ‖u‖2α
L4α‖u‖Lp‖φ‖Lq

≤ C‖u‖2α
L4α‖Au‖

3
4−δ

L2 ‖u‖
1
4+δ

L2 .

Since α ∈ [1, 3
2 ], the Sobolev embeddingH

1 ⊂ L
γ for γ ∈ [4, 6] concludes the proof.

��
The following proposition gives upper estimates for moments of time increments

of the solution to the stochastic 3D modified Navier Stokes equation u defined in
equation (4.1).

Proposition 3 Let u0 be F0-measurable and let α ∈ [1, 3
2 ] with 4νa > 1 if α = 1.

Suppose that the diffusion coefficient G satisfies Condition (G) and let u be the solution
to (1.1). Then for λ ∈ (0, 1

2 ) we have

(i) Suppose u0 ∈ L(2α+1)p(Ω; V ) for some p ∈ [2,∞). There exists a positive
constant C := C(T , a, p,TrQ) such that for 0 ≤ t1 < t2 ≤ T ,

E
(‖u(t2) − u(t1)‖p

H

) ≤ C |t2 − t1|λp
[
1 + E

(‖u0‖(2α+1)p
V

)]
. (4.8)
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(ii) Let N ≥ 1 be an integer and for k = 0, . . . , N set tk = kT
N . Then there exists

C := C(T , a,TrQ, λ) > 0 (independent of N) such that for p(λ) = 2+8α−2λ
1−λ

and

u0 ∈ L
p(λ)(Ω; V )

E

( N∑
j=1

∫ t j

t j−1

[‖∇(u(s) − u(t j ))‖2L2 + ‖∇(u(s) − u(t j−1))‖2L2

]
ds

)

≤ C
( T

N

)2λ [
1 + E

(
‖u0‖p(λ)

V

)]
. (4.9)

Proof The proof relies on a semi-group argument.
(i) Let t1 < t2 belong to the time interval [0, T ]. Then u(t2)−u(t1) = ∑4

i=1 Ti , where

T1 = S(t2)u0 − S(t1)u0,

T2 = −
∫ t2

0
S(t2 − s)B(u(s), u(s))ds +

∫ t1

0
S(t1 − s)B(u(s), u(s))ds,

T3 = −a
∫ t2

0
S(t2 − s)

(|u(s)|2αu(s)
)
ds + a

∫ t1

0
S(t1 − s)

(|u(s)|2αu(s)
)
ds,

T4 =
∫ t2

0
S(t2 − s)G(u(s))dW (s) −

∫ t1

0
S(t1 − s)G(u(s))dW (s).

Then using (4.3) and the upper estimate supt∈[0,T ] ‖S(t)‖L(L2;L2) < ∞ we deduce

‖T1‖L2 = ∥∥S(t1)A
− 1

2
[
S(t2 − t1) − Id

]
A

1
2 u0

∥∥
L2

≤ C‖S(t1)‖L(L2;L2) |t2 − t1| 12 ‖A 1
2 u0‖L2 ≤ C |t2 − t1| 12 ‖u0‖V .

Hence taking expected values, we deduce for every p ∈ [2,∞)

E
(‖T1‖p

L2

) ≤ C p |t2 − t1| p
2 E(‖u0‖p

V ). (4.10)

Furthermore, T2 = −T2,1 − T2,2, where

T2,1 =
∫ t1

0
S(t1 − s)

[
S(t2 − t1) − Id

]
B(u(s), u(s))ds,

T2,2 =
∫ t2

t1
S(t2 − s)B(u(s), u(s))ds.

Using the Minkowski inequality, (4.2), (4.3) and (4.4), we deduce that for ε ∈ (
0, 1

4

)
,

‖T2,1‖L2 ≤
∫ t1

0
‖A1−εS(t1 − s) A−( 34−ε)

[
S(t2 − t1) − Id

]

× A− 1
4 B(u(s), u(s))‖L2ds
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≤ C |t2 − t1| 34−ε sup
s∈[0,t1]

‖u(s)‖2V
∫ t1

0
(t1 − s)−1+εds.

Hence (3.5) implies that if E(‖u0‖2pV ) < ∞ for some p ∈ [1,∞), we have

E
(‖T2,1‖p

L2

) ≤ C(T ) |t2 − t1|( 34−ε)p[1 + E‖u0‖2pV
]
. (4.11)

The Minkowski inequality, (4.2) and (4.4) imply

‖T2,2‖L2 ≤
∫ t2

t1
‖A 1

4 S(t2 − s)A− 1
4 B(u(s), u(s))‖L2ds

≤ C sup
s∈[t1,t2]

‖u(s)‖2V
∫ t2

t1
(t2 − s)−

1
4 ds.

Using once more (3.5) we deduce that if E(‖u0‖2pV ) < ∞ for some p ∈ [1,∞),

E
(‖T2,2‖p

L2

) ≤ C |t2 − t1| 34 p
[
1 + E‖u0‖2pV

]
. (4.12)

A similar decomposition yields T3 = −a
(
T3,1 + T3,2

)
, where

T3,1 =
∫ t1

0
S(t1 − s)

[
S(t2 − t1) − Id

]|u(s)|2αu(s)ds,

T3,2 =
∫ t2

t1
S(t2 − s)|u(s)|2αu(s)ds.

TheMinkowski inequality and the upper estimates (4.2), (4.3) and (4.6) imply that for
ε ∈ (

0, 1
4

)
,

‖T3,1‖L2 ≤
∫ t1

0
‖A1−εS(t1 − s) A−( 34−ε)

[
S(t2 − t1) − Id

]

× A− 1
4
(|u(s)|2αu(s)

)‖L2ds

≤ C |t2 − t1| 34−ε sup
s∈[0,t1]

‖u(s)‖2α+1
V

∫ t1

0
(t1 − s)−(1−ε)ds,

and the upper estimate (3.5) implies that for p ∈ [1,∞),

E
(‖T3,1‖p

L2

) ≤ C |t2 − t1|( 34−ε)p [
1 + E‖u0‖(2α+1)p

V

]
. (4.13)

The Minkowski inequality and the upper estimates (4.2) and (4.6) imply

‖T3,2‖L2 ≤
∫ t2

t1
‖A 1

4 S(t2 − s)A− 1
4
(|u(s)|2αu(s)

)‖
L2ds
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≤ C(T )

∫ t2

t1
(t2 − s)− 1

4 ‖u(s)‖2α+1
V ds ≤ C(T )|t2 − t1|

3
4 sup
s∈[t1,t2]

‖u(s)‖2α+1
V .

Then using once more (3.5) we obtain for p ∈ [1,∞),

E(‖T3,2‖p
L2) ≤ C(T , p)|t2 − t1| 34 p

[
1 + E‖u0‖(2α+1)p

V

]
. (4.14)

A similar decomposition of the stochastic integral yields T4 = T4,1 + T4,2, where

T4,1 =
∫ t1

0
S(t1 − s)

[
S(t2 − t1) − Id

]
G(u(s))dW (s),

T4,2 =
∫ t2

t1
S(t2 − s)G(u(s))dW (s).

The Burkholder–Davis–Gundy inequality, the growth condition (3.2), (4.2) and (4.3)
imply for ε ∈ (

0, 1
2

)
and p ∈ [1,∞),

E(‖T4,1‖2p
L2 ) ≤ Cp E

(∣∣∣
∫ t1

0
‖S(t1 − s)

[
S(t2 − t1) − Id

]
G(u(s))‖2L TrQ ds

∣∣∣p
)

≤ Cp E

(∣∣∣
∫ t1

0
‖A 1

2−εS(t1 − s)‖2L(L2;L2)

× ‖A−( 12−ε)
[
S(t2 − t1) − Id

]‖2L(L2;L2)
‖G(u(s))‖2L TrQ ds

∣∣∣p
)

≤ Cp (TrQ)p |t2 − t1|(1−2ε)p
[
K p
0 + K p

1 E

(
sup

s∈[0,t1]
‖u(s)‖2pH

)]

×
( ∫ t1

0
(t1 − s)−1+2εds

)p

≤ C(T , p,TrQ) |t2 − t1|(1−2ε)p[1 + E
(‖u0‖2pV

)]
, (4.15)

where the last upper estimate is deduced from (3.5).
Finally, using once more the Burkholder–Davis–Gundy inequality, supt∈[0,T ]

‖S(t)‖L(L2;L2) < ∞, the growth condition (3.2) and (3.5), we obtain for p ∈ [1,∞)

E(‖T4,2‖2p
L2 ) ≤ Cp E

(∣∣∣
∫ t2

t1
‖S(t2 − s)G(u(s))‖2L TrQ ds

∣∣∣p
)

≤ Cp (TrQ)p E

(∣∣∣
∫ t2

t1
‖S(t2 − s)‖2L(L2;L2)

[
K0 + K1‖u(s)‖2H

]
ds

∣∣∣p
)

≤ Cp (TrQ)p |t2 − t1|p
[
1 + E

(‖u0‖2pV
)]

. (4.16)

The upper estiimates (4.10)–(4.16) conclude the proof of (4.8).
(ii) For 1 ≤ j ≤ N , s ∈ [t j−1, t j ) we have ∇u(t j ) − ∇u(s) = ∑4

i=1 Ti (s, j),
where

T1(s, j) = ∇S(t j )u0 − ∇S(s)u0,
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T2(s, j) = −
∫ t j

0
∇S(t j − r)B(u(r), u(r))dr +

∫ s

0
∇S(s − r)B(u(r), u(r))dr ,

T3(s, j) = −a
∫ t j

0
∇S(t j − r)

(|u(r)|2αu(r)
)
dr + a

∫ s

0
∇S(s − r)

(|u(r)|2αu(r)
)
dr ,

T4(s, j) =
∫ t j

0
S(t j − r)∇G(u(r))dW (r) −

∫ s

0
S(s − r)∇G(u(r))dW (r).

Using the upper estimates (4.2) and (4.3) we obtain

‖T1(s, j)‖L2 = ‖AδS(s) A−δ
[
S(t j − s) − Id

]
A

1
2 u0‖L2 ≤ Cs−δ|t j − s|δ‖u0‖V

for any δ ∈ (0, 1]. Therefore, given any δ ∈ (0, 1
2 ), we deduce

N∑
j=1

∫ t j

t j−1

‖T1(s, j)‖2
L2

ds ≤ C
( T

N

)2δ‖u0‖2V
∫ T

0
s−2δds = C(T , λ)

( T

N

)2δ‖u0‖2V . (4.17)

As in the proof of (i), let T2(s, j) = −(
T2,1(s, j) + T2,2(s, j)

)
, where

T2,1(s, j) =
∫ s

0
∇S(s − r)

[
S(t j − s) − Id

]
B(u(r), u(r))dr ,

T2,2(s, j) =
∫ t j

s
∇S(t j − r)B(u(r), u(r))dr .

The Minkowski inequality and the upper estimates (4.2), (4.3) and (4.5) imply for
δ ∈ (

0, 1
2 ) and γ ∈ (0, 1

2 − δ)

N∑
j=1

∫ t j

t j−1

‖T2,1(s, j)‖2L2ds

≤
N∑
j=1

∫ t j

t j−1

ds
{ ∫ s

0
‖A 1

2+δ+γ S(s − r)A−γ
[
S(t j − s) − Id

]

× A−δB(u(r), u(r))dr‖L2dr
}2

≤ C
( T

N

)2γ N∑
j=1

∫ t j

t j−1

ds
{ ∫ s

0
(s − r)−( 12+δ+γ )‖Au(r)‖

3
4−δ

L2 ‖u(r)‖
5
4+δ

V dr
}2

≤ C
( T

N

)2γ ∫ T

0
ds

( ∫ s

0
(s − r)−( 12+δ+γ )dr

)

×
( ∫ s

0
(s − r)−( 12+δ+γ )‖Au(r)‖2(

3
4−δ)

L2 dr
)

sup
r∈[0,T ]

‖u(r)‖2(
5
4+δ)

V , (4.18)
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where in the last upper estimate, we have used the Cauchy–Schwarz inequality with

respect to the measure (s − r)− 1
2−δ−γ 1(0,s)(r)dr .

Since
∫ T
r (s − r)−( 12+δ+γ )ds ≤ ∫ T

0 s−( 12+δ+γ )ds = C(T , δ, γ ) for any r ∈ [0, T ),

and
∫ s
0 (s− r)−( 12+δ+γ )dr ≤ C(T , δ, γ ) for any s ∈ [0, T ), using the Fubini theorem,

Hölder’s and Jensen’s inequalities with respect to dP with conjugate exponents 1
1
4+δ

and 1
3
4−δ

, we deduce

E

N∑
j=1

∫ t j

t j−1

‖T2,1(s, j)‖2L2ds ≤ C
( T

N

)2γ
C(T , δ, γ )

× E

(
sup

r∈[0,T ]
‖u(r)‖2(

5
4+δ)

V

∫ T

0
dr‖Au(r)‖2(

3
4−δ)

L2

∫ T

r
(s − r)−( 12+δ+γ )ds

)

≤ C
( T

N

)2γ
C(T , δ, γ )2

{
E

(
sup

r∈[0,T ]
‖u(r)‖

2(5+4δ)
1+4δ

V

)} 1
4+δ

×
{
E

( ∫ T

0
‖Au(r)‖2

L2dr
)} 3

4−δ

.

Let λ ∈ (0, 1
2 ), δ = 1−2λ

4 ∈ (0, 1
4 ) and γ ∈ (0, 1

2 − 2δ). Using (3.5) we infer

E

( N∑
j=1

∫ t j

t j−1

‖T2,1(s, j)‖2L2ds
)

≤ C(T , δ)
( T

N

)2λ[
1 + E

(
‖u0‖

6−2λ
1−λ

V

)]
. (4.19)

Using theMinkowski inequality, (4.2), (4.5) andHölder’s inequality for themeasure
1[t j−1,t j ](s)dswith conjugate exponents p1 = 2

3
4−δ

and p2 = 2
5
4+δ

wehave p2( 12+δ) <

1 for δ ∈ (0, 1
4 ), and deduce

N∑
j=1

∫ t j

t j−1

‖T2,2(s, j)‖2L2ds

≤ C
N∑
j=1

∫ t j

t j−1

ds
{ ∫ t j

s

∥∥A 1
2+δS(t j − r) A−δB(u(r), u(r))

∥∥
L2dr

}2

≤ C
N∑
j=1

∫ t j

t j−1

ds
{ ∫ t j

s
(t j − r)−( 12+δ)‖Au(r)‖

3
4−δ

L2 ‖u(r)‖
5
4+δ

V dr
}2

≤ C sup
r∈[0,T ]

‖u(r)‖
5
2+2δ
V

N∑
j=1

∫ t j

t j−1

( ∫ t j

s
(t j − r)−p2(

1
2+δ)dr

) 2
p2

×
( ∫ t j

s
‖Au(r)‖2

L2dr
) 2

p1 ds
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≤ C sup
r∈[0,T ]

‖u(r)‖
5
2+2δ
V

( T

N

) 1
4−δ

N∑
j=1

∫ t j

t j−1

ds
( ∫ t j

t j−1

‖Au(r)‖2
L2dr

) 2
p1 .

The Hölder inequality for the counting measure on {1, . . . , N } with conjugate expo-
nents p1

2 = 1
3
4−δ

and 1
1
4+δ

yields

N∑
j=1

∫ t j

t j−1

‖T2,2(s, j)‖2L2ds ≤ C(T , δ)
( T

N

) 5
4−δ

sup
r∈[0,T ]

‖u(r)‖
5
2+2δ
V

×
{ N∑

j=1

∫ t j

t j−1

‖Au(r)‖2
L2
dr

} 3
4−δ

N
1
4+δ

≤ C(T , δ)
( T

N

)1−2δ
sup

r∈[0,T ]
‖u(r)‖

5
2+2δ
V

{ ∫ T

0
‖Au(r)‖2

L2
dr

} 3
4−δ

.

Hölder’s inequality with respect to dP with conjugate exponents 1
3
4−δ

and 1
1
4+δ

implies

E

N∑
j=1

∫ t j

t j−1

‖T2,2(s, j)‖2L2ds ≤ C(T , δ)
( T

N

)1−2δ{
E

(
sup

r∈[0,T ]
‖u(r)‖

10+8δ
1+4δ
V

)} 1
4+δ

×
{
E

( ∫ T

0
‖Au(r)‖2

L2dr
)} 3

4−δ

. (4.20)

Let λ ∈ (0, 1
2 ) and δ = 1−2λ

4 ∈ (0, 1
4 ). The inequalities (4.19), (4.20) and (3.5) imply

E

N∑
j=1

∫ t j

t j−1

‖T2(s, j)‖2L2ds ≤ C(T , λ)
( T

N

)2λ[
1 + E

(‖u0‖
6−2λ
1−λ

V

)]
. (4.21)

A similar decomposition yields T3(s, j) = −a
(
T3,1(s, j) + T3,2(s, j)

)
, where

T3,1(s, j) =
∫ s

0
∇S(s − r)

[
S(t j − s) − Id

](|u(r)|2αu(r)
)
dr ,

T3,2(s, j) =
∫ t j

s
∇S(t j − r)

(|u(r)|2αu(r)
)
dr .

The Minkowski inequality and the upper estimates (4.2), (4.3), (4.7) imply for δ ∈
(0, 1

2 ) and γ ∈ (0, 1
2 − δ),

‖T3,1(s, j)‖L2 ≤
∫ s

0

∥∥A 1
2+δ+γ S(s − r) A−γ

[
S(t j − s) − Id

]

× A−δ
(|u(r)|2αu(r)

)∥∥
L2dr
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≤ C(t j − s)γ
∫ s

0
(s − r)−( 12+δ+γ )‖Au(r)‖

3
4−δ

L2 ‖u(r)‖2α+ 1
4+δ

V dr .

Therefore, given δ ∈ (
0, 1

2

)
and γ ∈ (0, 1

2 − δ)

N∑
j=1

∫ t j

t j−1

‖T3,1(s, j)‖2L2ds ≤ C
( T

N

)2γ ∫ T

0

{ ∫ s

0
(s − r)−( 12+δ+γ )‖Au(r)‖

3
4−δ

L2

× ‖u(r)‖2α+ 1
4+δ

V dr
}2
ds,

which is similar to (4.18) replacing the exponent 5
4 + δ of ‖u(r)‖V by 2α + 1

4 + δ.
Therefore, we deduce for δ ∈ (0, 1

4 )

E

N∑
j=1

∫ t j

t j−1

‖T3,1(s, j)‖2L2ds ≤ C(T , δ)
( T

N

)1−4δ[
1 + E

(
‖u0‖

16α+2+8δ
1+4δ

V

)]
. (4.22)

The Minkowski inequality, (4.2) and (4.7) imply for δ ∈ (0, 1
4 )

N∑
j=1

∫ t j

t j−1

‖T3,2(s, j)‖2L2 ds ≤
N∑
j=1

∫ t j

t j−1

ds
{ ∫ t j

s

∥∥A 1
2+δS(t j − r)

× A−δ
(|u(r)|2αu(r)

)∥∥
L2dr

}2

≤ C
N∑
j=1

∫ t j

t j−1

ds
{ ∫ t j

s
(t j − r)−( 12+δ)‖Au(r)‖

3
4−δ

L2 ‖u(r)‖2α+ 1
4+δ

V dr
}2

.

The arguments for proving (4.20) imply

E

N∑
j=1

∫ t j

t j−1

‖T3,2(s, j)‖2L2ds ≤ C(T , δ)
( T

N

)1−2δ{
E

(
sup

r∈[0,T ]
‖u(r)‖

16α+2+8δ
1+4δ

V

)} 1
4+δ

×
{
E

( ∫ T

0
‖Au(r)‖2

L2dr
)} 3

4−δ

. (4.23)

The inequalities (4.22), (4.23) and (3.5) imply that for λ ∈ (0, 1
2 ) and δ = 1−2λ

4 ∈(
0, 1

4

)
,

E

N∑
j=1

∫ t j

t j−1

‖T3(s, j)‖2L2ds ≤ C(T , a, λ)
( T

N

)2λ[
1 + E

(
‖u0‖p(λ)

V

)]
. (4.24)
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Finally, the stochastic integral can be decomposed as follows: T4(s, j) =
T4,1(s, j) + T4,2(s, j), where

T4,1(s, j) =
∫ s

0
S(s − r)

[
S(t j − s) − Id

]∇G(u(r))dW (r),

T4,2(s, j) =
∫ t j

s
S(t j − r)∇G(u(r))dW (r).

The L2(Ω)-isometry, (4.2), (4.3) and the growth condition (3.3) imply for δ ∈ (
0, 1

2

)

E

N∑
j=1

∫ t j

t j−1

‖T4,1(s, j)‖2L2ds

≤ E

N∑
j=1

∫ t j

t j−1

∫ s

0

∥∥S(s − r)
[
S(t j − s) − Id

]
A

1
2G(u(r))

∥∥2L TrQ drds

≤ E

N∑
j=1

∫ t j

t j−1

ds
∫ s

0

∥∥A 1
2−δS(s − r)

∥∥2L(L2;L2)

× ∥∥A−( 12−δ)
[
S(t j − s) − Id

]∥∥2L(L2;L2)
‖G(u(r))‖2L̃ TrQ dr

≤ TrQ E

∫ T

0
ds

∫ s

0
(s − r)−1+2δ(t j − s)1−2δ[K̃0 + K̃1‖u(r)‖2V

]
dr

≤ TrQ
[
K̃0 + K̃1 E

(
sup

r∈[0,T ]
‖u(r)‖2V

)] ( T

N

)1−2δ
∫ T

0
s2δds

≤ C(T ,TrQ, δ)
( T

N

)1−2δ[
1 + E(‖u0‖2V )

]
, (4.25)

Finally, the L2(Ω)-isometry, supr ‖S(r)‖L(L2;L2), the growth condition (3.3) and (3.5)
imply

E

( N∑
j=1

∫ t j

t j−1

‖T4,2(s, j)‖2L2ds
)

≤ E

N∑
j=1

∫ t j

t j−1

∫ t j

s
‖S(t j − r)‖2L(L2;L2)

‖G(u(r))‖2L̃ TrQ drds

≤ TrQ E

N∑
j=1

∫ t j

t j−1

ds
∫ t j

s

[
K̃0 + K̃1‖u(r)‖2V

]
dr

≤ C(T ,TrQ)
T

N

[
1 + E(‖u0‖2V )

]
. (4.26)
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For α ∈ [1, 3
2 ] and λ ∈ (0, 1

2 ), 2 < 6−2λ
1−λ

< p(λ) := 2+8α−2λ
1−λ

. Therefore, the upper

estimates (4.17), (4.21), (4.24)–(4.26) imply for λ ∈ (0, 1
2 )

E

N∑
j=1

∫ t j

t j−1

‖∇(u(s) − u(t j ))‖2L2ds ≤ C(T , a,TrQ, λ)
( T

N

)2λ[
1 + E

(
‖u0‖p(λ)

V

)]
.

Small changes in the proof of this upper estimate prove that under similar assumptions

E

N∑
j=1

∫ t j

t j−1

‖∇(u(s) − u(t j−1))‖2L2ds ≤ C(T ,TrQ, λ)
( T

N

)2λ[
1 + E

(
‖u0‖p(λ)

V

)]
.

This completes the proof of (4.9). ��
Remark 1 Note that the above proof shows that when time increments of the gradient
of the solution are dealt with, due to the term containing the initial condition, one
cannot obtain moments of E(‖u(t) − u(s)‖2V ) uniformly in s, t with 0 ≤ s < t ≤ T .
Furthermore, in order to obtain the “optimal” time regularity, that is almost 1

2 , we also
need a time integral.

5 Well-posedness andmoment estimates of the implicit time Euler
scheme

We first prove the existence of the fully time implicit time Euler scheme. Fix N ∈
{1, 2, . . .}, let h := T

N denote the time mesh, and for j = 0, 1, . . . , N set t j := j TN .
The fully implicit time Euler scheme {uk; k = 0, 1, . . . , N } is defined by u0 = u0

and for ϕ ∈ V

(
uk − uk−1 + hνAuk + hB

(
uk, uk

) + h a |uk |2αuk, ϕ
)

= (
G(uk−1)[W (tk) − W (tk−1)] , ϕ), k = 1, 2, . . . , N . (5.1)

Set Δ jW := W (t j ) − W (t j−1), j = 1, . . . , N .
The following proposition states the existence and uniqueness of the sequence

{uk}k=0,...,N and provides moment estimates which do not depend on N .

Proposition 4 Let α ∈ [1, 3
2 ] and Condition (G) be satisfied. The time fully implicit

scheme (5.1) has a solution {uk}k=1,...,N ∈ V ∩ H
2 Furthermore,

sup
N≥1

E

(
max

k=0,...,N
‖uk‖2V + T

N

N∑
k=1

‖Auk‖2
L2

+ T

N

N∑
k=1

[‖uk‖2α+2
L2α+2 + ‖|uk |α∇uk‖2

L2

])
< ∞. (5.2)
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Proof The proof is divided in two steps.
Step 1: Existence of the scheme We first prove that for fixed N ≥ 1 (5.1) has a
solution in V ∩ L

2α+2. For technical reasons we consider a Galerkin approximation.
As in Sect. 3 let {el}l denote an orthonormal basis of H made of elements of H

2 which
are orthogonal in V . Since α ∈ [1, 3

2 ], the Gagliardo–Nirenberg inequality implies
that H

1 ⊂ L
2α+2.

Form = 1, 2, . . . let Vm = span (e1, . . . , em) ⊂ H
2 and let Pm : V → Vm denote the

projection from V to Vm . In order to find a solution to (5.1) we project this equation
on Vm , that is we define by induction a sequence {uk(m)}k=0,...,N ∈ Vm such that
u0(m) = Pm(u0), and for k = 1, . . . , N and ϕ ∈ Vm

(
uk(m) − uk−1(m), ϕ

) + h
[
ν
(∇uk(m),∇ϕ) + 〈

B
(
uk(m), uk(m)

)
, ϕ

〉

+ a
(|uk(m)|2αuk(m), ϕ

)] = (
G(uk−1(m))ΔkW , ϕ

)
. (5.3)

For almost every ω set R(0, ω) := ‖u0(ω)‖L2 . Fix k = 1, . . . , N and suppose that
for j = 0, . . . , k − 1 the Ft j - measurable random variables u j (m) have been defined,
and that

R( j, ω) := sup
m≥1

‖u j (m, ω)‖L2 < ∞ for almost everyω.

Weprove thatuk(m) exists and satisfies a.s. supm≥1 ‖uk(m, ω)‖L2 < ∞. The argument
is based on the following result [22, Cor 1.1, p. 279], which can be deduced from
Brouwer’s theorem.

Proposition 5 Let H be a Hilbert space of finite dimension, (., .)H denote its inner
product, and Φ : H → H be continuous such that for some μ > 0,

(
Φ( f ), f

)
H ≥ 0, for all f ∈ H with‖ f ‖H = μ.

Then there exists f ∈ H such that Φ( f ) = 0 and ‖ f ‖H ≤ μ.

For ω ∈ Ω let Φk
m,ω : Vm → Vm be defined for f ∈ Vm as the solution of

(
Φk

m,ω( f ), ϕ
) = (

f − uk−1(m, ω), ϕ
)

+ h
[
ν
(∇ f ,∇ϕ

) + 〈
PmB( f , f ), ϕ

〉 + a
(
Pm(| f |2α f ), ϕ

)]

− (
PmG(uk−1(m, ω)ΔkW (ω), ϕ

)
, ∀ϕ ∈ Vm .

Then

(
Φk

m,ω( f ), f
) = ‖ f ‖2

L2 − (
uk−1(m, ω), f

) + hν‖∇ f ‖2
L2 + h a‖ f ‖2α+2

L2α+2

− (
G(uk−1(m, ω)

)
ΔkW (ω), f

)
.
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The Young inequality implies
∣∣(uk−1(m, ω), f

) ≤ 1
2‖ f ‖2

L2 + 1
2‖uk−1(m, ω)‖2

L2 and
the growth condition (3.2) implies

∣∣(G(uk−1(m, ω)ΔkW (ω), f
)∣∣ ≤ ∥∥G(

uk−1(m, ω)
)‖L‖ΔkW (ω)‖K ‖ f ‖

L2

≤ 1

4
‖ f ‖2

L2 + [
K0 + K1‖uk−1(m, ω)‖2

L2

] ‖ΔkW (ω)‖2K .

Hence

(
Φk

m,ω( f ), f
) ≥ 1

4
‖ f ‖2

L2 − 1

2
‖uk−1(m, ω)‖2

L2

− [
K0 + K1‖uk−1(m, ω)‖2

L2

]‖ΔkW (ω)‖2K ≥ 0

if

‖ f ‖2
L2 = R2(k, ω) := 4

[
K0‖ΔkW (ω)‖2K + R2(k − 1, ω)

(1
2

+ K1‖ΔkW (ω)‖2K
)]

.

Proposition 5 implies the existence of uk(m, ω) ∈ Vm such that Φk
m,ω

(
uk(m, ω)

) = 0,
and ‖uk(m, ω)‖2

L2 ≤ R2(k, ω); note that this element uk(m, ω) need not be unique.

Furthermore, the random variable uk(m) is Ftk -measurable.
The definition of uk(m) implies that it is a solution to (5.3). Taking ϕ = uk(m) in

(5.3) and using the Young inequality, we obtain

‖uk(m)‖2
L2 + h ν‖∇uk(m)‖2

L2 + h a‖uk(m)‖2α+2
L2α+2

= (
uk−1(m), uk(m)

) + (
G(uk−1(m)ΔkW , uk(m)

)

≤ 1

4
‖uk(m)‖2

L2 + ‖uk−1(m)‖2
L2 + 1

4
‖uk(m)‖2

L2

+ [
K0 + K1‖uk−1(m)‖2

L2

]‖ΔkW‖2K .

Hence a.s.

sup
m≥1

[1
2
‖uk(m, ω)‖2

L2 + h ν‖∇uk(m, ω)‖2
L2 + h a‖uk(m, ω)‖2α+2

L2α+2

]

≤ R2(k − 1, ω)
[
1 + K1‖ΔkW (ω)‖2K

] + K0‖ΔkW (ω)‖2K ,

Therefore, for k and almost every ω, the sequence {uk(m, ω)}m is bounded in V ∩
L
2α+2; it has a subsequence (still denoted {uk(m, ω)}m) which converges weakly in

V ∩ L
2α+2 to φk(ω). The random variable φk is Ftk -measurable.

Since D is bounded, the embedding of V in H is compact; hence the subsequence
{uk(m, ω)}m converges strongly to φk(ω) in L

2.
Then by definition u0(m) converges strongly to u0. We next prove by induction on

k that φk solves (5.1). Fix a positive integer m0 and consider the equation (5.3) for
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k = 1, . . . , N , ϕ ∈ Vm0 , and m ≥ m0. As m → ∞ we have a.s.

(
uk(m) − uk−1(m), ϕ) → (

φk − φk−1, ϕ).

Furthermore, the antisymmetry of B (2.1) and the Gagliardo–Nirenberg inequality

‖g‖L4 ≤ C‖∇g‖
3
4
L2‖g‖

1
4
L2 yield a.s.

∣∣〈B(
uk(m), uk(m)

) − B(φk, φk), ϕ
〉∣∣

≤ ∣∣〈B(
uk(m) − φk, ϕ

)
, uk(m)

〉∣∣ + ∣∣〈B(
φk, ϕ

)
, uk(m) − φk 〉∣∣

≤ ‖∇ϕ‖L2‖uk(m) − φk‖L4
[‖uk(m)‖L4 + ‖φk‖L4

]

≤ C ‖ϕ‖L2
[
max
m

‖uk(m)‖
7
4
V + ‖φk‖

7
4
V

]‖uk(m) − φk‖
1
4
L2 → 0

as m → ∞. The inequality (7.8) implies

∣∣(|uk(m)|2αuk(m) − |φk |2αφk, ϕ
)∣∣

≤ C
∫

|uk(m) − φk |(|uk(m)|2α + |φk |2α) |ϕ| dx
≤ C ‖ϕ‖L∞‖uk(m) − φk‖L2

(‖uk(m)‖4αL4α + ‖φk‖4α
L4α

)
≤ C ‖ϕ‖H2

(
max
m

‖uk(m)‖4αV + ‖φk‖4αV
)‖uk(m) − φk‖L2 → 0

as m → ∞. Note that the last upper estimate follows from the inclusion H
1 ⊂ L

p for
p ∈ [2, 6], and α ∈ [1, 3

2 ]. Finally, the Cauchy–Schwarz inequality and the Lipschitz
condition (3.4) imply

∣∣(G(
uk−1(m)

)
ΔkW , ϕ

) − (
G

(
φk−1)ΔkW , ϕ

)∣∣
≤ ‖ϕ‖L2‖G(uk−1(m) − G(φk−1)‖L‖ΔkW‖K
≤ √

L ‖ϕ‖L2 ‖uk−1(m) − φk−1‖L2 ‖ΔkW‖K → 0

as m → ∞. Therefore, letting m → ∞ in (5.3), we deduce

(
φk − φk−1 + hνAφk + hB

(
φk, φk) + h a |φk |2αφk, ϕ

)
= (

G(φk−1)ΔkW , ϕ)

for every ϕ ∈ Vm0 . Since ∪m0Vm0 is dense in V , we deduce that φk is a solution to
(5.1).
Step 2: Moment estimatesWe next prove (5.2) for any {uk}k=0,...,N solution to (5.1).
We first study the L

2-norm of the sequence. Write (5.1) with ϕ = uk and use the
identity ( f , f − g) = 1

2

[‖ f ‖L2 − ‖g‖2
L2 + ‖ f − g‖2

L2

]
. Using the Cauchy–Schwarz

and Young inequalities, and the growth condition (3.2), this yields for k = 1, . . . , N

1

2
‖uk‖2

L2 − 1

2
‖uk−1‖2

L2 + 1

2
‖uk − uk−1‖2

L2 + hν‖∇uk‖2
L2 + ha‖uk‖2α+2

L2α+2
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= (
G(uk−1)ΔkW , uk − uk−1) + (

G(uk−1)ΔkW , uk−1)

≤ 1

2
‖uk − uk−1‖2

L2 + 1

2

[
K0 + K1‖uk−1‖2

L2

]‖ΔkW‖2K
+ (

G(uk−1)ΔkW , uk−1).
For any K = 1, . . . , N , adding the above inequalities for k = 1, ..., K we deduce

‖uK ‖2
L2 + 2hν

K∑
k=1

‖∇uk‖2
L2 + 2ha

K∑
k=1

‖uk‖2α+2
L2α+2 ≤ ‖u0‖2L2

+
K∑

k=1

[
K0 + K1‖uk−1‖2

L2

]‖ΔkW‖2K + 2
K∑

k=1

(
G(uk−1)ΔkW , uk−1). (5.4)

Therefore,

E

(
max

1≤K≤N
‖uK ‖2

L2

)
+ 2hE

( N∑
k=1

[
ν‖∇uk‖2

L2 + a‖uk‖2α+2
L2α+2

])

≤ 2E

(
max

1≤K≤N

[
‖uK ‖2

L2 + 2h
K∑

k=1

(
ν‖∇uk‖2

L2 + a‖uk‖2α+2
L2α+2

)])

≤ 2E(‖u0‖2L2) + 2hTr(Q)

N−1∑
k=0

[
K0 + K1E(‖uk‖2

L2)
]

+ 4E

(
max

1≤K≤N

K∑
k=1

(
G(uk−1)ΔkW , uk−1)).

The Davis and then Young inequalities imply

E

(
max

1≤K≤N

K∑
k=1

(
G(uk−1)ΔkW , uk−1))

≤ 3E
({ N−1∑

k=0

‖uk‖2
L2

[
K0 + K1‖uk‖2L2

]
hTrQ

} 1
2
)

≤ 1

4
E

(
max

0≤k≤N−1
‖uk‖2

L2

)
+ 9E

(
hTrQ

N−1∑
k=0

[
K0 + K1‖uk‖2L2

])
.

Hence we deduce

1

2
E

(
max

1≤K≤N
‖uK ‖2

L2

)
+ 2hE

( N∑
k=1

[
ν‖∇uk‖2

L2 + a‖uk‖2α+2
L2α+2

])
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≤ 2E(‖u0‖2L2) + 74T K0TrQ + 74K1TrQ
N−1∑
k=0

hE(‖uk‖2
L2). (5.5)

Neglecting the sum in the left hand side and using the discrete Gronwall lemma, we
obtain

sup
N≥1

E

(
max

1≤K≤N
‖uK ‖2

L2

)
≤ C(T ,TrQ, ‖u0‖2L2 , K0, K1).

Plugging this upper estimate in (5.5), we obtain

sup
N≥1

E

(
max

k=0,...,N
‖uk‖2

L2 + T

N

N∑
k=1

[
ν‖∇uk‖2

L2 + a‖uk‖2α+2
L2α+2

])
< ∞.

A similar argument with ϕ = Auk , integrating by parts, and using Lemma 4 and
inequality (7.14) yields

sup
N≥1

E

(
max

1≤K≤N
‖∇uK ‖2

L2 + T

N

N∑
k=1

[‖Auk‖2
L2 + ‖|uk |α∇uk‖2

L2

]) = C2(α) < ∞.

This completes the proof of the proposition. ��

6 Strong convergence of the implicit time Euler scheme

Let u be the solution to (1.1) and {u j } j=0,...,N solve the fully implicit time Euler
scheme defined in (5.1). Let e j := u(t j ) − u j . Using (1.1) and (5.1), we deduce
e0 = 0 and for j = 1, . . . , N and ϕ ∈ V

(
e j − e j−1 , ϕ

) + ν

∫ t j

t j−1

(∇u(s) − ∇u j , ∇ϕ
)
ds

+
∫ t j

t j−1

〈
B(u(s), u(s)) − B(u j , u j ) , ϕ

〉
ds

+ a
∫ t j

t j−1

(|u(s)|2αu(s) − |u j |2αu j , ϕ
)
ds

=
∫ t j

t j−1

([G(u(s)) − G(u j−1)]dW (s) , ϕ
)
. (6.1)

Note that since α ∈ [1, 3
2 ] and H

1 ⊂ L
p for p ∈ [2, 6], Hölder’s inequality

with exponents 2, 3 and 6 implies that the space integral defining the inner prod-
uct

(|u(s)|2αu(s) − |u j |2αu j , ϕ
)
is converging for u(s), u j , ϕ ∈ V . The following

convergence theorem is one of the main results of this paper.
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Theorem 6 Suppose that condition (G) holds. Let α ∈ [1, 3
2 ]; when α = 1, suppose

that 4νa(1 ∧ κ) > 1, where κ > 0 is the constant defined in inequality (7.9).
Fix λ ∈ (0, 1

2 ) and set p(λ) = 2+8α−2λ
1−λ

. Let u0 ∈ L p(λ)(Ω; V ), u be the solution to

(1.1) and {u j } j=0,...,N solve the fully implicit scheme (5.1). Then there exists a positive
constant C := C(ν, α, a, κ,TrQ) independent of N such that for N large enough

E

(
max

1≤ j≤N
‖u(t j ) − u j‖2

L2 + T

N

N∑
j=1

‖∇[u(t j ) − u j ]‖2
L2

)

≤ C
( T

N

)2λ[
1 + E

(
‖u0‖p(λ)

V

)]
. (6.2)

Remark 2 Note that the various parameters of the model ν, α, a,TrQ only appear in
the multiplicative constant C in the right hand side of (6.2), but not in the exponent
λ which can be chosen arbitrarily close to 1

2 if u0 ∈ V is deterministic, or if u0 is a
V -valued Gaussian random variable independent of W .

Proof of Theorem 6 (i) We first suppose that α ∈ (1, 3
2 ].

Using the identity (6.1) with ϕ = e j , the equality ( f , f − g) = 1
2

[‖ f ‖2
L2 −

‖g‖2
L2 + ‖ f − g‖2

L2

]
and the estimate (7.18), we deduce that for some κ > 0 we have

for j = 1, . . . , N

1

2

(‖e j‖2L2 − ‖e j−1‖2L2

) + 1

2
‖e j − e j−1‖2L2 + νh‖∇e j‖2L2

+ aκh‖|u(t j )|αe j‖2L2 + aκh‖|u j |αe j‖2L2 ≤
7∑

l=1

Tj,l , (6.3)

where by the antisymmetry property (2.1) we have

Tj,1 = −
∫ t j

t j−1

〈
B

(
u(s) − u(t( j)), u(s)

)
, e j

〉
ds,

Tj,2 = −
∫ t j

t j−1

〈
B

(
e j , u(s)

)
, e j

〉
ds,

Tj,3 = −
∫ t j

t j−1

〈
B

(
u j , u(s) − u j ) , e j

〉
ds = −

∫ t j

t j−1

〈
B

(
u j , u(s) − u(t j )

)
, e j

〉
ds,

Tj,4 = −ν

∫ t j

t j−1

(∇(u(s) − u(t j )),∇e j
)
ds,

Tj,5 = −a
∫ t j

t j−1

(|u(s)|2αu(s) − |u(t j )|2αu(t j ), e j
)
ds,

Tj,6 =
∫ t j

t j−1

([G(u(s)) − G(u j−1)dW (s), e j − e j−1
)
,
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Tj,7 =
∫ t j

t j−1

([G(u(s)) − G(u j−1)
]
dW (s), e j−1

)
.

We next prove upper estimates of the terms Tj,l for l = 1, ..., 5, and of the expected
value of Tj,6 and Tj,7.

Using the Hölder inequality with exponents 2, 3, 6, the Sobolev embedding H
1 ⊂

L
6 and the Gagliardo–Nirenberg inequality (2.2), we deduce for ε1 > 0

|Tj,1| ≤
∫ t j

t j−1

‖u(s) − u(t j )‖L3‖∇u(s)‖L2‖e j‖L6ds

≤ C6C3‖e j‖H1

∫ t j

t j−1

‖u(s) − u(t j )‖
1
2
L2‖∇[u(s) − u(t j )]‖

1
2
L2‖∇u(s)‖L2ds

≤ ε1νh‖e j‖2H1 + (C6C3)
2

4ε1ν
sup

s∈[0,T ]
‖u(s)‖2V

( ∫ t j

t j−1

‖u(s) − u(t j )‖2L2ds
) 1

2

×
( ∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds
) 1

2

≤ ε1νh
[‖e j‖2L2 + ‖∇e j‖2L2

] +
∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds

+ (C6C3)
4

64ε21ν
2

sup
s∈[0,T ]

‖u(s)‖4V
∫ t j

t j−1

‖u(s) − u(t j )‖2L2ds, (6.4)

where the last inequalities are deduced from the Cauchy–Schwarz and Young inequal-
ities.

Let Tj,2 = −Tj,2,1 − Tj,2,2 + Tj,2,3, where

Tj,2,1 =
∫ t j

t j−1

〈
B

(
e j , u(t j )

)
, e j

〉
ds, Tj,2,2 =

∫ t j

t j−1

〈
B

(
e j , u(s) − u(t j )

)
, u(t j )

〉
ds,

Tj,2,3 =
∫ t j

t j−1

〈
B

(
e j , u(s) − u(t j )

)
, u j 〉ds.

The antisymmetry (2.1) implies

〈
B

(
e j , u(t j )

)
, e j

〉 = −〈
B

(
e j , e j

)
, u(t j )

〉 = −
3∑

k,l=1

∫
D
(e j )k∂k(e j )lu(t j )ldx .

Hence the upper estimate (2.5) with f = u(t j )l , g = (e j )k and h = ∂k(e j )l yields for
ε2, ε̄2 > 0
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∣∣〈B(
e j , u(t j )

)
, e j

〉∣∣ ≤ ε2ν
∑
k,l

‖∂k(e j )l‖2L2 +
∑
k,l

ε̄2aκ

4ε2ν
‖|u(t j )l |α(e j )k‖2L2

+ Cα

ε2ν(ε̄2aκ)
1

α−1

‖(e j )k‖2L2 ,

which implies

|Tj,2,1| ≤ ε2ν h ‖∇e j‖2L2 + ε̄2aκ

4ε2ν
h ‖|u(t j )|αe j‖2L2 + C(α, ν, a, κ)

ε2(ε̄2)
1

α−1

h ‖e j‖2L2 .

Using a similar computation based on (2.5) with f = u(t j )l , g = (e j )k and h =
∂k[u(s) − u(t j )]l for k, l = 1, 2, 3, summing on k, l and integrating on the time
interval [t j−1, t j ], we obtain for ε̃2 > 0

|Tj,2,2| ≤
∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds + ε̃2aκ

4
h ‖|u(t j )|αe j‖2L2

+ C̄(α, a, κ)

(ε̃2)
1

α−1

h ‖e j‖2L2 .

Replacing f = u(t j ) by f = u j in the above estimate, we obtain

|Tj,2,3| ≤
∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds + ε̃2aκ

4
h ‖|u j |αe j‖2L2 + C̄(α, a, κ)

(ε̃2)
1

α−1

h ‖e j‖2L2 .

The three previous inequalities imply for ε2, ε̄2, ε̃2 > 0,

|Tj,2| ≤
[C(α, ν, a, κ)

ε2(ε̄2)
1

α−1

+ 2C̄(α, a, κ)

(ε̃2)
1

α−1

]
h ‖e j‖2L2 + ε2ν h ‖∇e j‖2L2

+ ε̃2

4
aκ h ‖|u j |αe j‖2L2 +

[ ε̄2

4ε2ν
+ ε̃2

4

]
aκ h ‖|u(t j )|αe j‖2L2

+ 2
∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds. (6.5)

Using once more (2.5) with f = (u j )k , g = (e j )l and h = ∂k
([u(s) − u(t j )]l

)
for

k, l = 1, 2, 3, and summing on k, l, we obtain for ε3 > 0,

∣∣〈B(
u j , u(s) − u(t j )

)
, e j

〉∣∣ ≤ ‖∇[u(s) − u(t j )|‖2L2 + ε3aκ

4
‖|u j |αe j‖2L2

+ Cα

(ε3aκ)
1

α−1

‖e j‖2L2 .

123



Stoch PDE: Anal Comp

Integrating on [t j−1, t j ] we deduce for ε3 > 0

|Tj,3| ≤ Cαh

(ε3aκ)
1

α−1

‖e j‖2L2 + ε3aκh

4
‖|u j |αe j‖2L2 +

∫ t j

t j−1

‖∇[u(s) − u(t j )|‖2L2ds. (6.6)

The Cauchy–Schwarz and Young inequalities imply that for ε4 > 0,

|Tj,4| ≤ ε4ν h ‖∇e j‖2L2 + ν

4ε4

∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds. (6.7)

Since
∣∣| f |2α f − |g|2αg∣∣ ≤ C(α)| f − g|(| f |2α + |g|2α)

, the Hölder inequality with
exponents 2, 3 and 6 implies

∣∣(|u(s)|2αu(s) − |u(t j )|2αu(t j ), e j
)∣∣

≤ C(α)

∫
R3

[|u(s)|2α + |u(t j )|2α
]|u(s) − u(t j )||e j |dx

≤ C(α)
[‖u(s)‖2α

L4α + ‖u(t j )‖2αL4α

]‖u(s) − u(t j )‖L3‖e j‖L6 .

The Sobolev embedding H
1 ⊂ L

6 and the Gagliardo–Nirenberg inequality (2.2) yield
for ε5 > 0

|Tj,5| ≤ C(α) sup
s∈[0,T ]

‖u(s)‖2αV
∫ t j

t j−1

‖e j‖H1‖u(s) − u(t j )‖
1
2
L2‖∇[u(s) − u(t j )]‖

1
2
L2ds

≤ ε5ν h
[‖e j‖2L2 + ‖∇e j‖2L2

] + C(α)2

8ε5ν

∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds

+ C(α)2

8ε5ν
sup

s∈[0,T ]
‖u(s)‖8αV

∫ t j

t j−1

‖u(s) − u(t j )‖2L2ds, (6.8)

where the last upper estimate is deduced from the Hölder inequality with exponents
2,4 and 4 and the Young inequality.

Fix J ∈ {1, 2, . . . , N }; adding the inequalities (6.3) for j = 1, . . . , J , using the
identity e0 = 0 and the upper estimates (6.4)–(6.8) we deduce that for any positive
numbers ε j , j = 1, . . . , 5, ε̄2 and ε̃2, we have

1

2
‖eJ‖2L2 + 1

2

J∑
j=1

‖e j − e j−1‖2L2 + ν h
J∑

j=1

‖∇e j‖2L2

+ aκ h
J∑

j=1

[
‖|u(t j )|αe j‖2L2 + ‖|u j |αe j‖2L2

]
≤

J∑
j=1

7∑
l=6

Tj,l

+
[
ε1ν + 2 C̄(α, a, κ)

(ε̃2)
1

α−1

+ C(α, ν, a, κ)

ε2ν(ε̄2)
1

α−1

+ Cα

(ε3aκ)
1

α−1

+ ε5ν
]
h

J∑
j=1

‖e j‖2L2
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+
(
ε1 + ε2 + ε4 + ε5

)
ν h

J∑
j=1

‖∇e j‖2L2

+
( ε̄2

4ε2ν
+ ε̃2

4

)
aκ h

J∑
j=1

‖|u(t j )|αe j‖2L2 + ε̃2 + ε3

4
aκ h

J∑
j=1

‖|u j |αe j‖2L2

+ (C6C3)
4

64ε21ν
2

sup
s∈[0,T ]

‖u(s)‖4V
J∑

j=1

∫ t j

t j−1

‖u(s) − u(t j )‖2L2ds

+ C(α)2

8ε5ν
sup

s∈[0,T ]
‖u(s)‖8αV

J∑
j=1

∫ t j

t j−1

‖u(s) − u(t j )‖2L2ds

+
[
4 + ν

4ε4
+ C(α)2

8ε5ν

] J∑
j=1

∫ t j

t j−1

‖∇[u(s) − u(t j )|‖2L2ds. (6.9)

Choose positive ε1, ε2, ε4 and ε5 such that ε1 +ε2 +ε4 +ε5 ≤ 1
2 ; then choose positive

ε̄2, ε̃2 and ε3 such that ε̄2
4ε2ν

+ ε̃2
4 ≤ 1 and ε̃2+ε3

4 ≤ 1. We deduce the existence of
positive constants Ci , i = 1, 2, 3 depending on ν, a, κ , ε j for j = 1, ..., 5, ε̄2 and ε̃2,
such that

1

2
‖eJ‖2L2 + 1

2

J∑
j=1

‖e j − e j−1‖2L2 + ν

2
h

J∑
j=1

‖∇e j‖2L2 ≤ C1 h
J∑

j=1

‖e j‖2L2

+ C2

[
1 + sup

s∈[0,T ]
‖u(s)‖8αV

] J∑
j=1

∫ t j

t j−1

‖u(s) − u(t j )‖2L2ds

+ C3

J∑
j=1

∫ t j

t j−1

‖∇[u(s) − u(t j )‖2L2ds +
J∑

j=1

7∑
l=6

Tj,l .

Let N be large enough to ensure C1
T
N < 1

4 . Note that for non negative num-
bers {x(J ), y(J ); J = 1, . . . , N } we have 1

2

[
supJ≤N a(J ) + supJ≤N b(J )

] ≤
supJ≤N [a(J ) + b(J )]. Therefore, using this upper estimate and then taking expected
values in the above inequality, using the Cauchy–Schwarz and Hölder inequalities
with conjugate exponents p, q ∈ (1,∞), we deduce

1

8
E

(
max
J≤N

‖eJ‖2L2

)
+ 1

4

N∑
j=1

E(‖e j − e j−1‖2L2) + ν

4
h

N∑
j=1

E(‖∇e j‖2L2)

≤ C1 h
N−1∑
j=0

E(‖e j‖2L2) + E

( N∑
k=1

|Tj,6|
)

+ E

(
max
K≤N

K∑
j=1

Tj,7

)
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+ C2

{
1 + E

(
sup

s∈[0,T ]
‖u(s)‖16αV

)} 1
2
{
N h

N∑
j=1

E

∫ t j

t j−1

‖u(s) − u(t j )‖4L2ds
} 1

2

+ C3E

( N∑
j=1

∫ t j

t j−1

‖∇[u(s) − u(t j )‖2L2ds
)
. (6.10)

We next find upper estimates of the expected value of the sum of the stochastic terms
Tj,l , l = 6, 7.

For j ∈ {1, . . . , N }, the Cauchy–Schwarz and Young inequalities, the Lipschitz
condition (3.4), the Cauchy–Schwarz and Young inequalities imply for ε6 > 0

E
∣∣Tj,6

∣∣ ≤ E

(∥∥∥
∫ t j

t j−1

[
G(u(s)) − G(u j−1)

]
dW (s)

∥∥∥
L2

‖e j − e j−1‖L2

)

≤ ε6 E
(‖e j − e j−1‖2L2

)

+ 2

4ε6
E

∫ t j

t j−1

[
L‖u(s) − u(t j−1)‖2L2 + L‖e j−1‖2L2

]
TrQ ds

≤ ε6 E
(‖e j − e j−1‖2L2

) + h
L TrQ

2ε6
E(‖e j−1‖2L2)

+ L TrQ

2ε6
E

∫ t j

t j−1

‖u(s) − u(t j−1)‖2L2 ds. (6.11)

Using theDavis inequality and the Lipschitz condition (3.4), we deduce that for ε7 > 0

E

(
max
K≤N

N∑
j=1

Tj,7

)

≤ 3E
({ J∑

j=1

∫ t j

t j−1

‖G(
u(s)

) − G
(
u j−1)‖2L ‖e j−1‖2L2 TrQ ds

} 1
2
)

≤ 3 E

(
max

0≤ j≤N−1
‖e j‖L2

{ N∑
j=1

∫ t j

t j−1

‖G(
u(s)

) − G
(
u j−1)

)‖2L TrQ ds
} 1

2
)

≤ ε7 E

(
max

1≤ j≤N
‖e j‖2L2

)

+ 18 L TrQ

4ε7
E

( N∑
j=1

∫ t j

t j−1

[‖u(s) − u(t j−1)‖2L2 + ‖e j−1‖2L2

]
ds

)
, (6.12)

where in the last inequality we have used e0 = 0 and Young’s inequality.
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Choose ε6 = 1
4 and ε7 = 1

16 ; the upper estimates (6.10)–(6.12) imply

1

16
E

(
max
J≤N

‖eJ‖2L2

)
+ ν

4
h

N∑
j=1

E(‖∇e j‖2L2)

≤ (
C1 + 74 L TrQ) h

N−1∑
j=0

E(‖e j‖2L2)

+ C2T
{
1 + E

(
sup

s∈[0,T ]
‖u(s)‖16αV

)} 1
2
{ N∑

j=1

E

∫ t j

t j−1

‖u(s) − u(t j )‖4L2ds
} 1

2

+ C(T , L,TrQ)

N∑
j=1

∫ t j

t j−1

E
(‖u(s) − u(t j−1)‖2L2

)
ds

+ C3E

( N∑
j=1

∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds
)
.

Let λ ∈ (0, 1) and set δ = 1
4 (1 − λ). The moment estimates (4.8) and (4.9) imply

1

16
E

(
max
j≤N

‖e j‖2L2

)
+ ν

4
h

N∑
j=1

E(‖∇e j‖2L2) ≤ (
C1 + 74 L TrQ) h

N−1∑
j=0

E(‖e j‖2L2)

+ C(T )
{
1 + E(‖u0‖16αV )

} 1
2 hλ + C

[
1 + E

(
‖u0‖

16α+2+8δ
1+4δ

V

)]
hλ (6.13)

for some constant C := C(T , ν, α, a, p,TrQ). Note that for δ ∈ (
0, 1

32α−4

)
we have

16α+2+8δ
1+4δ ≥ 16α. Neglecting the second term in the left hand side of (6.13) and using

the discrete Gronwall lemma, we deduce that, for some positive constants C (resp.

C1) depending on T , ν, α, a,TrQ andE

(
‖u0‖

16α+2+8δ
1+4δ

V

)
(resp. depending on ν, α, a, κ)

such that

E

(
max
j≤N

‖e j‖2L2

)
≤ C hλ e16(C1+74 L TrQ)T .

Plugging this inequality in (6.13) we deduce (6.2); this completes the proof when
α ∈ (1, 3

2 ].
(ii) We next let α = 1 and assume 4νa > 1 and 4νaκ > 1; we only point out the

differences in the proof.
We have to use a different argument to obtain upper estimates of the terms

{Tj,2,i , i = 1, 2, 3} and Tj,3. The Cauchy–Schwarz and Young inequalities prove
that for ε2, ε̄2, ε̃2 > 0,

|Tj,2,1| ≤ ε2ν h ‖∇e j‖2L2 + 1

4ε2ν
h ‖|u(t j )|e j‖2L2 ,
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|Tj,2,2| ≤ ε̄2 h ‖|u(t j )|e j‖2L2 + 1

4ε̄2

∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds,

|Tj,2,3| ≤ ε̃2 h ‖|u j |e j‖2L2 + 1

4ε̃2

∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds.

This implies

|Tj,2| ≤ ε2ν h ‖∇e j‖2L2 +
( 1

4ε2ν
+ ε̄2

)
h ‖|u(t j )|e j‖2L2 + ε̃2 h ‖|u j |e j‖2L2

+
( 1

4ε̄2
+ 1

4ε̃2

) ∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds. (6.14)

Using once more the Cauchy–Schwarz and Young inequalities, we obtain for ε3 > 0

|Tj,3| ≤ ε3 h ‖|u j |e j‖2L2 + 1

4ε3

∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds. (6.15)

The upper estimates (6.4), (6.14), (6.15), (6.7) and (6.8) imply for any positive numbers
ε j , j = 1, . . . , 5, ε̄2 and ε̃2

1

2
‖eJ‖2L2 + 1

2

J∑
j=1

‖e j − e j−1‖2L2 + ν h
J∑

j=1

‖∇e j‖2L2

+ aκ h
J∑

j=1

[
‖|u(t j )|e j‖2L2 + ‖|u j |e j‖2L2

]
≤

J∑
j=1

7∑
l=6

Tj,l

+
[
ε1ν + ε5ν

]
h

J∑
j=1

‖e j‖2L2 +
(
ε1 + ε2 + ε4 + ε5

)
ν h

J∑
j=1

‖∇e j‖2L2

+
( 1

4ε2ν
+ ε̄2

)
h

J∑
j=1

‖|u(t j )|e j‖2L2 + (
ε̃2 + ε3

)
h

J∑
j=1

‖|u j |e j‖2L2

+ (C6C3)
4

64ε21ν
2

sup
s∈[0,T ]

‖u(s)‖8V
J∑

j=1

∫ t j

t j−1

‖u(s) − u(t j )‖2L2ds

+
[
1 + 1

4ε̄2
+ 1

4ε̃2
+ 1

4ε3
+ ν

4ε4
+ C(α)2

8ε5ν

] J∑
j=1

∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds.

(6.16)

Fix ε ∈ (0, 1
2 ) such that (1−2ε)24νaκ > 1, let ε2 = 1−2ε, and then choose positive

numbers ε1, ε4 and ε5 such that ε1 + ε2 + ε4 + ε5 = 1 − ε. Choose ε̄2 ∈ (0, εaκ),
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ε̃2 + ε3 ≤ aκ . The choice of ε2 and ε̄2 implies 1
4ε2ν

+ ε̄2 < aκ . Therefore,

1

2
‖eJ‖2L2 + 1

2

J∑
j=1

‖e j − e j−1‖2L2 + εν h
J∑

j=1

‖∇e j‖2L2 ≤ C1 h
J∑

j=1

‖e j‖2L2

+
J∑

j=1

7∑
l=6

Tj,l + C2 sup
s∈[0,T ]

‖u(s)‖8V
J∑

j=1

∫ t j

t j−1

‖u(s) − u(t j )‖2L2ds

+ C3

J∑
j=1

∫ t j

t j−1

‖∇[u(s) − u(t j )‖2L2ds.

As in the case α ∈ (1, 3
2 ], using (6.11) and (6.12) with ε6 = 1

4 and ε7 = 1
16 , we deduce

1

16
E

(
sup
J≤N

‖eJ‖2L2

)
+ εν

4
h

N∑
j=1

E(‖∇e j‖2L2)

≤ (
C1 + 74 L TrQ) h

N−1∑
j=0

E(‖e j‖2L2)

+ C2T
{
1 + E

(
sup

t∈[0,T ]
‖u(s)‖16V

)} 1
2
{ N∑

j=1

E

∫ t j

t j−1

‖u(s) − u(t j )‖4L2ds
} 1

2

+ C3E

( N∑
j=1

∫ t j

t j−1

‖∇[u(s) − u(t j )]‖2L2ds
)
.

We conclude the proof as in the case α ∈ (1, 3
2 ]. ��
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7 Appendix

In this section, we provide the proof of the well-posedness result stated in Sect. 3.
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7.1 Proofs of preliminary estimates

The following results gather some estimates of the bilinear term, and more generally
of the non linear part in (1.1). They are deduced from the Brinkman–Forchheimer
smoothing term. The proofs are somewhat similar to the corresponding ones in [6] in
a different functional setting.

The next lemma gathers further properties of B.

Lemma 3 Suppose that α ∈ [1,+∞).

(i) Let u ∈ L∞(0, T ; H) ∩ L2α+2([0, T ] × D; R
3), v ∈ X0. Then

∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉∣∣dt
≤ ‖∇v‖L2(0,T ;L2) ess sup

t∈[0,T ]
‖u(t)‖

α−1
α

L2 ‖u‖
α+1
α

L2α+2([0,T ]×D;R3)
T

α−1
2α . (7.1)

∫ T

0

∣∣〈B(u(t), u(t)) − B(v(t), v(t)), u(t) − v(t)〉∣∣dt ≤ ‖∇v‖L2(0,T ;H)

× ess sup
t∈[0,T ]

‖(u − v)(t)‖
α−1
α

H ‖u − v‖
α+1
α

L2α+2([0,T ]×D;R3)
T

α−1
2α . (7.2)

(ii) Let u ∈ L4(Ω; L∞(0, T ; H)) ∩ L2α+2(ΩT × D; R
3) and v ∈ X0. Then

E

∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉∣∣dt ≤
{
E

∣∣∣
∫ T

0
‖∇v(t)‖2

L2dt
∣∣∣2

} 1
4

×
{
E

(
ess sup
t∈[0,T ]

‖u(t)‖4H
)} α−1

4α
{
E

∫ T

0
dt

∫
D
|u(t, x)|2α+2dx

} 1
2α

T
α−1
2α , (7.3)

E

∫ T

0

∣∣〈B(u(t), u(t)) − B(v(t), v(t)), u(t) − v(t)〉∣∣dt

≤ T
α−1
2α

{
E

∣∣∣
∫ T

0
‖∇v(t)‖2

L2dt
∣∣∣2

} 1
4
{
E

(
ess sup
t∈[0,T ]

‖(u − v)(t)‖4H
)} α−1

4α

×
{
E

∫ T

0
dt

∫
D
|(u − v)(t, x)|2α+2dx

} 1
2α

. (7.4)

Proof (i) Suppose α > 1. Using (2.4) with h = ∂iv j , f = ui and g = u j , we deduce

|〈B(u, u), v〉| = | − 〈B(u, v), u〉| ≤
3∑

i, j=1

∫
D

|ui (x)∂iv j (x)u j (x)|dx

≤ ∥∥|u| |u| 1α ∥∥
L2α

∥∥|u|1− 1
α

∥∥
L

2α
α−1

‖∇v‖L2 .
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Integrating on the time interval [0, T ] and using the Cauchy–Schwarz inequality,
we obtain

∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉∣∣dt ≤ ess sup
t∈[0,T ]

‖u(t)‖
α−1
α

H

( ∫ T

0
‖u(t)‖

2α+2
α

L2α+2dt
) 1

2

×
( ∫ T

0
‖∇v(t)‖2

L2dt
) 1

2
.

Hölder’s inequality implies

∫ T

0
‖u(t)‖

2α+2
α

L2α+2dt ≤ ‖u‖
2α+2

α

L2α+2([0,T ]×D;R3)
T

α−1
α .

This completes the proof of (7.1) for α > 1.

If α = 1, since |〈B(u, u), v〉| ≤ ∥∥u∥∥2
L4 ‖∇v‖L2 , a straightforward computation

implies (7.1).

Since 〈B(u, u)−B(v, v) , u−v〉 = 〈B(u−v, v) , u−v〉, using the antisymmetry
(2.1) it is easy to see that the upper estimate (7.1) implies (7.2).

(ii) For α > 1 > 2
3 , we have

4α
3α−2 > 1. Using Hölder’s inequality for the expected

value with exponents 4, 4α
3α−2 and 2α in (7.1), we deduce

E

∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉∣∣dt ≤
{
E

(
‖∇v‖4L2(0,T ;L2)

)} 1
4

×
{
E

(
esssup
t∈[0,T ]

‖u(t)‖
4(α−1)
3α−2

L2

)} 3α−2
4α

×
{
E

∫ T

0
dt

∫
D

|u(t, x)|2α+2 dx
} 1

2α
T

α−1
2α .

Since α > 1
2 we have 4(α−1)

3α−2 < 4; this completes the proof of (7.3) for α > 1.
Forα = 1, using the antisymmetry (2.1), and twice theCauchy–Schwarz inequality,

we deduce

E

∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉∣∣dt ≤
{
E

∫ T

0
‖∇v(t)‖2

L2dt
} 1

2
{
E

∫ T

0
‖u(t)‖4

L4dt
} 1

2

≤
{
E

∣∣∣
∫ T

0
‖∇v(t)‖2

L2dt
∣∣∣2

} 1
4
{
E

∫ T

0
‖u(t)‖4

L4dt
} 1

2
.

This completes the proof of (7.3).
A similar argument based on the identity 〈B(u, u) − B(v, v) , u − v〉 = 〈B(u −

v, v) , u − v〉 shows (7.4). ��
We next prove upper estimates for the gradient of the bilinear term.
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Lemma 4 (i) There exists a positive constant C such that for α ∈ (1,∞), some
constant Cα > 0, any constants ε0, ε1 > 0 we have for u ∈ X1,

|〈A1/2B(u, u) , A1/2u〉| ≤ C
[
ε0‖Au‖2

L2 + ε1

4ε0

∥∥|u|α∇u
∥∥2
L2

+ Cα

ε0ε
1

α−1
1

‖∇u‖2
L2

]
. (7.5)

(ii) Let α = 1; for every ε > 0, we have for some constant C > 0 and any u ∈ X1

|〈A1/2B(u, u) , A1/2u〉| ≤ ε‖Au‖2
L2 + 1

4ε

∥∥|u|∇u
∥∥2
L2 . (7.6)

Proof (i) Let α > 1 and u ∈ X1. Then

〈A1/2B(u, u) , A1/2u〉 =
3∑

i, j,k=1

∫
D

∂k
[
ui ∂i u j

]
∂ku j dx = T1 + T2,

where, using the antisymmetry property (2.1), we get

T1 =
3∑

i, j,k=1

∫
D

∂kui ∂i u j ∂ku j dx,

T2 =
3∑

i, j,k=1

∫
D
ui ∂k∂i u j ∂ku j dx =

3∑
k=1

〈B(u, ∂ku) , ∂ku〉 = 0.

Using integration by parts, we deduce T1 = T1,1 + T1,2, where since div u = 0

T1,1 = −
3∑

j,k=1

∫
D

∂k

( 3∑
i=1

∂i ui
)
u j ∂ku j dx = 0,

T1,2 = −
3∑

i, j,k=1

∫
D

∂kui u j ∂i∂ku j dx .

The inequality (2.5) applied with f = u j , g = ∂kui and h = ∂i∂ku j implies

|T1,2| ≤
3∑

i, j,k=1

ε0‖∂i∂ku j‖2L2 +
3∑

i, j,k=1

ε1

4ε0

∥∥|u j |α∂kui‖2L2

+
3∑

i, j,k=1

Cα

ε0ε
1

α−1
1

‖∂kui‖2L2 .

This completes the proof of (7.5).
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(ii) Let α = 1 and u ∈ X1. Then an integration by parts implies

〈A1/2B(u, u) , A1/2u〉 =
3∑

i, j,k=1

∫
D

∂k
[
ui ∂i u j

]
∂ku j dx

= −
3∑

i, j=1

∫
D
ui ∂i u j Δu j dx .

The Cauchy–Schwarz and Young inequalities imply (7.6).
��

For ϕ ∈ X0, set

F(ϕ) = −νAϕ − B(ϕ, ϕ) − aΠ |ϕ|2αϕ. (7.7)

Lemma 2.2 page 415 in [2] provides upper and lower bounds of the non linear
Brinkman–Forchheimer term. Let α ∈ [1,∞); there exist positive constants C and κ

such that for u, v ∈ R
3

∣∣|u|2αu − |v|2αv
∣∣ ≤ C |u − v| (|u|2α + |v|2α)

, (7.8)(|u|2αu − |v|2αv
) · (u − v) ≥ κ|u − v|2(|u| + |v|)2α. (7.9)

The following lemma gives upper bounds of F for any α ∈ [1,∞).

Lemma 5 Let α ∈ [1,+∞).

(i) Let u ∈ X0, v ∈ L2(0, T ; V ) ∩ L2α+2([0, T ] × D; R
3). Then

∫ T

0
|〈F(u(t)), v(t)〉|dt ≤ C

[‖v‖L2(0,T ;V )‖u‖L2(0,T ;V )

+ ‖v‖L2α+2([0,T ]×D;R3)‖u‖2α+1
L2α+2([0,T ]×D;R3)

+ ‖v‖L2(0,T ;V ) esssup
t∈[0,T ]

‖u(t)‖
α−1
α

H ‖u‖
α+1
α

L2α+2([0,T ]×D;R3)
T

α−1
2α

]
(7.10)

for some positive constant C.
(ii) Let u ∈ X0, v ∈ L4(Ω; L2(0, T ; V )) ∩ L2α+2(ΩT × D; R

3). Then

E

∫ T

0
|〈F(u(t)), v(t)〉|dt ≤ C

[
‖v‖L2(ΩT ;V )‖u‖L2(ΩT ;V )

+ ‖v‖L2α+2(ΩT ×D;R3)‖u‖2α+1
L2α+2(ΩT ×D;R3)

+ ‖v‖L4(Ω;L2(0,T ;V ))

{
E

(
ess sup
t∈[0,T ]

‖u(t)‖4H
)} α−1

α ‖u‖
α+1
α

L2α+2(ΩT ×D;R3)
T

α−1
2α

]

(7.11)

for some positive constant C.
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Proof Integration by parts and the Cauchy–Schwarz inequality imply

ν

∫ T

0
|〈Au(t) , v(t)〉|dt =

∫ T

0

∣∣∣ − ν

∫
D
A

1
2 u(t, x)A

1
2 v((t, x)dx

∣∣∣dt
≤ ν‖u‖L2(0,T ;V )‖v‖L2(0,T ;V ).

Furthermore, Hölder’s inequality with conjugate exponents 2α+2 and 2α+2
2α+1 yields

∫ T

0

∣∣∣
∫
D

|u(t, x)|2αu(t, x)v(t, x)dx
∣∣∣dt ≤ ∥∥|u|2αu‖

L
2α+2
2α+1 ([0,T ]×D;R3)

× ‖v‖L2α+2([0,T ]×D;R3).

Using the above upper estimateswith the inequality (7.1) concludes the proof of (7.10).
(ii) The upper estimate (7.11) is a straightforward consequence of the upper esti-

mates (7.3), (7.10), the Cauchy–Schwarz and Hölder inequalities. ��
The next lemma provides estimates of the gradient of F(u) for α ∈ [1,+∞).

Note that when α = 1, this requires that the coefficient a in front of the Brinkman–
Forchheimer smoothing term is “not too smal” compared to the viscosity ν.

Lemma 6 (i) Let α > 1. For η ∈ (0, ν), ã ∈ (0, a), there exists a positive constant
C := C(α, η, ã) such that for u ∈ X1 and t ∈ [0, T ],

∫ t

0
〈A1/2F(u(s)), A1/2u(s)〉ds

≤ −η

∫ t

0
‖Au(s)‖2

L2ds − ã
∫ t

0

∥∥|u(s)|α∇u(s)
∥∥2
L2ds + C

∫ t

0
‖∇u(s)‖2

L2ds.

(7.12)

(ii) Let α = 1 and suppose 4νa > 1. Then for η ∈ (
0, ν − 1

4a

)
and ã = a − 1

4(ν−η)
we have

∫ t

0
〈A1/2F(u(s)), A1/2u(s)〉ds ≤ −η

∫ t

0
‖Au(s)‖2

L2ds

−ã
∫ t

0

∥∥|u(s)|α∇u(s)
∥∥2
L2ds. (7.13)

Proof (i) Let α ∈ (1,∞). For u ∈ X1, integration by parts implies for a.e. s ∈ [0, t],

ν〈A 1
2 Δu(s), A

1
2 u(s)〉 = −ν‖Au(s)‖2

L2 .

Furthermore,

∫
D

∇(|u(s)|2αu(s)
) · ∇u(s)dx
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=
∫
D

[|u(s)|2α∇u(s) · ∇u(s) + 2α|u(s)|2(α−1)(u(s) · ∇u(s)
)2]

dx

≥
∫
D

|u(s)|2α∇u(s) · ∇u(s)dx = ∥∥|u(s)|α∇u(s)
∥∥2
L2 . (7.14)

Hence, using (7.5) with C ε0 ∈ (0, ν − η), then ε1 such that C ε1
4ε0

∈ (0, a − ã),
we deduce that for a.e. s ∈ [0, T ],

〈A1/2F(u(s)), A1/2u(s)〉 ≤ −η‖Au(s)‖2
L2 − ã

∥∥|u(s)|α∇u(t)‖2
L2

+ C(α, η, ã)‖∇u(s)‖2
L2 . (7.15)

Integrating this inequality on the time interval [0, t] concludes the proof of (7.12).
(ii) Let α = 1. Then using (7.6) and (7.14), we deduce for ε > 0 and s ∈ [0, T ]

〈A1/2F(u(s)), A1/2u(s)〉 ≤ −(ν − ε)‖Au(s)‖2
L2 + 1

4ε
‖|u(s)|∇u(s)‖2

L2

− a‖|u(s)|∇u(s)‖2
L2 .

Since 4aν > 1, for η ∈ (
0, ν − 1

4a

)
, ε = ν − η and ã = a − 1

4(ν−η)
we deduce

〈A1/2F(u(s)), A1/2u(s)〉 ≤ −η‖Au(s)‖2
L2 − ã

∥∥|u(s)|α∇u(s)‖2
L2 . (7.16)

Integrating on the time interval [0, t], we deduce (7.13).
��

We finally prove upper estimates of increments F(u) − F(v) for α ∈ [1,∞).

Lemma 7 There exists a positive constant κ depending on α ∈ [1,+∞), and for
η ∈ (0, ν) a positive constant C̄(η), such that for u, v ∈ V ∩ L2α+2(D; R

3),

〈F(u) − F(v), u − v〉 ≤ −η‖∇(u − v)‖2
L2 − aκ

∥∥(|u| + |v|)α(u − v)
∥∥2
L2

+ C̄(η)‖∇v‖4
L2‖u − v‖2

L2 . (7.17)

Proof Using integration by parts, we obtain

ν〈Δ(u − v), u − v〉 = −ν‖∇(u − v)‖2
L2 .

The monotonicity property (7.9) implies

a
∫
D

(|u(x)|2αu(x) − |v(x)|2αv(x)
) · (

u(x) − v(x)
)
dx

≥ aκ
∥∥(|u| + |v])α(u − v)

∥∥2
L2 . (7.18)
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Finally, Hölder’s inequality and the Gagliardo–Nirenberg inequality (2.2) for the L
4

norm imply

|〈B(u, u) − B(v, v), u − v〉| = |〈B(u − v, v), u − v〉|
≤ ‖u − v‖2

L4‖∇v‖
L2 ≤ C̄2

4‖u − v‖
1
2
L2‖∇(u − v)‖

3
2
L2‖∇v‖

L2

≤ 3

4
ε
4
3 ‖∇(u − v)‖2

L2 + 1

4

1

ε4
C̄8
4‖∇v‖4

L2‖u − v‖2
L2 ,

where the last inequality holds for any ε > 0 by Young’s inequality. Choosing 3
4ε

4
3 ∈

(0, ν − η), we conclude the proof of (7.17). ��
We next prove that (1.1) has a unique strong solution in X1. The outline is quite

classical, based on some Galerkin approximation and a priori estimates.

7.2 Galerkin approximation and a priori estimates

Recall that D is periodic domain of R
3. Let (en, n ≥ 1) be the orthonormal basis of H

defined in Sect. 3.1 (that is made of functions in H which are also orthogonal in V ).
For every integer n ≥ 1 we set Kn := span(ζ1, . . . , ζn) where {ζ j } j≥1 is an ONB of
K mode of eigenfunctions of Q. LetΠn denote the projection from K onto Q1/2(Kn),
and let Wn(t) = ∑n

j=1
√
q jζ jβ j (t) = ΠnW (t).

Recall that if Hn = span(e1, . . . , en), the orthogonal projection Pn of H onto Hn

restricted to V coincides with the orthogonal projection of V onto Hn .
Fix n ≥ 1 and consider the following stochastic ordinary differential equation on

the n-dimensional spaceHn defined by un(0) = Pnu0, and for t ∈ [0, T ] and v ∈ Hn :

d(un(t), v) = 〈
PnF(un(t)), v

〉
dt + (Pn G(un(t))Πn dW (t), v), P a.s., (7.19)

where F is defined in (7.7). Then for k = 1, . . . , n we have for t ∈ [0, T ]:

d(un(t), ek) = 〈
PnF(un(t)), ek

〉
dt +

n∑
j=1

q
1
2
j

(
Pn G(un(t))ζ j , ek

)
dβ j (t), P a.s.

Note that for v ∈ Hn the map u ∈ Hn �→ 〈F(u) , v〉 is locally Lipschitz. Indeed,
H

2 ⊂ L
2α+2 and there exists some constant C(n) such that ‖v‖H2 ≤ C(n)‖v‖L2 for

v ∈ Hn . Let ϕ,ψ, v ∈ Hn ; integration by parts implies that

|〈Δϕ − Δψ, v〉| ≤ ‖ϕ − ψ‖V ‖v‖V ≤ C(n)2‖ϕ − ψ‖L2 ‖v‖L2 .

In the polynomial nonlinear term, the upper estimate (7.8), the Hölder inequality with
exponents α+1

α
, 2α + 2, and 2α + 2, and the Sobolev embedding H

2 ⊂ L
2α+2 imply

∣∣∣
∫
D

(|ϕ(x)|2αϕ(x) − |ψ(x)|2αψ(x)
)
v(x)dx

∣∣∣
≤ C

(‖ϕ‖2α
L2α+2 + ‖ψ‖2α

L2α+2

) ‖ϕ − ψ‖L2α+2 ‖v‖L2α+2

123



Stoch PDE: Anal Comp

≤ C C(n)2(α+1)(‖ϕ‖2α
L2 + ‖ψ‖2α

L2

) ‖ϕ − ψ‖L2 ‖v‖L2 .

Finally, using integration by parts, the Hölder and Gagliardo–Nirenberg inequalities,
we deduce:

|〈B(ϕ, ϕ) − B(ψ,ψ), v〉| = ∣∣ − 〈B(ϕ − ψ, v) , ϕ〉 − 〈B(ψ, v) , ϕ − ψ〉∣∣
≤ C ‖ϕ − ψ‖L4

(‖ϕ‖L4 + ‖ψ‖L4
)‖∇v‖L2

≤ CC(n)3‖ϕ − ψ‖L2
(‖ϕ‖L2 + ‖ψ‖L2

)‖v‖L2 .

Condition (G) implies that the map u ∈ Hn �→ (√
q j

(
G(u)ζ j , ek

) : 1 ≤ j, k ≤ n
)

satisfies the classical global linear growth and Lipschitz conditions fromHn to n × n
matrices uniformly in t ∈ [0, T ]. Hence by a well-known result about existence and
uniqueness of solutions to stochastic differential equations (see e.g. [24]), there exists
a maximal solution un = ∑n

k=1(un , ek
)
ek ∈ Hn to (7.19), i.e., a stopping time

τ ∗
n ≤ T such that (7.19) holds for t < τ ∗

n and if τ ∗
n < T , ‖un(t)‖L2 → ∞ as t ↑ τ ∗

n .
The following proposition shows that τ ∗

n = T a.s., and provides a priori estimates
on norms of un , which do not depend on n.

Proposition 7 Let α ∈ [1,∞), and if α = 1, suppose that 4νa > 1.

(i) Let u0 be F0-measurable such that E
(‖u0‖2H

)
< ∞, T > 0 and G satisfy (3.2)

and (3.4). Then the evolution equation (7.19) with initial condition Pnu0 has a
unique global solution on [0, T ] (i.e., τ ∗

n = T a.s.) with a modification un ∈
C([0, T ];Hn). Furthermore, if E

(‖u0‖2pH
)

< ∞ for some p ∈ [1,∞), we have
un ∈ X0 and

sup
n

E

(
sup

t∈[0,T ]
‖un(t)‖2pH +

∫ T

0

[‖un(t)‖2V + ‖un(t)‖2α+2
L2α+2

]‖un(t)‖2p−2
H dt

)

≤ C
[
1 + E(‖u0‖2pH )

]
. (7.20)

(ii) If E(‖u0‖2pV ) < ∞ for some p ∈ [1,∞) and G satisfies also (3.3), we have
furthermore

sup
n

E

(
sup

t∈[0,T ]
‖un(t)‖2pV

+
∫ T

0

[‖Aun(t)‖2L2 + ‖|un(t)|α∇un(t)‖2L2

]‖un(t)‖2p−2
V dt

)

≤ C
[
1 + E(‖u0‖2pV )

]
. (7.21)

Proof (i) For fixed N > 0 set τN := inf{t ≥ 0 : ‖un(t)‖H ≥ N } ∧ τ ∗
n . Itô’s formula

and the antisymmetry property of B imply
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‖un(t ∧ τN )‖2H = ‖Pnu0‖2H − 2
∫ t∧τN

0

[
ν‖∇un(s)‖2L2 + a‖un(s)‖2α+2

L2α+2

]
ds

+
2∑

i=1

Ti (t), (7.22)

where

T1(t) = 2
∫ t∧τn

0

(
G(un(s)) dWn(s) , un(s)

)
,

T2(t) =
∫ t∧τn

0
‖PnG(un(s))Πn‖2L ds.

Apply once more the Itô formula to z �→ z p and z = ‖un(t ∧ τN )‖2H for p ∈ [2,∞).
We obtain

‖un(t ∧ τN )‖2pH = ‖Pnu0‖2pH +
3∑

i=1

T̄i (t)

− 2p
∫ t∧τN

0

[
ν‖∇un(s)‖2L2 + a‖un(s)‖2α+2

L2α+2

]‖un(s)‖2p−2
H ds,

(7.23)

where

T̄1(t) = 2p
∫ t∧τN

0

(
PnG(un(s)) dWn(s) , un(s)

) ‖un(s)‖2p−2
H ,

T̄2(t) = p
∫ t∧τN

0
‖PnG(un(s))Πn‖2L ‖un(s)‖2p−2

H ds,

T̄3(t) = 2p(p − 1)
∫ t∧τN

0
‖(G(un(s))Πn

)∗
un(s)

∥∥2
K ‖un(s)‖2p−4

H ds.

The growth condition (3.2) implies

T̄2(t) + T̄3(t) ≤ p(2p − 1)
∫ t

0
[K0 + K1‖un(s ∧ τN )‖2H ] ‖un(s ∧ τN )‖2p−2

H TrQ ds.

Using the Davis inequality, the growth condition (3.2) and Young’s inequality, we
deduce for β ∈ (0, 1),

E

(
sup

s≤t∧τn

T̄1(s)
)

≤ 6p E

({ ∫ t∧τN

0
‖G(un(s))‖2L ‖un(s)‖4p−2

H TrQ ds
} 1

2
)

≤ β E

(
sup
s≤t

‖un(s ∧ τN )‖2pH
)

+9p2

β
E

∫ t

0

[
K0 + K1‖un(s ∧ τN )‖2H

]‖un(s ∧ τN )‖2p−2
H TrQ ds.
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Neglecting the first integral in the right hand side of (7.23), using the above upper
estimates of T̄i and the Gronwall lemma, we deduce that for β ∈ (0, 1),

sup
n≥1

E

(
sup
s≤T

‖un(s ∧ τN )‖2pH
)

≤ C(β, p, K0, K1,TrQ)
[
1 + E(‖u0‖2pH

]
. (7.24)

As N → ∞, the sequence of stopping times τN increases to τ ∗
n and on the set {τ ∗

n < T },
we have sups∈[0,τN ] ‖un(s)‖H → ∞. Hence (7.24) implies P(τ ∗

n < T ) = 0 and for
almost every ω, for N (ω) large enough we have τN (ω)(ω) = T . Plugging the upper
estimate (7.24) in (7.23), we conclude the proof of (7.20).

Note that the above argument based on (7.22) instead of (7.23) proves that if
E(‖u0‖2H ) < ∞ we have once more τN (ω)(ω) = T for N (ω) large enough and
a.e. ω, and that (7.20) holds for p = 1.

We next prove that un ∈ X0. Plugging the above upper estimate for p = 1 in (7.22),
taking expected values and using Condition (3.2), we obtain

E

∫ T

0

[‖un(s)‖2V + ‖un(s)‖2α+2
L2α+2

]
ds < ∞.

A similar argument using (7.24) in (7.23) completes the proof of (7.20) when the
H -norm of the initial condition has 2p moments.

(ii) Taking the gradient of both hand sides of (7.19), using the Itô formula and (3.1),
we deduce for τ̃N := inf{s ≥ 0 : ‖un(s)‖V ≥ N } ∧ T ,

‖A 1
2 un(t ∧ τ̃N )‖2

L2 = ‖A 1
2 Pnu0‖2L2 + 2

∫ t∧τ̃N

0
〈A 1

2 PnF(un(s)), A
1
2 un(s)〉 ds

+ 2
∫ t∧τ̃N

0

(
A

1
2 PnG(un(s))dWn(s), A

1
2 un(s)

)

+
∫ t∧τ̃N

0
‖A 1

2 PnG(un(s))Πn‖2L ds

= ‖A 1
2 Pnu0‖2L2 + 2

∫ t∧τ̃N

0
〈A 1

2 F(un(s)), A
1
2 un(s)〉 ds

+ 2
∫ t∧τ̃N

0

(
A

1
2G(un(s))ΠndW (s), A

1
2 un(s)

)

+
∫ t∧τ̃N

0
‖A 1

2 PnG(un(s))Πn‖2L ds.

Indeed, since un(s) ∈ V for s ≤ t ∧ τ̃N , we deduce A
1
2 un(s) ∈ H and A

1
2G(un(s)) ∈

L(K , H).
Using oncemore the Itô formula for the function z �→ z p for p ∈ [2,∞), we obtain

‖A 1
2 un(t ∧ τ̃N )‖2p

L2 ≤ ‖A 1
2 u0‖2p

L2 +
3∑

i=1

T̃i (t)
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+ 2
∫ t∧τ̃N

0
〈A 1

2 ∇F(un(s)), A
1
2 un(s)〉 ‖A 1

2 un(s)‖2(p−1)
L2 ds,

(7.25)

where

T̃1(t) = 2p
∫ t∧τ̃N

0

(
A

1
2G(un(s))dWn(s) , A

1
2 un(s)

) ‖A 1
2 un(s)‖2(p−1)

L2 ds,

T̃2(t) = p
∫ t∧τ̃N

0
‖G(un(s))Πn‖2L̃ ‖A 1

2 un(s)‖2(p−1)
L2 ds,

T̃3(t) = 2p(p − 1)
∫ t∧τ̃N

0
‖(A 1

2G(un(s))Πn
)∗
A

1
2 un(s)‖2K ‖A 1

2 un(s)‖2(p−2)
L2 ds.

Since

‖(A 1
2G(un(s))Πn

)∗‖L(H ;K ) ≤ ‖A 1
2G(un(s))‖L(K ;H) ≤ ‖G(un(s))‖L(K ;V ),

the growth condition (3.3) and Young’s inequality imply

T̃2(t) + T̃3(t) ≤ C(p, T ,TrQ, K̃0, K̃1)
[
1 +

∫ t∧τ̃N

0

(‖un(s)‖2pH + ‖∇un(s)‖2p
L2

)
ds

]
.

The growth condition (3.3), the Gundy and Young inequalities imply that for β̃ ∈
(0, 1),

E

(
sup
s≤t

T̃1(s)
)

≤ C(p)E
({∫ t∧τ̃N

0

[
K̃0 + K̃1‖un(s)‖2V

]‖∇un(s)‖4p−2
L2 TrQds

} 1
2
)

≤ β̃E

(
sup
s≤t

‖un(s ∧ τ̃N )‖2p
L2

)
+ β̃E

(
sup
s≤t

‖∇un(s ∧ τ̃N )‖2p
L2

)

+ C(β̃,TrQ, K̃0, K̃1)
[
1 + E

( ∫ t

0
‖∇un(s ∧ τ̃N )‖2p

L2ds
)]

.

Let ρ ∈ (0, ν) and ã ∈ (0, a). Using (7.12) for α > 1 and (7.13) for α = 1, (7.20)
and the Gronwall lemma, we deduce

E

(
sup
s≤τ̃N

‖un(s)‖2pV
)

≤ C
[
1 + E(‖u0‖2pV )

]

for some positive constant C which does not depend on N and n. For fixed n,
letting N → ∞ and using the monotone convergence theorem we deduce un ∈
L2p(Ω; L∞(0, T ; V )). Plugging this in (7.25) and taking expected values, we con-
clude the proof of (7.21). ��
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7.3 Proof of global well-posedness of the solution

The proof of Theorem 2 is classical and uses the upper estimates (7.2) and (7.4) for
the uniqueness; see e.g. [6] for details.
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