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A B S T R A C T   

A Synchrotron-based Machine learning Approach for RasTer (SMART) mineral mapping was developed for the 
purpose of training a mineral classifier for characterization of millimeter-sized areas of rock thin sections with 
micron-scale resolution. An Artificial Neural Network (ANN) was used to extract relationships between coupled 
micro x-ray fluorescence (μXRF) data for element abundances and micro x-ray diffraction (μXRD) data for 
mineral identity. Once trained, the resulting classifier, i.e., the SMART mineral mapper, can identify minerals 
using only μXRF data. This is the real value of this machine learning approach because μXRF data are relatively 
fast to collect and interpret whereas μXRD data take longer to collect and interpret. Training and testing of an 
initial mapper were done with 192 coupled μXRF-μXRD data points sampled from a 0.25 mm2 area of a shale 
from the Eagle Ford formation, which was scanned with 2 μm resolution. All data used in this work were ob
tained from the Advanced Photon Source synchrotron beamline 13-ID-E at Argonne National Laboratory. Three 
minerals were mapped in the Eagle Ford rock sample, for which there were 8 elements characterized. In the 
testing phase, the minerals were correctly classified with accuracy of 97 % and higher. The trained SMART 
mapper was applied for self-similar upscaling by mapping a 14 mm2 scan of the Eagle Ford sample. Generated 
maps captured micro-scale features characteristic of the stratified texture of the rock, and the identified minerals 
agreed well with bulk XRD analysis of the powdered rock. The SMART mapper was also applied to a scan of a 6- 
mineral mixture of known composition to demonstrate ability to distinguish minerals of similar chemistry. The 
trained SMART mapper is transferable to scans from other x-ray microprobes because of the μXRF data 
normalization that accounts for sample- and beamline-specific properties like thickness, detector configuration, 
and incident energy.   

1. Introduction 

Characterizations of mineral spatial distributions in highly hetero
geneous rocks, sediments and synthetic materials are important in the 
fields of geosciences and environmental science and engineering. The 
ability to resolve spatial patterns of minerals at various scales is critical 
for characterizing properties such as porosity, permeability, texture, and 
fractures (Bensinger and Bekingham, 2020; Deng et al., 2015; Deng and 
Peters, 2019; Ellis et al., 2013; Ellis and Peters, 2016; Fitts and Peters, 
2013; Glassley et al., 2002; Soulaine et al., 2016). More specifically in 
natural rocks and sediments, spatial knowledge of minerals is important 

for determining accessible mineral surface areas for mineral dissolution, 
and weathering reaction rate calculations (Beckingham et al., 2016; 
2017; Deng et al., 2020; Li et al., 2017; Ma et al., 2019; Peters, 2009; Qin 
and Beckingham, 2019; Zhang et al., 2017), fluid adhesion on mineral 
surfaces (Wang et al., 2013), radionuclide or toxic metal (loid) mobili
zation (Ehlert et al., 2018; Kreisserman and Emmanuel, 2018; Robinet 
et al., 2012), and organic carbon cycles in soils (Basile-Doelsch et al., 
2005). Furthermore, geomechanical and mechanical properties like 
unconfined compressive strength, or frictional strength of geologic for
mations, fractures or synthetic materials such as cements have also been 
found to be strongly dependent on mineral composition and 
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distributions (Bourg, 2015; Fang et al., 2018; Gaboreau et al., 2017; 
Spokas et al., 2019). 

Recent research has advanced benchtop and laboratory-based 
equipment and techniques in which elements and phases can be 
distinguished, quantified and spatially mapped. Such analytical and 
imaging techniques include optical microscopy imaging, electron probe 
microanalyzer (EPMA), x-ray computed tomography (xCT), scanning 
electron microscopy (SEM), backscattered electron (BSE) imaging, en
ergy dispersive x-ray spectroscopy (EDS), laser-induced breakdown 
spectroscopy (LIBS), and micro energy dispersive x-ray fluorescence 
spectrometry (μ-EDXRF). Furthermore, researchers have developed 
novel ways of coupling these techniques to yield comprehensive, multi- 
modal-based information about the minerals present and their spatial 
distributions within geologic samples (Deng et al., 2016; Ellis and Pe
ters, 2016; Golab et al., 2013; Guntoro et al., 2019a, 2019b; Jen
nings-Gray et al., 2020; Maitre et al., 2019; Nikonow and Rammlmair, 
2017; Nikonow et al., 2019; Pirrie et al., 2004; Pret et al., 2010; Rahman 
et al., 2016; Sutherland and Gottlieb, 1991; Tsuji et al., 2010). Also 
worth mentioning are commercially available software tools for auto
mated mineral mapping. These include but are not limited to Zeiss 
Mineralogic, FEI MAPS Mineralogy or QEMSCAN, TESCAN TIMA or 
JKMRC/FEI Mineral Liberation Analyser (Gu, 2003), which are based on 
SEM-EDS data, as well as Bruker M4 Tornado AMICS, which is based on 
micro-XRF data. Readers should refer to Table S1 for detailed de
scriptions of these methods and how the underlying physics have been 
exploited for spatial mapping and identification of minerals. While these 
advancements have been demonstrated to be effective, the approaches 
rely heavily on inferred stoichiometry to interpret mineral phases and 
not on crystallographic measurements. The missing crystalline infor
mation may result in indistinguishable minerals of similar chemistry, or 
misidentification of solid solutions. Benchtop or conventional electron- 
and x-ray-based methods also fall short on resolution and sensitivity 
when compared to higher energy techniques such as synchrotron 
beamlines. 

Over the past decade, synchrotron facilities and their beamlines have 
made available coupled configurations of micro x-ray diffraction (μXRD) 
and micro x-ray fluorescence (μXRF), allowing for two-dimensional 
mapping of element and mineral composition at micrometer spatial 
resolutions. X-ray microprobes that house both μXRF and μXRD de
tectors with high count rates, short acquisition times, and rastering 
stages allow for opportunities to perform microscale spatial character
izations of geologic and synthetic materials (Lanzirotti et al., 2016). 
Unique identification of mineral phases, polymorphs, or solid solutions 
is best provided by XRD, a method that analyzes the diffraction patterns 
generated as x-rays interact with crystal planes. Identification and 
quantification of elements that make up a mineral phase is accomplished 
with XRF, a method that measures the energy of fluoresced character
istic x-rays generated from the momentary displacement of electrons. 
Together, the two techniques provide the unique chemical composition 
of an identified mineral phase. Beamlines that provide these capabilities 
include beamline 13-ID-E at Advanced Photon Source, beamline 4-BM at 
National Synchrotron Light Source II, beamline 07B2-1 at Canadian 
Light Source, beamline ID18F at the European Synchrotron Radiation 
Facility, and XFM beamline at the Australian Synchrotron. Many of these 
beamlines offer additional x-ray techniques, such as x-ray absorption 
fine structure (XAFS) and x-ray computed tomography (xCT). Access to 
these synchrotron facilities have opened new avenues for researchers to 
probe samples at high energies and resolutions, supplementing data that 
can be gathered from benchtop equipment such as μ-EDXRF (Nikonow 
and Rammlmair, 2017) or XRD which are still widely utilized for its 
accessibility, non-destructiveness of the sample preparation, and rela
tively faster collection and analysis of data. 

Even with the latest advancements in coupled synchrotron tech
niques for micro-scale characterization, there is not yet a method of 
automated mineral mapping at spatial scales that are relevant in 
geological, environmental and earth sciences. Here, we present a new 

approach of 2D mineral characterization called the Synchrotron-based 
Machine learning Approach for RasTer (SMART) mineral mapping. The 
SMART mineral mapper uses machine learning in the form of an Arti
ficial Neural Network (ANN) to build a classifier trained on coupled 
μXRF elemental intensities and μXRD mineral data. Applications of the 
trained SMART mineral mapper would require only μXRF to generate 
mineral maps. As such, SMART mapper addresses the fundamental 
problem of being limited by the time-consuming nature of XRD data 
acquisition and analysis for 2D characterizations of millimeter areas at 
micrometer resolutions. 

To demonstrate this new machine learning approach, an initial 
classifier was developed from analysis of a sample of Eagle Ford shale 
rock from Texas. The μXRF and μXRD data were obtained at the 
Advanced Photon Source (APS) of Argonne National Laboratory, 
beamline 13-ID-E, which houses a hard x-ray microprobe (Lanzirotti 
et al., 2016; Sutton et al., 2017), and a training dataset was constructed 
from a small raster scan obtained at this beamline. Performance was 
assessed by applying the trained ANN on a reserved sample of the 
coupled μXRF and μXRD data which had not been included in the 
training data. The trained ANN was then applied to a larger scan of the 
same sample, i.e., self-similar upscaling. Validation was conducted by 
comparing the minerals identified and mapped using the SMART 
method to bulk powder XRD (PXRD) analysis of the Eagle Ford shale. To 
demonstrate the SMART method on another sample, it was applied to a 
known mixture formulated from six mineral standards. The mixture 
included minerals of similar and overlapping chemistries, which pre
sented challenges for differentiating similar minerals and polymorphs, 
and testing the limits of a hard x-ray microprobe. Finally, to maximize 
potential for transferability of the trained SMART mineral mapper to 
other samples and other synchrotron data, we also addressed normali
zation of the input XRF intensity measurements. Potential for expansion 
and limitations of the methodology are also discussed. 

2. The challenge of μXRD for mineral mapping and introduction 
to the SMART approach 

Coupled μXRF-μXRD techniques are critical tools in element and 
mineral identification. Yet, the time-consuming nature of diffraction 
data acquisition and pattern analyses hinders the use of μXRD for spatial 
characterization of large mm-scale areas. For example, for a small, 
pixelated map of 0.25 mm2 generated with a dwell time of 100 ms and 
spatial resolution of 2 μm per pixel, it would take approximately 2 h to 
collect the data, and as many as 10,417 h for a pixel-by-pixel analysis of 
the individual XRD patterns, given the total number of pixels at 62500 (i. 
e. more than one year for less than 1 square mm). This approximation 
assumes that analysis for a single pattern takes 10 min, which may even 
be an underestimation for uncharacterized samples. Such time scales are 
impractical and with significant human judgment required for matching 
of peaks to a reference database, this process is not amenable to full 
automation. 

In light of the time constraints of relying on XRD for spatially- 
resolved mapping, the novel SMART mineral mapping method was 
developed. This approach utilizes machine learning to build a mineral 
classifier trained on hard x-ray synchrotron μXRF and μXRD data. The 
μXRF intensity data serves as the input, and the corresponding processed 
μXRD data serves as the coupled output. The principle behind this is that 
information about mineral phases is embedded in XRF data because 
intensities of fluoresced x-rays are sensitive to concentrations of indi
vidual elements as well as to densities of the mineral phase that is pre
sent. This is an important point, as this is not just a statistical application 
of machine learning; it is one based on physics. A schematic of the 
overall approach of data acquisition and interpretation for generating a 
training dataset is shown in Fig. 1. 

For a single pixel, the left box in Fig. 1 summarizes the μXRD data 
flow where the result is a binary measure of presence or absence of each 
mineral. This approach allows for multiple minerals per pixel, which can 
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happen if the spatial resolution is coarser than the grain size. The right 
box in Fig. 1 summarizes the XRF data flow, summarizing extraction of 
intensities of eight elements selected, S, K, Ca, Ti, Mn, Fe, As, and Sr, 
which are constituent elements making up many common minerals. 
Other elements, such as Mg or Na, are not included as these are not 
detectable using a hard x-ray microprobe. The XRF data flow results in 
an array of normalized intensities for each element which is propor
tional to the concentration of the element in the sample. The 

normalization step is important because the ultimate goal is to have a 
SMART mineral mapper that can be applied to new μXRF scans, 
collected on different geological samples, at different synchrotron x-ray 
microprobes, by different researchers. To achieve this transferability, 
the data must be normalized to sample and beamline factors that are not 
related to mineral features. This is further addressed in Section 3.3. 

Once the coupled training data are collected, training of the SMART 
mapper is done using an ANN, which is a type of supervised machine 

Fig. 1. The methodology for acquisition of data for training of the classifier in the SMART mineral mapping approach.  
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learning that learns from a coupled dataset of inputs and known outputs 
and builds a mathematical model by extracting relationships from the 
data (Haykin, 2009). Using a trained SMART mineral mapper would 
effectively minimize the manual work of numerous XRD pattern ana
lyses for every pixel in the sample scan. This is clearly advantageous 
because μXRF data are relatively fast to collect and interpret. The ANN 
depicted in Fig. 2 shows a simplified graphical representation of a 
feed-forward neural network with one hidden layer. Details about the 
functions and architecture of the neural network used in this work are 
presented in Section 4.1, and a summary of the overall workflow of the 
SMART mapping approach can be found in the supplementary material. 

3. Materials and data 

3.1. Samples 

The Eagle Ford shale is a sedimentary rock formation covering much 
of Texas and the sample originates from an oil rich region in western 
Texas. Specimens were purchased from Kokurec Industries and the rock 
sample studied exhibited unique banded calcite mineralogy as well as 
nodular grains of small pyrite and large calcite grains throughout the 
matrix. Published mineralogical characterizations of Eagle Ford shale 
samples noted the abundance of calcite and quartz, as well as some 
pyrite and minor clay mineral phases such as kaolinite or illite (Kreis
serman and Emmanuel 2018; Spokas et al., 2018). The Eagle Ford shale 
sample studied in this work has 3 dominant phases. This specimen 
served as a mineralogically simple model material for demonstration of 
this new methodology and for validation. For this work, the sample of 
this shale was thin-sectioned to 30 μm and mounted on a high-purity 
Suprasil 2A quartz glass slide (Spectrum Petrographics, Vancouver, 
WA, U.S.A.). A part of the sample was also prepared as powder for 
validation with bulk XRD analyses. 

In addition, a mineral mixture was formulated from 6 different 

mineral standards, calcite, aragonite, dolomite, pyrite, pyrrhotite, py
rolusite, for the purpose of model application and validation. Calcite and 
aragonite are two polymorphs of calcium carbonate (same chemistry but 
different crystalline structures), and dolomite is a carbonate mineral 
that includes magnesium, an element that is not detectable with hard x- 
rays. The three carbonate phases are important to distinguish as they 
exhibit different dissolution, precipitation, and crystal growth kinetics 
(Busenberg and Plummer, 1986; De Choudens-Sanchez and Gonzalez, 
2009; Nogues et al., 2013). Similarly, pyrite and pyrrhotite are two 
minerals of very similar chemistry, but with different molar ratios, 
different kinetics of reactions, and different known interactions with 
toxic elements like arsenic (Kalonji-Kabambi et al., 2020; Yang et al., 
2017). The mixture was prepared by grinding to grain sizes ranging from 
10 μm to 200 μm and combining equal amounts of the 6 minerals. It was 
prepared as a flat sample encased between pieces of Kapton® polyimide 
tape. 

3.2. Data acquisition 

The thin-sectioned shale sample and the mineral mixture were 
scanned at APS beamline 13-ID-E (GSECARS) using the x-ray micro
probe with an incident beam energy of 18 keV, allowing for fluorescent 
detection of elements down to the sulfur Kα peak at 2.309 keV. A 
randomly selected 500 μm by 500 μm area, identified as EFS1, was 
scanned at 2 μm resolution. This scan consisted of 62500 pixels and for 
each pixel, coupled μXRF-μXRD data were collected using high-speed 
detectors (Lanzirotti et al., 2016; Sutton et al., 2017; Sutton and New
ville 2014). With a 100 ms dwell time, the total scan time was approx
imately 2 h. Individual XRD patterns for each pixel were automatically 
generated using Larch, a data analysis tool developed at GSECARS for 
fluorescence, diffraction and x-ray absorption fine-structure analyses 
(Newville 2013). 

An optical camera image of EFS1 is presented in Fig. 3a, which shows 

Fig. 2. Schematic of the training scheme for an Artificial Neural Network (ANN) in the SMART mineral mapper. This ANN is depicted with 1 hidden layer (for 
graphical simplicity) where k is the index for neurons in the hidden layer, j is the input attribute index (8 element XRF intensities) and s is the output attribute index. 
P is the network prediction and T is the target output (known). The learning process involves updating the weights, all Wjk and Wko, by fitting the predictions to the 
targets. Variable n is the total number of data pixels and m is the total number of minerals. 
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the texture of the rock. Shown in Fig. 3b–e are the element intensity 
maps of four selected elements, calcium, iron, sulfur and arsenic, 
respectively, generated using pre-normalization μXRF data. Maps of four 
other elements are presented in Fig. S1 of the supplementary material. 
All maps were generated using Larch. 

For self-similar upscaling, a 7 mm by 2 mm area identified as EFS2 
was scanned at a lower 4 μm resolution with a 20 ms dwell time, with 
only μXRF data collected. This scan consisted of 875,000 pixels which 
took approximately 5.5 h to obtain. Lastly, an 800 μm by 800 μm area 
from the mineral mixture was scanned at a 5 μm resolution, and coupled 
μXRF-μXRD data were collected for a total of 25,600 pixels under the 
same conditions as EFS1. The total time for the mineral mixture scan was 
approximately 1 h. See Section S1 in the supplementary material for 
element maps of the mineral mixture and for more details on data 
acquisition. 

3.3. SMART mineral mapper transferability and data normalization 

In this section, the expression used to normalize XRF data for 
transferability of the SMART mineral mapper to various samples is 
presented. In addition to adopting the presented methodology for self- 
similar upscaling, there is also the potential for application of the 
trained mapper to other samples. According to Sutton et al. (2002), a 
measured fluorescence intensity for each element is a function of con
centration as well as sample thicknesses, density, physical detector 
configuration, detector efficiencies, incident intensity, extent of x-ray 
absorption, and various other instrument- and sample-dependent pa
rameters. The theoretical expression for measured intensity presented in 
Sutton et al. (2002) was used as the starting point in obtaining the 
following simplified data normalization expression, 

Ci = −
Ii

qRIf
ln

(

1 −
If

I0

)

(1)  

where i denotes element i, If is the measured total output intensity, R is 
the beam path length which is related to the sample thickness, I0 is the 
incident beam intensity, and q is a condensed variable consisting of 
detector-specific parameters, fluorescence yield, and photoelectric cross 
section variables that were assumed to be nearly constant for an element 
across different scans. This expression relates concentration to measured 
intensity and is written only as a function of measurable quantities. For 
the full derivation of Eq. (1), an explanation for assumptions or sim
plifications, and a discussion of the effects of self-absorption and density 
effects on fluorescence counts, readers should refer to Section 2 of the 
supplementary material. 

3.4. Generating the coupled μXRF- μXRD data 

For 7 of the 8 elements in the input data, the Kα emissions were 
utilized and only for iron, Kβ emissions were utilized to reduce the ef
fects of the nearly overlapping fluorescence energies of manganese Kβ 
and iron Kα. Intensities of the 8 elements extracted from the μXRF data 

for each pixel were normalized using the full normalization expression 
presented in Eq. (1), to account for mineral-dependent absorption ef
fects, thickness, and I0 fluctuations, which varied in the three scans 
considered in this work. Larch (Newville 2013) software’s capabilities to 
subtract pile-up effects and background, and to identify commonly 
overlapped peaks were utilized to further manipulate and treat the μXRF 
data. 

For each pixel, the binary mineral variable, presence (1) or absence 
(0) of each mineral phase, was determined from the μXRD data. The XRD 
pattern covered a wide range of 2θ, up to 82◦ (Cu Kα), achieving 
detection of many reflections. Mineral identification was done using a 
peak matching software, MATCH! (Crystal Impact), and 26 potential 
mineral phases were checked for in each XRD pattern. This was done 
assuming no a priori knowledge of the mineral composition of a sample. 
Some of the criteria used in generating the 26-mineral list included 
common shale mineralogy, commonly co-located minerals, and poly
morphs. In an attempt to cross-check the minerals identified and as a 
final step, μXRD analyses were compared against bulk PXRD data. 

4. Machine learning: training, validation, and application 

4.1. Training of the Artificial Neural Network (ANN) using the EFS1 scan 
data 

From the EFS1 scan, a set of 192 pixels were randomly selected to 
serve as the coupled dataset. Of these, 60 % were used for training, with 
remaining 40 % reserved for validation and performance assessment. 
The ANN was built using the neural network toolbox of MATLAB® 
(MathWorks), and it was configured with 2 hidden layers each with 20 
neurons. Sensitivity analysis on the number of neurons and hidden 
layers was done to find this optimal network architecture that mini
mized training complexity and maximized performance. The network is 
also built with hyperbolic tangent activation functions, a sigmoid 
transfer function, a mean squared error (MSE) cost function, and is based 
on the Levenberg and Marquardt (LM) weight updating method. We 
note that use of a sigmoid transfer function allowed for output of a 
continuous variable between 0 and 1, which added rich information 
about the abundance or likelihood of the presence of a mineral. Multiple 
early stopping criteria (i.e. minimum gradient, maximum number of 
training iterations, increase in the error) were set in order to avoid 
overfitting. The MSE evolution during training was continuously 
monitored and used to determine an appropriate stopping point for 
training (Fig. S6 in supplementary materials). 

4.2. Performance metrics and assessment 

To validate the trained network, the accuracy of the trained network 
was assessed using the reserved 76 pixels. For each mineral in each pixel, 
the coefficient of determination, misclassification percentages, as well as 
type 1 and type 2 errors were calculated. Type 1 errors correspond to 
false positive predictions while type II errors correspond to false nega
tive predictions. To demonstrate the accuracy of the trained network, 

Fig. 3. (a) Optical camera image of the 500 μm × 500 μm area (EFS1) from the Eagle Ford shale thin section. (b–e) Four of the eight element intensity maps (calcium, 
iron, sulfur and arsenic) of EFS1 with a 2 μm resolution. 
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performance on the testing dataset for three minerals is reported in 
Table 1. 

As shown in Table 1, one of 76 testing pixels was mislabeled as 
containing calcite (false positive output), while two of 76 testing pixels 
were mislabeled as having no pyrite (false negative output). The overall 
accuracies for calcite, pyrite and quartz were calculated to be 98.7 %, 
97.4 %, and 100 %, respectively, which highlights the SMART mapper’s 
strong capabilities in predicting for the minerals present and their 
spatial distributions. Variable performance in the three minerals can be 
attributed to either the differences in the number of training pixels 
marked present for each mineral phase or the presence of chemically 
complex phases (for e.g. Mg- or Fe-rich calcite) for which the SMART 
mapper has not been trained on. 

4.3. Application of trained network 

Once the training, testing and performance evaluations were 
completed, the trained network was applied on the entire area of EFS1. 
Fig. 4a shows a three-element map of calcium, iron and sulfur, based on 
the μXRF data. Fig. 4b through 4e show the resulting output of the 
SMART mineral mapper, and the 500 μm by 500 μm mineral maps 
required only a few seconds to generate. Fig. 4b shows a three-color 
mineral map with calcite, pyrite and quartz, and such map is analo
gous to what one would obtain from commercially available software 
such as QEMSCAN. To produce this multimineral map from the SMART 
mapper, co-presence of minerals in a single pixel was disregarded, and 
the mineral with a network output value closest to 1 was assigned to that 
pixel. For example, in pixel (0,38), the output values for pyrite and 
quartz were 0.7084, and 0.9042, respectively, and therefore, pyrite was 
disregarded in this pixel, and quartz was marked present in the multi
mineral map (Fig. 4b). Fig. 4c through 4e show individual mineral maps 
of calcite, pyrite and quartz. These single mineral maps were generated 
using the continuous output variable, which allowed gradation to indi
cate abundance or likelihood of the mineral for each pixel, and the 
graded single-mineral maps also allowed for co-occurrence of minerals 
in a single pixel. Single maps also highlight that areas rich in calcium 
(which are red in Fig. 4a) are consistently labelled as calcite, and areas 
rich in iron (green in Fig. 4a) are marked as pyrite. Quartz presence 
seems to be dominant in pixels rich in neither calcium nor iron but are 
also found to be coexisting with calcite and pyrite in many pixels. 

4.4. Demonstration of self-similar upscaling using EFS2 

The self-similar area EFS2 was used to demonstrate application of the 
EFS1-trained SMART mineral mapper and upscaling abilities to larger, 
mm-scale scan areas. EFS2 was mapped without any additional training 
data generation or XRD analyses. Fig. 5a shows a 3-element XRF map 
capturing distribution of dominant elements, while the complete 8- 
element XRF dataset was the input to the SMART mapper. Fig. 5b 
shows the predicted multimineral map and Fig. 5c through 5e present 
the individual calcite, pyrite and quartz distribution maps. 

Unique macro- and micro-scale features like sedimentary bedding 
layers were effectively captured in the millimeter scale mineral maps. 
These features are also distinguishable by eye and clearly seen in 
petrographic images taken of the Eagle Ford shale (Fig. S8). The micron 

resolution of the mineral maps allowed for fine-scale characterizations 
and differentiation of the large nodular calcite grains from the small 
pyrite grains. No additional times except for the XRF data acquisition 
time were needed in spatially characterizing EFS2 because times for 
SMART mapper application and map generation are negligible. 

4.5. PXRD-based validation and semiquantitative analysis 

In order to further validate the minerals identified in the Eagle Ford 
shale using the SMART mineral mapper, powdered samples were 
analyzed using the high-resolution synchrotron PXRD at the 11-BM 
beamline at APS. Readers should refer to Section S5 in the supplemen
tary material for details about the beamline setup and configuration, and 
the labelled PXRD pattern. From the analyses of four replicate samples, 
calcite, quartz and pyrite were identified, along with some unidentified 
peaks near 12–15◦ (Cu Kα). Based on previous study of the Eagle Ford 
shale by some of the authors, these peaks are likely originating from 
Kaolinite (Al2Si2O5(OH)4) (Spokas et al., 2018). 

In addition to mineral identification, semiquantitative analyses were 
conducted on the PXRD data and the generated maps via pixel counting 
and converting to weight percentages based on the mineral densities. 
Table 2 summarizes the quantitative results from the generated mineral 
maps of EFS1 and EFS2, along with results from quantitative PXRD 
analysis of powdered Eagle Ford shale samples (4 replicates). Values of 
standard error (SE) of the mean are also reported for each mineral in the 
PXRD data and the small SE values indicate reasonably precise mea
surements of PXRD quantification. 

Results from the pixel counting approach for mineral quantification 
on EFS1 and EFS2 indicate an overall trend in calcite being the most 
dominant mineral, followed by quartz, and pyrite. This general trend is 
also consistently seen in the PXRD case. Calcite was slightly under
estimated in the pixel counting approach, while pyrite and quartz were 
slightly overestimated in the pixel counting approach. However, the 
observed differences in weight percentages are reasonable, given the 
comparison of quantifications from thin sections and powdered rock 
samples. 

Approximately 6% of the pixels in both EFS1 and EFS2 were left 
unidentified, indicating presence of a fourth mineral phase or pore 
space. Informed by the PXRD results, it can be predicted that the some of 
the unidentified pixels correspond to kaolinite. Because kaolinite peaks 
were not clearly identified in the integrated XRD patterns from the EFS1 
XRD data, no training pixels included kaolinite labels. The missing 
kaolinite peaks can be attributed to three possible reasons: 1) small 
kaolinite peaks are masked by a large hump between 2θ of 11◦–30◦ (Cu 
Kα) in the integrated XRD pattern, which originates from the glass 
substrate of the thin section, 2) kaolinite peaks are masked by a more 
dominant co-occurring phase, or 3) there is dominance of kaolinite re
flections in the lower and undetectable region of the 2θ range. 

With the presence of unlabeled pixels, the differentiation and 
labelling of quartz is further emphasized since both types of data points 
are considered blank in terms of the detectable elemental presence in the 
XRF data of 8 elements. However, as previously mentioned, the 
measured intensity is not only a function of element concentrations but 
also the mineral phase densities and the resulting extent of attenuation. 
Thus, the differences in the number of photons that fluoresce from a spot 
consisting of quartz and a spot consisting of no minerals were captured 
by the neural network, leading to clear identification of quartz in the 
Eagle Ford shale sample. 

4.6. Mineral mixture for further demonstration and similar mineral 
differentiation 

For further demonstration of the capabilities of the SMART mineral 
mapper, a new network (hereafter referred to as ‘mixture-trained 
network’) was trained using data from the mineral mixture. Training 
was done following the aforementioned training steps. Fig. 6 shows the 

Table 1 
Performance of trained network on reserved testing data. Misclassification is the 
percentage of total false predictions out of 76 testing pixels.  

Mineral R- 
Squared 

Misclassification 
(%) 

Type I Error 
Count (out of 
76) 

Type II Error 
Count (out of 
76) 

Calcite 0.937 1.3 1 0 
Pyrite 0.903 2.6 0 2 
Quartz 0.999 0 0 0  
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output of the mixture-trained network, including a multimineral map 
and 6 individual mineral maps. 

The visible trends in the mineral maps (Fig. 6) follow closely the 
element distributions seen in the element maps of the mineral mixture 
(Fig. S2). The carbonate mineral maps (Fig. 6b and 6c) show that calcite 
and aragonite were differentiated. This may be due to the density dif
ference between the two phases, which was captured by the SMART 
mineral mapper. Secondary check of XRD patterns from some aragonite 

labelled and calcite labelled pixels were conducted (Fig. S9) which 
further verified presence of aragonite and calcite, respectively. How
ever, unless every pixel is cross-checked with the μXRD data, the reli
ability of the differentiation is unquantifiable. Things are further 
complicated by the closeness of the density of the two calcium carbon
ates, and the unknown sensitivity of the fluoresced x-rays to small 
density variations. There is also the potential for co-presence of another 
mineral phase in a single pixel that further jeopardizes the dependency 

Fig. 4. Eagle Ford shale (a) three-element XRF map of the EFS1 area (0.25 mm2) indicating calcium, iron and sulfur intensities; (b) a multimineral map of the three 
primary minerals, calcite, pyrite and quartz, with a 2 μm resolution, and; (c–e) single mineral maps for each mineral where black represents no presence in all 
three maps. 

Fig. 5. Eagle Ford shale (a) three-element XRF map of the EFS2 area (14 mm2) indicating calcium, iron and sulfur intensities; (b) a multimineral map of the three 
primary minerals, calcite, pyrite and quartz, with a 4 μm resolution, and; (c–e) single mineral maps for each mineral where black represents no presence in all 
three maps. 

Table 2 
Semi-quantitative analysis of EFS1, EFS2 and the powdered sample.  

Mineral Calcite Pyrite Quartz Unidentified or Kaolinite 

Wt. % – EFS1 58.7 2.4 32.9 6.0 
Wt. % – EFS2 62.0 2.6 28.9 6.5 
Wt. % from PXRD analysis ± std. error of the mean 70.7 ± 0.4 1.4 ± 0.2 25.8 ± 0.4 2.1 ± 0.7  
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on density variations for polymorph differentiation. Sensitivity relating 
to polymorph differentiation is promising with this machine learning 
method, but quantifying the accuracy is still to be done and remains as 
future work. 

A third calcium carbonate mineral, dolomite, was also distinguished 
(Fig. 6d) from calcite and aragonite. Dolomite chemistry differs by the 
presence of magnesium, which is invisible to hard x-rays. However, the 
clear differences in the XRD patterns, and consistent copresence of 
strontium with dolomite has allowed for the differentiation of this car
bonate phase from chemically similar calcite and aragonite phases. A 
combined dolomite and strontium map (Fig. S10) highlights this high 
correlation between the mineral presence and the element presence. It 
can be predicted that the SMART mapper was able to extract out this 
non-trivial yet subtle relationship between the input and the output, 
which would have otherwise been missed in analysis of only elemental 
presence. 

Labeling of all iron rich spots (Fig. S2) were distributed between 
pyrite and pyrrhotite (Fig. 6e and f), indicating the network’s ability to 
separate out another pair of minerals that are nearly impossible to 
distinguish and identify only based on chemistry. With the use of a 
coupled μXRF-μXRD dataset containing elemental and density variation 
information and a corresponding mineral label, the SMART mineral 
mapper is able to capture, to some extent, distributions of polymorph or 
similar minerals, although this remains to be analyzed in greater depths 
in future works. 

5. Discussion and conclusion 

5.1. Analysis of the SMART mineral mapping approach 

For the first time, a method of spatial mineral mapping was devel
oped based on machine learning interpretation of data from the syn
chrotron x-ray microprobe techniques of μXRF and μXRD. Performance 
of the SMART mineral mapper was demonstrated using datasets from a 
natural shale rock and a known mineral mixture. This approach is 
different from purely element-stoichiometry based approaches for 
mineral mapping because the SMART mapper includes XRD, which 
provides definitive mineral identification based on crystal structure. 

This is especially important for samples with coexistence of minerals 
with similar chemistry like pyrite and pyrrhotite, or dolomite and other 
calcium carbonates. 

The detection of multiple minerals per pixel was achieved via the 
SMART mineral mapper and observed in the mineral maps of EFS1, 
EFS2, and the mineral mixture. This capability is advantageous in get
ting a more complete picture of the rock or mixture mineralogy. Depth- 
averaged mineralogical information and coarser spatial resolution than 
observed grain sizes resulted in a more complex training dataset from 
which the neural network learned from. Through sufficient training, the 
network was able to effectively extract out the relationships between 
specific elements (or a set of elements) to a mineral phase (or a set of 
phases). 

While the SMART mapping approach still uses XRD data, the ma
chine learning aspect minimizes the dependence on XRD and therefore 
minimizes the times needed to mineralogically map samples. These 
principles are visualized in Fig. 7, which presents an estimated total time 
required for mineral mapping using the SMART method plotted against 
sample area. Also shown are the estimated total times that would be 
hypothetically required for a pixel-by-pixel approach if one were to 
analyze both μXRF and μXRD data for an entire sample at high 
resolution. 

Fig. 7 shows that in a pixel-by-pixel approach of XRD pattern analysis 
(blue-diamond line), mapping mm-sized areas would take numerous 
years, which is clearly unfeasible. In contrast, the SMART machine 
learning approach shows significant reductions in time (green-triangle 
line) and the times to acquire and analyze data, initially train a neural 
network, and mineralogically map samples are quite reasonable for a 
wide range of areas. Subsequently, total times required for application of 
an already-trained network (red-circle line) can simply be approximated 
by the XRF data acquisition times. For example, the time frame for 
training and applying the SMART mineral mapper to mineralogically 
map a 10 mm2 map at 2 μm resolution (2,500,000 pixels) is approxi
mately 52 h, which comes from 2 h needed for μXRF-μXRD data 
acquisition from a small area, 33 h for subsequent data analysis (i.e., 
XRD peak matching and XRF data extraction), and 17 h for XRF data 
acquisition from the 10 mm2 area. The 33 data analysis hours do not 
need to be accounted for again in the case of upscaling or direct 

Fig. 6. Mineral mixture (a) a multimineral map of all 6 minerals, calcite, aragonite, dolomite, pyrite, pyrrhotite, and pyrolusite, and an unidentified category, with a 
5 μm resolution, and; (b–g) single mineral maps for each mineral where black (b–f) or blue (g) represents no presence. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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application of the trained mapper, and the total time is reduced to 17 
data acquisition hours to map a new 10 mm2-sized area. These time 
frames allow for collection of multiple mm-sized XRF-only scans (which 
can be later mineralogically mapped), because a synchrotron beam cycle 
is typically 3–4 days. 

5.2. Limitations and improvements 

Using data from a hard x-ray source, there is a lack of information on 
lighter elements like Na, Mg, Al and Si, which are common constituents 
of minerals in natural settings. This means that reliability of identifying 
minerals composed solely of those elements in lowered, and quantifi
cation of the elemental composition in minerals like calcium silicate 
hydrates with variable calcium to silica ratios or solid solutions 
composed of lighter elements cannot be done (Plattenberger et al., 
2019). While the hard x-ray microprobe was appropriate for analyses of 
samples studied in this work, it may be beneficial to consider beamlines 
that utilize x-rays in the tender or soft regimes to study samples with 
minerals composed of lighter elements or samples rich in clays. 

In the data analysis and training data acquisition stages, some 
complexities may arise depending on sample composition and the ele
ments chosen as part of the training due to spectral overlaps. There exist 
some unavoidable μXRF spectrum overlaps such as Mn Kβ and Fe Kα or 
Fe Kβ and Ni Kα, which cannot be resolved due to the resolution of the 
detectors. Judicious selection of the elements and emission lines should 
be made, as was done in this work (i.e., choice of Mn Kα and Fe Kβ as the 
input data). Additional discussions on other instrumental overlaps can 
be found in the supplementary material Section S7. 

Using μXRD to classify ill-ordered crystalline phases is unreliable, 
which limits application of the SMART mapping approach to crystalline 
materials and samples. Amorphous phases often exhibit widened peaks 
or humps in an XRD pattern, and these non- or partially-crystalline 

phases are common in materials like cement pastes composed mainly 
of newly precipitated phases. Samples such as these would require other 
methodologies for characterization. See, for example, work of Gaboreau 
et al. (2017), for their chemical and mineralogical characterizations of 
specialized concrete formulations. 

While the methodology presented here shows an 8 element and 3 or 6 
mineral SMART mappers, the approach can be built up to include other 
elements such as copper, lead, mercury, etc., and additional mineral 
labels. Reformatting of the input and output data pair and adapting of 
the methodology can be achieved on new natural and synthetic mate
rials. Although SMART mineral mapping is not without limitations, 
there are positive prospects for pooling coupled datasets from multiple 
samples or combining datasets from hard, tender, soft, or even 3D x-ray 
beamlines to achieve extended SMART mineral mapping. Generated 
maps can be further utilized in geochemical reactive transport modeling, 
as such a tool requires precise parameterization of thermodynamic sta
bility, kinetics of reactions, and morphological and surface area evolu
tion all of which are driven by mineralogical composition and spatial 
distribution. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cageo.2021.104898. 

Computer code and data availability 

Data and computer code are available and accessible on Digital 
Rocks Portal (Prodanovic et al., 2015), as project “Eagle Ford Shale: 
Synchrotron-Based Element and Mineral Maps” (Peters and Kim, 2020). 
[https://www.digitalrocksportal.org/projects/258]. 

Software required 

Larch (Newville 2013), MATLAB. 

Program language 

MATLAB. 

Fig. 7. Plot of time vs number of pixels (or area) for the SMART mapper 
application with training in green (triangles), direct SMART mapper application 
to XRF data in red (circles), and for a hypothetical pixel-by-pixel approach in 
blue (diamonds). This analysis assumes image resolution of 2 μm, 200 coupled 
data point analyses for mapper training, 10 min to analyze a single XRD 
pattern, and XRF dwell times of 20 ms. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Program/data size 

1.2 GB (EFS1), 7.1 GB (EFS2), 3.9 MB (sample input data), 11.1 MB 
(trained neural network), and 3.5 KB (MATLAB script for data reading). 

Instructions 

See project data branches in Digital Rocks Portal for detailed 
instructions. 
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