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A Synchrotron-based Machine learning Approach for RasTer (SMART) mineral mapping was developed for the
purpose of training a mineral classifier for characterization of millimeter-sized areas of rock thin sections with
micron-scale resolution. An Artificial Neural Network (ANN) was used to extract relationships between coupled
micro x-ray fluorescence (uXRF) data for element abundances and micro x-ray diffraction (uXRD) data for
mineral identity. Once trained, the resulting classifier, i.e., the SMART mineral mapper, can identify minerals
using only pXRF data. This is the real value of this machine learning approach because pXRF data are relatively
fast to collect and interpret whereas pXRD data take longer to collect and interpret. Training and testing of an
initial mapper were done with 192 coupled pXRF-uXRD data points sampled from a 0.25 mm? area of a shale
from the Eagle Ford formation, which was scanned with 2 pm resolution. All data used in this work were ob-
tained from the Advanced Photon Source synchrotron beamline 13-ID-E at Argonne National Laboratory. Three
minerals were mapped in the Eagle Ford rock sample, for which there were 8 elements characterized. In the
testing phase, the minerals were correctly classified with accuracy of 97 % and higher. The trained SMART
mapper was applied for self-similar upscaling by mapping a 14 mm? scan of the Eagle Ford sample. Generated
maps captured micro-scale features characteristic of the stratified texture of the rock, and the identified minerals
agreed well with bulk XRD analysis of the powdered rock. The SMART mapper was also applied to a scan of a 6-
mineral mixture of known composition to demonstrate ability to distinguish minerals of similar chemistry. The
trained SMART mapper is transferable to scans from other x-ray microprobes because of the pXRF data
normalization that accounts for sample- and beamline-specific properties like thickness, detector configuration,
and incident energy.

1. Introduction

Characterizations of mineral spatial distributions in highly hetero-
geneous rocks, sediments and synthetic materials are important in the
fields of geosciences and environmental science and engineering. The
ability to resolve spatial patterns of minerals at various scales is critical
for characterizing properties such as porosity, permeability, texture, and
fractures (Bensinger and Bekingham, 2020; Deng et al., 2015; Deng and
Peters, 2019; Ellis et al., 2013; Ellis and Peters, 2016; Fitts and Peters,
2013; Glassley et al., 2002; Soulaine et al., 2016). More specifically in
natural rocks and sediments, spatial knowledge of minerals is important

for determining accessible mineral surface areas for mineral dissolution,
and weathering reaction rate calculations (Beckingham et al., 2016;
2017; Deng et al., 2020; Li et al., 2017; Ma et al., 2019; Peters, 2009; Qin
and Beckingham, 2019; Zhang et al., 2017), fluid adhesion on mineral
surfaces (Wang et al., 2013), radionuclide or toxic metal (loid) mobili-
zation (Ehlert et al., 2018; Kreisserman and Emmanuel, 2018; Robinet
et al., 2012), and organic carbon cycles in soils (Basile-Doelsch et al.,
2005). Furthermore, geomechanical and mechanical properties like
unconfined compressive strength, or frictional strength of geologic for-
mations, fractures or synthetic materials such as cements have also been
found to be strongly dependent on mineral composition and
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distributions (Bourg, 2015; Fang et al., 2018; Gaboreau et al., 2017;
Spokas et al., 2019).

Recent research has advanced benchtop and laboratory-based
equipment and techniques in which elements and phases can be
distinguished, quantified and spatially mapped. Such analytical and
imaging techniques include optical microscopy imaging, electron probe
microanalyzer (EPMA), x-ray computed tomography (xCT), scanning
electron microscopy (SEM), backscattered electron (BSE) imaging, en-
ergy dispersive x-ray spectroscopy (EDS), laser-induced breakdown
spectroscopy (LIBS), and micro energy dispersive x-ray fluorescence
spectrometry (p-EDXRF). Furthermore, researchers have developed
novel ways of coupling these techniques to yield comprehensive, multi-
modal-based information about the minerals present and their spatial
distributions within geologic samples (Deng et al., 2016; Ellis and Pe-
ters, 2016; Golab et al., 2013; Guntoro et al., 2019a, 2019b; Jen-
nings-Gray et al., 2020; Maitre et al., 2019; Nikonow and Rammlmair,
2017; Nikonow et al., 2019; Pirrie et al., 2004; Pret et al., 2010; Rahman
et al., 2016; Sutherland and Gottlieb, 1991; Tsuji et al., 2010). Also
worth mentioning are commercially available software tools for auto-
mated mineral mapping. These include but are not limited to Zeiss
Mineralogic, FEI MAPS Mineralogy or QEMSCAN, TESCAN TIMA or
JKMRC/FEI Mineral Liberation Analyser (Gu, 2003), which are based on
SEM-EDS data, as well as Bruker M4 Tornado AMICS, which is based on
micro-XRF data. Readers should refer to Table S1 for detailed de-
scriptions of these methods and how the underlying physics have been
exploited for spatial mapping and identification of minerals. While these
advancements have been demonstrated to be effective, the approaches
rely heavily on inferred stoichiometry to interpret mineral phases and
not on crystallographic measurements. The missing crystalline infor-
mation may result in indistinguishable minerals of similar chemistry, or
misidentification of solid solutions. Benchtop or conventional electron-
and x-ray-based methods also fall short on resolution and sensitivity
when compared to higher energy techniques such as synchrotron
beamlines.

Over the past decade, synchrotron facilities and their beamlines have
made available coupled configurations of micro x-ray diffraction (uXRD)
and micro x-ray fluorescence (uXRF), allowing for two-dimensional
mapping of element and mineral composition at micrometer spatial
resolutions. X-ray microprobes that house both pXRF and pXRD de-
tectors with high count rates, short acquisition times, and rastering
stages allow for opportunities to perform microscale spatial character-
izations of geologic and synthetic materials (Lanzirotti et al., 2016).
Unique identification of mineral phases, polymorphs, or solid solutions
is best provided by XRD, a method that analyzes the diffraction patterns
generated as x-rays interact with crystal planes. Identification and
quantification of elements that make up a mineral phase is accomplished
with XRF, a method that measures the energy of fluoresced character-
istic x-rays generated from the momentary displacement of electrons.
Together, the two techniques provide the unique chemical composition
of an identified mineral phase. Beamlines that provide these capabilities
include beamline 13-ID-E at Advanced Photon Source, beamline 4-BM at
National Synchrotron Light Source II, beamline 07B2-1 at Canadian
Light Source, beamline ID18F at the European Synchrotron Radiation
Facility, and XFM beamline at the Australian Synchrotron. Many of these
beamlines offer additional x-ray techniques, such as x-ray absorption
fine structure (XAFS) and x-ray computed tomography (xCT). Access to
these synchrotron facilities have opened new avenues for researchers to
probe samples at high energies and resolutions, supplementing data that
can be gathered from benchtop equipment such as p-EDXRF (Nikonow
and Rammlmair, 2017) or XRD which are still widely utilized for its
accessibility, non-destructiveness of the sample preparation, and rela-
tively faster collection and analysis of data.

Even with the latest advancements in coupled synchrotron tech-
niques for micro-scale characterization, there is not yet a method of
automated mineral mapping at spatial scales that are relevant in
geological, environmental and earth sciences. Here, we present a new
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approach of 2D mineral characterization called the Synchrotron-based
Machine learning Approach for RasTer (SMART) mineral mapping. The
SMART mineral mapper uses machine learning in the form of an Arti-
ficial Neural Network (ANN) to build a classifier trained on coupled
pXRF elemental intensities and pXRD mineral data. Applications of the
trained SMART mineral mapper would require only pXRF to generate
mineral maps. As such, SMART mapper addresses the fundamental
problem of being limited by the time-consuming nature of XRD data
acquisition and analysis for 2D characterizations of millimeter areas at
micrometer resolutions.

To demonstrate this new machine learning approach, an initial
classifier was developed from analysis of a sample of Eagle Ford shale
rock from Texas. The pXRF and pXRD data were obtained at the
Advanced Photon Source (APS) of Argonne National Laboratory,
beamline 13-ID-E, which houses a hard x-ray microprobe (Lanzirotti
et al., 2016; Sutton et al., 2017), and a training dataset was constructed
from a small raster scan obtained at this beamline. Performance was
assessed by applying the trained ANN on a reserved sample of the
coupled pXRF and pXRD data which had not been included in the
training data. The trained ANN was then applied to a larger scan of the
same sample, i.e., self-similar upscaling. Validation was conducted by
comparing the minerals identified and mapped using the SMART
method to bulk powder XRD (PXRD) analysis of the Eagle Ford shale. To
demonstrate the SMART method on another sample, it was applied to a
known mixture formulated from six mineral standards. The mixture
included minerals of similar and overlapping chemistries, which pre-
sented challenges for differentiating similar minerals and polymorphs,
and testing the limits of a hard x-ray microprobe. Finally, to maximize
potential for transferability of the trained SMART mineral mapper to
other samples and other synchrotron data, we also addressed normali-
zation of the input XRF intensity measurements. Potential for expansion
and limitations of the methodology are also discussed.

2. The challenge of pXRD for mineral mapping and introduction
to the SMART approach

Coupled pXRF-puXRD techniques are critical tools in element and
mineral identification. Yet, the time-consuming nature of diffraction
data acquisition and pattern analyses hinders the use of pXRD for spatial
characterization of large mm-scale areas. For example, for a small,
pixelated map of 0.25 mm? generated with a dwell time of 100 ms and
spatial resolution of 2 pm per pixel, it would take approximately 2 h to
collect the data, and as many as 10,417 h for a pixel-by-pixel analysis of
the individual XRD patterns, given the total number of pixels at 62500 (i.
e. more than one year for less than 1 square mm). This approximation
assumes that analysis for a single pattern takes 10 min, which may even
be an underestimation for uncharacterized samples. Such time scales are
impractical and with significant human judgment required for matching
of peaks to a reference database, this process is not amenable to full
automation.

In light of the time constraints of relying on XRD for spatially-
resolved mapping, the novel SMART mineral mapping method was
developed. This approach utilizes machine learning to build a mineral
classifier trained on hard x-ray synchrotron pXRF and pXRD data. The
pXRF intensity data serves as the input, and the corresponding processed
pXRD data serves as the coupled output. The principle behind this is that
information about mineral phases is embedded in XRF data because
intensities of fluoresced x-rays are sensitive to concentrations of indi-
vidual elements as well as to densities of the mineral phase that is pre-
sent. This is an important point, as this is not just a statistical application
of machine learning; it is one based on physics. A schematic of the
overall approach of data acquisition and interpretation for generating a
training dataset is shown in Fig. 1.

For a single pixel, the left box in Fig. 1 summarizes the pXRD data
flow where the result is a binary measure of presence or absence of each
mineral. This approach allows for multiple minerals per pixel, which can
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Fig. 1. The methodology for acquisition of data for training of the classifier in the SMART mineral mapping approach.

happen if the spatial resolution is coarser than the grain size. The right
box in Fig. 1 summarizes the XRF data flow, summarizing extraction of
intensities of eight elements selected, S, K, Ca, Ti, Mn, Fe, As, and Sr,
which are constituent elements making up many common minerals.
Other elements, such as Mg or Na, are not included as these are not
detectable using a hard x-ray microprobe. The XRF data flow results in
an array of normalized intensities for each element which is propor-
tional to the concentration of the element in the sample. The

normalization step is important because the ultimate goal is to have a
SMART mineral mapper that can be applied to new pXRF scans,
collected on different geological samples, at different synchrotron x-ray
microprobes, by different researchers. To achieve this transferability,
the data must be normalized to sample and beamline factors that are not
related to mineral features. This is further addressed in Section 3.3.
Once the coupled training data are collected, training of the SMART
mapper is done using an ANN, which is a type of supervised machine
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learning that learns from a coupled dataset of inputs and known outputs
and builds a mathematical model by extracting relationships from the
data (Haykin, 2009). Using a trained SMART mineral mapper would
effectively minimize the manual work of numerous XRD pattern ana-
lyses for every pixel in the sample scan. This is clearly advantageous
because pXRF data are relatively fast to collect and interpret. The ANN
depicted in Fig. 2 shows a simplified graphical representation of a
feed-forward neural network with one hidden layer. Details about the
functions and architecture of the neural network used in this work are
presented in Section 4.1, and a summary of the overall workflow of the
SMART mapping approach can be found in the supplementary material.

3. Materials and data
3.1. Samples

The Eagle Ford shale is a sedimentary rock formation covering much
of Texas and the sample originates from an oil rich region in western
Texas. Specimens were purchased from Kokurec Industries and the rock
sample studied exhibited unique banded calcite mineralogy as well as
nodular grains of small pyrite and large calcite grains throughout the
matrix. Published mineralogical characterizations of Eagle Ford shale
samples noted the abundance of calcite and quartz, as well as some
pyrite and minor clay mineral phases such as kaolinite or illite (Kreis-
serman and Emmanuel 2018; Spokas et al., 2018). The Eagle Ford shale
sample studied in this work has 3 dominant phases. This specimen
served as a mineralogically simple model material for demonstration of
this new methodology and for validation. For this work, the sample of
this shale was thin-sectioned to 30 pm and mounted on a high-purity
Suprasil 2A quartz glass slide (Spectrum Petrographics, Vancouver,
WA, U.S.A.). A part of the sample was also prepared as powder for
validation with bulk XRD analyses.

In addition, a mineral mixture was formulated from 6 different
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mineral standards, calcite, aragonite, dolomite, pyrite, pyrrhotite, py-
rolusite, for the purpose of model application and validation. Calcite and
aragonite are two polymorphs of calcium carbonate (same chemistry but
different crystalline structures), and dolomite is a carbonate mineral
that includes magnesium, an element that is not detectable with hard x-
rays. The three carbonate phases are important to distinguish as they
exhibit different dissolution, precipitation, and crystal growth kinetics
(Busenberg and Plummer, 1986; De Choudens-Sanchez and Gonzalez,
2009; Nogues et al., 2013). Similarly, pyrite and pyrrhotite are two
minerals of very similar chemistry, but with different molar ratios,
different kinetics of reactions, and different known interactions with
toxic elements like arsenic (Kalonji-Kabambi et al., 2020; Yang et al.,
2017). The mixture was prepared by grinding to grain sizes ranging from
10 pm to 200 pm and combining equal amounts of the 6 minerals. It was
prepared as a flat sample encased between pieces of Kapton® polyimide
tape.

3.2. Data acquisition

The thin-sectioned shale sample and the mineral mixture were
scanned at APS beamline 13-ID-E (GSECARS) using the x-ray micro-
probe with an incident beam energy of 18 keV, allowing for fluorescent
detection of elements down to the sulfur Ka peak at 2.309 keV. A
randomly selected 500 pm by 500 pm area, identified as EFS1, was
scanned at 2 pm resolution. This scan consisted of 62500 pixels and for
each pixel, coupled pXRF-uXRD data were collected using high-speed
detectors (Lanzirotti et al., 2016; Sutton et al., 2017; Sutton and New-
ville 2014). With a 100 ms dwell time, the total scan time was approx-
imately 2 h. Individual XRD patterns for each pixel were automatically
generated using Larch, a data analysis tool developed at GSECARS for
fluorescence, diffraction and x-ray absorption fine-structure analyses
(Newville 2013).

An optical camera image of EFS1 is presented in Fig. 3a, which shows
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Fig. 2. Schematic of the training scheme for an Artificial Neural Network (ANN) in the SMART mineral mapper. This ANN is depicted with 1 hidden layer (for
graphical simplicity) where k is the index for neurons in the hidden layer, j is the input attribute index (8 element XRF intensities) and s is the output attribute index.
P is the network prediction and T is the target output (known). The learning process involves updating the weights, all W, and Wy, by fitting the predictions to the
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Fig. 3. (a) Optical camera image of the 500 pm x 500 pm area (EFS1) from the Eagle Ford shale thin section. (b—e) Four of the eight element intensity maps (calcium,

iron, sulfur and arsenic) of EFS1 with a 2 pm resolution.

the texture of the rock. Shown in Fig. 3b—e are the element intensity
maps of four selected elements, calcium, iron, sulfur and arsenic,
respectively, generated using pre-normalization pXRF data. Maps of four
other elements are presented in Fig. S1 of the supplementary material.
All maps were generated using Larch.

For self-similar upscaling, a 7 mm by 2 mm area identified as EFS2
was scanned at a lower 4 pm resolution with a 20 ms dwell time, with
only pXRF data collected. This scan consisted of 875,000 pixels which
took approximately 5.5 h to obtain. Lastly, an 800 pm by 800 pm area
from the mineral mixture was scanned at a 5 pm resolution, and coupled
pXRF-pXRD data were collected for a total of 25,600 pixels under the
same conditions as EFS1. The total time for the mineral mixture scan was
approximately 1 h. See Section S1 in the supplementary material for
element maps of the mineral mixture and for more details on data
acquisition.

3.3. SMART mineral mapper transferability and data normalization

In this section, the expression used to normalize XRF data for
transferability of the SMART mineral mapper to various samples is
presented. In addition to adopting the presented methodology for self-
similar upscaling, there is also the potential for application of the
trained mapper to other samples. According to Sutton et al. (2002), a
measured fluorescence intensity for each element is a function of con-
centration as well as sample thicknesses, density, physical detector
configuration, detector efficiencies, incident intensity, extent of x-ray
absorption, and various other instrument- and sample-dependent pa-
rameters. The theoretical expression for measured intensity presented in
Sutton et al. (2002) was used as the starting point in obtaining the
following simplified data normalization expression,

I I
——Lm(1-2 @
qRI; Io

where i denotes element i, I is the measured total output intensity, R is
the beam path length which is related to the sample thickness, Iy is the
incident beam intensity, and g is a condensed variable consisting of
detector-specific parameters, fluorescence yield, and photoelectric cross
section variables that were assumed to be nearly constant for an element
across different scans. This expression relates concentration to measured
intensity and is written only as a function of measurable quantities. For
the full derivation of Eq. (1), an explanation for assumptions or sim-
plifications, and a discussion of the effects of self-absorption and density
effects on fluorescence counts, readers should refer to Section 2 of the
supplementary material.

i

3.4. Generating the coupled uXRF- uXRD data

For 7 of the 8 elements in the input data, the Ka emissions were
utilized and only for iron, Kf emissions were utilized to reduce the ef-
fects of the nearly overlapping fluorescence energies of manganese Kg
and iron Ka. Intensities of the 8 elements extracted from the pXRF data

for each pixel were normalized using the full normalization expression
presented in Eq. (1), to account for mineral-dependent absorption ef-
fects, thickness, and I fluctuations, which varied in the three scans
considered in this work. Larch (Newville 201 3) software’s capabilities to
subtract pile-up effects and background, and to identify commonly
overlapped peaks were utilized to further manipulate and treat the pXRF
data.

For each pixel, the binary mineral variable, presence (1) or absence
(0) of each mineral phase, was determined from the pXRD data. The XRD
pattern covered a wide range of 26, up to 82° (Cu Ka), achieving
detection of many reflections. Mineral identification was done using a
peak matching software, MATCH! (Crystal Impact), and 26 potential
mineral phases were checked for in each XRD pattern. This was done
assuming no a priori knowledge of the mineral composition of a sample.
Some of the criteria used in generating the 26-mineral list included
common shale mineralogy, commonly co-located minerals, and poly-
morphs. In an attempt to cross-check the minerals identified and as a
final step, pXRD analyses were compared against bulk PXRD data.

4. Machine learning: training, validation, and application

4.1. Training of the Artificial Neural Network (ANN) using the EFS1 scan
data

From the EFS1 scan, a set of 192 pixels were randomly selected to
serve as the coupled dataset. Of these, 60 % were used for training, with
remaining 40 % reserved for validation and performance assessment.
The ANN was built using the neural network toolbox of MATLAB®
(MathWorks), and it was configured with 2 hidden layers each with 20
neurons. Sensitivity analysis on the number of neurons and hidden
layers was done to find this optimal network architecture that mini-
mized training complexity and maximized performance. The network is
also built with hyperbolic tangent activation functions, a sigmoid
transfer function, a mean squared error (MSE) cost function, and is based
on the Levenberg and Marquardt (LM) weight updating method. We
note that use of a sigmoid transfer function allowed for output of a
continuous variable between 0 and 1, which added rich information
about the abundance or likelihood of the presence of a mineral. Multiple
early stopping criteria (i.e. minimum gradient, maximum number of
training iterations, increase in the error) were set in order to avoid
overfitting. The MSE evolution during training was continuously
monitored and used to determine an appropriate stopping point for
training (Fig. S6 in supplementary materials).

4.2. Performance metrics and assessment

To validate the trained network, the accuracy of the trained network
was assessed using the reserved 76 pixels. For each mineral in each pixel,
the coefficient of determination, misclassification percentages, as well as
type 1 and type 2 errors were calculated. Type 1 errors correspond to
false positive predictions while type II errors correspond to false nega-
tive predictions. To demonstrate the accuracy of the trained network,
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performance on the testing dataset for three minerals is reported in
Table 1.

As shown in Table 1, one of 76 testing pixels was mislabeled as
containing calcite (false positive output), while two of 76 testing pixels
were mislabeled as having no pyrite (false negative output). The overall
accuracies for calcite, pyrite and quartz were calculated to be 98.7 %,
97.4 %, and 100 %, respectively, which highlights the SMART mapper’s
strong capabilities in predicting for the minerals present and their
spatial distributions. Variable performance in the three minerals can be
attributed to either the differences in the number of training pixels
marked present for each mineral phase or the presence of chemically
complex phases (for e.g. Mg- or Fe-rich calcite) for which the SMART
mapper has not been trained on.

4.3. Application of trained network

Once the training, testing and performance evaluations were
completed, the trained network was applied on the entire area of EFS1.
Fig. 4a shows a three-element map of calcium, iron and sulfur, based on
the pXRF data. Fig. 4b through 4e show the resulting output of the
SMART mineral mapper, and the 500 pm by 500 pm mineral maps
required only a few seconds to generate. Fig. 4b shows a three-color
mineral map with calcite, pyrite and quartz, and such map is analo-
gous to what one would obtain from commercially available software
such as QEMSCAN. To produce this multimineral map from the SMART
mapper, co-presence of minerals in a single pixel was disregarded, and
the mineral with a network output value closest to 1 was assigned to that
pixel. For example, in pixel (0,38), the output values for pyrite and
quartz were 0.7084, and 0.9042, respectively, and therefore, pyrite was
disregarded in this pixel, and quartz was marked present in the multi-
mineral map (Fig. 4b). Fig. 4c through 4e show individual mineral maps
of calcite, pyrite and quartz. These single mineral maps were generated
using the continuous output variable, which allowed gradation to indi-
cate abundance or likelihood of the mineral for each pixel, and the
graded single-mineral maps also allowed for co-occurrence of minerals
in a single pixel. Single maps also highlight that areas rich in calcium
(which are red in Fig. 4a) are consistently labelled as calcite, and areas
rich in iron (green in Fig. 4a) are marked as pyrite. Quartz presence
seems to be dominant in pixels rich in neither calcium nor iron but are
also found to be coexisting with calcite and pyrite in many pixels.

4.4. Demonstration of self-similar upscaling using EFS2

The self-similar area EFS2 was used to demonstrate application of the
EFS1-trained SMART mineral mapper and upscaling abilities to larger,
mm-scale scan areas. EFS2 was mapped without any additional training
data generation or XRD analyses. Fig. 5a shows a 3-element XRF map
capturing distribution of dominant elements, while the complete 8-
element XRF dataset was the input to the SMART mapper. Fig. 5b
shows the predicted multimineral map and Fig. 5c through 5e present
the individual calcite, pyrite and quartz distribution maps.

Unique macro- and micro-scale features like sedimentary bedding
layers were effectively captured in the millimeter scale mineral maps.
These features are also distinguishable by eye and clearly seen in
petrographic images taken of the Eagle Ford shale (Fig. S8). The micron

Table 1
Performance of trained network on reserved testing data. Misclassification is the
percentage of total false predictions out of 76 testing pixels.

Mineral ~ R- Misclassification Type I Error Type II Error
Squared (%) Count (out of Count (out of
76) 76)
Calcite 0.937 1.3 1 0
Pyrite 0.903 2.6 0 2
Quartz 0.999 0 0 0
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resolution of the mineral maps allowed for fine-scale characterizations
and differentiation of the large nodular calcite grains from the small
pyrite grains. No additional times except for the XRF data acquisition
time were needed in spatially characterizing EFS2 because times for
SMART mapper application and map generation are negligible.

4.5. PXRD-based validation and semiquantitative analysis

In order to further validate the minerals identified in the Eagle Ford
shale using the SMART mineral mapper, powdered samples were
analyzed using the high-resolution synchrotron PXRD at the 11-BM
beamline at APS. Readers should refer to Section S5 in the supplemen-
tary material for details about the beamline setup and configuration, and
the labelled PXRD pattern. From the analyses of four replicate samples,
calcite, quartz and pyrite were identified, along with some unidentified
peaks near 12-15° (Cu Ka). Based on previous study of the Eagle Ford
shale by some of the authors, these peaks are likely originating from
Kaolinite (Al»SizOs(OH)4) (Spokas et al., 2018).

In addition to mineral identification, semiquantitative analyses were
conducted on the PXRD data and the generated maps via pixel counting
and converting to weight percentages based on the mineral densities.
Table 2 summarizes the quantitative results from the generated mineral
maps of EFS1 and EFS2, along with results from quantitative PXRD
analysis of powdered Eagle Ford shale samples (4 replicates). Values of
standard error (SE) of the mean are also reported for each mineral in the
PXRD data and the small SE values indicate reasonably precise mea-
surements of PXRD quantification.

Results from the pixel counting approach for mineral quantification
on EFS1 and EFS2 indicate an overall trend in calcite being the most
dominant mineral, followed by quartz, and pyrite. This general trend is
also consistently seen in the PXRD case. Calcite was slightly under-
estimated in the pixel counting approach, while pyrite and quartz were
slightly overestimated in the pixel counting approach. However, the
observed differences in weight percentages are reasonable, given the
comparison of quantifications from thin sections and powdered rock
samples.

Approximately 6% of the pixels in both EFS1 and EFS2 were left
unidentified, indicating presence of a fourth mineral phase or pore
space. Informed by the PXRD results, it can be predicted that the some of
the unidentified pixels correspond to kaolinite. Because kaolinite peaks
were not clearly identified in the integrated XRD patterns from the EFS1
XRD data, no training pixels included kaolinite labels. The missing
kaolinite peaks can be attributed to three possible reasons: 1) small
kaolinite peaks are masked by a large hump between 26 of 11°-30° (Cu
Ka) in the integrated XRD pattern, which originates from the glass
substrate of the thin section, 2) kaolinite peaks are masked by a more
dominant co-occurring phase, or 3) there is dominance of kaolinite re-
flections in the lower and undetectable region of the 26 range.

With the presence of unlabeled pixels, the differentiation and
labelling of quartz is further emphasized since both types of data points
are considered blank in terms of the detectable elemental presence in the
XRF data of 8 elements. However, as previously mentioned, the
measured intensity is not only a function of element concentrations but
also the mineral phase densities and the resulting extent of attenuation.
Thus, the differences in the number of photons that fluoresce from a spot
consisting of quartz and a spot consisting of no minerals were captured
by the neural network, leading to clear identification of quartz in the
Eagle Ford shale sample.

4.6. Mineral mixture for further demonstration and similar mineral
differentiation

For further demonstration of the capabilities of the SMART mineral
mapper, a new network (hereafter referred to as ‘mixture-trained
network’) was trained using data from the mineral mixture. Training
was done following the aforementioned training steps. Fig. 6 shows the
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(d)

Fig. 4. Eagle Ford shale (a) three-element XRF map of the EFS1 area (0.25 mm?) indicating calcium, iron and sulfur intensities; (b) a multimineral map of the three
primary minerals, calcite, pyrite and quartz, with a 2 pm resolution, and; (c-e) single mineral maps for each mineral where black represents no presence in all

three maps.

Multimineral Map

XRF Map (Ca Fe S)

0.5 mm
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Pyrite
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Fig. 5. Eagle Ford shale (a) three-element XRF map of the EFS2 area (14 mm?) indicating calcium, iron and sulfur intensities; (b) a multimineral map of the three
primary minerals, calcite, pyrite and quartz, with a 4 um resolution, and; (c-e) single mineral maps for each mineral where black represents no presence in all

three maps.

Table 2
Semi-quantitative analysis of EFS1, EFS2 and the powdered sample.

Mineral Calcite Pyrite Quartz Unidentified or Kaolinite
Wt. % — EFS1 58.7 2.4 32.9 6.0

Wt. % — EFS2 62.0 2.6 28.9 6.5

Wt. % from PXRD analysis + std. error of the mean 70.7 + 0.4 1.4 +£0.2 25.8 + 0.4 21+0.7

output of the mixture-trained network, including a multimineral map
and 6 individual mineral maps.

The visible trends in the mineral maps (Fig. 6) follow closely the
element distributions seen in the element maps of the mineral mixture
(Fig. S2). The carbonate mineral maps (Fig. 6b and 6¢) show that calcite
and aragonite were differentiated. This may be due to the density dif-
ference between the two phases, which was captured by the SMART
mineral mapper. Secondary check of XRD patterns from some aragonite

labelled and calcite labelled pixels were conducted (Fig. S9) which
further verified presence of aragonite and calcite, respectively. How-
ever, unless every pixel is cross-checked with the pXRD data, the reli-
ability of the differentiation is unquantifiable. Things are further
complicated by the closeness of the density of the two calcium carbon-
ates, and the unknown sensitivity of the fluoresced x-rays to small
density variations. There is also the potential for co-presence of another
mineral phase in a single pixel that further jeopardizes the dependency
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Fig. 6. Mineral mixture (a) a multimineral map of all 6 minerals, calcite, aragonite, dolomite, pyrite, pyrrhotite, and pyrolusite, and an unidentified category, with a
5 pm resolution, and; (b—g) single mineral maps for each mineral where black (b-f) or blue (g) represents no presence. (For interpretation of the references to color in

this figure legend, the reader is referred to the Web version of this article.)

on density variations for polymorph differentiation. Sensitivity relating
to polymorph differentiation is promising with this machine learning
method, but quantifying the accuracy is still to be done and remains as
future work.

A third calcium carbonate mineral, dolomite, was also distinguished
(Fig. 6d) from calcite and aragonite. Dolomite chemistry differs by the
presence of magnesium, which is invisible to hard x-rays. However, the
clear differences in the XRD patterns, and consistent copresence of
strontium with dolomite has allowed for the differentiation of this car-
bonate phase from chemically similar calcite and aragonite phases. A
combined dolomite and strontium map (Fig. S10) highlights this high
correlation between the mineral presence and the element presence. It
can be predicted that the SMART mapper was able to extract out this
non-trivial yet subtle relationship between the input and the output,
which would have otherwise been missed in analysis of only elemental
presence.

Labeling of all iron rich spots (Fig. S2) were distributed between
pyrite and pyrrhotite (Fig. 6e and f), indicating the network’s ability to
separate out another pair of minerals that are nearly impossible to
distinguish and identify only based on chemistry. With the use of a
coupled pXRF-pXRD dataset containing elemental and density variation
information and a corresponding mineral label, the SMART mineral
mapper is able to capture, to some extent, distributions of polymorph or
similar minerals, although this remains to be analyzed in greater depths
in future works.

5. Discussion and conclusion
5.1. Analysis of the SMART mineral mapping approach

For the first time, a method of spatial mineral mapping was devel-
oped based on machine learning interpretation of data from the syn-
chrotron x-ray microprobe techniques of pXRF and pXRD. Performance
of the SMART mineral mapper was demonstrated using datasets from a
natural shale rock and a known mineral mixture. This approach is
different from purely element-stoichiometry based approaches for
mineral mapping because the SMART mapper includes XRD, which
provides definitive mineral identification based on crystal structure.

This is especially important for samples with coexistence of minerals
with similar chemistry like pyrite and pyrrhotite, or dolomite and other
calcium carbonates.

The detection of multiple minerals per pixel was achieved via the
SMART mineral mapper and observed in the mineral maps of EFSI,
EFS2, and the mineral mixture. This capability is advantageous in get-
ting a more complete picture of the rock or mixture mineralogy. Depth-
averaged mineralogical information and coarser spatial resolution than
observed grain sizes resulted in a more complex training dataset from
which the neural network learned from. Through sufficient training, the
network was able to effectively extract out the relationships between
specific elements (or a set of elements) to a mineral phase (or a set of
phases).

While the SMART mapping approach still uses XRD data, the ma-
chine learning aspect minimizes the dependence on XRD and therefore
minimizes the times needed to mineralogically map samples. These
principles are visualized in Fig. 7, which presents an estimated total time
required for mineral mapping using the SMART method plotted against
sample area. Also shown are the estimated total times that would be
hypothetically required for a pixel-by-pixel approach if one were to
analyze both pXRF and pXRD data for an entire sample at high
resolution.

Fig. 7 shows that in a pixel-by-pixel approach of XRD pattern analysis
(blue-diamond line), mapping mm-sized areas would take numerous
years, which is clearly unfeasible. In contrast, the SMART machine
learning approach shows significant reductions in time (green-triangle
line) and the times to acquire and analyze data, initially train a neural
network, and mineralogically map samples are quite reasonable for a
wide range of areas. Subsequently, total times required for application of
an already-trained network (red-circle line) can simply be approximated
by the XRF data acquisition times. For example, the time frame for
training and applying the SMART mineral mapper to mineralogically
map a 10 mm? map at 2 pm resolution (2,500,000 pixels) is approxi-
mately 52 h, which comes from 2 h needed for pXRF-pXRD data
acquisition from a small area, 33 h for subsequent data analysis (i.e.,
XRD peak matching and XRF data extraction), and 17 h for XRF data
acquisition from the 10 mm? area. The 33 data analysis hours do not
need to be accounted for again in the case of upscaling or direct



J.J. Kim et al.

& 1 ‘Year

3L
10 <1 Month

@ 107 &3 Days 4
QE, 1 ‘ SMART mapper training
E 100 and application
=
kS
100 i1 Hour  SMART mapper application ]

to XRF data
(or equivalently XRF data
collection times)

0.01mm?
\Y . V. . Vv

<1 Min

10°

Number of 2 um Pixels

Fig. 7. Plot of time vs number of pixels (or area) for the SMART mapper
application with training in green (triangles), direct SMART mapper application
to XRF data in red (circles), and for a hypothetical pixel-by-pixel approach in
blue (diamonds). This analysis assumes image resolution of 2 pm, 200 coupled
data point analyses for mapper training, 10 min to analyze a single XRD
pattern, and XRF dwell times of 20 ms. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of
this article.)

application of the trained mapper, and the total time is reduced to 17
data acquisition hours to map a new 10 mm?-sized area. These time
frames allow for collection of multiple mm-sized XRF-only scans (which
can be later mineralogically mapped), because a synchrotron beam cycle
is typically 3-4 days.

5.2. Limitations and improvements

Using data from a hard x-ray source, there is a lack of information on
lighter elements like Na, Mg, Al and Si, which are common constituents
of minerals in natural settings. This means that reliability of identifying
minerals composed solely of those elements in lowered, and quantifi-
cation of the elemental composition in minerals like calcium silicate
hydrates with variable calcium to silica ratios or solid solutions
composed of lighter elements cannot be done (Plattenberger et al.,
2019). While the hard x-ray microprobe was appropriate for analyses of
samples studied in this work, it may be beneficial to consider beamlines
that utilize x-rays in the tender or soft regimes to study samples with
minerals composed of lighter elements or samples rich in clays.

In the data analysis and training data acquisition stages, some
complexities may arise depending on sample composition and the ele-
ments chosen as part of the training due to spectral overlaps. There exist
some unavoidable pXRF spectrum overlaps such as Mn Kf and Fe Ka or
Fe KB and Ni Ka, which cannot be resolved due to the resolution of the
detectors. Judicious selection of the elements and emission lines should
be made, as was done in this work (i.e., choice of Mn Ka and Fe K as the
input data). Additional discussions on other instrumental overlaps can
be found in the supplementary material Section S7.

Using pXRD to classify ill-ordered crystalline phases is unreliable,
which limits application of the SMART mapping approach to crystalline
materials and samples. Amorphous phases often exhibit widened peaks
or humps in an XRD pattern, and these non- or partially-crystalline
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phases are common in materials like cement pastes composed mainly
of newly precipitated phases. Samples such as these would require other
methodologies for characterization. See, for example, work of Gaboreau
et al. (2017), for their chemical and mineralogical characterizations of
specialized concrete formulations.

While the methodology presented here shows an 8 element and 3 or 6
mineral SMART mappers, the approach can be built up to include other
elements such as copper, lead, mercury, etc., and additional mineral
labels. Reformatting of the input and output data pair and adapting of
the methodology can be achieved on new natural and synthetic mate-
rials. Although SMART mineral mapping is not without limitations,
there are positive prospects for pooling coupled datasets from multiple
samples or combining datasets from hard, tender, soft, or even 3D x-ray
beamlines to achieve extended SMART mineral mapping. Generated
maps can be further utilized in geochemical reactive transport modeling,
as such a tool requires precise parameterization of thermodynamic sta-
bility, kinetics of reactions, and morphological and surface area evolu-
tion all of which are driven by mineralogical composition and spatial
distribution.
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Computer code and data availability

Data and computer code are available and accessible on Digital
Rocks Portal (Prodanovic et al., 2015), as project “Eagle Ford Shale:
Synchrotron-Based Element and Mineral Maps” (Peters and Kim, 2020).
[https://www.digitalrocksportal.org/projects/258].
Software required

Larch (Newville 2013), MATLAB.

Program language

MATLAB.
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Program/data size

1.2 GB (EFS1), 7.1 GB (EFS2), 3.9 MB (sample input data), 11.1 MB
(trained neural network), and 3.5 KB (MATLAB script for data reading).

Instructions

See project data branches in Digital Rocks Portal for detailed
instructions.
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