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A B S T R A C T   

Accurate characterizations of mineral reactivity require mapping of spatial heterogeneity, and quantifications of 
mineral abundances, elemental content, and mineral accessibility. Reactive transport models require such in
formation at the grain-scale to accurately simulate coupled processes of mineral reactions, aqueous solution 
speciation, and mass transport. In this work, millimeter-scale mineral maps are generated using a neural network 
approach for 2D mineral mapping based on synchrotron micro x-ray fluorescence (μXRF) data. The approach is 
called Synchrotron-based Machine learning Approach for RasTer (SMART) mapping, which reads μXRF scans and 
provides mineral maps of the same size and resolution. The SMART mineral classifier is trained on coupled μXRF 
and micro-x-ray diffraction (μXRD) data, which is what distinguishes it from existing mapping tools. Here, the 
SMART classifier was applied to μXRF scans of various sedimentary rock samples including consolidated shales 
from the Eagle Ford (EFS1), Green River (GRS1), Haynesville (HS1), and New Albany (NAS1) formations and a 
syntaxial vein from the Upper Wolfcamp formation. The data were obtained using an x-ray microprobe at 
beamline 13-ID-E at the Advanced Photon Sources. Individual mineral maps generated by the SMART classifier 
well-captured distributions of both dominant and minor phases in the shale rocks and revealed EFS1 and GRS1 to 
be carbonate rich shales, and NAS1 and HS1 to be sulfide rich shales. The EFS1 was further characterized for its 
trace mineral abundances, grain sizes, trace element composition, and accessibility. Approximately 4.4 wt% of 
the rock matrix were found to be pyrite, with a median grain size of 3.17 μm in diameter and 62% of the grains 
predicted to be smaller than 4 μm. Quantifications of trace elements in pyrite revealed zinc concentrations up to 
4.2 wt%, along with minor copper and arsenic copresence. Mineral accessibility was examined by contact with 
other phases and was quantified using a new type of image we are calling an adjacency map. Adjacency analyses 
revealed that of the total pyrite surface present in the EFS1, 28% is in contact with calcite. The adjacency maps 
are useful for quantifying the likelihood that a mineral could be exposed to fluids after dissolution of a contacting 
reactive phase like calcite. Lastly, pooling data from different samples was demonstrated by training a classifier 
using two sets of coupled μXRF-μXRD data. This classifier yielded an overall accuracy of >96%, demonstrating 
that data pooling is a promising approach for applications to a wide suite of rock samples of different origin, size, 
and thickness.   

1. Introduction 

Visualizing the spatial patterns of minerals in sedimentary geologic 
media is essential to characterizing reactivity and associated properties 
of porosity, permeability, wettability, toxicity, strength, and texture. 
The ability to mineralogically map millimeter-scale areas with micro
meter scale resolution is especially important in the context of surficial 

and subsurface processes such as CO2 sequestration, hydraulic frac
turing, geothermal energy production, nuclear waste management, solid 
mine waste management, and groundwater quality control. Reactive 
transport models are used to describe relevant geochemical reactions 
and transport processes in these systems (Deng et al., 2021), and 
modeling efforts rely on characterization of mineral reactivity including 
information about the elements and minerals that are present and their 
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abundances, spatial and size distributions, and extent of accessibility. 
Furthermore, the ability to resolve mineral characteristics down to 
grain-scales is critical because in geologic media like sedimentary rocks, 
reaction kinetics and mass transport processes are operative at these 
scales (Baek et al., 2019; Crandell et al., 2012; Ma et al., 2021). 

There is further motivation to not only identify and map the minerals 
but also have a way of elementally characterizing the mineral phases as 
minerals in natural environments serve as host phases to foreign and 
critically important elements with regard to toxicity or value (Hunter 
et al., 2020; Ling et al., 2018). It has also been observed that fluid-rock 
interactions can cause reactive minerals to dissolve and expose toxic 
element-bearing mineral phases such as pyrite, leading to liberation of 
toxic or critical elements such as arsenic that can cause serious envi
ronmental concerns (Deng et al., 2020; Kreisserman and Emmanuel, 
2018; Zhang et al., 2017). Other literature have found that elemental 
composition, stoichiometry of elements, or incorporation of foreign ions 
dictate the kinetics of reactions (Glynn et al., 1990), further motivating 
the need to identify and quantify chemically heterogeneous minerals in 
many environmental engineering and earth sciences contexts. 

There have been many advancements in mineral characterization 
utilizing x-ray or electron-based imaging techniques in 2D and in 3D 
(Asadi and Beckingham, 2021; Beckingham et al., 2016; Ellis and Peters, 
2016; Lai et al., 2015; Landrot et al., 2012; Peters, 2009; Qin and 
Beckingham, 2021). The aforementioned literature demonstrate that 
with maps of minerals, quantification and localization of mineral pha
ses, quantification of grain sizes as well as differentiation of reactive and 
non-reactive minerals are possible. These efforts also highlight that 
many decisions about model resolution and spatial averaging can be 
obtained from spatial visualization of minerals. Other literature have 
highlighted the significance of accurate mineral descriptions on the 
evolution of solution chemistry, effective reaction rates, extent of me
chanical deformation or fracture propagation (Glassley et al., 2002; Li 
et al., 2006, 2007; Liu et al., 2017; Spokas et al., 2018). With fast ad
vancements in synchrotron-based techniques that enable resolution of 
micron- and even nano-meter scales, there remains opportunities to 
improve mineral mapping and reactivity characterizations. 
Synchrotron-based 2D element maps are readily generated by micro
probe beamlines and carry valuable information to characterize 
elemental stoichiometry, content and distribution. With machine 
learning, we are extending these capabilities to characterize not just 
elements but also mineral features. 

This work provides new applications of a recently-developed tool for 
2D mineral mapping based on synchrotron μXRF data, i.e., Synchrotron- 
based Machine learning Approach for RasTer (SMART) mineral mapping 
(Kim et al., 2021). Briefly, the SMART mineral classifier is a neural 
network trained on a coupled micro x-ray fluorescence (μXRF) and 
micro x-ray diffraction (μXRD) dataset. Once trained, the classifier can 
be applied directly to new μXRF data to predict the minerals. Because of 
its use of XRD data in the training data, the SMART classifier brings a 
critical improvement to existing tools because of the potential to 
differentiate minerals of similar chemistry, stoichiometry, or minerals 
with impurities. Conventional methods of spatial mapping are unable to 
map multimineral presence in a single pixel and the SMART classifier 
approach is distinguished from existing methods for this capability. For 
a comprehensive review of other methods and recent advancements for 
2D mapping, see Kim et al. (2021). With the application of the SMART 
classifier to extract mineralogical information from μXRF scans, syn
chrotron x-ray microprobes now carry even more value and potential to 
improving descriptions of mineral reactivity. 

This work utilizes methodologies presented in Kim et al. (2021) and 
goes beyond to demonstrate complex applications of SMART mineral 
classification including qualitative and quantitative interpretations of 
mineral maps for improved mineral reactivity descriptions. While that 
prior work presented new application such as classifier training and 
upscaling, this work details ways in which 2D mineral maps can provide 
descriptions such as abundances, trace element presence, grain sizes, 

and accessibilities in fine-grained materials. Here, we trained a SMART 
mineral classifier on a new dataset compiled from two rock sources, and 
we evaluated performance on a known dataset from a sample of the 
Eagle Ford shale. The newly trained SMART classifier was then applied 
to scans of four other natural rock samples of different origins to 
demonstrate the power of this machine learning method in generating 
mineral maps from μXRF scans for which no μXRD data were collected. 
The remainder of the paper focuses on the Eagle Ford shale to quantify 
trace element composition and identify its host mineral phase using the 
generated mineral maps. An analysis of the grain size distribution was 
done for pyrite in the Eagle Ford sample, which required stereology to 
extract this 3D information from 2D images. Regarding mineral acces
sibility, we introduce mineral adjacency as a new definition of mineral 
accessibility that is appropriate for consolidated geologic media such as 
shales. We have defined this not by access to pore-space fluids, as is the 
norm for porous granular material, but by contact with a mineral phase 
that may dissolve away. To achieve this, a new type of 2D representation 
called an adjacency map is presented, where mineral contact lines are 
delineated, and specific surface areas are calculated. 

2. Rock samples 

In this work, five different sedimentary rock samples were charac
terized. One shale originates from the Eagle Ford formation, which spans 
southeastern Texas. The Eagle Ford shale sample (EFS1) is characterized 
in detail because its high carbonate content makes it susceptible to hy
drologic and mechanical property changes (Spokas et al., 2019), and 
because of the fine scale distribution of sulfide phases within matrices of 
silicate minerals (Deng et al., 2020). A sample originating from the 
Upper Wolfcamp formation (UW1) of Texas was also studied in an 
attempt to characterize the mineralogy of a wide syntaxial carbonate 
vein. Additional characterizations and 3D xCT images of the UW1 
sample are provided elsewhere (Peters et al., 2021). Three other shale 
samples were studied: Green River shale (GRS1) underlying Colorado, 
Wyoming, and Utah, New Albany shale (NAS1) of the Illinois basin, and 
Haynesville shale (HS1) underlying Arkansas, Texas, and Louisiana. This 
suite of rock samples is ideal for demonstration of upscaling capabilities 
and direct applicability of the SMART method because of the variability 
in sample sizes, thickness, and granular sizes. Fig. 1 presents images of 
some of the samples prior to sectioning and the images show unique 
textural features of each rock sample. The EFS1 and UW1 thin sections 
were prepared by Spectrum Petrographics (Vancouver, WA), and the 
GRS1, NAS1, and HS1 samples were prepared as polished thick (~mm) 

Fig. 1. Sample images of select rock samples studied prior to thin sectioning: 
(a) EFS1 core; (b) GRS1 slab; (c) UW1 bulk sample showing the horizontal vein 
with intermittent void space. 
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samples. 

3. Methods 

3.1. Synchrotron μXRF data acquisition and analysis 

All synchrotron experiments were performed at the hard x-ray 
microprobe, beamline 13-ID-E, at the Advanced Photon Source (Lan
zirotti et al., 2016; Sutton et al., 2017). The incident energy was set to 
17.5 keV for UW1, and 18 keV for EFS1, GRS1, HS1, and NAS1. The 
μXRF data were collected in raster scanning mode using a high-speed 
silicon drift diode detector located 90◦ to the incident beam. Dwell 
times for the μXRF scans ranged from 20 ms to 100 ms. The scans sizes 
and resolutions are as follows: EFS1 scan was 500 μm by 500 μm with 
pixel resolution of 2 μm, UW1 scan was 6 mm by 4.4 mm with pixel 
resolution of 5 μm, GRS1 scan was 0.5 mm by 8.4 mm with pixel reso
lution of 3 μm, HS1 scan was 0.5 mm by 10 mm with pixel resolution of 
3 μm, and NAS1 scan was 0.8 mm by 8 mm with pixel resolution of 3 μm. 
For GRS1, HS1, and NAS1, the long dimension was perpendicular to the 
sedimentary bedding plane. For the scan of EFS1, μXRD data was also 
collected for neural network training. 

To generate individual element maps, the XRF intensity data is used 
directly, without the machine learning algorithm. Analyses were per
formed using LARCH: GSE Mapviewer (Newville 2013), and the 
resulting element maps have color gradients that are representative of 
concentrations. 

To approximate weight percentages of trace elements, NIST 
SNRLXRF was used to interpret μXRF data at select pixels. Theoretical 
fluorescence intensities of a range of compositions were calculated and 
calibration curves were built to estimate weight percentages. In this 
work, the focus was on quantifying trace elements in pyrite and calcite. 
See the Supplementary Material and Deng et al. (2020) for details. 

3.2. SMART training and application 

One of the research objectives was to compare performance of two 
SMART mineral classifiers trained on different data sets. One was 
trained on the coupled μXRF-μXRD data set from EFS1, and one was 
trained on a dataset that combined EFS1 with data from a scan of a 
mixture of mineral standards (which we call ‘mineral mixture’). Both of 
these datasets are introduced elsewhere (Kim et al., 2021), but using 
them as a pooled dataset for neural network training is new in this work. 
The mineral mixture is composed of 6 standards including calcium 
carbonates, iron sulfides, and manganese oxides. See the Supplementary 
Material for element maps from the mineral mixture sample. The pur
pose of this mixture was to introduce mineral phases with similar stoi
chiometric ratios (pyrite and pyrrhotite) and with similar elemental 
makeup (calcite, aragonite, and dolomite). Dolomite is not the same 
chemical formula as calcite and aragonite, but the magnesium is not 
detectable in a beamline that uses hard x-rays, so the μXRF data appear 
to be similar. 

In a SMART training data set, each data point consists of an XRF 
spectrum interpreted as fluorescence intensities of 8 elements (listed in 
Table 1) and an XRD diffraction pattern interpreted in terms of presence 
or absence of 26 possible minerals, which included carbonates, sulfides, 
oxides, and silicates. The μXRD analyses in the pixels selected for the 
original training data set for EFS1 revealed three dominant minerals 
(Table 1) and therefore the EFS1-trained SMART classifier is capable of 
identifying and mapping only these three minerals. This classifier was 
intended to be applied for self-similar upscaling to larger μXRF scans of 
Eagle Ford shale. Total of 6 mineral phases were identified in the min
eral mixture sample (Table 1) and of those minerals, two overlapped 
with the minerals originally identified in EFS1. Combining these data
sets, a total of 7 minerals could be identified using the SMART classifier 
trained on the pooled data. Details about training with this pooled 
dataset, error evolution, and the stopping criteria set to minimize 

overfitting can be found in the Supplementary Material. The μXRF scans 
of UW1, GRS1, NAS1, and HS1 were interpreted by applying the clas
sifier trained on the pooled data, taking into account differences in the 
sample thickness and incident energy among different samples. 

In a mineral map, for each pixel, j, the raw output of the SMART 
mineral classifier (P) is a continuous variable between 0 and 1 for each 
mineral i, and the value, Pij, is representative of the likelihood of pres
ence of that mineral. To generate individual mineral maps, this 
continuous variable is plotted as a color gradient in every pixel. As a 
result, 7 individual mineral maps, each with the same pixel resolution as 
the original μXRF scans, were generated EFS1 and UW1. To generate a 
multimineral map, where only one mineral is allowed for each pixel, Pij 
were examined, and the largest value indicated the mineral assigned to 
that pixel. Multimineral maps are presented for EFS1, GRS1, NAS1, and 
HS1. 

3.3. Abundance estimates and quantitative powder XRD analysis 

Abundance estimates for the minerals identified via the SMART 
classifier were determined from Pij values. The total volume fraction, Fi, 
for each mineral phase was calculated by 

Fi =
1
N

∑N

j=1

Pij
∑m

i=1Pij
(1)  

where m is the total number of minerals, and N is the total number of 
pixels. Note that for randomly oriented objects, area fractions in 2D 
images are representative of volume fractions in 3D, according to the 
principle of Delesse (Weibel, 1989). The volume fractions were con
verted to weight fractions using the respective densities of each mineral 
phase. For EFS1, these weight fractions were compared to quantitative 
powder XRD data for a larger sample of the rock (Kim et al., 2021). 

For the GRS1 sample scanned without μXRD data collection, separate 
powder XRD analyses were conducted for the purpose of comparing with 
results of the mineral classifier. Bruker D8 Advance X-Ray diffractom
eter with Ag Kα radiation (wavelength of 0.559 Å) was used to collect 
the diffraction data between a two-theta range of 3◦and 20◦ with a step- 
size of 0.025◦. Post analysis was done using the peak matching software 
DIFFRAC.EVA. The labelled XRD pattern can be found in the Supple
mentary Material. 

3.4. Pyrite grain size distributions 

In models of mineral reactivity, grain size distributions are needed to 
guide decisions on model resolution and for potential application to 
higher dimensional modeling. To demonstrate how 2D mineral maps 

Table 1 
Summary of training data sets from EFS1 and from the pooled data (EFS1 and 
mineral mixture).   

EFS1 training data Pooled training dataset 

Elements Sulfur Sulfur 
Potassium Potassium 
Calcite Calcite 
Titanium Titanium 
Manganese Manganese 
Iron Iron 
Arsenic Arsenic 
Strontium Strontium 

Minerals Calcite (CaCO3) Calcite (CaCO3) 
Pyrite (FeS2) Aragonite (CaCO3) 
Quartz (SiO2) Dolomite ((Ca,Mg)(CO3)2) 

Pyrite (FeS2) 
Pyrrhotite (FeS) 
Pyrolusite (MnO2) 
Quartz (SiO2) 

Number of training pixels 192 472  

J.J. Kim et al.                                                                                                                                                                                                                                    



Applied Geochemistry 136 (2022) 105162

4

can be used to predict the grain size distribution of pyrite, we employed 
principles of stereology (Sahagian and Proussevitch, 1998), which is a 
means of generating 3D interpretations of materials using 2D imaging. 
Using the individual pyrite mineral map for EFS1, the area of each pyrite 
object was determined by pixel counting and assigned an equivalent 
circle diameter. To extrapolate to 3D, we assumed a simple polydisperse 
system of spheres to represent the grains. Determination of the corre
sponding spherical objects is based on using the probability of 
cross-sections originating from a sphere of a particular size. This is 
necessary because a 2D plane cuts through any possible slice of a sphere 
that it intersects, and a probabilistic approach is needed to assign sphere 
diameters to the 2D circular objects. In this work, geometric class sizes 
were selected, where each interval is smaller by a factor of 10−0.1. It is 
important to note that the assumption of spherical particles may not 
closely represent reality, however, this assumption may be reasonable as 
pyrite phases are often found as framboids in sedimentary rocks 
(Kreisserman and Emmanuel, 2018; Liu et al., 2019). It is also important 
to recognize the potential for underestimation of the number grains of 
smaller sizes when assuming a spherical shape (Sahagian and Prousse
vitch, 1998), but results still gave valuable insights into approximate 
size distributions of pyrite. 

3.5. Pyrite accessibility and quantification of specific surface areas 

Accessibility was analyzed via generation of adjacency maps derived 
from individual mineral maps. Each pixel at the boundary of a mineral is 
distinguished based on what mineral phase it is contacting, and the total 
perimeter line lengths are apportioned by pixel counting. This analysis is 
independent from the grain size analysis, and there are no assumptions 
of spherical grains. 

Total specific surface areas for calcite and pyrite were also calcu
lated. The surface area values here are different from the conventional 
quantity of surface area in sedimentary media which quantifies contact 
with pore space (or the fluid phase). Here, surface area of a mineral 
phase is the surface of the mineral adjacent to other minerals. The 
approach is as follows. The 2D adjacency maps are used to calculate a 
mineral’s perimeter density value which is the total mineral perimeter 
length divided by that mineral’s total image area, yielding a value with 
units of inverse length. If one imagines integrating sequential 2D planes 
through a 3D medium, the perimeter density is an estimation of the 
mineral’s total boundary surface area divided by the total mineral vol
ume, which is called specific surface area and has units of inverse length. 
In this work, a range was reported to account for the pixelation of 
boundaries and the fact that the correct length might be the pixel length, 
or it might be the hypotenuse, or anything in between. The specific 
surface area values are presented here in conventional units of m2/g, 
using densities of the mineral phases. 

This analysis is discussed in this paper in the context of mineral 
accessibility. On the principle that carbonate phases are soluble, espe
cially in acidified solutions, we ultimately sought to quantify the amount 
of pyrite surface that is in contact with calcite as opposed to quartz. 

4. Results and discussion 

4.1. Demonstration of mineral classifier applications and mapping 
capabilities 

In this section, we present the results of application of the pooled- 
data-trained SMART classifier to the EFS1 scan to assess improve
ments in mineral characterizations. The pooled-data-trained classifier 
was found to have an exceedingly low misclassification rate of <4% for 
all minerals included here. See Supplementary Material for a summary 
of the misclassification rates and quantifications of false predictions for 
each mineral phase. Compared to the EFS1-trained classifier perfor
mance, calcite misclassification rate decreased by 1% while pyrite 
misclassification rate increased by 1.5%. Such small changes conclude 

neither a significant improvement nor a decline in the classifier per
formance, and visual comparison of maps generated from the EFS1- 
trained classifier and the pooled-data-trained classifier did not yield 
any major differences. One notable improvement is in the additional 
identification of dolomite in the Eagle Ford shale (Fig. 2), which was not 
captured in the self-similar analysis of EFS1 using the original EFS1- 
trained classifier (Kim et al., 2021). The presence of dolomite training 
data from the mineral mixture has allowed for identification of dolomite 
in EFS1, which was likely to have been labelled as calcite using 
EFS1-trained classifier. This shows prospects for utilization of mineral 
standards to expand on the number of identifiable minerals. Combining 
information from the individual mineral maps and the multimineral 
map (Fig. 2), it can be seen that the calcite areas are mostly homoge
neous and the other areas containing quartz are more mineralogically 
heterogeneous, embedding phases like dolomite or pyrite. Aragonite, 
pyrrhotite, and pyrolusite presence appear to be negligible in the EFS1. 

Here we also present the mineral mapping and element character
izations for the vein sample (UW1) using the pooled-data-trained clas
sifier. A grayscale image highlights many features of the vein area 
(Fig. 3a) and the SMART-generated mineral maps are also presented in 
Fig. 3. The mineral maps of 5 μm resolution reveal a vein that is a former 
fracture filled with calcite, quartz, and large dolomite crystals. Pyrite 
grains are observed to be scattered throughout the inner and outer 
matrices of the vein. Elemental data from the μXRF scans were examined 
together with the dolomite- and calcite-labelled regions, and it was 
concluded that most of the iron is in the dolomite crystals (ferroan 
dolomite), and to a lesser extent in the calcite. NIST NRLXRF-based 
quantifications of the extent of iron incorporation in the carbonates 
revealed approximately 0.3 wt% in the slightly iron rich regions and 
upto 22 wt% in the highly iron rich regions. 

Additionally, as seen in Fig. 3h, the remaining void content in the 
vein was distinguished in UW1. A secondary thresholding step of the 
classifier output for quartz, which involved separating out two groups of 
pixels, was conducted. This was done in order to identify locations of the 
void space, which was informed via absence of detectable elements. 
Although initially predicted as quartz by the classifier, this false pre
diction is most likely due to lack of training data on blank or empty 
pixels. While the SMART classifier is not a suitable tool for void or pore 
space segmentation, the probable areas of empty pixels can be distin
guished via secondary thresholding of the classifier output. 

Application of the pooled-data-trained SMART classifier to three 
other shale samples is shown in Fig. 4. The dominant element map for 
each rock sample is presented to complement the multimineral map 
(Fig. 4b, 4f, 4h). The multimineral maps reveal that the GRS is domi
nated by dolomite, with presence of other commonly found minerals 
such as pyrite or calcite (Fig. 4a). This characterization agrees well with 
minerals identified in the powdered XRD data obtained from a different 
location of the Green River shale core (Supplementary Material) and are 
in line with the minerals identified in this particular geologic formation. 
It is however also likely that this fine-grained sedimentary rock contains 
other minerals not listed in Fig. 4, as the powder XRD indicates presence 
of other minerals like analcime or chalcopyrite. The XRF scans also 
revealed presence of trace elements such as Ti, Sr or As, which may be 
hosted by these unidentified mineral phases. Two other shales, NAS1 
(Fig. 4e) and HS1 (Fig. 4g) exhibited dominance of iron, calcium, and 
manganese rich mineral fractions, and iron rich mineral fractions, 
respectively. Both NAS1 and HS1 exhibit the expected fine-grained na
ture of shales, while HS1 embeds larger grains of dolomite throughout 
the shale matrix. The ability to obtain multi-millimeter mineral maps 
with the same resolution as the original scan within seconds and without 
additional training data or XRD data collection is clearly an improve
ment to existing methods of spatial characterization. 

4.2. Quantification of mineral abundances 

Quantification of the mineral abundances revealed that the EFS1 is 
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calcite and quartz rich, and contains approximately 4.4 wt% pyrite 
(Table 3) and other sulfide and carbonate minerals. For pyrite, the 
predicted weight fraction is higher than the pyrite weight fraction 
estimated by powder XRD, and differences may be due to comparison of 
weight fractions from different parts of the rock sample or due to the 
detectable limit of laboratory powder XRD. By comparison, an aggregate 
calculation of pyrite in the more conventional multimineral map 
(Table 2), where only one mineral presence is allowed for each pixel, 
revealed underestimation of the mineral abundance. This is likely due to 

the higher probability of calcite or quartz presence in each pixel in this 
carbonate- and silicate-rich shale rock, which led to missing nearly half 
of pyrite copresence. All other minor phases (i.e., aragonite, pyrrhotite, 
and pyrolusite) were also completely missed in the multimineral case, 
indicating that multimineral maps are more susceptible to underesti
mation of mineral phases presence, especially those that are masked or 
surrounded by more dominant phases. Small discrepancies in the weight 
fractions can be considered within error of the analysis; however, 
detailed elemental analyses may reveal motivation to capture even the 

Fig. 2. Mineral maps of EFS1 of size 500 μm by 500 μm generated using the SMART classifier trained on the pooled data. (a) Generated 2 μm resolution multimineral 
map, where only one phase is assigned for a single pixel, and (b–h) carbonates, sulfides and manganese oxide maps for individual minerals. Each mineral category 
uses a unique color bar and the color bar indicates likelihood of presence. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 3. UW1 mineral maps of size 6 mm by 4.4 mm generated using the pooled-data-trained classifier. (a) A grayscale image showing distinct mineral features of the 
vein which is approximately 5 mm wide, and (b–h) individual mineral maps of 7 minerals (5 μm resolution). In (h), for quartz, the brightest spots show the probable 
locations of the pore space (empty pixels) distinguished based on a secondary thresholding step. 
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smallest amounts of mineral phases like pyrite, as this sulfide mineral is 
likely to bear toxic impurities. This is further discussed in the next sec
tion. Quantifications of maps generated by the EFS1-trained classifier 
(labelled 3 individual mineral maps) are also shown in Table 2 for 
comparison. Most notably, the 7-mineral trained classifier revealed a 
new mineral phase presence, dolomite, although this is a phase that was 
also not captured by previous powder XRD analyses. Further work 

remains to be done to determine whether dolomite presence is real, 
however, there is evidence in the literature of dolomite presence in the 
Eagle Ford shale (Kreisserman and Emmanuel, 2018). Generally, 
quantifications from all four methodologies presented in Table 2 still 
agree well in terms of the patterns of carbonate mineral dominance, 
followed by silicate (quartz) and sulfide mineral presence in the Eagle 
Ford shale sample. 

Abundance quantifications were also done for the vein sample, UW1, 
and the rock samples, GRS1, NAS1, and HS1 (Table 3). Pixel-by-pixel 
analyses revealed numerous pixels with multimineral presence, which 
is expected from fine-grained shales. Minerals such as pyrolusite and 
quartz in UW1, and GRS1 and NAS1, respectively, were found to be 
present at negligible amounts. All shale rocks were found to contain 
significant fractions of carbonate and sulfide minerals, and from this 
analysis, NAS1 and HS1 were characterized as sulfide rich shales, and 
GRS1 as a mixed shale. The syntaxial vein UW1 was found to be domi
nantly carbonate filled, with quartz presence likely to be concentrated in 
the surrounding rock matrix (Fig. 3h). 

4.3. Trace element mapping and quantifications 

In this section, we focus on pyrite in the Eagle Ford shale for analysis 
of trace element presence. After mapping locations of pyrite grains, 
detailed trace element mapping and quantifications of that mineral 
phase was possible. The trace element maps, which are now known to be 
correlated with pyrite, are presented in Fig. 5, along with the maps of 
two dominant elements in pyrite, iron and sulfur. The maps reveal that 
pyrite is the most dominant phase to host three important trace ele
ments, arsenic, copper, and zinc, but there is also association of zinc and 
arsenic with calcite. Such carbonate-metal associations have been 
observed in nature and as secondary minerals (Costagliola et al., 2013; 
Hunter et al., 2021), however, spatial correlation of the trace elements is 
higher with the pyrite phase and this finding is expected as sulfide 
minerals are the primary ores of these elements (National Research 
Council, 1977; Ivanov et al., 2020). 

With knowledge of the host mineral phase of trace elements, element 
abundances were calculated for EFS1. XRF intensities were interpreted 
to reveal abundances of arsenic, zinc, and copper associated with pyrite 

Fig. 4. Multimineral maps of (a) GRS1 (e) NAS1 and (g) HS1, and select element maps of (b) calcium from GRS1, (f) iron from NAS1, and (h) iron from HS1. Mineral 
maps of GRS1 and HS1 have been truncated and do not depict the full length of the original scans. Right two panels (c) and (d) are close-up mineral and element maps 
from the boxed area of GRS1, respectively, capturing fine scale distribution of minerals and calcium, iron, and sulfur in the rock. 

Table 2 
Quantification of minerals as weight percentages obtained via different mineral 
maps from the EFS1 scan. Also included are powder XRD analyses of a specimen 
from the Eagle Ford rock sample.   

7 individual 
mineral 
maps 

Multimineral 
map (one mineral 
per pixel) 

3 individual 
mineral 
maps 

Powder 
XRD 

Aragonite 1.2% 0% –  
Calcite 46% 52.8% 58.2% 70.7% 
Dolomite 16.4% 12.1% –  
Pyrite 4.4% 2.1% 2.9% 1.4% 
Pyrrhotite 2.1% 0% –  
Pyrolusite 0.7% 0% –  
Quartz 29.1% 33.0% 34.4% 25.8% 
Unidentified/ 

Kaolinite 
– – 4.4% 2.1%  

Table 3 
Quantification of minerals as weight percentages obtained for different rock 
samples.   

Vein sample Shale rock samples  

UW1 GRS1 NAS1 HS1 

Calcite 13.9% 15.2% 3.1% 2.0% 
Aragonite 2.0% 11.8% 11.4% 11.9% 
Dolomite 47.7% 23.3% 9.9% 10.3% 
Pyrite 11.6% 41.6% 26.5% 23.8% 
Pyrrhotite 6.1% 3.2% 18.5% 21.0% 
Pyrolusite 0.5% 4.8% 29.7% 29.4% 
Quartz 18.0% 0.1% 0.8% 1.6%  
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and calcite. Elemental abundance estimations inform us that pyrite is 
most enriched in zinc, followed by copper and arsenic. The ternary di
agram in Fig. 6 presents the relative abundances of the three elements in 
each pixel and it is revealed that pyrite pixels are quite heterogeneous in 
terms of their composition. While the trend in the ternary diagram 
shows pyrite spots populating the zinc corner, there are still numerous 
spots where all three elements coexist and the tri-color map of the three 
elements (Fig. 6) visually captures this heterogeneity. In pyrite, zinc 
ranged from 0 to 4.2 wt%, arsenic ranged from 0 to 0.05 wt%, and 
copper ranged from 0 to 0.35 wt%. Concentrations observed in this 
Eagle Ford shale sample are in fair agreement with observed concen
trations of the three elements in other shales; 0.0034–8.8 Zn wt%, 
0.0071–0.08 As wt%, and 0.0241–0.708 Cu wt% (Ivanov et al., 2020). 
Quantifications of the overall trace element weight percent in the cal
cium carbonate phase revealed negligible maximum weight fraction of 
zinc, arsenic, and copper at 10−2.76, 10−5.69, 10−3.67 wt%, respectively, 
further indicating that the majority of the trace metal(loid)s are found in 
the sulfide phase. 

4.4. Size distributions of pyrite and its accessibility 

Estimated 3D grain size (diameter) distribution of identified pyrite 
grains are presented for EFS1 (Fig. 7). Of the total number of pyrite 
objects identified in the 500 μm by 500 μm cross section, grain size 
analyses reveal that 62% of the pyrite grains are less than 4 μm in 
diameter and this phase has a median diameter of 3.17 μm. With the 
finer resolution of the SMART-based maps, the detectable limit of the 
pyrite grains is as small as 2.26 μm in diameter. Still, as the shape of the 
histogram in Fig. 7 suggests, it is likely that pyrite grains in the Eagle 
Ford shale dominate sizes that are near the detectable limit of this 
approach. However, this is one of few applications of 2D mineral maps 
to characterize grain size distributions for pyrite, and estimated values 
for the diameters are close to reported mean diameters of framboidal 
pyrite in other shales which range from 3.0 to 6.7 μm in diameter (Liu 
et al., 2019; Wilkin et al., 1996). This information, coupled with the 
additional information of accessibility to these small grains, will be 
valuable to modelers who seek to determine the extent of pyrite’s effect 
on solution chemistry. 

To visualize and quantify the surface areas and accessibilities of 
minerals, adjacency maps for pyrite and calcite in EFS1 were generated 

Fig. 5. SMART classifier generated map (500 μm by 500 μm) of pyrite in EFS1 with micron-scale resolution. Also shown in the bottom row are dominant and trace 
element maps. Black indicates absence. 

Fig. 6. A ternary plot depicting relative abundances of the three elements, Zn, As, Cu, in pyrite spots in EFS1. Weight percentages were normalized to 1 for graphical 
representation. 
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(Fig. 8). These maps are especially useful for visualizing and identifying 
the pyrite grains deemed more accessible and therefore potentially more 
mobile or reactive. From qualitative analysis of Fig. 8, it appears that 
some of the pyrite is fully encased in quartz, although this cannot be 
known with certainty because of the lack of information in the third 
dimension. Based on quantitative analyses of the contact line maps, it is 
estimated that only approximately 28% of the total pyrite surface is 
adjacent to calcite (Table 4), indicating the remaining surfaces to be in 
contact with a relatively more stable quartz phase. Whether such a 
mineral phase needs to be considered in reactive transport modeling is a 
decision to be made, and adjacency maps can serve as a useful tool to 
enable these decisions. 

The total specific surface area of calcite and pyrite were also esti
mated, and the values fall within ranges of 0.026–0.04 m2/g and 
0.07–0.1 m2/g, respectively. Although it is unconventional to report 
total specific surface area for consolidated rocks (for reasons discussed 
in section 3.5), these values fall within previously reported Bru
nauer–Emmett–Teller (BET) derived values for specific surface area 
accessible by pore space, 0.01–1.1 m2/g and 0.03–0.5586 m2/g for 

calcite and pyrite, respectively (Beckingham et al., 2016 and references 
therein). 

5. Conclusions 

In this paper, we presented applications of the SMART mineral 
classifier to generate 2D millimeter-scale maps of minerals for a wide 
range of natural rock samples by combining μXRF data from different 
samples. Training data were pooled from two samples to demonstrate 
the extension of a classifier to predicting a wider suite of minerals, and 
performance of this updated classifier demonstrated misclassification 
rates of less than 4% for all minerals. Furthermore, this work highlighted 
advantages of sub-pixel mineral characterizations, or the ability to 
identify and quantify multiple minerals per pixel, which is a unique 
feature of the SMART method yet to be achieved by existing mapping 
methods. In providing further applications, SMART-generated maps 
were used to qualitatively and quantitatively to describe mineral reac
tivity. Mineral maps were coupled to XRF maps of trace elements to 
define the host minerals of trace elements which could be of environ
mental concern. This way, the weight percentages of the trace elements 
could be quantified, and in the EFS1 sample, pyrite was revealed to be 
the dominant host phase of toxic elements such as zinc (up to 4.2 wt%) 
and copper. (up to 0.35 wt%). Predictions of expected grain sizes were 
also done for the pyrite phase in EFS1, as this phase was identified as 
chemically heterogeneous and distributed throughout the calcite and 
quartz matrices of the Eagle Ford shale. It was revealed that more than 
62% of the pyrite grains are less than 4 μm in diameter, and the shape of 
the histogram for the size distribution suggests dominance of grains near 
the detectable limit of grain sizes. Mineral accessibility in this work was 

Fig. 7. Histogram of pyrite grain size distribution for the grains identified in the 500 μm by 500 μm EFS1 2D map of pyrite. Objects in the map were transformed to 
spherical objects based on stereological probabilistic principles. 

Fig. 8. Adjacency maps of pyrite (left) and calcite (right) in EFS1. Cal-Py corresponds to calcite contacting pyrite (or pyrite contacting calcite), while Qtz-py, Qtz-Cal, 
and Py-Cal correspond to quartz contacting pyrite, quartz contacting calcite, and pyrite contacting calcite, respectively. 

Table 4 
Mineral adjacency quantification in EFS1 based on analysis of contact with 
adjacent minerals, and quantification of total specific surface areas.   

% Pyrite 
boundaries in 
contact with 

% Calcite 
boundaries in 
contact with 

Total Specific 
Surface Area 
(μm−1) 

Total Specific 
Surface Area 
(m2/g) 

Calcite 28.3%  0.07 to 0.1 0.026 to 0.04 
Quartz 71.7% 63.1%   
Pyrite  36.9% 0.35 to 0.50 0.07 to 0.1  
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newly defined in terms of adjacency to specific mineral phases, as some 
minerals are more soluble than others and therefore the evolution of 
potential pathways to the embedded mineral phase will be different. 
This is different from the conventional way of defining specific surface 
area which is done in the context of exposure to pore space. For the two 
reactive phases in EFS1, calcite and pyrite, total specific surface areas 
were calculated from analysis of contact with reactive mineral phase(s) 
and compared to conventional values obtained from analysis of contact 
with pore space. Results presented in this paper demonstrate ways in 
which micron-scale 2D mineral maps can be useful for improving 
characterizations and quantifications of mineral reactivity, and how 
mineral maps are made especially more valuable via coupling with 
element maps. Applications of the methodology to a new subset of rock 
samples of different origin, and incorporation of other relevant mineral 
phases to existing classifiers remain as future work. 
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