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Queueing models that are used to capture various service settings typically assume that customers require
a single unit of resource (server) to be processed. However, there are many service settings where such an
assumption may fail to capture the heterogeneity in resource requirements of different customers. We propose
a multi-server queueing model with multiple customer classes in which customers from different classes may
require different amounts of resources to be served. We study the optimal scheduling policy for such systems.
To balance the holding cost, the service rate, the resource requirement, and the priority-induced idleness,
we develop an index-based policy which we refer to as the idle-avoid cp/m rule. For a two-class two-server
model, where policy-induced idleness can have a big impact on system performance, we characterize cases
where the idle-avoid cu/m rule is optimal. In other cases, we establish a uniform performance bound on the
amount of sub-optimality incurred by the idle-avoid cp/m rule. For general multi-class multi-server queues,
we establish the asymptotic optimality of the idle-avoid cu/m rule in the many-server regime. For long-
time horizons, we show that the idle-avoid cu/m is throughput optimal. Our theoretical results, along with

numerical experiments, provide support for the good and robust performance of the proposed policy.
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1. Introduction

Queueing models are widely used to model service systems. These models typically assume
that customers all require a standard unit amount of the service resource (e.g., one server).
However, there are many applications where customers of different types could have very
different resource requirements. Motivated by such service systems, we propose a class of
multi-server queueing models with multiple classes of customers where different classes of
customers require different units of resources to be served. We study the optimal scheduling
policy for such systems. Our analysis provides insights on how to balance holding cost,
service rate, resource requirement, and idleness in such systems.

In service systems, customers from different classes may have very different service
requirements. These differences may include the duration of the job, the server skill-set

needed, and/or the amount of resources required. (We use the terms customers and jobs



interchangeably.) This is especially prominent in healthcare settings. For example, in the
Intensive Care Unit (ICU), patients are often classified into different acuity levels, each
requiring a different level of medical attention/supervision (e.g. Tarnow-Mordi et al. 2000,
Masterson and Baudouin 2015). High acuity patients on ventilators may require checks
every 15-30 minutes. Thus, there is usually a dedicated nurse taking care of only one such
patient, during his/her shift. On the other hand, one nurse can often manage the workload
required to take care of two patients at lower acuity levels. Due to its high operating costs,
ICUs are often operating near or at full capacity. In this regard, ICU nurses are a very
critical resource, which determines how many patients can be admitted and what level of
care can be provided (Brilli et al. 2001). Although there are empirical studies showing that
the workload of ICU nurses depends on the acuity level of the patients (e.g. Kim et al.
2017, O’Brien-Pallas et al. 1997, Mueller et al. 2010), to the best of our knowledge, incor-
porating different resource requirements based on patients’ acuity has not been explicitly
modeled and studied. Moreover, empirical evidence has shown that ICU workload affects
the quality of care (Carayon and Gurses 2008) and work stress experienced by nurses
(Fachruddin et al. 2019). Thus, carefully understanding the implications of different service
requirements on admission decisions is important for both patients’ safety and employee
satisfaction.

Other healthcare examples include emergency services where differences in the severity
of the case put different requirements on the number of medical staff (Green 1980, Sherali
et al. 1991, Altay 2012); operating rooms where different types of operations have differ-
ent staffing requirements; and inpatient ward units where different levels of care require
different patient-to-nurse ratios (e.g. Chan et al. 2018). Different resource requirements
also arise in various other service systems. For example, in customer contact centers where
agents can communicate with customers via instant messaging or phone call, an agent can
simultaneously handle multiple customers via messaging but only one customer via phone
(Luo and Zhang 2013). Other examples include restaurants and retailing (Green 1980).

When modeling service systems as multi-class queues, the optimal scheduling policy for
systems where each job requires a single server has been studied extensively in literature;
see Section 1.1 for a review of related literature. The key insights derived by this body
of work is the need to carefully balance the holding cost and the service rate. Our work

captures an additional feature in multi-class queueing systems: different classes of jobs



have different resource requirements. Our analysis suggests that in addition to the holding
cost and the service rate, we also have to take into account the resource requirements and
the priority-induced idleness. How to balance these factors can be highly non-trivial. We
use a combination of exact and asymptotic analyses to derive useful structural insights of
the optimal scheduling policies.

Our main contributions can be summarized as follows:

e Modeling. We study a multi-server queuing model with multiple customer classes,
where different classes require different numbers of servers to be served. This model is
relevant for several service operations applications, and is especially important for the ICU
setting. We allow very general demand patterns, including arbitrary time-varying arrival
rates.

e Idle-avoid cp/m rule. To minimize the holding cost, the general intuition is to
prioritize jobs with a larger cu/m index, where c is the holding cost, p is the service rate,
i.e.,, 1/u is the average service time, and m is the number of servers required. The cu/m
index can be interpreted as the cost reduction rate. Thus, maximizing it is equivalent
to maximizing the instantaneous rate of reducing holding costs. However, in some cases,
prioritizing jobs with a higher cu/m index might induce idleness in the system, i.e., some
servers are left idle while there are still jobs waiting in the queue. This is because the
number of idle servers may not be enough to serve any of the jobs waiting in the queue. To
balance the priority-induced idleness and the instantaneous cost reduction rate, we propose
a modification to the classical cu rule, which we refer to as the idle-avoid cu/m rule. This
policy can be formulated as the solution to an integer program with a penalty for idleness.
We analyze this policy to provide its performance guarantee and asymptotic optimality in
some settings.

— Performance Guarantee. In the case of a two-server two-class model, where priority-
induced idleness can leave half of the capacity idle, we are able to characterize cases where
the idle-avoid cp/m rule is optimal. In general, the optimal policy can depend on the
(possibly time-varying) arrival rates and the remaining time horizon. For cases where the
idle-avoid cu/m rule is not optimal, we establish that it has a competitive ratio bound of
2.

In particular, the competitive ratio analysis indicates that the performance of the idle-
avoid cu/m rule is no worse than 2 times that of the optimal policy. Note that this

performance guarantee holds for arbitrary arrival rates, initial condition, and time horizon.



— Asymptotic Optimality. For general multi-class systems, we conduct two asymptotic
modes of analysis to derive analytical insights. One is the many-server asymptotic regime,
where we consider systems with increasing scales, i.e., more servers and higher arrival
rates. We show that the idle-avoid cu/m rule is asymptotically optimal in this regime.
This indicates that the idle-avoid cju/m rule performs well in large systems. Even for small
systems, numerical experiments demonstrate the robustness and good performance of the
idle-avoid cu/m rule. We also study a long-run asymptotic regime, where we study the
system performance as time goes to infinity under certain regularity conditions on the
arrival rates. We show that the idle-avoid cu/m rule is throughput optimal. Meanwhile,
numerical experiments demonstrate that policies that do not carefully avoid idleness, e.g.,
the cu/m rule, can lead to system instability.

The rest of the paper is organized as follows. We conclude this section with a brief review
of the related literature. In Section 2, we introduce our model and the scheduling problem.
In Section 3, we focus on a two-class two-server queue in order to understand how to
balance the priority-induced idleness and the cu/m index. In Section 4, we introduce the
class of idle-aware cu/m rules, where the idle-avoid cu/m rule is a special case, for multi-
server queues with multiple classes of customers and general resource requirements. Some
asymptotic properties of the idle-avoid cu/m rule are established in Sections 5 and 6. We
present additional numerical experiments in Section 7. Lastly, we provide some concluding

remarks in Section 8.

1.1. Literature Review

This paper is related to three main lines of literature. First, it is closely related to works
that apply stochastic modeling to study service systems, especially healthcare systems.
Second, it is related to the extensive body of works on scheduling queues with multiple
classes of customers. Third, it is related to managing idleness in queues. We shall provide
a brief review of the related literature along these lines.

Motivated by several service operations applications, Green (1980, 1981) is among the
first to study queueing systems where different customers may require different numbers of
servers. They consider a queueing system where each customer requires a random number
of servers and propose a policy that prioritizes jobs with fewer server requirements. As we

will see in this paper, when dealing with multiple classes of customers, a good scheduling



policy needs to carefully balance multiple factors. In addition to the resource requirement,
we also need to consider the holding cost, the service rate, and the priority-induced idle-
ness. Reiman (1991) studies the blocking probability of a multi-server loss queue where
different classes of customers have different resource requirements. They assume customers
are admitted into the system as long as there are enough servers available. In this work,
we try to optimize the admission decision in a queue with infinite waiting room.

More generally, queueing models have been successfully applied to various healthcare
applications to derive good operational policies (e.g., Yankovic and Green 2011, Armony
et al. 2015). The key insight is that pertinent features of the application need to be incor-
porated in the model to understand the key trade-offs. Several papers study prioritiza-
tion policies in various healthcare applications. For example, Mills et al. (2013) and Sun
et al. (2018) focus on patient triage and prioritization under extreme resource restrictions.
Saghafian et al. (2014) study complexity-augmented triage where they advocate adding a
complexity-based factor to the conventional urgency-based classification in the Emergency
Department (ED). Huang et al. (2015) study the optimal scheduling policy in the ED
with two classes of patients: newly admitted patients and returning patients. Baron et al.
(2014, 2017) study scheduling policies with strategic idleness in service networks, which
are mainly motivated by healthcare systems where patients have to go through several
diagnostic and treatment stations. Our work compliments this line of works by studying
patient prioritization in the presence of a new feature that is very relevant to the ICU and
various other service systems: different resource requirements.

How to schedule multiple classes of jobs in stochastic processing networks has been a
very active area of research. For a multi-class single server queue, when the holding cost is
linear, Cox and Smith (1961) is among the first to prove the optimality of a simple index-
based policy, known as the cu rule. There are various generalizations of the rule, but the
optimality is mostly obtained in an asymptotic sense. For example, Van Mieghem (1995)
consider general convex holding cost; Mandelbaum and Stolyar (2004) further incorporate
multiple classes of servers. The key idea is to maximize the instantaneous cost reduction
rate. This often leads to simple index-based policies. In contrast to the single server setting,
when the network structure and resource requirements become more complicated, the
management of idleness can become an important and highly non-trivial task. The first-

order goal then becomes achieving system stability (Gans and van Ryzin 1997). A class of



policies known as max-weight or max-pressure policy has been established to be throughput
optimal (Armony and Bambos 2003, Dai and Lin 2005). Stolyar (2004) considers the case
of strongly convex holding costs and shows the max-weight policy with properly chosen
parameters asymptotically minimizes the holding cost in the conventional heavy-traffic
regime.

Motivated in large part by service and healthcare applications, we focus on transient
cost minimization problems over an arbitrary but finite time-horizon, with arbitrary initial
queue lengths and arrival patterns (e.g., time-varying arrival rates). For a two-class two-
server system, we establish a uniform performance bound for an index-based policy — the
idle-avoid cu/m-rule.

For small systems, policy-induced idleness play an important role on system perfor-
mance. Thus, there is a more delicate trade-off between the myopic instantaneous cost
reduction rate and the forward looking idleness. In terms of the analysis, one cannot rely
on asymptotic arguments as much of the prior work does, we instead use constructive
coupling arguments.

For more general systems, we leverage the many-server asymptotic framework to derive
structural insights. When dealing with many-server systems, characterizing the optimal
scheduling policy (either exactly or asymptotically) can become a lot more challenging.
Harrison and Zeevi (2004) and Atar et al. (2004) study this for multi-class many-sever
queues with customer abandonment in the critically loaded regime. Atar et al. (2010) derive
the asymptotic optimality of a simple index-based policy, known as cu/6 rule, for many-
server queues with abandonment in the overloaded regime. Kim et al. (2018) consider more
general customer patience-time distributions beyond exponential. We refer the readers
to Puha and Ward (2019) for a tutorial on scheduling policies of overloaded multi-class
many-server queues with impatient customers.

Lastly, we expand a bit more on the importance of managing idleness in queues. It
has long been noticed that strict priority rules can induce idleness that leads to sub-
optimal performance (e.g., instability) in stochastic processing networks (Harrison 1998).
The priority-induced idleness is especially prominent when having complicated resource
requirements; see, for example, Rybko and Stolyar (1992), Bramson (1994). Recently, Gur-
vich and Van Mieghem (2017) study a network with collaboration across different types of

resources and multi-tasking within those resources. There, a mismatch between the priority



level and the collaboration level can lead to inevitable capacity loss. While the dynamics
and constraints in our model are different from these works, we also find that idleness can

have a big impact on system performance.

2. The Model

We consider a discrete-time queueing model with N servers, I classes of customers, and
an infinite buffer (queue). Time is indexed by ¢, t € N. Each Class i is characterized by the
tuple (\;, is, ¢;,m;). For a planning horizon of length T, \; = (A;(¢), ..., \(T — 1)), where
Ai(t) denotes the arrival probability of a Class ¢ customer in time slot ¢.

Let A;(t) denote the number of Class i arrivals in period t. Then, A;(t) ~Bernoulli(\;(t)),
independent of all other events. In each time slot, a Class ¢ customer in service will depart
with probability p; € [0,1], independent of all other events. Let D;(t) denote the number
of Class i departures in period t. Then, if there are v; Class ¢ customers in service in time
slot ¢, D;(t) ~Binomial(v;, i1;). ¢; € RT is the per period holding cost of a Class i customer
(including during her service time). What differentiates our model from traditional queue-
ing models is that each Class ¢ customer requires m; servers. In particular, if there are
v; Class ¢ customers in service, then the total number of servers allocated to Class i is
z; = myv;. Without loss of generality, we assume that the classes are ordered such that
my > meo > --- > my. Note that m;’s can be any positive real numbers. In practice, m;’s are
in general rational numbers defined by some staff-to-customer ratio (e.g., nurse-to-patient
ratio). For example m; = 1/3 means that a Class ¢ customer requires 1/3 of a server. With
a change of units, we can also define 1/3 of a server as a unit of service capacity, in which
case, m; = 1. In our numerical demonstrations, we set m;’s to be integer numbers.

We focus on a discrete-time model as it facilitates our analysis of the optimal scheduling
policies. Additionally, it is sufficient to capture the dynamics of a lot of healthcare systems,
which is our primary motivation. For instance, admission and discharge decisions in the
ICU are rarely made on a continuous basis, restricting to 15 or 30 minute intervals can
reasonably capture the time scale of these decisions.

Customers within each class are served on a first-come-first-served basis. Let X;(t) denote
the number of Class i customers in the system at time ¢ and X (¢) = (X (¢),..., X(t)). The

scheduling policy 7 (t) = (m1(t),...,7(t)) specifies how many customers from each class



to admit in period ¢. We assume 7(t) is non-anticipatory. We also assume a preemptive

service discipline, which imposes only the following restrictions on 7(¢):
I
> mymi(t) < N,mi(t) € Np and 0 < mi(t) < Xi(t),
i=1

where N denotes the set of non-negative integers.
In Section 7.1, we numerically explore the impact of non-preemption.

Given these assumptions, the system under policy 7 evolves as:
X7 (t+1)=X7(t) + As(t) — DI (t). (1)

In what follows, we will suppress the dependence of X and D on the scheduling policy
7 when it is understood from context. Note that our formulation implies that service
assignments, (), happen at the beginning of each period while arrivals and departures,
A;(t)’s and D;(t)’s, happen at the end of each period.

Figure 1 illustrates two possible scenarios for a system with two classes of customers and
N servers. Each Class 1 customer requires two servers and each Class 2 customer requires
one server (i.e., I =2, m; =2, and ms =1).

In both scenarios illustrated in Figure 1, there are four Class 1 customers and N —1 Class
2 customers. In the left plot, the last two servers serve one Class 1 customer, while each
of the first NV — 2 servers serves one Class 2 customer. This leaves three Class 1 customers
and one Class 2 customer waiting in the queue. On the right plot, the first N — 1 servers
serve Class 2 customers. The last server is idle since there are no more Class 2 customers
in the system and one server is not enough to serve a Class 1 customer. In this case, a
server is idling even though there are still customers waiting in the queue.

Our objective is to find a scheduling policy that minimizes the total expected holding

cost over a finite time horizon 71"

T-1 1 I

mﬂlnz ZE[chf(t)] + ZE[E(XZT(T))L

t=1 i=1 i=1

Such that for all t=1,...,T, and i=1,...,1I:
. (2)

Zmﬂi(t) < N;

=1



Figure 1 Model illustration for two classes of customers.
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where m = (7(0),7(1),...,m(T — 1)) and F;(X[(T)) is the terminal cost. We assume the

terminal cost is proportional to the holding cost, i.e.,

F;(z) =&c;z, for some € € R, (3)

where R{ denotes the set of non-negative real numbers. Denote V() as the optimal value
function starting from state x at time 0 and 7* as the optimal scheduling policy.

The scheduling problem (2) is a finite-horizon Markov decision process (MDP). As the
state space is countable and the action space at each state is compact, it is without loss
of optimality to consider deterministic Markovian policies only (Puterman 2005). In par-
ticular, at each t =0,...,7 — 1, 7(t) can be view as a mapping from the state of Markov
chain, X (t), to the allocation of the servers. Note that the preemption assumption implies
that, under an optimal policy, there will not be deliberate idleness, i.e., we would not leave
m;, i=1,...,I, (or more) servers idle while there are still Class ¢ customers waiting. This
does not mean there is no idleness though. As discussed earlier, there may be jobs waiting
but not enough servers available for them to enter service.

We are interested in the transient scheduling problem, i.e., over a finite time-horizon with
arbitrary time-varying arrival rates, in part because in healthcare applications, which is
our main motivating application, time-variability in demand or random shocks like disease
outbreaks or mass casualty events can lead to a demand surge and high congestion in the
system. It is of interest to understand how to derive good policies in these settings.

In our subsequent analysis, an important index we will keep referring to is the cu/m

index. The cu/m index for Class i is c;ju;/m;, ¢ = 1,2,...,1. On average, one unit of
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service capacity allocated to Class i can serve pu;/m; jobs over one unit of time. This
reduces the holding cost by ¢;u;/m;. Thus, the cu/m index measures the instantaneous cost
reduction rate for each class. Throughout the paper, we make the technical assumption that
(cipri/m;)’s are all distinct. That is, ¢;p;/m; # c;pj/m; for @ # j. If some of these indices
are equal, it is possible that there are multiple optimal scheduling policies. Non-uniqueness

of the optimal policy could complicate our analysis.

3. A Two-Class Two-Server Queue

To understand the delicate balance between priority-induced idleness and instantaneous
cost reduction rate, we begin by focusing on a two-class two-server model, i.e., I =2 and
N = 2. We assume that each Class 1 customer requires two servers and each Class 2
customer requires one server, i.e., m; =2 and ms = 1. We also assume that waiting for
Class 1 customers is more costly: ¢; > co. When considering a healthcare system, one can
think of Class 1 customers (patients) as being ‘sicker’ than Class 2 customers (patients),
thereby requiring more resources (nurses) and suffering more from waiting. In our ICU
example, one unit of capacity can be viewed as 1/2 of a nurse. Thus, m = (2,1) means that
a Class 1 patient requires a full nurse while a Class 2 patient requires only half a nurse
time.

From the holding cost perspective, we note that if we are to maximize the instantaneous
cost reduction rate, each server dedicated to serve Class 1 customers can reduce the holding
cost at rate cju1/my = c11/2; each server dedicated to serve Class 2 customers can reduce
the holding cost at rate copia/mao = copio. This suggests a simple strict priority rule based
on the cu/m index.

From the perspective of the processing capacity, we note that if we give strict priority to
Class 2, then when X5(¢t) =1 and X;(¢) > 1, we can only admit one Class 2 customer into
service. In this case, one server is idling while there are still Class 1 customers waiting in
the queue. This can lead to substantial capacity loss if we encounter many such instances.
One simple modification to avoid idleness here is to give priority to Class 1 when there is
only one Class 2 customer in the system.

The above discussion motivates us to look into the following three scheduling policies:
at each time epoch ¢, i) P;: strict priority to Class 1, ii) Py: strict priority to Class 2, and
iii) PJ: a modification of P, that gives priority to Class 2 when X, (t) > 2, but prioritizes
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Class 1 when X5(t) =1 to avoid idleness, i.e., P would prefer one Class 1 customer over
one Class 2 customer.

We note that both P, and P/ avoid idleness, i.e., they are ‘idle-avoid’ policies, while P,
is not. We also denote by P; and PL (in bold letters) the policies that follow P; and P,
respectively, throughout the time horizon, i.e., w(t) = P;(P{) for all t =0,...,T — 1. We
next study the performance of these three policies.

The analysis in this section is based on backwards induction. To facilitate the presenta-

tion, we introduce some additional notation. For t =0,...,T — 2, let
T-1 1 I

Vi) = > EleX[(s)]+ ) E[F(X](T))]
s=t+1 i=1 i=1

denote the expected cost-to-go function in period ¢ with X (¢) =z under policy 7.

We define VZ (z) = S EF(X/(T)X(T — 1) = z]. Let Si(z,7) =
(Se1(z,m),...,Ser(z,m)) denote the one step transition from state x under policy 7 at
time ¢. In particular, S;;(z, ) il x;+Bernoulli(\;(t))—Binomial(7;(t), u;). We also define
Cy(z,m) =1 1€iSei(x,m). Then, for t =0,...,T — 2, we have

1=

Vi (@) =E[Cy(z, 7) + Vi1, (S, m))].

3.1. Optimal Scheduling Policy

We now characterize the optimal scheduling policy for the two-class two-server system:

THEOREM 1. For the cost minimization problem (2) with any T >0,

Case 1. When cops < cip41/2, Policy Py is optimal.

Case 2.: When copig > c1pu1/2
Case 2a. When cip1/2 < cipq < capiz and Ao(t) =0, Vt, Policy Po is optimal.
Case 2b. When cij11/2 < cajig < 111, Policy Pg 18 optimal.

Proof. 'The proof of Theorem 1 is based on backwards induction and a constructive
coupling argument. As the coupling arguments are similar for different cases, we only
provide the analysis for Case 1 (copa<cip1/2) here, and leave the other cases to Appendix
A. We denote the policy stated in Theorem 1 by 7. In this case, 7 = P;. Recall that «*
denotes the optimal policy. We shall prove that 7* = 7.
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Base Case: t =T — 1. We can directly derive the cost-to-go at t =71"— 1 given any server

allocation, 7. By definition, we have:

Vi (z)=E

ST RG(T)|[x(T-1) =a:]

=1

(4)
=&cp (w1 +M(T—1) —pm (T — 1)) +€ca (o + Ao(T — 1) — poma(T — 1))

Due to the linearity of (4) in 7(7°— 1), when ¢4 >2cops, it is optimal set m (T — 1) =
21Nl (T —1) =29 A (2—2m (T —1)). Thus, n5(T —1) = P;.

Inductive step. Let 1 <t <T — 1. The inductive hypothesis is that 7*(k) = 7 (k) for all
k >t. We will show this implies 7*(t — 1) =7 (¢ — 1). The proof is by contradiction.

Suppose by contradiction, at time ¢ — 1, it is optimal to follow some other policy; i.e.,
T (t—1)#x(t—1).

We consider two coupled systems, s* and s, that start in the same state = at ¢t — 1, i.e.,
X (t—1)=x. System s* uses policy 7* while s’ uses a suboptimal policy 7’ that will be
specified later. The coupling is induced by assuming that the two systems see exactly the
same customers (the same arrival times and service time requirements path by path). We
next conduct the analysis for different values of the initial state x.

e £;1 =0 or 3 = 0: 7" and 7, must coincide in this case at time ¢ — 1.

e 1 >1 and x> 2: Because 7" (t — 1) # 7(t — 1), 7* should admit two Class 2
customers at t — 1, while © would admit one Class 1 customer. We construct 7’ such that
it admits a Class 1 customer at t — 1, and preempts this customer, if necessary, at time
t to admit two Class 2 customers. From ¢ + 1 onward, 7’ will follow 7*. Considering the
potential outcomes across the two systems at £ — 1, there are six scenarios:

1. Only one Class 2 customer completes service.

2. Both Class 2 customers complete service, but the one Class 1 customer does not
complete.

3. Only the Class 1 customer completes service.

4. One Class 2 customer and the Class 1 customer complete service.

5. Both Class 2 customers and the Class 1 customer complete service.

6. No customer completes service.

In the s* system, 7*(¢) will always admit the Class 1 customer, due to our inductive

hypothesis. Thus, under the coupling construction, in all 6 scenarios, the two systems, s*
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Figure 2 Coupling illustration for Case 1, Scenario 1-4.
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and ¢, are fully synchronized at ¢+ 1. In particular, both systems have the same customers
with the same remaining service times presented (see Figure 2 for a pictorial illustration).
Since the two systems follow the same policy from time ¢+ 1 onward, they will keep fully
synchronized.

Then, the cost difference between s* and s', V;™(z) — V;~,(x), is the difference in the
holding costs incurred at ¢. (We summarize the cost difference (AC) and the corresponding
probability (Pr) for each scenario in Table 1.) Then, we have

2
V() = Vi (@) = —2cop2 | J(1 = ) — 2¢2(1 = pa) i3 + crpa (1 — pio)?

i=1

+2(c1 — e)papra(1 — ) + (€1 — 2¢2) a3 = €1y — 2212 > 0,

where the last inequality follows from the condition of Case 1. This contradicts the assump-

tion that 7* is the optimal policy.

Table 1 The cost difference and the corresponding probability for each scenario when z1 > 1 and x2 > 2.
Scenario 1 Scenario 2 | Scenario 3 Scenario 4 | Scenario 5 Scenario 6
AC —Co —202 C1 C1 — Co C1 — 202 0
2
Pro| 2us [T, (1= pu) | (L= pa)p | pn (L= p2)? | 2pap0 (L= pio) | gy | (1= ) (1= pa2)?

e x; > 1 and x; = 1: To prove that admitting a Class 1 customer is preferable over

admitting only one Class 2 customer, we follow the same coupling technique as in the

previous case. In particular, assume by contradiction that 7* admit the Class 2 customer
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at time ¢ — 1. We construct «’ such that it admits a Class 1 customer at time ¢ — 1, admits
the Class 2 customer at time ¢, and follows policy 7* from time ¢+ 1 onwards. In this case,
there are four possible scenarios for the first time epoch (¢ —1):

1. Only the Class 2 customer completes service.

2. Only the Class 1 customer completes service.

3. The Class 2 customer and the Class 1 customer both complete service.

4. Neither customer completes service.
Similar to before, even if there is a Class 2 arrival in ¢t — 1, in the s* system 7*(¢) admits
the Class 1 customer. Then, under the coupling construction, the two systems are fully
synchronized at time ¢+ 1. Thus, the cost difference is the difference in the holding costs

incurred at ¢, which is summarized in Table 2. Then, we have

* !/

V;Zl(x) - til(x) =—co(1— 1) pe + crpn (1 — p2) + (c1 — co) pafro = c1pp1 — Capt >0,

where the last inequality follows from the condition of Case 1. This contradicts the assump-

tion that 7* is the optimal policy.

Table 2 The cost difference and the corresponding probability for each scenario when z; > 1 and z2 = 1.

Scenario 1 | Scenario 2 | Scenario 3 Scenario 4

AC —Ca C1 C1 —C2 0

Pro| (L—pu)po | pai(T—p2) | pape (1—pa)(1—p2)

We have shown that for all possible values of state x at time ¢t — 1, it is optimal to follow
7. O

We next discuss the implications of Theorem 1 on how to balance idleness and instanta-
neous cost reduction. As P; does not induce any idleness, when c¢; 1 /my > copa/mso (Case
1), we give strict priority to Class 1. When c¢;pu1/my < capia/ms, we distinguish between
two further cases. When ¢y > cops (Case 2b), from the cost perspective, admitting one
Class 1 customer is preferable to admitting only one Class 2 customer. (Note that we can
only admit an integer number of customers). Thus, P% is optimal in both a processing
rate sense and a cost reduction sense. When c; 1 < capi2, things become more complicated.
From the cost reduction perspective, even admitting only one Class 2 customer is prefer-

able to admitting one Class 1 customer. However, admitting only one Class 2 customer
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would leave one server idle in the system. In this case, we are able to show that if A\y(t) =0,
P, is optimal. When Ay(t) > 0, it is not clear whether Py is still optimal. For example,
we may want to hold a single Class 2 customer in anticipation of an additional Class 2
arrival in the next period. This could help increase the processing capacity of the system
and result in an overall lower cost. Whether this may be helpful will depend on a number
of factors, including the length of the time horizon and the arrival probabilities in future
time slots.

Figure 3 provides two numerical examples to illustrate the results of Theorem 1. The
plots show the ratio between VJ7(2,3) and V' (2,3) for m = Py, P2, and P}, and for different
values of py. The optimal value function is calculated by solving the MDP directly and the
value function for each of the three polices is estimated by simulation. We observe that in
Case 2a, the optimal policy is Py when Ao(t) =0 (left plot); however when Ao(t) > 0 (right
plot), it is not. In fact, when Ay(¢) > 0, the performance of P} appears to be near optimal
even when cppis > cipy. Still, P} is not exactly optimal; the optimal policy in this case is
time-dependent, switching between PQI and P,. Moreover, when A\y(t) =0 and copg > ¢1 441,
we observe that even though PL leads to a higher cost than P, the cost difference is fairly

small. This motivates us to look more closely into P} in the next subsection.

Figure 3  Cost ratio of each policy to the optimal policy for different values of ps. T =50, I =2, m = (2,1),
u1=0.35, ¢c=(1,0.5), £=5, N=2, X(0) = (N, N). In the left plot A\(¢) =(0.33,0), for t=1,...,7 — 1,
In the right plot A(t) =(0.2,0.3), for t=1,..., 7 —1.
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3.2. A Uniform Performance Bound when c;p; < capz and Az(t) >0

In this section, we analyze the performance of PL when cous > ¢y (Case 2a) but with
Ao(t) > 0. The following theorem establishes an upper bound on the competitive ratio for

P, i.e., the ratio between the cost under P} and the cost under the optimal policy.
THEOREM 2. When ¢ > ¢y, i1 < Cajia, for any state x, t €{0,1,...,T — 1},

AR
Vi (x)

<2.

The proof of Theorem 2 can be found in Appendix B.2. The significance of the result
in Theorem 2 is that we allow for arbitrary values for the time horizon, initial state, and
arrival probabilities. It can be observed from solving the MDP that when \y(t) # 0, the
optimal policy can be highly sensitive to the value of \y(t)’s. Moreover, even for time-
homogeneous A (t)’s, the optimal policy can be time-dependent. On the other hand, PL
does not depend on ¢ or A(t). In addition, while the optimal policy or other benchmark
policies (e.g., max-weight) may require full queue length information, P} requires very
minimal system state information, i.e., whether there are two or more Class 2 customers
waiting. In healthcare applications, it can sometimes be hard to get accurate system state
information. For instance, the patients waiting for ICU admission may be waiting in differ-
ent wards or in other hospitals, so while it may be straightforward to know whether there
are patients waiting, it may be difficult to precisely quantify the exact number of patients
of each type. These desirable properties suggest that P} is robust and easy to implement
in practice.

We conclude this section with two remarks.

REMARK 1. The bound for the competitive ratio in Theorem 2 is tight, in the sense that
we can find problem instances where this ratio is exactly 2. For example, at T — 1, if

2 (T—1)>1, 25(T—1)=1, and £ >0,

Vi (@) en(mr— 4 M (T — 1)) + ca(1+ (T — 1))
Ven(z)  ale+M(T—1) +ea(l—pa+Ao(T - 1))

()

The ratio in (5) can be made arbitrarily close to 2,if uo =1, ¢; = o, (T —1) =X (T'— 1) =
0, and p; — 0.
On the other hand, as we will demonstrate in subsequent numerical experiments, in most

problem instances, the competitive ratio is much smaller than 2.
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REMARK 2. The model and ensuing analysis considered in this section applies directly
to other two-class systems with m,/my =2 and N =m;. This can be achieved with a
simple change of variables where everything is re-scaled by ms: X, =X; /ma, i=1,2, and

N = N/mg
4. Idle-Aware cu/m Rule

From our analysis in Section 3, we note that to design a good scheduling policy for queues
with different resource requirements, we need to carefully balance the cu/m index (the
‘myopic’ instantaneous cost reduction rate) and the priority-induced idleness. For general
multi-class queues with different resource requirements, we propose a class of policies: the
idle-aware cu/m rule, defined as the optimal solution of an integer program (6), which
maps the state of the system to an allocation of the servers to each class.

Let © = (z1,...,x;) denote the state of the system and z = (21, ..., 2;) denote the number
of servers allocated to each class at a time epoch ¢. The integer program (IP) is defined as

I

I
max R(z):= Z Gilli zi+T Z 2
i=1

m4
i=1 v

1
st. Y z<N (6)
i=1
OSZZSme“ Z:]_,,I
Zi/mieNo, i=1,...,1,

where I' > 0 is a tuning parameter that penalize the priority-induced idleness.

As special cases of (6), note that when I' = 0, we prioritize according to the cu/m-index
only. We refer to this special case as the cu/m rule, which resembles the classical cu
rule. When T is large enough, i.e., ' > N ZZ'I:1 ¢ijvi/m;, our first-order goal is to maximize
the server utilization Zfil 2;, which is equivalent to minimizing idleness, i.e., N — Zfil %
Then, among all policies that avoid idleness, we choose the one that maximizes the cu/m
index. We refer to this special case as the idle-avoid cu/m rule.

For the two-class two-server model studied in Section 3, the cu/m rule takes the form
of the policies characterized in Theorem 1. We observe from the right plot in Figure 3
that the cu/m rule can be highly sub-optimal when ¢y < copo and Ao(t) # 0. The idle-
avoid cu/m rule takes the following form: when ¢y /my > copa/ma, we apply P;; when

cipi1/my < Caia/my, we apply PY. Combining the results in Theorems 1 and 2, we note that
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regardless of the arrival rates, the initial condition, and the time horizon, when c¢;p;/2 >
Coflg OF Cipi1/2 < Copia < ¢1j11, the idle-avoid cu/m rule is optimal; when cjpy < cops, the
idle-avoid cu/m rule has a competitive ratio of at most 2. Thus, the idle-avoid cu/m rule
achieves good and robust performance. The analysis of this special instance of our model
provides a theoretical basis for the importance of considering idleness — especially in small
systems.

For more general systems, with different values of ' € <O, N Zle citif mi), we may incur
different levels of idleness. To see this, consider a two-class three-server model with m; =3
and my = 1. Figure 4 presents four possible scheduling policies for this model under three
different scenarios of system state. Policy P; gives strict priority to Class i, ¢ = 1,2. Policy
P! tends to prioritize Class 2, but prefers admitting one Class 1 customer to admitting
only one Class 2 customer. Policy P/? tends to prioritize Class 2, but prefers admitting one
Class 1 customer to admitting two or less Class 2 customers. Note that P, PJ! | and PJ?
incur different levels of idleness. When solving the IP (6), if ¢ /mq > copia/ma, P is the
optimal solution for any I' > 0. However, when ¢y < copto, the optimal solution depends
on the value I'. In particular, for small values of I', e.g., I' =0, P, is the optimal solution.
For moderate values of I', P/ is the optimal solution. For large values of I', PJ? is the

optimal solution.

Figure 4 Possible policies for a three-server system having two classes of customers in which m; =3 and ms = 1.

Policy P, Policy P, Policy P! Policy P/
AN
Scenariol = = = = = = == == = = e == = = = === ==
EOO | O | OO | RO e
|:| |:| Service
S 02 =m======h == e === = = -
cenario |:| | - | | - | |:| e
Service
S 03 === = = == e e e e == —————
cenario | : | | : | : e

The idle-aware cp/m rule with parameter I' provides a lot of flexibility to determine the
precise balance between the ‘myopic’ instantaneous cost-reduction rate and the ‘forward-

looking’ priority-induced idleness. However, the optimal value of I' can be quite different
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for different systems. The general intuition is that when the system is very lightly loaded,
we can put more weight on the cu/m index (via a smaller T'), while when the system is
critically loaded, we should put more weight on avoiding idleness (via a larger T).

For systems with constant arrival rates, we define the nominal traffic intensity of the

system as

p=3 A ™
i=1 V-

Since we study finite horizon scheduling problems, we allow p > 1. Figure 5 plots the ratio
between the cost under the idle-aware cu/m rule with different values of I' to the optimal
cost for different traffic intensity levels. We study a two-class model with m = (3,1). In
addition to N =3 (left plot), we also test a larger system with N =6 (right plot). To scale
up the arrival rate properly with N, we assume A;(t) ~ Binomial(n, \;(t)), where n =1
when N =3 and n =2 when N = 6. We set the holding costs and the service rates such
that cops > cypu1. Three different values of I' (idle awareness levels) are considered: I' =0
results in Py, T'=0.25 (denoted as I > 0) results in P{!, and T'=100 (denoted as I > 0)
results in PJ2. We observe that when the traffic intensity is low, Py achieves the lowest
cost among the three idle-aware cu/m policies. For moderate values of traffic intensity, PL!
performs the best, while for high values of traffic intensity, P5? performs the best. More
importantly, we note that when p is large (i.e., > 0.55 in the left plot and > 0.6 in the
right plot), Py and P! can lead to highly sub-optimal performance. On the other hand,
P12 achieves competitive performance across all values of traffic intensities.

For general multi-class multi-server systems, charactering the optimal scheduling policy
is quite challenging. First, the coupling technique we utilized in Section 3 quickly becomes
prohibitively tedious with too many scenarios to consider. Due to similar reasons, the
exact optimality of the cu rule is also restricted to the single server setting (Buyukkoc
et al. 1985). Second, solving the MDP (2) exactly suffers from the curse of dimensionality
(Papadimitriou and Tsitsiklis 1999).

When restricting to the class of idle-aware cu/m rules, we observe from extensive numer-
ical experiments that the optimal value of I" can be highly sensitive to system parameters
and using a small I' can sometimes lead to substantial sub-optimality. On the other hand,
the idle-avoid cp/m rule in general leads to robust and near-optimal performance. Thus,

we suggest using the idle-avoid cu/m rule, i.e., setting T > NZLI ¢ifti/my, in practice.
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Figure 5 Cost ratio of each policy to the optimal one for different traffic intensities where N = 3n, n =1, 2. Here,
T =50, m=(3,1), the arrivals A;(t) ~ Binomial(n, \;), where A =k(1/24,1/12) and k varies between
1 and 10.8, u=(0.5,1), c=(1,0.8), £ =5, X(0) = (N/3, N —1). In Area A, P2 is the optimal optimal
idle-aware cu/m policy; in Area B, PL is the optimal idle-aware cu/m policy, and in Area C, P} is

the optimal idle-aware cu/m policy.
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In what follows, we take two asymptotic approaches to derive some theoretical insights
into the performance of idle-avoid cu/m rule. One approach focuses on the original finite-
horizon planning problem with arbitrary arrival rates, but studies very large systems (Sec-
tion 5). In particular, we take a many-server asymptotic mode of analysis where we scale
up the arrival rates and the number of servers, while keeping the service requirements
fixed. Note that when m;’s are fixed, scaling up the number of servers will lead to almost
negligible policy-induced idleness. Take the two-class system with m = (2, 1) as an example.
When N = 2, strict priority to Class 2 can lead to 1/2 of the capacity to be ‘wasted’. When
N =100, strict priority to Class 2 can only cause 1/100 of the capacity to be ‘wasted’. Thus,
our first result is a somewhat ‘negative’ result, showing that the class idle-aware cu/m
rules with any I' > 0 is asymptotically optimal in the many-server regime. This indicates
that in large systems, when m; < N, the policy-induced idleness plays a less important
role. It also indicates that the idle-avoid cu/m rule has near-optimal performance in these
systems.

The second approach takes the large-time horizon limit, i.e., T"— oo (Section 6). We
impose extra regularity conditions on the arrival probabilities and look at the stability of
the system. We show that the idle-avoid cu/m policy is throughput optimal, while the

cpi/m rule and other idle-aware cu/m rules can lead to instability. This result further
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justifies our suggestion of employing the idle-avoid cu/m rule in practice, because the other
idle-aware cu/m rules can lead to arbitrarily bad performances when planning over a long
time horizon.

We conclude this section with another numerical illustration for the performance of the
idle-avoid cu/m rule. In Figure 6, we plot the cost ratio between the idle-avoid c¢u/m rule
and the optimal policy for systems of different sizes. As N increases, we scale up the arrival
rates proportionally using an appropriate Binomial distribution. We consider both time-
homogeneous (top plots) and time-varying (bottom plots) arrivals. In the the left plots,
m=(2,1) (P} is the idle-avoid cu/m rule), and in the right plots, m = (3,1) (PL? is the
idle-avoid cu/m rule). We randomly sample the arrival probability from U[0,1]. In the
upper-panel plots, the arrival probabilities are drawn at time 0 and kept as constants for
all £ > 0. In the lower-panel plots, the arrival probabilities are updated (drawn randomly
from U[0, 1]) every 10 time slots. We report the maximal and average cost ratios among 50
randomly drawn problem instances. We observe in the left plots that when m = (2,1) and
N =2, the maximal ratio can go up to 2 as suggested by Theorem 2. However, the average
ratio is much smaller, i.e., slightly larger than 1.2. Moreover, the ratios are decreasing in
N. We also observe in the right plots that, when m = (3,1) and N =3, the maximal ratio
can go above 2, but the average ratio is still around 1.2. In addition, as the system size

increases, both the maximal and average cost ratios are getting closer and closer to 1.

5. Asymptotic Optimality of Idle-Aware cii/m Rule

In this section, we study the asymptotic performance of idle-aware cu/m policies in a
many-server asymptotic regime. This provides important insights into the performance of
the scheduling policies in large systems with many servers and max;<;,<;m; < N.

We still focus on transient performance, i.e., over a finite time horizon and with arbitrary
time-varying arrival rates.

Consider a sequence of systems indexed by 7. We scale up both the number of servers
and the arrival rates with n while keeping the service rates and the resource requirements
fixed. In particular, for the n-th system, there are N7 = Nn servers and the number of
Class i arrivals in the t-th epoch A(t) ~ Binomial(n, A;(¢)). We use the superscript 1 to
denote processes related to the n-th system. For example, X'(¢) is the number of Class i

customers in the 7-th system at time ¢ , D](¢) is the number of Class ¢ departures in time
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Optimization gap — idle avoid cu/m rule vs. optimal policy for for different values of N: average and
worst case scenario. Here, T'=50, I =2, A;(t) ~ Binomial(n, \:(t)), n=1,...,10, c=(1,1), and £ =5.
On the left, N =2n, m=(2,1), p=(0.01,1), X(0) = (|N/2], N —1); on the right, N =3n, m = (3,1),
w=1(0.09,1), X(0)=(|N/3],N —2). A1(t),A2(¢) ~ UJ0,1]. In the top plots, the arrival probabilities are

Figure 6

sampled at time zero and kept as constants throughout the horizon. In the bottom plots the arrival

probabilities vary every 10 time slots by drawing new samples from U|[0, 1].
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epoch t. Note that under policy 7", D}(t) ~Binomial(x} (), p;). We also write R" as the
corresponding policy IP for the n-th system. For a fixed I' > 0, we denote the sequence
of idle-aware cu/m rules as (7?07, oo For a general Markovian scheduling policy 77,
it can be written as a mapping from the state of the system, 2", to an allocation of
the servers, 27 = (z{,...,2}]). We denote " := (¢{,...,9}) as the corresponding mapping.

In particular, ¢7 : N} — Z, where Z =inf{z € N} : 321, 2, < N}, and when X"(t) = ",
7 (t) = (x"t)/m; for i=1...,1.
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We further define the fluid-scaled processes
X"=X"/n, A"=A"/n D"=D"/y.
Let ¢"(z"/n;t) =" (2";t) /n. We next define the convergence of a sequence of policies.

DEFINITION 1. We define ¢ — 4, if for any sequence of (Z7),>1, " € (0,1/n,2/n,...),

satisfying 27 — = as 7 — 0o, we have ¢"(Z") — 9 () as 7 — oo.

We use the fluid scaling for our analysis because the corresponding fluid limit is determin-
istic and provides a good approximation for the first-order mean dynamics of the system,

especially for transient control problems where the demand fluctuations are O(n).
LEMMA 1. For a sequence of scheduling policies ¥", if X"(0) = z(0) € R} and " — ) as
n— oo, then for any T > 1,
X" =z uniformly on [0,T] as n— oo,
where T = (Z1,...,%r) is a discrete dynamical system satisfying
Ti(t+1) = Z;(t) + Ni(t) — phi(2(t))/my, fori=1,...,1.

We define the fluid analogue to the MDP (2) as

T-1 1 I

mﬁin Vi(z) = Z Zcii‘z‘(t) + ZE(@(T)%

t=1 =1 1=1

Such that for all t=1,..., T, and i=1,...,1I:

I
Zmﬂ_ﬁ'(t) <N;
i1

0 <7;(t) <z(t).

Let V7 (x) denote the optimal cost of (8).

For every time epoch ¢, we also define the fluid relaxation of the IP (6) as

I I
max R(z):= Z C;:LLZZZ +PZZ¢
! i=1

i=1

I

9

s.t. ZziSN (9)
=1

OSZZ‘S.TZ'TI’LZ', ’Lzl,,I
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Note that (9) is a linear program (LP) relaxation of (6), i.e., without the integer constraints.
It is also straightforward to see that, for any I" > 0, the optimal solution to (9) is to
prioritize according to the cu/m index. In particular, let z* denote the optimal solution

to (9). We also denote [i] as the i-th class in the decreasing order of the cu/m-index, i.e.,

Cl i /M) > Clas1] Mfi+1)/Mi1)- Then

j—1 +
5[*]»]: (N—ZZEA) /\I[j]m[j], j=1,...,[. (10)
i=1

With a little abuse of terminology, we refer to the policy characterized by (9) as the fluid

cp/m rule.

LEMMA 2. For the fluid cost minimization problem (8), it is optimal to follow the fluid

cp/m rule.

THEOREM 3. For any sequence of policies, m", if " /n— x as n— oo, then
s . 1 " *
liminf =V " (2") > Vi (x). (11)

For any fixed T' >0, if 2"/n — x as n — oo, then the sequence of idle-aware cpu/m rule

satisfies

1 M _
lim ~V7 " (@) = Vg (). (12)

000 1)
Theorem 3 indicates that 7P is asymptotically optimal. The proof of the theorem is
provided in Appendix C.3. Since the result in Theorem 3 holds for any I' > 0, setting
>N 25:1 ¢ipti/m;, we have the following corollary.

COROLLARY 1. The idle-avoid cu/m rule is asymptotically optimal to the MDP in (2), in

the many-server regime.

We note from Theorem 3 that when the system size is large, the performance of any
idle-aware cu/m rule are asymptotically indistinguishable. However, as seen in Section 3,
for small systems, there can be significant differences in the performance of different idle-
aware cu/m rules. In particular, while the priority-induced idleness becomes negligible for

large systems, it has a critical impact on performance in small systems.
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6. Throughput Optimality of Idle-Avoid ci/m Rule

In this section, we move away from the main problem setup in (2), and study the long-
time behavior of the idle-avoid cu/m rule. In contrast to the analysis in Section 5, we fix
the size/scale of the system, and study its performance as t — oo. Analyzing long-time
behavior requires us to impose more restrictions on the system parameters. In particular,
we need some notion of long-run regularity of the arrival rates. In this section, we make

the following assumption on the arrival probabilities.

ASSUMPTION 1. There exists \; € [0,1], i=1,...,1, such that

1y .
lim n ;)\i(s) =\.

t—o00

In what follows, we refer to A= (\y,...,\;) as the limiting arrival rate.

The setting we studied in this section is quite different from the transient optimal
scheduling problem we started with, but provides important insights into the performance
of the proposed scheduling policies over relatively long time horizons.

When planning for a long time horizon, the first order goal is to ensure system stability,
so that the queue will not grow without bound as time increases. We employ the notion of

rate stability as in Armony and Bambos (2003).

DEFINITION 2. We define a System X (under a scheduling policy 7) to be rate stable if

1

T T I
.1 .1
Tlgrolo T E g A;(t) —Tlgrolo T g g D;(t) almost surely.

t=1 i=1 t=1 i=1

I dimi 1 does

We first note that due to the multiple resource requirements, p:=>",_, N

not imply that the system can be stabilized. For example, in a single-class queue with
N =3 and m =2, if X € (u,3/2u), p <1 but the system cannot be stabilized. Thus, we
start by defining the maximum stability region of the system, i.e., the set of the arrival
rates that can be processed/stabilized using some scheduling rule. For a multi-class system
with different resource requirements, let ¢!, ...,¢" denote the list of all possible service
configurations. In particular, ¢* = (¢%,...,¢%), k=1,..., K, is a server allocation scheme

satisfying the following conditions

k I
“LeNy, Y ¢f<N.
m; i=1
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Then, the maximum stability region of the system can be characterized by

K K
M:{S\E[O,l]lz S\imi/,uiSZakgbf, for some ay, >0, k=1,..., K and Zakzl}.
k=1

k=1
In the above definition of M, a;’s can be interpreted as the proportion of time service
configuration ¢* is employed. A scheduling policy that achieves the maximum stability
region is known to be throughput optimal. That is for any limiting arrival rate A € S, the
scheduling policy can achieve rate stability.

Under the preemption and Markovian assumptions, any scheduling policy can be viewed
as a mapping from the state of the system to an allocation of servers. Thus, we define the

set of feasible scheduling policies as

I
Q:{w:zwi(x)gl\f, Yi(x)/m; <z, Yi(x)/mi €Ny, fori=1,...,1, andeENé}.
i=1

Note that not all the service configurations are feasible for a given state x, because we have
the extra constraint that ¢F/m; < z;. We also define a special subset of feasible policies

that minimizes the idleness in the system:

Q= {¢ peQ, P(x) € argmax{Z&i(x)} ,Va EN(I]}.

$eQ i=1
Note that the idle-avoid cp/m rule belongs to €2, while the other idle-aware cu/m
rules may not belong to €2,,. The following theorem establishes that policies in €2, are
throughput optimal under the assumption that the resource requirement has a hierarchical

structure as defined in Assumption 2.

ASSUMPTION 2. m;/m; 1 €N for i=1,...,1 —1, and N/m; € N, where N is the set of

positive integers.

THEOREM 4. Under Assumptions 1 and 2, for any ¢ € Q,, i.e., mi(t) =9¥(X(t))/m;, for
i=1,...,1,t>0, if the limiting arrival rate \ € M, then
1<~ m;
lim — Z — X;(t) =0 almost surely,

t—oo t .
i1 M

which implies that the system is rate stable.
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The proof of Theorem 4 can be found in Appendix D. Since the idle-avoid cu/m rule

belongs to €2,,, we have the following corollary.

COROLLARY 2. Under Assumptions 1 and 2, The idle-avoid cp/m rule is throughput opti-

mal.

6.1. Stability under Other Idle-Aware cp/m Rules

In this section, we demonstrate through numerical experiments that the other idle-aware
cir/m rules may not be throughput optimal. Consider the two-class queues with different
resource requirements, Figures 7 and 8 plot E[X;(t) + X3(t)] for different values of ¢. In
Figure 7, we study a system with m = (2,1) and ¢; 1 < capip. In this case, the cu/m rule
follows policy P, which may incur some idleness, while the idle-avoid cu/m rule follows
policy PJ. We note that under P, E[X(¢) + X2(t)] is around 20 for all values of ¢. Under
Ps, E[X(t) + Xo(¢)] is growing in ¢, suggesting that the system is not stable. In Figure 8,
we study a system with m = (3,1) and ¢;p; < copiz. In this case, we have three idle-aware
cpr/m rules depending on the value of T'. T" = 0 leads to P,, which is the cu/m rule, ' =0.25
leads to P{!, while ' = 100 leads to PJ?, which is the idle-avoid cp/m rule. We note that
only P2 stabilizes the system. Under either Py or PEt E[X(¢) + X»(¢)] is increasing in ¢.
As P, can incur more idleness than P3', E[X(¢) + X»(t)] increases faster in ¢ under Py

than under P3!.

Figure 7  E[Xi(t) + X2(t)] as a function of ¢ under different idle-aware cu/m policies. N =15, A = (0.26,1),
1 =(0.35,0.7), and ¢=(1,0.8).
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Figure 8 E[X(t)+ X2(t)] as a function of ¢t under different idle-aware cp/m policies. I =2, N =3n, n=1 (left
plot) and n =5 (right plot), m = (3,1), A;(t) ~ Binomial(n, \;), where A = (1/24,1/8), u= (0.5,1),
¢=(1,0.8) and z(0) = (N/3,N —1).
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6.2. Implications for Holding Cost over Long Time Horizons

For a specific time-homogenous system, we call a policy stable if the system under this
policy is rate stable, and we call a policy unstable otherwise. If a policy is unstable, the
corresponding queue can grow without bound as time increases. This implies that when
planning for long time horizons, the difference in holding cost between stable and unstable
policies can be very large. In Figure 9, we consider a two-class queue with m = (2,1) and
compare the holding costs under Py (the cu/m rule) and PL (the idle-avoid cu/m rule)
over a very long planning horizon, i.e., T'=2000. We vary the value of p, which is defined
in (7), by scaling down the service rates. Note that for small values of p, the performances
of P, and P} are very similar. However, as p increases, P5 leads to a much higher cost
than PL. We also note that as the system size increases from N =3 to N = 30, significant
differences in performance between P, and PL start occurring at a higher value of p. For
example, for N = 3, when p = 0.9, the cost under P is more than twice the cost under PL.
However, for N =30, when p=0.9, the costs under the two policies are almost the same.

In the next experiment, we fix the traffic intensity p, but vary the scale of the system.
Figure 10 compares the costs of the cu/m rule and the idle-avoid cu/m rule over a very
long planning horizon, i.e., T'=2000. We consider the two-class queues with ¢ < copto.

The systems have time-homogeneous arrival probabilities, which we sample from U|0, 1].
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Figure 9  Total cost for P, versus PJ. T =2000, I =2, m=(2,1), N =3n, p = (0.5/k,1/k), k varies between 1,
and 1.485, ¢c=(1,0.8), £ =5, and A;(t) ~ Binomial(n, A;) with A =(0.25,1). On the left, n=1, and on
the right, n = 10.
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In the left plot m = (2,1), we compare P versus PL. We plot the maximum, minimum,
and average of V;Q2(z)/ VOPI2 (x), with x = (| N/2], N — 1), over 50 randomly drawn problem
instances (arrival probabilities). We observe that when N = 2, the maximum ratio between
the two costs can be very large, i.e., the cost under P, can be more than 11 times the cost
under PL. On the other hand, the minimum ratio between the two policies is bounded by
1/2 as suggested by Theorem 2. This suggests that the idle-avoid cu/m rule achieves more
robust performance than the cu rule when planning over a long time horizon, especially in
small systems. As N increases, the performance of the two policies are practically indistin-
guishable as suggested by Theorem 3. In the right plot, m = (3,1) and we compare costs
under P, versus P2, We observe again that the idle-avoid cu/m achieves more robust
performance than the cy/m rule.

The analysis in this section provides additional evidence supporting the use of the idle-
avoid cu/m rule in practice. This is especially important in small systems where priority-
induced idleness can lead to very bad performance. We also emphasize that there is value to
understanding small systems. In the healthcare setting, the number of servers (nurses/beds)

in a unit is more commonly on the order of 10s instead of 100s or 1000s.

7. Additional Numerical Experiments

In this section, we provide additional numerical experiments to provide more insights into

the performance of our proposed policy. We first look at preemption versus non-preemption.
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Figure 10  Cost comparison (log) — cu/m rule vs. idle-avoid cu/m for different values of N. T = 2000, I = 2,
c=(1,1), and £ = 5. On the left, Policy P2 vs. Policy P} for m = (2,1), N =25, n=1,...,10,
n=1(0.25,1), A;(t) ~ Binomial(n, \;), where A1, A2 ~ U[0,1], and X (0) = (|N/2], N —1). On the right,
cost ratio between Pz (I' =0) and P5 (I' > 0) for m = (3,1), N =35, n=1,...,10, u = (0.09,1),
A;(t) ~ Binomial(n, \;), where A1, A2 ~U[0,1], and X (0) = (|N/3],N —2).
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Our theoretical analysis assumes that preemption is allowed. In Section 7.1, we investigate
how the insights from our analysis for preemptive systems can be generalized to non-
preemptive systems. We then compare the idle-avoid c¢u/m rule to the max-weight policy
in Section 7.2. We have shown that the idle-avoid cu/m is throughput optimal in Section
6. Another important class of throughput-optimal policies is the max-weight policy. It is

of interest to compare the performance of both policies.

7.1. Non-Preemption

Consider imposing non-preemption in the idle-aware cu/m rules. In particular, we require

that once a customer starts service, he/she cannot be moved back to the queue. This is

natural in many service systems, and particularly healthcare systems. Let x = (z1,...,x/)
denote the state of the system at the beginning of time epoch ¢, 2z’ = (z1,...,2}) denote
the number of servers occupied by each class before assignment, and z = (21, ..., 27) denote

the number of servers allocated to each class after assignment. The new IP under non-
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preemption is defined as

I I
max Ry(z):= Z Citti zi + FZ %
i=1

m;
i=1 v
I

s.t. Zzi <N

i=1
2 <z <wmximy;, i=1,...,1
zi/m; €Ny, i=1,...,1,

In general, non-preemption can introduce a number of challenges. For example, it may
be optimal to keep servers idle in anticipation of more ‘important’ incoming customers
(Pinedo 2012). As such, we focus on comparison only across different non-preemptive idle-
aware cp/m rules.

We know that translation of results derived from a preemptive system to a non-
preemptive system does not always result in good performance (see, e.g., Rozenshmidt
(2008)). However, we expect that as the system size grows, the difference between non-
preemption and preemption will be minimal (Atar et al. 2004). For example, we expect
the idle-avoid cu/m-rule to perform well for large systems even without preemption.

Consider a two-class model with m = (2,1) and three possible scheduling policies accord-
ing to the idle-aware cu/m rules: Py, Py and PL. Figure 11 compares V7 (z) under the
preemptive (left plots) versus non-preemptive (right plots) assumptions. The top plots are
for a small system with only N = 2 servers, while the bottom plots are for N = 20. The
vertical lines in the figures depict where the cost under PL becomes smaller than the cost
under P; as ps increases. Note that when preemption is allowed, it is where ¢ 11 /2 = capuo.
We observe that even though the two systems have different costs, in both systems, the
optimal policy among the three policies considered, switches from prioritizing Class 1 to
prioritizing Class 2 as po increases. The value of py at which PL surpasses Py, i.e., the
vertical line, is different in the two systems. In the preemptive system, it is at ps =0.225.
In the non-preemptive system, it is at us = 0.33. For sufficiently large values of uq, Py can
perform better than P, but the difference is very small. In the bottom plots, the system
size, N = 20, can reasonably capture the size of an average ICU. We observe that in this
case, non-preemption does not lead to much cost difference. When comparing the three
policies, the optimal policy switches from Py to P} as pu, increases. PL leads to slightly

better performance than P, in both the preemptive and nonpreemptive cases.
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Figure 11

Cost comparison — preemption (left plot) vs. non-preemption (right plot) for N =2n, n =1 (top
plots) and =10 (bottom plots), I =2, m = (2,1), and different values of u2. Here, T'= 50, A;(t) ~

Binomzial(n, Ai(t)), A(t) = (0.05,0.15), for all ¢, u1 =0.09, ¢c=(5,1), £=5, and X (0) = (N, N).
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Note that we can also come up with extreme examples in small systems where policy P}
can perform much worse than P, when preemption is not allowed. For example, consider
a system where N =2 and the service rate of Class 1 is very small. Policy P5 may admit a
Class 1 customer over a Class 2 customer at some point. Then, the Class 1 customer will
“block” the servers for a very long time. Meanwhile, policy Py can keep admitting Class
2 customers. If the service rate of Class 2 customers is sufficiently larger, P, can achieve
a much lower cost than P} in this case. Thus, one must be careful when operating small

and nonpreemptive systems in these types of extreme parameter regimes.
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7.2. Comparison with the Max-Weight Policies

We compare the idle-avoid cu/m rule to the max-weight policy, which is also known to
be throughput optimal (Stolyar 2004, Armony and Bambos 2003). Note that the idle-
avoid cu/m rule is primarily designed to handle linear holding cost and transient cost
minimization problems with arbitrary time-varying arrival rates, while the optimality of
the max-weight policy with respect to cost minimization requires strongly convex holding
costs and is in a long time-horizon sense (see Stolyar (2004)). To facilitate a relatively fair
comparison, we consider time-homogeneous arrival probabilities and look at longer time
horizons. At each time ¢, given X (f) = x, the server allocation, z = (z1,...,2s), under the

max-weight policy is the solution to the following IP:

I
Cilhq
max E zzxf
z - ml
=1

(13)

I

Zi Zi .

s.t. Z’Z’LSN7 Oé_lgxia_zeNOvzzlv"'vla
i1 mg m;

We allow different values of > 0. § =1 is commonly used in the literature (Armony
and Bambos 2003, Dai and Lin 2005). When f is small, the convex cost function, i.e.,
Zi]:l X f 1 is ‘close’ to being linear; thus, this max-weight policy with 3 close to 0 should
have performance that is close to optimal for our linear objective function (Stolyar 2004).

Figure 12 plots the ratio of the total cost of the max-weight policy to that of the idle-
avoid cu/m rule for different values of uy in the regime where cjpu; < copa. We consider
two values of 8 for the max-weight policy: 1 and 0.1. We observe that the max-weight
policies have worse performance than the idle-avoid cu/m rule. When =1, the cost ratio
can be above 1.5 for small values of py and is slightly above 1 for large values of ps. On
the other hand, when = 0.1, the cost ratio can be above 4 for large values of us and is
slightly above 1 for small values of ps. To take a closer look at the reason behind the poor
performance of the max-weight policy with f=0.1 when p, is large, in Figure 13, we plot
the average queue length process (averaged over 50 sample paths) under the three policies
when ps = 0.85. While all three policies stabilize the system, the number of customers
in each class are quite different. When g = 0.1, the max-weight policy prioritizes Class 2
customers too much, which can cause a significant amount of priority-induced idleness.

This leads to a very small Class 2 queue but an extremely large Class 1 queue.
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Figure 12 Total cost incurred by each policy for different values of p2. T = 5000, N =2, [ =2, m = (2,1),
A(t) =(0.2,0.32), for all ¢, u1 =0.3, c=(1,1), £ =5, and I" = 100.
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To conclude this section, we would like to point out that in order to have a fair com-

parison, we do not show experiments with large initial values, time-varying arrivals, or

short time horizons. In these cases, the idle-avoid cu/m rule can significantly outperform

the max-weight policy. This is not surprising since the idle-avoid cu/m rule is designed for

such problems, while the max-weight policy is designed for very long time horizons, even

though it is agnostic to the

arrival rates.

8. Discussion and Future Directions

In this paper, we study the optimal scheduling policy for multi-server queues with multiple

classes of customers. The special feature we study is that different classes of customers

may require a different number of servers. We propose an index-based policy, the idle-avoid
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cpt/m rule, that minimizes the amount of idleness incurred while prioritizing customers
according to their cu/m index. We prove that this policy is asymptotically optimal under
the many-server regime and is throughput optimal under certain regularity conditions on
the arrival probabilities.

We find that the addition of the different resource requirements introduces new dynamics
that did not arise in the classical multi-class queues. In particular, the impact of priority-
induced idleness is a direct consequence of the different resource requirements. As we have
shown, this idleness can have substantial consequences, such as leading to poor performance
of seemingly good policies. While avoiding idleness may sacrifice the instantaneous cost
reduction rate, we demonstrate theoretically and through numerical experiments that the
amount of suboptimality is limited. More specifically, our results indicate that in small
and heavily loaded systems, which are highly relevant to healthcare applications, avoiding
idleness is crucial. When the system is very large and/or very lightly loaded, there is more
slack in capacity to accommodate idleness; hence, other idle-aware cp/m rules, such as the
cpr/m rule, can perform well. However, because uncertainty in demand (e.g., unpredictable
disease outbreaks) can quickly alter the system dynamics, we recommend using the idle-
avoid cu/m rule all the time unless the system administrator is certain that the system is
lightly loaded, in which case, the holding costs are likely to be low anyway.

We identify several directions for future research from the modeling perspective. First,
it would be interesting to study a network of resources instead of a single type of resource.
For example, in the ICU setting, we need both an ICU bed and the required nurses to
admit a patient, and either one can be the bottleneck. The challenge then is to develop
good scheduling policies that balance multiple resource constraints. Second, for ICUs in
particular, patients’ acuity levels may evolve over time, suggesting that the same patient
may have different resource requirements during his/her length of stay. The staffing level
can also change from shift to shift. It would be interesting to incorporate these time-varying
dynamics (e.g., class transition behavior) and study the acuity-based optimal staffing policy

in this setting.
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Appendix A: Proof of Theorem 1 - Cases 2a and 2b

Recall that 7 denotes the policy characterized by Theorem 1 and 7* denotes the optimal policy.

A.1. Case 2a. # =P,

Base Case: t =T — 1. Due to the linearity of (4) in 7 (), it is straightforward to see that when
Caltg > c11, we shall allocate as much capacity as possible to Class 2. Thus, 7*(T — 1) = P, =
(T —1).

Inductive step. Suppose that 7 minimizes V;* for some 1 <t <7T — 1. We show by contradiction
that at time ¢t — 1, it is also optimal to follow 7. Suppose by contradiction that at time ¢t — 1, it is
optimal to follow some other policy, and then by the induction argument, from time ¢ onward, we
shall follow 7.

We consider two coupled systems s* and s’. Both systems start from the same state at t — 1, i.e.,
X(t—1) ==z, and see the same arriving customers. s* system uses policy 7* while the s’ system
uses a (possibly) suboptimal policy 7' that will be specified later.

We conduct the analysis for different values of x.

o If x; =0 or &3 =0, 7* and 7 coincide.

o If &1 > 1, x; =1, for 7* and 7 to deviate, 7* should admit one Class 1 customer at t — 1.
For 7/, the Class 2 customer is admitted at ¢ — 1. There are four potential outcomes across the two
systems at the end of time epoch t — 1 (see Figure 14 for a pictorial illustration):

1. Only the Class 2 customer completes service.

2. Both the Class 1 customer and the Class 2 customer complete their service.

3. Only the Class 1 customer completes service.
4

. Neither customer completes service.

Figure 14 Coupling illustration for Case 2a, Scenarios 1-4.
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We construct policy 7’ such that we will admit the Class 1 customer at time ¢, and from time
t + 1 onward, 7’ will follow 7*. Under the coupling construction, the two systems, s* and s, are
fully synchronized at £+ 1 under each of the 4 scenarios. Thus, the cost difference between s* and s’
is the difference in the holding costs incurred at ¢. The cost difference (AC;) and the corresponding
probability (Pr) for each scenario is summarized in Table 3. Putting all the scenarios together, we

have

*

VIE(X) — t71l1 (X) = ca(l — p)pro + prapra(ca — 1) — crpun (1 — pio) = paca — pycy >0,

where the last inequality comes from condition of Case 2a. This contradicts the assumption that

m* is optimal.

Table 3 The cost difference and the corresponding probability for each scenario

Scenario 1 | Scenario 2 | Scenario 3 Scenario 4

ACt Co Cog — C1 —C1 0

Pro| (L=p)p | papz | pa(1=p2) | (1= pa)(1 = o)

o If x; > 1 and x, > 2, following similar lines of argument as in the case where z; > 1 and
To =2, we can also show that admitting two Class 2 customers is preferable over admitting one
Class 1 customer, i.e., 7 is optimal. Note that we have already proved that admitting one Class 2
customer is preferable over admitting one Class 1 customer, and admitting two Class 2 customers

is straightforwardly preferable over admitting one Class 2 customer.

A.2. Case 2b. & =P]

Base case: t =T — 1. Due to the linearity of (4) in m(¢) and since 2caps > ¢1p01, we would prefer
admitting two Class 2 customers over one Class 1 customer. However, since caps < ¢ 41, we would
prefer admitting one Class 1 customer over admitting only one Class 2 customer. Thus, 7*(7T'—1) =
P =#(T-1).
Inductive step. Suppose 7 minimizes V;* for some 1 <t <7 — 1. We show by contradiction that
at time ¢ — 1, it is also optimal to follow 7. Suppose by contradiction that at time ¢t — 1, it is optimal
to follow some other policy, and then by the induction argument, from time ¢t onward, we shall
follow 7.

We consider two coupled systems s* and s’. Both systems start in the same state at t — 1, i.e.,
X (t—1) =z, and see the same arriving customers. The s* system uses policy 7* while the s’ system
uses a suboptimal policy 7’ that will be specified later.

We next conduct the analysis for different values of x.
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o If z; =0 or &3 = 0, the 7* and & do not deviate.

e If x; > 1 and x, =1, for 7* to deviate from 7, in System s*, we admit the Class 2 customer
at t — 1. In System s’, we admit one Class 1 customer at t — 1. Similar to Case 2a, there are four
possible outcomes across the two systems. Their corresponding probabilities are also the same as
in Case 2a.

If there is no Class 2 arrival at ¢ — 1, we construct @’ such that we admit the Class 2 customer
at t, and from t 4+ 1 onward, ' follows 7. From Figure 15, it is easy to see that the two systems

are fully synchronized at t+ 1 in all scenarios.

Figure 15 Coupling illustration for Case 2b with one Class 2 customer and no Class 2 arrival at ¢t — 1.
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If there is a Class 2 arrival at t — 1, 7’ admits two Class 2 customers at ¢. In this case, we will
allocate an additional server to s* at t. We denote this new system with the extra server at t by §
and the corresponding optimal policy by 7. Let G;(z) denote the optimal cost to go with X (¢) ==

when having an extra server in time slot ¢ only. From Lemma 3 in Appendix A.3, we have
Go(Sia(a, 7 (t=1))) <V (S (@, " (t = 1))).

From time ¢4 1 onward, both systems follow the same policy, i.e., 7*. Figure 16 provides a pictorial
illustration of the coupling. We note that § and s’ are fully synchronized at ¢+ 1.
Taking expectation over the eight (four without a Class 2 arrival and four with a Class 2 arrival

at t — 1) scenarios together, we have
VT (@) = Vi (@)
=E[C;_i(x, 7" (t—1)) + Vt“* (Si—1(z, 7" (t—1)))
— Coa(, 7 (= 1)) = V¥ (Spa (7 (E = 1) Azt — 1) = 1JP(As(t— 1) = 1)
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Figure 16 Coupling illustration for Case 2b with one Class 2 customer and a Class 2 arrival at ¢ — 1.
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+E[C,_y (2,74 (t— 1)) + V™ (Sy_y (z, 7 (t —1)))
— Cra(w, 7 (t=1)) = Vi (Sea (2, 7' (¢ = 1)) Ao(t — 1) = 0]P(A, (¢ — 1) = 0)
SE[Cy_y (@, 7% (t = 1)) 4 G (Sy_ (z, 7 (t— 1))
— Cya (a7 (t— 1)) = V7 (Syy (' (¢ — 1)) Ag(t — 1) = 1JP(Ay(t — 1) =1)
+E[C,_y (2,74 (t— 1)) + V™ (Sy_y (z, 7 (t —1)))
— Cyy (' (t— 1)) = V7 (Syy (, ' (£ — 1)) Ag(t — 1) = 0]P(Ay(t — 1) = 0)

=pic1 — pacy >0,

where the last inequality follows from the condition of Case 2b. This contradicts the assumption

that 7* is the optimal.

o If x; > 1 and x> > 2, for 7 to deviate from 7, under 7*, we admit one Class 1 customer at

t — 1. Under 7/, we admit two Class 2 customers at ¢t — 1. At ¢, 7’ admits one Class 1 customer,

and from ¢+ 1 onward, n’ will follow 7. Similar to Case 1, there are 6 outcomes across the two

systems at £ — 1. Their corresponding probabilities are also the same as in Case 1. From Figure 17,

it is easy to see that the two systems are fully synchronized at ¢+ 1. Thus,

V(X)) - Vf/(X) =2¢opuz — cipiy >0,

where the last inequality follows from the condition of Case 2b. This contradicts the assumption

that 7* is the optimal policy. O
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Figure 17  Coupling illustration for Case 2b with X2(t — 1) > 2.
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A.3. An auxiliary lemma for the proof of Case 2b

We consider the benefits of adding an extra server in a single time slot. Given state z, let 2%(z)

denote a feasible server allocation strategy at this time slot, i.e.,

U G G
Zz?(m)gl\f—i-l, MENO, and ngi (z)
i=1 m; m;

Let G;(z) denote the optimal cost to go at time ¢ with X (¢) = x, when there are N + 1 servers at

t, and N servers from ¢+ 1 onwards.

LEMMA 3. If an additional server is added at time epoch t for one time slot,
Gi(z) <V (x).

Proof: We consider two coupled systems, s* and §, that start from the same state at time ¢, i.e.,
X (t) =z, and see the same arriving customers. System s* follows the optimal scheduling policy.
System § is identical to s*, except that at time ¢, an additional server is added for that time slot
only. Consider a feasible policy for s, under which the extra server is not utilized. Then, the two
systems would incur the same holding cost. Since G,(z) is minimized over all feasible policies, the

result directly follows. [

Appendix B: Proof of the Competitive Ratio Bound in Section 3.2

B.1. An Auxiliary Lemma

Before we prove Theorem 2, we first provide an auxiliary lemma.

LEMMA 4. When cipi < capia, for any t=0,...., T =1, if X;(t) > 1 and Xs(t) > 2, 7*(t) # Py.

Lemma 4 indicates that in this parameter regime it is never optimal to schedule one Class 1

customer over two Class 2 customers.
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Proof of Lemma 4 The proof is based on backwards induction.
Base Case: t =T — 1. Due to the linearity of (4) in m(t), it is straightforward to see that as
c111/2 < capia, we would prefer two Class 2 customers over one Class 1 customer.
Inductive step. Suppose the claim is true for all s, t <s<T —1, for some 1 <t <T —1. We show
by contradiction that at ¢ — 1, the claim is also true. Suppose X (t — 1) = x. We can restrict our
attention to states x with x; > 1 and z, > 2. Suppose by contradiction that at ¢t — 1, P, is optimal,
i.e., we prefer admitting one Class 1 customer over two Class 2 customers at ¢ — 1.

Following the same lines of analysis as in Case 1 of Theorem 1, we can construct a coupled System
s" which operates under a suboptimal policy 7’. In particular, 7’ admits two Class 2 customers at

t — 1 and one Class 1 customer at t. From t+ 1 onward, 7’ follows 7*. Then we can show that
‘/;W* (z) - Vtﬂl(c’ﬁ) =2copty — c111 > 0.

This contradicts the assumption that 7* is the optimal policy. [

B.2. Proof of Theorem 2.

We start by using a coupling argument to establish a bound on the difference in the number
of customers between a system that follows the optimal policy and a system that follows PL.
Specifically, consider two coupled systems that see exactly the same customers in terms of their
arrival and service times. The system that follows 7* is denoted as s* and the system that follows
Pl is denoted as 3.

Let N;(t) denote the number of Class i arrivals by time ¢; by our coupling this is the number
of Class i arrivals in each system. Let U;""(t), k < N;(t), denote the remaining service time of the
k-th Class i arrival at time ¢ in the s* system. U;""(t) = 0 implies that the customer has already
left the system. Similarly, we denote Uf(t) as the remaining service time for the k-th Class ¢ arrival
in 5 at time ¢. Let X (¢) denote the number of Class i customers present in s* at time ¢ and X;(t)
denote the number of Class ¢ customers in s.

We now describe how we couple the scheduling policies in both systems.

System s* follows the optimal scheduling policy and serves customers within each class in the
first come first served (FCFES) order. Note that from Lemma 4, if there are at least two Class 2
customers in s*, s* will prioritize the Class 2 customers. System § follows policy P% and serves
customers within each class according to FCFS with the following exceptions:

e At time t € {0,1,...,7 — 1}, if s* admits two Class 2 customers, ¢ and j, and there are at
least two Class 2 customers in §, we consider the following two scenarios. 1) If the same Class 2
customers admitted in s*, ¢ and j, are still in the §, we admit them in § as well. 2) If the ¢ and/or j

Class 2 customers have already left 5, but there are Class 2 customers in §, who have been served
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more times in s* (i.e., there are Class 2 customers, m and n, with Uy™ < UJ* and U;™ < U}),
we admit those customers. Note that other than the above two scenarios, we admit two Class 2
customers in § according to FCFS.

e At time t €{0,1,..., T — 1}, if s* admits a Class 1 customer and there are at least two Class
2 customers in §, we consider the following scenario. If there are Class 2 customers in § who have
been served more times in s* (i.e., there are Class 2 customers, m and n, with U, < ﬁg" and
U;™ < UY), we admit those customers. Note that other than the above-mentioned scenario, we
admit two Class 2 customers in § according to FCFS.

Next, we prove the following statement, which we refer to as Statement S:

1. UF(t) SUS™(t) for all k=1,..., Ny(t), except at most one k*, for which UF™(¢) = U3* (t) +
Ko(t) for some ks (t) € (0,T]. If there is no such k*, we set ko(t) =0.

2. Uk(t) < UPM(t) for all k=1,...,Ny(t), and YO Urk () = MO Tk (8) + k(1) for some
K1(t) > Ka(t).
That is, all Class 2 jobs have been served more times in the § system than the s* system, except
for at most one Class 2 job, k*, which has been served ky(t) more times in the s* system than the
5 system. Additionally, all Class 1 jobs have been served more times in the § system than the s*
system. The total amount of additional Class 1 service times is x1(t), which is at least as large as
Ka(t).

Under Statement S, we have

Na(t)
Xo(t) = Z 1{U§(t)>0} <X5(t)+ Liny >0y
k=1

~ Ni(t)
Xi(t)= Z Ligkysoy < X7 (1)
k=1

(14)

We next prove Statement S by induction following the coupled policies:
Base Case: At t =0, the two systems starts from the same state. Thus, Statement S holds trivially.
Inductive step: Suppose Statement S is true at time . We next show that it holds at time ¢+ 1
as well.

We divide the analysis into different cases depending on the value of X*(t) and X (t).
Case I X;(t) > 2. In this case, s* admits two Class 2 customers at t.

Case Ta. If X,(t) >2, 5 admits two Class 2 customers as well. r;(t + 1) = s, (t). If the admitted
Class 2 customers are the same in the two systems, ro(t + 1) = ka(t). If the admitted Class 2
customers are not the same in the two systems and ry(t) > 0, customer k* in Class 2 will be

admitted in § and ko(t 4+ 1) = ka(t) — 1. Otherwise, xo(t) =0, which implies xo(t+ 1) =0.
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Case Ib. If X;(t) > 1 and X,(t) <1, 5 admits a Class 1 customer. ry(t+ 1) = ry(t) + 1. If 1)
X,(t) =1, ii) one of the two Class 2 customers admitted in s* is the Class 2 customer remaining
in 5, and iii) that Class 2 customer has less of equal remaining service time in s* than in 3,
Ko(t+1) = ka(t) + 1. Otherwise, ko(t+1) = ka(t) =0.

Case Ic. If X,(t) = X,(t) =0, no customer is served in System 3, k;(t 4+ 1) = ry(t). Xa(t) =0
implies that xo(t) =0. Thus, ka(t+1) =0.

Case IT X7 (t)>1, X;(t) =1, and 7*(t) = P,. In this case, by (14), X,(t) <2.

Case ITa. If X,(t) =2, 5 admits two Class 2 customers. & (t+ 1) = k1 (t). As Xo(t) > X;(t), one
of the two Class 2 customers admitted in § is behind the corresponding Class 2 customer in s*.
Thus, ko(t+1) =ka(t) — 1.

Case ITb. If X;(t) > 1 and X,(t) <1, 5 admits a Class 1 customer. sy (t + 1) = s (t) + 1. If
X,(t) =1, denote the Class 2 customer in § as customer 7. If Uj(t) > U (t) (customer i could be
the remaining Class 2 customer in s* or could have already left s*), ko(t+1) = ka(t) + 1. Otherwise,
Ko(t+1) = ra(t) =0.

Case Ilc. If X, (t) =0 and X,(t) =1, 5 admits the Class 2 customer, which we denote as customer
i. kK1(t+1) = k1 (t). If customer 7 is still in s*, ko(t + 1) = Ko(t). If customer ¢ has already left s*,
Ka(t) >0 and ka(t+1) =ka(t) — 1.

Case IId. If X;(t) = X,(t) =0, no customer is served in 3. k(¢ + 1) = ry(t). Xo(t) = 0 implies
that ko(t) =0. Thus, ka2(t+1) =0.

Case III X;(t) > 1, X;(t) =1, and 7*(¢t) = P, so that the s* system admits a Class 1 customer.
In this case, by (14), X,(t) <2.

Case IMla. If X,(t) =2, 5 admits two Class 2 customers. 1 (t + 1) = k1(t) — 1. As there is one
more Class 2 customer in § than in s*, ko(t) > 0. Then, ko(t+ 1) = ra(t) — 1.

Case IIIb. If X, (t) > 1 and X,(t) <1, § admits a Class 1 customer as well. In this case, k;(t+1) =
ki(t) for i=1,2.

Case ITlc. If X;(t) =0 and X,(t) =1, 5§ admits the Class 2 customer. Since a Class 1 customer
is admitted in s*, £1(t) >0 and k1 (t+1) = k1 (t) — 1. If K2(t) >0, K2(t 4+ 1) = K2(t) — 1. Otherwise,
Ka(t+1) = ra(t) =0.

Case IIId. If X;(t) =0 and X,(t) =0, k1 (t+1) =k (t) — 1 and ra(t+1) = ko (t) = 0.

Case IV X7 (t) =0 and X;(t) <1. Based on the induction argument, X;(t) =0 and k4(t) = 0.
As ko(t) < ki(t), we have ko(t) =0 and X, (t) < X3(t). Note that if X3 (t) = X5(t) =1, the Class
2 customer in s has less or equal remaining service time than the Class 2 customer in s*. Thus,
ki(t+1)=r;(t)=0 fori=1,2.

Case V X;(t) >1 and X;(t) =0. In this case, s* admits a Class 1 customer and by (14), X,(t) <1.

Case Va. If X, (t) > 1, 5 admits a Class 1 customer as well. Then, x;(t+ 1) = x;(t) for i =1,2.
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Case Vb. If X;(t) =0 and X,(t) =1, 5 admits the Class 2 customer. Since X} (t) =0, ro(t) > 0.
Then, k;(t+1) =k;(t) — 1 for i =1,2.

Case Ve. If X, (t) =0 and X,(¢) =0, no customer is served in 3. Since there is at least one Class
1 customer in s*, k1(t) >0 and ry(t+ 1) = k1 (t) — 1. Since Xy(t) =0, ko(t +1) = ka(t) =0.
The above cases cover all possible scenarios. We have thus shown that S holds at ¢+ 1 as well.

Based on Statement S (and hence, (14)), the following inequality holds path-by-path, i.e., for
t=0,...,1":

i X1 (t) + e Xo(t) < et X7 (t) + e X2 (t) + ¢y - Lina(t)>0}

In addition, when rkq(t) >0, k1 (t) > k2(t) > 0 (from the second part of Statement S). Thus,
1{@ t)>0} <X ( ) for tZO,...,T.

Through stochastic dominance, we have

T-1
]E[Z Cle( )+02X2

s=t+1

< E [ Z ClX +C2X ( )+021{1€2(s)>0}] (15)

and

£ ] 2] ] »
YL aXi(s)+ k()] +E [R(X(D) + B(X(T)]
YL aXi(s) + X5 (s)| + B[R (X7 (1) + F(X3(T))

E [29 S e X1 () + 2 X3(8) + el e )>0}}

E[S15 aXi(s) + eX5(s)| + E[R(XH (D) + F(X3(T))]
E[A(X7(T)) + Fo(X5(T) + Lnym)>01)]
E[Ch e Xi(s) + X3 ()| + EIR(XG(T) + B(X3(T))
E [Cz D 1{nz<s>>0}] +E [Fa(Lym)>0))]
B[S e Xi(s) + X5(s)| + EIR(XG (T)) + Fa(X3(T))]
E[e2 X104 X1 (9)] + E[R(XG(T))]

B[S Xt () + eX5(s)| + EIR(X(T)) + Fa(X3(T))]

<2 as c¢; > ¢s.

by (15)

<1+

by (16)

O

Appendix C: Proofs of the Results in Section 5

We denote 7* as the optimal scheduling policy. We also denote 7F as the optimal policy induced

by the LP (9), which we also refer to as the fluid cu/m rule.
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C.1. Proof of Lemma 1

We prove process level convergence by induction on t.
We first note that by assumption, X"(0) = z(0).
Suppose X"(t) = Z(t) as 7 — oo. Then, as 1" — 1),

Dy ()| X7 (t) 2 ;Binomiaum/??(X”(t»/mi, ) = i (5(2)) /i as 11— oo,

In addition, because

Al(t) = \i(t) as p— o0
and X (t+1)= X](t) + Al(t) — D](t), we have X (t+1) = Z;(t+1) as n — oc.
C.2. Proof of Lemma 2

For ease of exposition, we sort the I customer classes in the decreasing order of their corresponding
cu/m index. Let [i] denote the i-th class in this order.
The proof is based on backwards induction and an interchange argument. We first introduce

V7 (z) as the cost to go function under policy 7 for the fluid model, i.e.,

V@)= Y Sewls)+ Y AT

with z;(t) =z;, and for s=t+1,...,T,

Zi(s)=Zi(s = 1)+ Ni(s—1) — (s —1).

We define
I
Vi (z)=> Fi(z(T)) given 2,(T—1)=ux

=1

I
= chi(xi + (T —1) = (T = 1)).
=1
Base Case: t =T —1. Let 2 =(21,...,2r) € R} denote the amount of service capacity allocated to

each class. Then,
I
m_in V;il(l') = min Z §Ci (mz + )\Z(T — 1) — uzzz/mz)
=1

I
s.t.ZzigN, 0<z,<myx;fori=1,... 1.

i=1
It is straightforward to see that the optimal solution is to prioritize according to the cu/m index.
Inductive Step. Suppose it is optimal to follow the cu/m rule for s=t,...,T—1and 0 <t <T—1.

We now consider the time epoch ¢ — 1. Let Z(t — 1) = x for some initial state x. Suppose by
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contradiction that it is optimal to deviate from the cp/m rule at time ¢ — 1. Then for some x, there
exists i and j, having [j] < [i], such 7} (t — 1) > 0 while z; — 7/ (t — 1) > 0, i.e., some service capacity
is allocated to Class [j] while there is still Class [i] fluid waiting. If Class [¢] is served some time
after t — 1 under 7, let 0 >t be the first time after time ¢ — 1 at which Class [i] is served under
7*. Let e :=min{7;(0),z; — 7;(t —1),7;(t — 1)m;/m;}. Consider a policy 7" which is identical to
7%, except that at time ¢t — 1, m(t — 1) =7;(t — 1) +¢ T(t —1) =7;(t — 1) — ¢, and at time o,

mi(o) =7} (o) —¢, Ti(0) =7;(0) +¢, ie., the € capacity is swapped under 7. Then,

(T o’ C‘/’L
Viii(x) =V (x) =€elo—t+1) -

GHi e(c—t+1)2= > 0.
m; m;

If Class [i] is not served after ¢ —1, let € = min{z; — 7; (¢t — 1), 7} (t — 1)m;/m;}. Consider a policy 7’
which is identical to 7*, except that at time t — 1, Tj(t —1) =7;(t - 1) +e, T (t - 1) =7;(t - 1) —e.

Then,
Gl _(r—t+6)9H 5,

7 m]
This contradicts the optimality of 7*. Thus, it is optimal to follow the cu/m rule at t —1 as well.

V(@) =V (0) =e(T =t +€)

C.3. Proof of Theorem 3

The proof is decomposed into two steps.
Step 1: Prove that the optimal fluid value function is a lower bound for the stochastic value

function. Formally, we shall prove the following lemma.

LEMMA 5. For any Markovian policies 7",

Vi) /n = Vi (/).

Note that Vj(x) is continuous in z when the cu/m-index takes distinct values (note that the

optimal fluid trajectory is continuous in its initial condition). Thus, if " /n — z as n — oo,
liminf n — coVZ" (") /n > liminf n — ooV (2" /1) = Vi (z).

Step 2: Prove that the idle-aware cu/m policy achieves the lower bound asymptotically. Formally,
we first have the following lemma. Let 1" denote the mapping from the state of the system
to the allocation of servers according to the idle-aware cu/m rule with parameter I' > 0. We also

write 1) as the mapping corresponding to the cu/m rule for the fluid model.
LEMMA 6. For any fized T >0, P01 — P a5 n— oo.

Under the assumption that the cu/m index takes distinct values, the LP (9) has a unique optimal

solution:

j—1
Py (x) = <N— Zifﬁ(@) Azmy),



o1

and the mapping ¥ (x) is continuous in z. Thus, from Lemma 1, we have

IP(F),7]7,,7 _zL

X7 =z uniformly on [0,7] as n— oc. (17)

We next establish the uniform integrability of X P10 We shall drop the superscript 7/ P

as it can be clearly understood from the context. Because supy<,<p X/ (t) < S AT(t), we have

SL;pE [<Oi?£TXi”(t)>]<supE (ZA" ) —sup E (ZA" >
:Supi2 Var (ZAZ’(t))+ E(ZAZ’(t))]

n N
> E(A](1))

T 12

> Ait)| <oo.

t=1

2

T

1

=sup > Var (A2(t) +
n .

_l’_

—sup [ZA i(0)

This implies the uniform integrability of X ”IP(F)’W’", which combining with (17) indicates that if

x"/n=x as n— oo, then
. _n_IP(F),n _LP
lim Vg @)=V ().

n— o0
Lastly, by Lemma 2, we have VOﬁLP () =V (x).

C.3.1. Proof of Lemma 5 We first note that for any feasible Markovian policy 7”7, we have

V0 = 33 B X0+ YK [F (£2(7)]

and
E[X](t+1)] = E[X](t)] + E[A] ()] - E[D] (t)]
=E[X] ()] +Xi(t) — B[] (t — 1)),

where 7} (t) =7} (t)/n and satisfies that Zle m7a](t—1) <N and 0 <7} (t—1) < X](t —1). This
further implies that 3, m,E[77(t —1)] < N and 0 <E[7/(t — 1)] <E[X](t —1)].

Next, if we set Z,;(t) = E[ X[ (t)]/n and 7;(t) = E[x](t)] /n, then (Z,7) constitutes a feasible solution
to the fluid optimization problem (8). Thus, V" ™ (z)/n > Vi (z/n).
C.3.2. Proof of Lemma 6 For a given 2", we denote 2”7 = {7 (27 /), i.e., it is the fluid-
scaled optimal solution to the IP (6). Suppose z"/n — x as n — co. Let z = @Z)LP( ), i.e., it is the
optimal solution to the LP (9). We also write 27 = |nZ]/n. Note that nz" is a feasible solution to
the IP (6). This implies that R(nz7) < R(nz"). Then, for any n > 1, we have

R(2)> R(z") > R(3").
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Next,

5 5 5 5 il 1
0<R(Z)-R(")<R(z) -REH< <C“ +r> ;0 as o,
=1
Thus, R(z") — R(2) as n — co.
Lastly, as the LP (9) has a unique optimal solution when the cu/m index takes distinct values,

we have 27 — Z as 1 — oo.

Appendix D: Proof of Theorem 4

The proof of Theorem 4 follows a similar sample-path construction as that in Armony and Bambos

(2003). Fix a sample path w, suppose by contradiction

1< m;
li - —X;(t)=6>0. 18
maw 30 TEX () (18)

Then, there exists an increasing unbounded sequence of times {t,}°, such that

I

lim — S "Xt =0

by “= i

We partition the state space into two mutually disjoint sets, such that for any 1 € ,,:

Set A includes all states for which there are some idle servers under 1. Under Assumption 2, there
are no jobs waiting under 1 for the states in set A .
Set B includes all states for which there is no idle server under 1.

Define §, = sup{t <t,, X(t) € A}, ie., §, is the last time before t, at which X(¢) € A. By
convention, we set §, =0 if X (¢) has always been outside A. Then, liminf, . (t, — §.)/t, = €, for
some €; € (0, 1].

This implies we can find a further increasing unbounded subsequence {t,}>%; such that
lim, o (t, — 8,)/t, = €;. (With a little abuse of notation, we index v from 1 to co as well.) We next
construct an increasing unbounded sequence of times {s,}>2, based on §,. Fix €, € (0,1) and set
s, =max{8,, (1 —e)t,}. Our construction of s, implies that

tv_sv

lim

vV—00

=e3=min{e;, e} € (0,1).

v

Note that X (t) ¢ A throughout the interval (s,,t,] and

toy ty ty K k

pit);

X (t)— X, — E (1) — E () = E (1) — E

i(ty) — Xi(sy) Ai(t) D;(t) A;i(t) Ti(s,+1,t,) m
t=sy+1 t=sy+1 t=sy+1 k=1

where Ty (s, +1,t,) denotes the amount of time the system spends using the service configuration k

during the interval [s, +1,t,]. Note that here we only use feasible configurations for a given system

state. Thus, Zszl Ti(s, +1,t,)=t,—s,— 1. As t, — s, — 00 as v — 00,

S B X() ~ Xi(s0) A S

lim inf = - 27k2¢f7 (19)

vV—00 tv — Sy — 1




93

where v, >0, k=1,..., K, and Ziilfyk =1, i.e., v, is the proportion of time configuration ¢*
is used. Next, we divide the K service configurations into two groups: ®/ which includes the
configurations that do not utilize all servers, and ®¥! which includes the configurations that utilize
all servers. When X (t) ¢ A, all the configurations utilized (i.e., with v, > 0) under Q,; are in ¢™7.

Then, we can rewrite the limit in (19) as

~-N (20)

! S\imi ! j\imi

2SN X w=2

i1 M kedNI i

Next, we prove that the expression in (20) is less than or equal to 0. Suppose by contradiction that
! S\imi

22

>N (21)

=1

Since A € M,

I 5 I
SN S et 3w >k, (22)

Hi kedNI kedl  i=1

for some oy, >0, k=1,..., K, and Zle ay, = 1. Combining (21) and (22) yields that

1
N<N Y at > ar) ¢F <N,

qu)NI kE‘i’I =1

where the last inequality follows because Zfil ¥ < N for k € ®'. We get a contradiction.
Thus,

po e M i (X(t) = Xi(s)

V=00 tv—Sv—l

<0.

This further implies that

I

I
1 4 1 4
lim inf — Z @Xi(sv) =liminf ———— Z %Xi(sv)

V=00 Sy, i1 MZ vV—>00 tv(1_63) i1 :u‘l
I
m,
> liminf —X,(t,
T vooe (1 —e€3) ; Hi (t.)
0
= > 6,
1-— €3

which contradicts the assumption in (18). Thus,

lim S M) =0, (23)

t—o00 t :
i1 M

and note that the argument here applies sample-path wise. The convergence in (23) further implies

that the system is rate stable by Lemma 2.2 in Armony and Bambos (2003). O
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