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Abstract

Langevin diffusion (LD) is one of the main workhorses for sampling problems.

However, its convergence rate can be significantly reduced if the target dis-

tribution is a mixture of multiple densities, especially when each component

density concentrates around a different mode. Replica exchange Langevin dif-

fusion (ReLD) is a sampling method that can circumvent this issue. This ap-

proach can be further extended to multiple replica exchange Langevin diffusion

(mReLD). While ReLD and mReLD have been used extensively in statistics,

molecular dynamics, and other applications, there is limited existing analysis

on its convergence rate and choices of the temperatures. This paper addresses

these problems assuming the target distribution is a mixture of log-concave den-

sities. We show ReLD can obtain constant or better convergence rates. We also

show mReLD with K additional LDs can achieve the same results while the

exchange frequency only needs to be (1/K)-th power of the one in ReLD.
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1. Introduction

Given a d-dimensional distribution π(x) ∝ exp(−H(x)), a standard way to

generate samples from π is simulating the overdamped Langevin diffusion (LD):

dX(t) = ∇ log π(X(t))dt+
√

2dB(t), (1)

where B(t) is a d-dimensional Brownian motion, for a long enough time hori-

zon. The main justification of this approach is that, under mild conditions, the

invariant measure of X(t) is the target distribution π. This approach can be

quite efficient when the potential function/Hamiltonian H(x) is strongly-convex.

However, if H(x) has multiple local minima and each of them is located inside

a deep potential well, LD can be very inefficient. In such cases, LD will spend

a large amount time circulating inside one potential well before it can reach

another potential well (see, for example, [1]). Such behavior significantly slows

down its convergence rate to stationarity.

Replica exchange Monte Carlo, also known as parallel tempering, is a method

that has been used extensively in molecular dynamic (MD) and statistics to im-

prove the convergence rate of the sampling process when the target distribution

is multimodal [2]. When combined with LD, it considers simulating additional

LDs (beyond X(t)), where each of them is targeting a higher tempered version

of π. In general, a high temperature flattens the potential wells so that it is

easier for the corresponding LD to move between different potential wells. Pe-

riodically, the replicas exchange their locations through a Metropolis Hasting

mechanism. Such exchanges can help switch X(t) out of its current potential

well while keeping π as its invariant measure. The exact formulation of Replica

exchange Langevin diffusion (ReLD) can be found in Section 2.3. Numerical ver-

sions of ReLD (through appropriate discretization) have been applied to various

applications and achieved significant efficiency gain over LD (see, e.g., [3, 4, 5]).

Despite the elegant intuition and empirical success of ReLD, there is limited

theoretical analysis of why and when it performs well. This is partly because

most analytical framework does not handle non-convex potential functions well.
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ReLD as a Markov process is also more complicated to analyze than LD due to

the exchange dynamic. In this paper, we invetigate the performance of ReLD by

providing an explicit quantification of its spectral gap. This spectral gap char-

acterization provides guidance on how to choose the temperatures and swapping

intensities in ReLD.

1.1. Spectral gap and slow LD convergence on mixture distributions

The convergence rate of a continuous time Markov process Zt can be char-

acterized by a quantity called the spectral gap. To formally define the spectral

gap, we first define the generator of Zt as

L(f)(z) := lim
t→0

1

t
E[f(Zt)− f(z)|Z0 = z],

for f ∈ D(L) where D(L) is a subset of C2
c(Rd) such that the above limit

exists and C2
c(Rd) is the space of twice continuously differentiable functions

with compact support. For most of the Markov processes discussed below, one

can simply use D(L) = C2
c(Rd). We define the associated carré du champ as

Γ(f) =
1

2
(L(f2)− 2fL(f)),

and the Dirichlet form as E(f) =
∫

Γ(f)πZ(dx), where πZ is the invariant

distribution of Zt. The inverse spectral gap of Zt can then be defined as

κ = sup

{
varπZ (f)

E(f)
; f ∈ C2

c(Rd), E(f) 6= 0

}
, (2)

where we use varµ(f) to denote the variance of f under µ. As a remark, the

domain of the operator defined above usually can be further extended, so that

C2
c(Rd) is a core of it. The definition of κ can also be extended (see [6] section

1.4 and 1.13). We restricted our discussion to C2
c(Rd) for simplicity.

The reason why κ controls the speed of convergence of Zt towards πZ can be

found in Theorem 4.2.5 of [6]. In particular, for any test function f ∈ L2(πZ),

i.e., square-integrable functions, there is a constant C0 such that∫
(E[f(Zt)|Z0 = z]− EπZf(Z))2πZ(z)dz ≤ C0e

−2t/κ.
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In other words, E[f(Zt)|Z0 = z] converges to the target expectation exponen-

tially fast with πZ-a.s. initial conditions, and the convergence rate is 1/κ, i.e.,

a smaller κ leads to a faster convergence rate.

Using the inverse spectral gap, we can show that LD converges very quickly

for a singular Gaussian distribution, but very slowly for a mixture of two sin-

gular Gaussians. Let φ denote the density function of a d-dimensional standard

Gaussian random vector, i.e., φ(x) = (2π)−d/2 exp(−‖x‖2/2).

Proposition 1 The inverse spectral gap κ for LD satisfies the following bounds:

1. If π(x) ∝ φ(x/ε), then κ ≤ ε2.

2. If π(x) ∝ 1
2φ(x/ε)+ 1

2φ((x−m)/ε) and ε ≤ ‖m‖
16
√
d

, then κ ≥ ε4

80‖m‖2 exp
(
‖m‖2
64ε2

)
.

The proof of Proposition 1 can be found in Appendix A (The first scenario is

well known). Proposition 1 indicates that one of the most challenging types of

densities for LD to sample is mixtures of “well-separated” singular densities,

even if each of them is Gaussian. When sampling a single Gaussian using LD,

the spectral gap is lower bounded by ε−2. In this case, a smaller value of ε

leads to a faster convergence rate. However, when sampling a mixture of two

such Gaussians with well-separated modes, the convergence can be very slow

for small values of ε. In particular, the spectral gap of LD is upper bounded by

80‖m‖2ε−4 exp(−‖m‖2/(64ε2)), which is extremely small when ε is small.

1.2. Replica exchange Langevin diffusion

We next introduce the replica exchange method by considering the scenario

where there are two replicas. The first one X(t) is defined in (1) and the second

one Y (t) has a stronger stochastic force:

dY (t) = ∇ log π(Y (t))dt− τY (t)/M2dt+
√

2τdW (t), (3)

where W (t) is a d-dimensional Brownian motion, independent of B(t) in (1),

and τ is a parameter known as the temperature. M is a large number so that the

local minima of H(x) satisfy max1≤i≤I ‖mi‖ ≤M . The stationary distribution
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of Y (t) takes the form

πY (y) ∝ exp

(
−1

τ
H(y)− ‖y‖

2

2M2

)
.

When τ is selected to be a large number, the effective Hamiltonian of Y (t) is

approximately τ−1H(y), which has the same local minima as H(x), but the

height of the potential wells are only 1/τ of the latter. Thus, it is easier for Y (t)

to climb out of potential wells and visit other local minima.

Even though Y (t) is not sampling the target density π, it can be used to

help X(t) sample π more efficiently. To do so, let ρ > 0 denote a swapping

intensity, so that sequential swapping events take place according to an inde-

pendent exponential clock with rate ρ. At a swapping event time t, X(t) and

Y (t) swap their positions (values) with probability s(X(t), Y (t)), where

s(x, y) = 1 ∧ π(y)πY (x)

π(x)πY (y)
. (4)

We refer to the joint process (X(t), Y (t)) as ReLD. It can be verified that π⊗πY

is the invariant distribution of ReLD under mild ergodicity conditions [7].

Exchanging X(t) with Y (t) can improve the convergence rate of X(t). We

demonstrate the basic idea through Figure 1. As mentioned above, the main

reason why sampling directly from LD can be slow for multimodal π is that X(t)

can be trapped in a potential well for a long time. In Figure 1, suppose X(t)

is currently in B(m1, r), which is a ball of radius r centered at the mode m1.

In order for X(t) to visit a different mode m2, it needs to visit the boundary

of the potential well, i.e., the origin, and this can take a long time. On the

other hand, it is much easier for Y (t) to cross the potential wells. In particular,

Y (t) can move “freely” in a larger region demonstrated as B(0, R) in Figure 1,

which includes all the local minima. The exchange mechanism (4) swaps X(t)

and Y (t) with a decent chance if Y (t) is in a different “high-probability” area

for X(t), say B(m2, r). This helps X(t) visit the other potential well, which

effectively improves the convergence rate of X(t). Our main objective in this

paper is to translate these intuitions into mathematically rigorous statements.

One major issue with ReLD introduced above is that the exchanges may not
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happen often enough. To see this, note that in Figure 1, when X(t) is near the

first mode m1, the exchange probability (4) can be very small unless Y (t) is in

“high-probability” areas B(m1, r) or B(m2, r) as well. But since Y (t) is circling

inside a large area B(0, R), the chance that it is in B(m1, r) or B(m2, r) can

be small if r � R. To amend this issue, we can simulate multiple parallel LDs

with an increasing sequence of temperatures. Then, we exchange the positions

of neighboring replicas. The above sampling scheme is referred to as mReLD.

Adding intermediate temperatures improves the small exchange probability

issue mentioned earlier. We illustrate the basic idea through Figure 2, where we

run three parallel LDs. The “high-probability” areas for X0(t), X1(t), and X2(t)

are B(m1, r0)∪B(m2, r0), B(m1, r1)∪B(m2, r1), and B(0, r2) respectively. We

note that r0 < r1 < r2. The exchange between X0(t) and X2(t) may not happen

often, since X2(t) has only a small chance of being inside B(m1, r0)∪B(m2, r0).

On the other hand, X1(t) stays mostly inside B(m1, r1)∪B(m2, r1), and thus has

a better chance of being inside B(m1, r0) ∪B(m2, r0) than X2(t). Hence X1(t)

can exchange with X0(t) more often. From this discussion, we see that adding

additional replicas, for which the neighboring replicas share similar potential

functions, improves the chance of successful exchanges. Meanwhile, exchanges

between non-adjacent replica are unlikely to happen, so we decide to exclude

them in our design of mReLD. In particular, we consider K + 1 LDs

dXk(t) = τk∇ log πk(Xk(t))dt+
√

2τkdWk(t), k = 0, . . . ,K

with 1 = τ0 ≤ τ1 ≤ · · · ≤ τK and π0 = π. Exchange between two adjacent

levels takes place according to independent exponential clocks with rate ρ. At

a swapping epoch t for the pair (k, k + 1), Xk(t) and Xk+1(t) exchange their

positions (values) with probability sk(Xk(t), Xk+1(t)), where

sk(xk, xk+1) = 1 ∧ πk(xk+1)πk+1(xk)

πk(xk)πk+1(xk+1)
. (5)

We next show that by properly choosing the temperature and the swapping

intensity in ReLD and mReLD, we can substantially improve the convergence
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Figure 1: ReLD: The (blue) solid line plots

the density function of a bi-modal density

π. The (red) dashed line plots the tem-

pered density function πY .

Figure 2: mReLD: The tall (blue) solid,

short (green) solid, and (red) dashed lines

plot the density functions of π0, π1, π2 re-

spectively.

rate for Gaussian mixtures (including scenario 2 in Proposition 1). To highlight

the challenge in sampling efficiency, we focus on the dependence of the inverse

spectral gap on the parameter ε (i.e., the depth of the potential well), while

keeping all other model parameters fixed.

Theorem 1 Suppose the target density is a mixture of isotropic Gaussian dis-

tributions: π(x) ∝
∑I
i=1 piφ

(
x−mi
ε

)
, where max1≤i≤I ‖mi‖ ≤M for some con-

stant M < ∞. For ReLD with τ, ρ ∝ ε−d, the inverse spectral gap, κ = O(1),

i.e., is independent of ε. For mReLD, there exists a sequence of πk’s such that

for τk = ε−
d
K , k = 1, . . . ,K, and ρ = ε−d/K , the inverse spectral gap, κ = O(1).

In this section, we choose the Gaussian mixture due to its simplicity for

demonstration. In Section 2, we study the convergence rate of ReLD and

mReLD for mixtures of more general distributions. In particular, Theorem 1 is

a special case of Theorems 2 and 3 (see Corollaries 1 and 2 for more details).

1.3. Literature review and our contribution

Most standard Markov Chain Monte Carlo (MCMC) methods suffer from a

slow convergence rate when the target distribution has multiple isolated modes,

i.e., multimodal. Replica exchange Monte Carlo (ReMC), which is also known as

parallel tempering, has been proposed to speed up the convergence and has seen
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promising performance in molecular dynamics and statistical mechanics (see, for

example, [3, 4, 2, 8, 9, 5]). In recent year, it has also been applied to machine

learning, such as training restricted Boltzmann machines [10, 11, 12]; and solving

non-convex optimization problems [13, 14]. There is also a growing interest in

designing new ReMC algorithms for improved performance [15, 16, 17, 18], but

there are very few existing works analyzing the convergence rate of ReMC. The

closest to our work is [19], which establishes an upper bound for the inverse

spectral gap of replica exchange samplers. While their bound can be applied to

more general samplers than ours, such flexibility comes at a cost of tractability.

In particular, to calculate their bound, one needs to design an appropriate

partition of the state space and samplers that converge fast on the partition,

which can be highly nontrivial. In contrast, ReLD focuses on LDs, which can

be seen as concrete samplers. Our results also provide more explicit bounds and

there is no need to design the partition to implement the algorithm. Efficiency of

ReLD or similar versions of it is also studied in [13, 14]. The work [13] analyzes

the spectral gap but does not provide an explicit quantification of the “speed-

up” due to swapping. In this work, we are able to quantify the speed-up effect by

developing a novel bound for the mean-difference estimates. Focusing on solving

non-convex optimization problems, [14] considers a different performance metric

than the spectral gap. However, our refined spectral gap bounds can be applied

to their setting to quantify the benefit of adding extra replicas and guide related

parameter tuning.

A key question in implementation of ReLD or ReMC is how to set/tune the

temperature and the swapping rate. Most previous investigations rely on exten-

sive simulation experiments and heuristic arguments [20, 21, 22]. The work [7]

uses the large deviation theory to define a rate of convergence for the empirical

measure of ReLD. It shows that the rate increases with the swapping intensity ρ.

Thus, an infinite swapping algorithm (ISA) is proposed. A more detailed large

deviation analysis of ISA is provided in [23]. Similar to our work, [24] studies

the ergodicity properties of ISA and derive bounds for the Poincaré inequality

constant. Recently, a series of works provide rigorous analysis on how to tune
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the temperatures to achieve an asymptotically optimal exchange probability in

the high dimensional limit [15, 16, 18]. Similar to [19], these analyses assume

the existence of some exact samplers of the target distributions and focus mostly

on the equilibrium behavior. In contrast, our spectral gap analysis focuses on

concrete diffusion processes and characterizes the non-equilibrium behavior.

A similar but slightly different sampling idea to ReLD is simulated temper-

ing, which considers dynamically changing the temperature of LD [25]. Several

tempering-based MCMC methods have been studied in the literature, includ-

ing annealing MCMC [26], tempered transition method [27], etc. Like ReLD,

there are very few theoretical results about its efficiency. The work [28] develops

lower bounds for the spectral gap of general simulated tempering chains, but

the bounds are too loose to provide concrete guidance on how to choose the

hyperparameters. Recently, [29] establishes a tighter bound for simulated tem-

pering LD. Their analysis specifics how to set the temperatures in the setting

where the target distribution is a mixture of log-concave densities with different

modes but the same shape. In contrast, our results allow the mixture compo-

nents to be of different shapes. One main challenge in implementing simulated

tempering is that one needs to estimate the normalizing constants of the target

distributions. In contrast, replica exchange avoids the need to deal with these

normalizing constants, as they are cancelled out in the exchange probabilities.

1.4. Organization and notation

The rest of the paper is organized as follow. In Section 2, we present the

main results, Theorems 2 and 3, which provide estimates on the inverse spectral

gap for ReLD and mReLD respectively. In Section 3, we demonstrate how

to apply our results to mixtures of log-concave densities and the connection

between mixture models and the Morse function assumption in [1]. The proof

of the main results (Theorems 2 and 3) are provided in Section 4. To keep the

discussion concise, all the technical results are proved in the appendices.

Given two vectors u, v ∈ Rd, we use ‖v‖ to denote the l2 norm of v, and

〈v, u〉 := uT v. Given a matrix A, we use ‖A‖ to denote its l2-operator norm. For
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any f ∈ C2(Rd), i.e., twice continuously differentiable functions, we use∇f ∈ Rd

to denote its gradient, ∇2f ∈ Rd×d to denote its Hessian, and ∆f := tr(∇2f).

We also denote B(x0, R) as a ball with center x0 and radius R.

When a distribution π is given, we use Eπf and varπ(f) to denote the mean

and variance of f under π. For two distributions π and ν on Rd, we write their

product measure on R2d as π ⊗ ν. Since we consider mostly diffusion-type of

stochastic processes, it is reasonable to assume the associate distributions are

absolutely continuous with respect to the Lebesgue measure. When we refer to

a distribution π, we assume it has a probability density function π(x). Then,

we can use π(x)/ν(x) to denote the Radon-Nikodym derivative between π and

ν. We define 0/0 ≡ 0.

Our goal is to develop a proper upper bound for the inverse spectral gap

κ, which can be translated to a lower bound for the spectral gap. As the

underlying distribution/process may involve several parameters, e.g., ε, d,M in

the Gaussian mixture example and τ, ρ for ReLD, the exact characterization of

the upper bound can get quite involved. Therefore, we adopt the O notation.

For a nonnegative function f and a sequence of non-negative quantities Aε

indexed by ε, we write Aε = O(f(ε)) if there is a constant C > 0 independent of

ε, such that Aε ≤ Cf(ε). Aε = O(1) means Aε ≤ C. We also write Aε = Ω(f(ε))

if there is a constant C > 0 independent of ε, such that Aε ≥ Cf(ε). Our goal

is to quantify the dependence of κ on ε, τ , and ρ.

2. General problem setup and results

We introduce the general setup of ReLD and study its performance when the

target distribution is of certain mixture type in this section. Our development

relies on applications of Poincaré inequality (PI). Therefore, we start by intro-

ducing some basic properties of PI. We then discuss general assumptions for the

type of density mixtures that our framework can handle. The main results are

presented in Theorems 2 and 3 in Sections 2.3 and 2.4 respectively.
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2.1. Poincaré inequality and Lyapunov function

Recall that the basic LD is given by

dX(t) = ∇ log π(X(t))dt+
√

2dB(t).

We denote Lπ as it generator, which takes the following form:

Lπ(f) = 〈∇f,∇ log π〉+ ∆f,

for f ∈ C2
c(Rd). Then, the associated carré du champ takes the form Γ(f) =

‖∇f‖2. The inverse spectral gap κ in (2) can also be viewed as the coefficient

in the PI, which is often refer to as the PI constant.

Definition 1 A density π follows κ-PI if the following holds

varπ(f) ≤ κ
∫
‖∇f(x)‖2π(x)dx, ∀f ∈ C2

c(Rd).

We next review some existing results of PI.

Proposition 2 (Holley–Stroock perturbation principle) Suppose for some

operator Γ and density π, varπ(f) ≤ κ
∫

Γ(f)(x)π(x)dx for all f ∈ C2
c(Rd).

Moreover, suppose there exists a constant C ∈ (0,∞) such that C−1 ≤ π(x)/µ(x) ≤

C for all x. Then, varµ(f) ≤ C2κ
∫

Γ(f)(x)µ(x)dx for all f ∈ C2
c(Rd).

Proposition 2 indicates that if a density π follows a κ-PI, then a mild per-

turbation of π also follows a PI. Note that Γ here can be the carré du champ of

LD, but it can also be the carré du champ of ReLD.

The next result connects the Lyapunov function to the PI constant. The

connection was first established in [30]. Here, we present a slightly different

version of it.

Definition 2 A C2 function V (x) : Rd → [1,∞) is a (λ, h,B,C)-Lyapunov

function for a density ν(x) if the following holds

LνV (x) ≤ −λV (x) + h1B(x),
supx∈B ν(x)

infx∈B ν(x)
≤ C,

where λ, h, C ∈ (0,∞) are positive constants and B ⊂ Rd is a bounded domain.
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Proposition 3 Suppose ν has a (λ, h,B(x0, R), C)-Lyapunov function. Then,

varν(f) ≤ 1 + hR2C2

λ
Eν [‖∇f(X)‖2].

Proposition 3 provides a convenient way to compute (upper bound) the PI

constant for a given density ν. Based on Proposition 3, we define the following

notion of a density:

Definition 3 We say ν is an Ly(R, q, a)-density with the center x0, if it has a

(λ, h,B(x0, R), C)-Lyapunov function, with

1 + hR2C2

λ
≤ q and sup

x∈B(x0,R)

uB(x0,R)(x)

ν(x)
≤ a,

where uB(x0,R) denotes the uniform distribution on B(x0, R).

Remark 1 In our main theoretical development, we will consider replacing

ν with uB(x0,R), since the latter is easier to handle. The constant a in the

Ly(q,R, a)-density roughly measures how well the uniform approximation is.

2.2. Mixture Density

As discussed in Section 1, we are interested in understanding how replica

exchange improves the convergence of LD on a multimodal target density. Mul-

timodal densities often arise from mixture models:

π(x) =

I∑
i=1

piνi(x), (6)

where pi ≥ 0 with
∑I
i=1 pi = 1, and each νi has a single mode mi.

We next discuss what kind of mixture model would allow a replica exchange

process (X(t), Y (t)) to sample efficiently. First, each νi should be “easy” for

an LD of the form (1) to sample directly, since the exchange mechanism can

only help X(t) visiting different modes but not sampling an individual νi faster.

This requirement can be formulated through the existence of an appropriate

Lyapunov function for νi based on Proposition 3:
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Assumption 1 There are positive constants ri, q, a such that for i = 1, . . . , I,

νi is an Ly(ri, q, a)-density with the center mi.

We will show in Propostion 4 that log-concave densities satisfy Assumption 1.

Second, Y (t) should be able to visit different mi’s “easily”. Otherwise, it

cannot help X(t) reach certain modes. This requirement can be formulated as

requiring that mi’s are not too far from each other. Since our problem is shift

invariant, this is equivalent to assuming that there exists a constant M < ∞

such that max1≤i≤I ‖mi‖ ≤M . In particular, M does not depend on d or q.

Remark 2 It is worth mentioning that [1] imposes different assumptions on

the Hamiltonian H(x). In particular, it assumes H(x) is a Morse function and

there is an admissible partition so that a proper Lyapunov function exists within

each partition. Admittedly, this might be a more general assumption, since not

all densities can be written as a mixture (6). However, this set of assumptions

requires more technical definitions and verification. Moreover, it can be shown

that under mild conditions, the setting in [1] can be converted to a mixture. We

will provide more details of the connection in Section 3.3.

2.3. Spectral Gap for ReLD

We next formulate a general ReLD. First, pick a density πY and consider

the following two LDs driven by independent d-dimensional Browian motions

W x(t) and W y(t):

dX(t) = ∇ log π(X(t))dt+
√

2dW x(t),

dY (t) = τ∇ log πY (Y (t))dt+
√

2τdW y(t).
(7)

Swapping epochs are generated by an independent exponential clock with rate ρ.

At a swapping epoch t, we swap the positions of X(t) and Y (t) with probability

s(X(t), Y (t)), where s is defined in (4). It is easy to see that the ReLD discussed

in Section 1 is a special case of (7) with πY (y) = exp(− 1
τH(y)− ‖y‖

2

2M2 ).

We consider a general πY here for two reasons. First, as we will discuss in

Section 2.3, the temperature τ is often “required” to be a large number. Then,
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direct simulation of Y (t) with the Euler-Maruyama scheme would require a

very small stepsize. If πY is a simple density, for example, a Gaussian density,

we can have direct access to the transition kernel of Y (t) and avoid using any

discretization scheme. Second, it is easier to impose requirements on πY for the

replica exchange process to achieve good convergence rate. For a mixture-type

target distribution as in (6), we impose the following assumption on πY :

Assumption 2 There are constants (Ri, Q,A) so that for each mode mi, π
Y

is an Ly(Ri, Q,A)-density with center mi, i = 1, . . . , I.

We will show in Proposition 6 that many forms of πY satisfy Assumption 2.

The generator of ReLD, denoted by LR, is then given by

LRf(x, y) = lim
t→0

1

t
E[f(Xt, Yt)− f(x, y)|X0 = x, Y0 = y]

= Lxf(x, y) + τLyf(x, y) + ρs(x, y)(f(y, x)− f(x, y)),

for f ∈ C2
c(R2d), where Lxf(x, y) := 〈∇xf(x, y),∇x log π(x)〉 + ∆xf(x, y) and

Lyf(x, y) := 〈∇yf(x, y),∇y log πY (y)〉 + ∆yf(x, y). It is easy to verify that

π ⊗ πY is an invariant measure for ReLD. In particular, Eπ⊗πY LRf = 0. The

associated carré du champ for ReLD is given by

ΓRf(x, y) =
1

2
(LR(f2)− 2fLR(f))

= ‖∇xf(x, y)‖2 + τ‖∇yf(x, y)‖2 +
1

2
ρs(x, y)(f(y, x)− f(x, y))2

(8)

for f ∈ C2
c(R2d). Note that if we simply simulate X(t) and Y (t) accord-

ing to (7) without the exchange, the carre du champ will be ‖∇xf(x, y)‖2 +

τ‖∇yf(x, y)‖2. The exchange mechanism contributes to the additional positive

term 1
2ρs(x, y)(f(y, x) − f(x, y))2 in ΓR. While this helps lowering the inverse

spectral gap κ in (2), the extent of improvement is far from obvious.

We next quantify the effect of the exchange mechanism on the spectral gap.

In addition to Assumptions 1 and 2, we also impose the following assumption:

Assumption 3 There are r > 0 and R > 0, such that the constants Ri, i =

1, . . . , I, and ri, i = 1 . . . , I, from Assumptions 1 and 2 satisfy Ri ≤ R and

Ri
ri
≤ R

r for all 1 ≤ i ≤ I.
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Theorem 2 For ReLD defined in (7), under Assumptions 1, 2, and 3,

varπ⊗πY (f(X,Y )) ≤ κEπ⊗πY [ΓR(f(X,Y ))],

for all f ∈ C2
c(R2d), where

κ = max

{
3(56A+ 1)q,

3

τ

(
57Q+ 14aA

(
Rd+1

rd−1

)(
log

(
R

r

))1d=1
)
,

7aA

ρ

(
R

r

)d}
.

In particular, if R,A,Q, a are O(1) constants, then κ = O
(
q +

(
1
τ + 1

ρ

)
1
rd

)
.

When q < 1, if we set τ, ρ ≥ Uq−αr−d for any α ≤ 1 and U > 0, then

κ = O(U−1qα).

For mixture of singular densities with isolated modes, r and q can be very

small. For example, as we will explain in more details in Section 3.1, r2, q =

Θ(ε2) for the Gaussian mixture model in Proposition 1. If we choose τ, ρ ≥ r−d,

then κ = O(1), i.e., it does not depend on r or q. If we choose τ, ρ ≥ q−1r−d,

then κ = O(q). In this case, the spectral gap is of the same order as the smallest

spectral gap of the component densities in the mixture.

2.4. Spectral Gap for mReLD

Considering K + 1 LDs

dXi(t) = τi∇ log πi(Xi(t))dt+
√

2τidWi(t), i = 0, . . . ,K (9)

with 1 = τ0 ≤ τ1 ≤ · · · ≤ τK and π0 = π. Exchange between two adjacent

levels takes place according to independent exponential clocks with rate ρ. At

a swapping epoch t for the pair (k, k+ 1), k = 0, . . . ,K − 1, Xk(t) and Xk+1(t)

exchange their positions with probability sk(Xk(t), Xk+1(t)), which is defined in

(5). Let xk:l = (xk, . . . , xl) and πk:l = πk ⊗ · · · ⊗πl. Note that each xk ∈ Rd for

k = 0, 1, . . . ,K. The generator of mReLD takes the form: for f ∈ C2
c(Rd(K+1)),

LKR (f(x0:k)) =

K∑
k=0

(τk〈∇xkf(x0:k),∇ log πk(x0:k))〉+ τk∆xkf(x0:k))

+

K∑
k=0

ρsk(xk, xk+1)(f(x0:K)− f(x0:(k−1), xk+1, xk,x(k+2):K)).
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The corresponding carré du champ and Dirichlet from are

ΓKR (f(x0:K)) :=

K∑
k=0

τk‖∇xkf(x0:K)‖2

+

K∑
k=0

ρsk(xk, xk+1)(f(x0:K)− f(x0:(k−1), xk+1, xk,x(k+2):K))2

and EKR (f) =
∫

ΓKR (f)π0:K(dx0:K) respectively for f ∈ C2
c(Rd(K+1)).

We make the following assumptions about πk’s.

Assumption 4 There are positive constants qk, rk,i, ak for k = 0, . . . ,K, i =

1, . . . , I, such that: 1) πk(x) =
∑I
i=1 piνk,i(x), where νk,i is an Ly(rk,i, qk, ak)-

density with center mi; 2) For each mi, πK is an Ly(rK,i, qK , aK)-density with

center mi.

Assumption 5 There is an increasing sequence 0 < r0 < r1 < · · · < rK , such

that the constants rk,i, k = 0, . . . ,K, i = 1, . . . , I, from Assumption 4 satisfy

rk+1,i/rk,i ≤ rk+1/rk, for all 0 ≤ k ≤ K − 1 and 1 ≤ i ≤ I, and rK,i ≤ rK , for

all 1 ≤ i ≤ I.

Theorem 3 For mReLD defined in (9), suppose Assumptions 4 and 5 hold,

and K, qk, ak, rk, k = 1, . . . ,K, are all O(1) constants. Then,

varπ0:K
(f(X0:K)) ≤ κEπ0:K

[ΓKR (f(X0:K))], (10)

for all f ∈ C2
c(Rd(K+1)), where

κ = O

(
max

{
q0

τ0
,

(
1

τk
+

1

ρ

)(
rk
rk−1

)d
, 1 ≤ k ≤ K

})
. (11)

In particular, when q0 < 1, for any α ≤ 1, U > 0, if we choose τk ≥ U
(

1
q0

)α (
rk
rk−1

)d
and ρ ≥ U max1≤k≤K

(
1
q0

)α (
rk
rk−1

)d
, then κ = O(U−1qα0 ).

The exact estimate of κ is quite complicated. We provide the explicit ex-

pression in Theorem 4. In Theorem 3, we assume K, qk, ak, rk, 1 ≤ k ≤ K, are

all fixed O(1) constants to simplify the estimate. For mixture models with small
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values of r0 and q0, if we can construct πk’s such that rk/rk−1 = Θ
(

(rK/r0)
1/K )

for k = 1, . . . ,K, we can set τk, ρ ≥ (rK/r0)
d/K

to achieve κ = O(1). If we fur-

ther enlarge τk, ρ ≥ q−1
0 (rK/r0)

d/K
, then κ = O(q0). In this case, the spectral

gap matches the smallest spectral gap of the component densities in the mixture.

3. Applying replica-exchange to different densities

In this section, we investigate ReLD for some specific examples. We first

present some general properties of log-concave densities. In particular, we show

they are Ly(R, q, a)-densities (Definition 3).

Definition 4 A density ν is a (c, L)-log-concave density if H = − log ν is C2

and 〈∇H(x)−∇H(y), x− y〉 ≥ c‖x− y‖2, ‖∇2H(x)‖ ≤ L,∀x, y.

Proposition 4 If ν is (c, L)-log-concave and m is its mode, then V (x) = c
d‖x−

m‖2 + 1 is a (λ, h,B,C)-Lyapunov function of ν with λ = c, h = 3c, B =

B

(
m,
√

3d
c

)
,and C = exp

(
3dL
2c

)
. This implies that ν is a Ly(r, q, a)-density

with q = c−1 + 9d
c exp

(
3dL
c

)
, r =

√
3d
c , and a = 1

Vd
exp

(
3Ld
2c

) (
4π
3d

)d/2
, where Vd

denotes the volume of a d-dimensional ball with unit radius.

We also provide a bound for a in the Ly(R, q, a)-density, based on a specific

form of the (λ, h,B(x0, R), C)-Lyapunov function.

Proposition 5 Suppose ν has a (λ, h,B(x0, R), C)-Lyapunov function of form

V (x) = γ‖x−x0‖2+1. Then ν is a Ly(R, q, a)-density with a = C
Vd

exp
(

1
4λR

2
) (

4π
λR2

)d/2
.

We next provide some specific forms of πY that satisfies Assumption 2.

Proposition 6 Assume max1≤i≤I ‖mi‖ ≤M for some M <∞.

1. If πY (x) ∝ φ(x/M), then Assumption 2 holds with R2 = O(M2d), Q =

O(M2d exp(12d)), and A = O(exp(6d)).

2. If πY (x) ∝ φ(x/M)π(x)β, νi(x)’s are (c, L)-log concave densities, and

β ≤ (dM2c+ dM2L2/c)−1, then Assumption 2 holds with R2 = O(M2d),

Q = O(M2d exp(20d)), and A = O(exp(12d)).
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Proposition 6 indicates that Assumption 2 is similar to requiring all modes,

mi’s, being bounded by a constant that does not depend on d.

3.1. ReLD for mixture of log-concave densities

A general Gaussian mixture model can be written as π(x) =
∑I
i=1 piνi(x),

where νi(x) = 1√
det(2πΣi)

exp(− 1
2 (x−mi)

TΣ−1
i (x−mi)). Suppose C−1l2i � Σi �

l2i , lm ≤ li ≤ lM ≤ 1, where C is known as the condition number. Then, νi is

(l−2
i , Cl−2

i )-log-concave. For general (l−2
i , Cl−2

i )-log-concave densities, we have

the following result:

Corollary 1 Suppose π =
∑I
i=1 piνi where νi’s are (l−2

i , l−2
i C)-log concave den-

sities with modes mi’s, and ‖mi‖ ≤ M . Let lm = mini li, lM = maxi li, and

τ ≥ dM2l−2
M + dM2l2M l

−4
m C2. Then, varπ⊗πY f ≤ κEπ⊗πY ΓR(f) holds with

κ = O

(
exp(CDd) max

{
dl2M ,

1

τ
dMlm

(
M

lm

)d
,

1

ρ

(
M

lm

)d})
,

where D is a fixed constant.

We next provide some interpretations of Corollary 1. As κ is the inverse

spectral gap, we refer to 1/κ as the convergence rate. First, consider the Gaus-

sian mixture model in scenario 2 of Proposition 1 where l2m = l2M = ε2 and C = 1.

By choosing τ, ρ = Ω(ε−d−2), β = τ−1 ≤ ε2 and κ = O(ε2). This matches the

convergence rate of LD when π(x) ∝ φ(x/ε). We can also set τ, ρ = Θ(ε−d),

which leads to κ = O(1). In addition, our result allows the Gaussian compo-

nents to be of different scales. For example, l21 = l2m = ε2 and l22 = l2M = ε.

In this case, if τ = Ω(max{ε−d, ε−3}) and ρ = Ω(ε−d−1), β = τ−1 ≤ ε−3 and

κ = O(l2M ) = O(ε). This matches the convergence rate of LD for π = ν2.

In general, for fixed values of d and C, τ and ρ need to scale as (M/lm)d for

the convergence rate to be of a constant order. To see the intuition behind this,

note that with a high temperature, Y (t) can be seen as a random search in the

set {‖x‖ ≤M} with speed τ . At any time t, the chance that it is in a radius-lm

neighborhood of a mode mi is (lm/M)d. Thus, to have a constant convergence

rate, it is necessary for Yt to run at a speed τ = Θ((M/lm)d). Meanwhile, ρ
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is rate of checking whether the exchange takes place, and it needs to be of the

same scale as τ .

In implementations, when applying discretization schemes like Euler-Maruyama

for ReLD, the step size often needs to scale as min {1/τ, 1/ρ}. If M = O(1) and

lm = O(ε), the computational cost of ReLD is roughly O(ε−d). While this can

be quite high, it is much better than the computational cost of using LD alone,

which is roughly O(exp(Dε−2)) as shown in Proposition 1. When taking com-

putational cost into account, it is of practical interest to further reduce τ and

ρ, which can be achieved by mReLD.

3.2. mReLD for mixture of log-concave densities

In this section, we demonstrate how the mReLD result applies to the mix-

ture models discussed in Section 3.1. Following the practical choice in MD

simulation, we assume the invariant measure for Xk(t) takes the form

πk(x) ∝ (π(x))βk , k = 0, 1, . . . ,K − 1

for some inverse temperature βk ∈ [0, 1]. Note that this choice makes the drift

term of Xk(t) being a multiple of ∇ log(π(Xk(t))), which is generally accessible.

When the target distribution is a mixture of log concave densities, our char-

acterization of the spectral gap depends on whether we need to synchronize τk

with βk. In particular, if the speed of simulation for Xk(t), which is described

by τk, does not need to match the temperature 1
βk

, then (βk)1≤k≤K can be

chosen as a geometric sequence for efficient simulation. If τk needs to be 1
βk

,

(βk)1≤k≤K can be a geometric sequence for d = 1, 2. But for d ≥ 3, our analysis

requires βk to be log geometric.

Corollary 2 Suppose π0 = π =
∑I
i=1 piνi, where νi is (l−2

i , l−2
i C)-log concave

densities with modes mi and ‖mi‖ ≤ M for i = 1, . . . , I. Let lm = mini li,

lM = maxi li. Consider running mReLD with

πk(x) ∝ (π(x))βk , k = 1, . . . ,K − 1, πK(x) ∝ (π(x))βKφ(x/M).

With K, d, C,M all being O(1) constants,
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1. if βk = l
2k
K
m , τ0 = 1, and τk, ρ ≥ l

−α− d
K

m for 0 ≤ α ≤ 1, k = 1, . . . ,K, then

(10) holds with κ = O(l2αM );

2. if d ≤ 2, τk = β−1
k = l

− 2k
K

m for k = 0, 1, . . . ,K, and ρ ≥ l
−d/K
m , then (10)

holds with κ = O(1);

3. if d ≥ 3, τ0 = β0 = 1, τk = β−1
k = l

−2( d−2
d )K−k

m for k = 1, . . . ,K, and

ρ ≥ l−2
m , then (10) holds with κ = O

(
l
−d(

d−2
d )K−1

m

)
.

Consider the mixture of Gaussian densities in scenario 2 of Proposition 1

where l2m = l2M = ε2 and C = 1. By choosing τk, ρ = Ω(ε−
d
K−2), βk = ε

2k
K ,

for k = 1, . . . ,K, we have κ = O(ε−2). This matches the LD convergence rate

when π(x) ∝ φ(x/ε), i.e., a single Gaussian. We can also set τk, ρ = Ω(ε−d/K)

and βk = ε
2k
K , which leads to κ = O(1). Comparing the discussion following

Corollary 1, we note that the parameters τk, ρ are reduced from ε−d to ε−d/K .

This in practice can be computationally more desirable. Lastly, Corollary 1

combined with Corollary 2 (scenario 1 with α = 0) proves Theorem 1.

3.3. Morse Hamiltonian functions

The paper [1] considers a general density model based on the Morse function:

π(x) ∝ exp(−H(x)/ε),

where H(x) is a nonnegative Morse function. Due to Proposition 2, we say

πε(x) ∝ exp(−Hε(x)/ε) (or Hε(x)) is an ε perturbation of π(x) (or H(x)) if

|H(x)−Hε(x)| ≤ Dε, ∀x ∈ Rd for some constant D ∈ (0,∞).

The paper [1] further assumes thatH(x) has a finite set of local minima {m1, . . . ,mI},

a partition {Ωi}1≤i≤I of Rd, and a ε-perturbation of H(x), Hε(x) so that

1

2ε
∆Hε(x)− 1

4ε2
‖∇Hε(x)‖2 ≤ −λ0

ε
, ∀x /∈ ∪B(mi, a

√
ε), (12)

where B(mi, a
√
ε) ⊂ Ωi. Moreover, Ωi is the attraction basin of mi for gra-

dient flows driven by ∇Hε, i.e., Ωi := {x ∈ Rd : limt→∞ xt = mi, ẋt =

−∇Hε(xt), x0 = x}.
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We next consider a transformation of the partition framework in [1] into a

mixture model. Define

di(x) = min{‖x− y‖|y ∈ Ωi} and Ω′i =

{
x : d2

i (x) ≤ 1

n

}
.

We assume d2
i (x) is C2 on Ω′i for sufficiently large n with bounded derivatives.

Proposition 7 Suppose π(x) ∝ exp(− 1
εH(x)), Ω′i = {x : 0 < di(x) < 1√

n
},

and the following conditions hold:

1. There is an ε perturbation Hε(x) such that (12) holds.

2. The boundary of Ωi is regular enough so that d2
i (x) is C2 on Ω′i, and

for any xn → x ∈ ∂Ωi, ∇di(xn) → v⊥(x), where v⊥(x) is the outward

direction orthogonal to ∂Ωi.

3. There exists Dε ∈ (0,∞) such that ∆di(x) ≤ Dε, ‖∇Hε(x)‖ ≤ Dε, and

∆Hε(x) ≤ Dε.

Then, for ε sufficiently small, there exists a density πε, which is an ε perturbation

of π and πε(x) ∝
∑I
i=1 piνi(x), where νi has a (λ0/ε, h0/ε,B(mi, a

√
ε), C)-

Lyapunov function for certain fixed constants h0 and C.

We next provide a simple concrete example to demonstrate how mixtures of

singular densities arise in practice, and how to implement the Morse function

framework discussed above. Suppose we want to obtain the posterior density

p(x|y1, . . . , yn) where the prior is N (0, 2) and the observation is yi = x2+ξi, ξi ∼

N (0, 1). The posterior density is given by

p(x|y1, . . . , yn) ∝ exp

(
−1

2

(
2x2 +

n∑
i=1

(x2 − yi)2

))
∝ exp

(
−n

2
(x2 −mn)2

)
.

where mn = 1
n

∑n
i=1 yi −

1
n . It is easy to see that when mn > 0, p(x|y1, . . . , yn)

has two modes: ±√mn. For mn = 1, this density is also known as the double-

well potential. Following Proposition 7, we can decompose it into a mixture:

Corollary 3 For π(x) ∝ exp(− 1
2n(x2−a2)2) with a > 0, π(x) ∝ ν+(x)+ν−(x)

where ν+(x) = exp(− 1
2n(x2 − a2)2)1{x ≥ 0} and ν−(x) = exp(− 1

2n(x2 −
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a2)2)1{x < 0}. Moreover, for ε sufficiently small, there is a density πε, which is

an ε perturbation of π and πε(x) ∝ ν1(x)+ν2(x) where ν1 has a (na2, nh,B(a,
√
nr), C)-

Lyapunov function and ν2 has a (na2, nh,B(−a,
√
nr), C)-Lyapunov function

for certain fixed constants h,C.

4. Proof techniques

In this section, we provide detailed analysis on how the replica-exchange

mechanism speeds up the convergence. To make the presentation concise, we

allocate most of the technical verification to the appendix.

4.1. Analysis of ReLD

We first explain how to prove Theorem 2. Our proof utilizes the PI. The key

is to match (bound) the variance, varπ⊗πY (f(X,Y )), with the carré du champ

of ReLD, i.e., ΓR in (8).

Let θ̄ = Eπ⊗πY [f(X,Y )], ηi(y) =
∫
f(x, y)νi(x)dx and θi =

∫
ηi(y)πY (y)dy,

for i = 1, 2, . . . , I. First, based on the form of π, the variance of f(X,Y ) can be

decomposed as

varπ⊗πY (f(X,Y )) =

I∑
i=1

pi

∫
(f(x, y)− θ̄)2νi(x)πY (y)dxdy.

Then, because f(x, y)− θ̄ = (f(x, y)−ηi(y))+(ηi(y)−θi)+(θi− θ̄), by Cauchy-

Schwarz inequality, we can further decompose the variance as

varπ⊗πY (f(X,Y )) ≤ 3

I∑
i=1

pi

∫
(f(x, y)− ηi(y))2νi(x)πY (y)dxdy︸ ︷︷ ︸

(A)

+ 3

I∑
i=1

pi

∫
(ηi(y)− θi)2πY (y)dy︸ ︷︷ ︸

(B)

+3

I∑
i,j=1

pipj (θi − θj)2︸ ︷︷ ︸
(C)

.

(13)

To see part (C), note that as θ̄ =
∑I
i=1 piθi,

I∑
i=1

pi(θi − θ̄)2 =

I∑
i=1

pi

 I∑
j=1

pj(θi − θi)

2

≤
∑
i,j

pipj(θi − θj)2.
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In the decomposition (13), part (A) is the variance of f under νi with y

being fixed. Part (B) is the variance of ηi under πY . Since νi and πY satisfy

the Lyapunov condition, parts (A) and (B) can be controlled using Proposition

3. Thus, the key is to develop an upper bound for the mean difference square

in part (C): (θi − θj)2 =
(
Eνi⊗πY [f(X,Y )]− Eνj⊗πY [f(X,Y )]

)2
.

When running LD alone, [1] provides an estimate of the difference between

Eνi [f(X)] and Eνj [f(X)] (see Theorem 2.12 in [1]). The estimate depends on

the saddle height, and when νi ∝ φ((x−mi)/ε), it grows exponentially in 1/ε.

One of the main technical contribution of this paper is to find an upper bound

for the mean difference in the ReLD setting. In particular, we establish that

the ratio between the mean difference square and the carré du champ of ReLD

stays invariant when ε goes to zero. To achieve a better PI constant, we need

to exploit the additional exchange term that arises in the carré du champ for

ReLD:

Eπ⊗πY
[
ρs(X,Y )(f(Y,X)− f(X,Y ))2

]
=
∑
i,j

pipjρ

∫
(f(y, x)− f(x, y))2(νi(x)πY (y)) ∧ (νj(y)πY (x))dxdy

≤ρ
∫

(f(y, x)− f(x, y))2(π(x)πY (y)) ∧ (π(y)πY (x))dxdy.

In the following, we refer to (νi(x)πY (y)) ∧ (νj(y)πY (x)) as a “maximal cou-

pling density” as its formulation is similar to the L1-maximal coupling between

νi(x)πY (y) and νj(y)πY (x) [31]. However, this “maximal coupling density” is

still difficult to deal with. To resolve the challenge, we replace νi by uB(mi,ri),

which is the uniform distribution on B(mi, ri), and πY by uB(mj ,Rj) using ap-

propriate bounding arguments. The “maximal coupling density” with uniform

distributions is much easier to handle, and we can build proper bound for the

transformed mean difference square under uniform distributions. Following this

idea, we establish the following bound for the mean difference square.

Proposition 8 Consider four densities νX1 , ν
X
2 , ν

Y
1 , ν

Y
2 . Suppose νXi is a Ly(ri, q, a)-

density with center mi for i = 1, 2. Similarly, suppose νYi is a Ly(Ri, Q,A)-

density with center mi for i = 1, 2. Moreover, for i = 1, 2, there are constants
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R, r, a,A such that Ri ≤ R and Ri/ri ≤ R/r. Then(
EνX1 ⊗νY2 [f(X,Y )]− EνX2 ⊗νY1 [f(X,Y )]

)2

≤Ξx

∫
‖∇xf(x, y)‖2(νX1 (x)νY2 (y) + νX2 (x)νY1 (y))dxdy

+ Ξy

∫
‖∇yf(x, y)‖2(νX1 (x)νY2 (y) + νX2 (x)νY1 (y))dxdy

+ Ξe

∫
(f(x, y)− f(y, x))2

(
νX1 (x)νY2 (y) ∧ νX2 (y)νY1 (x)

)
dxdy,

where Ξx = 14(q + r2a2)A, Ξy = 14(Q + R2A2) + 7aA
(
Rd+1

rd−1

) (
log
(
R
r

))1d=1
,

and Ξe = 7
(
R
r

)d
aA.

The proof Proposition 8 is in Appendix D.

Proof [Proof of Theorem 2] Recall the decomposition in (13).

For part (A). By Assumption 1 and Proposition 3, we have∫
(f(x, y)− ηi(y))2νi(x)πY (y)dxdy ≤ q

∫
‖∇xf(x, y)‖2νi(x)πY (y)dxdy.

For part (B). By Assumption 2 and Proposition 3, we have∫
(ηi(y)− θi)2πY (y)dy ≤ Q

∫
‖∇ηi(y)‖2πY (y)dy

≤ Q

τ
τ

∫
‖∇yf(x, y)‖2νi(x)πY (y)dxdy,

where the second inequality follows from Jensen’s inequality since ∇ηi(y) =∫
∇yf(x, y)νi(x)dx.

For part (C). Under Assumptions 2 and 3, for each center mi, i = 1, . . . , I, πY

is a Ly(Ri, Q,A)-density with Ri ≤ R,Ri/ri ≤ R/r. Thus, by setting νXi = νi

and νYi = πY in Proposition 8, we have(∫
f(x, y)νi(x)πY (y)dxdy −

∫
f(x, y)νj(x)πY (y)dxdy

)2

≤Ξx

∫
‖∇xf(x, y)‖2(νi(x)πY (y) + νj(x)πY (y))dxdy

+
Ξy
τ
τ

∫
‖∇yf(x, y)‖2(νi(x)πY (y) + νj(x)πY (y))dxdy

+
Ξe
ρ
ρ

∫
(f(x, y)− f(y, x))2

(
νi(x)πY (y) ∧ νj(y)πY (x)

)
dxdy.
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Putting the bounds for (A) – (C) together, because
∑
i,j pipj(νi(x)πY (y) +

νj(x)πY (y)) = 2π(x)πY (y) and∑
i,j

pipj(νi(x)πY (y) ∧ νj(y)πY (x)) ≤ (π(x)πY (y)) ∧ (π(y)πY (x)),

varπ⊗πY (f(X,Y )) ≤3 (q + 2Ξx)

∫
‖∇xf(x, y)‖2π(x)πY (y)dxdy

+ 3

(
Q

τ
+ 2

Ξy
τ

)∫
τ‖∇yf(x, y)‖2π(x)πY (y)dxdy

+ 3
Ξe
ρ
ρ

∫
(f(x, y)− f(y, x))2

(
π(x)πY (y) ∧ π(y)πY (x)

)
dxdy

≤κEπ⊗πY [ΓR(f(X,Y ))],

where

κ = max

{
3(56A+ 1)q,

3

τ

(
57Q+ 14aA

(
Rd+1

rd−1

)(
log

(
R

r

))1d=1
)
,

7aA

ρ

(
R

r

)d}
.

�

4.2. Analysis of Multiple ReLD

We first rephrase Theorem 3 into a more detailed version as follows:

Theorem 4 For mReLD defined in (9), under Assumptions 4 and 5,

varπ0:K
(f(X0:K)) ≤ κEπ0:K

[ΓKR (f(X0:K))],

where

κ = max
0≤k≤K−1

max

{
k−2∑
h=2

3(4α)k−h+1

τk

(
8αγΞxk + 2γΞyk−1

)
+

3

τk

(
(8αγ + 2γ)Ξxk + 2γΞyk−1

+ 2qk
)
,

k∑
h=0

3(4α)k−h+2

ρ
γΞek

}
,

for any α, γ > 1 with 1/α+ 1/γ = 1, and

Ξxk = 28qkak+1, Ξyk = 28qk+1 + 7
(rk+1)

d+1

(rk)
d−1

akak+1

(
log

(
rk+1

rk

))1d=1

,

Ξy(−1)
= 0, Ξek = 7

(
rk+1

rk

)d
akak+1.

25



The proof of Theorem 4 builds on the analysis of ReLD and induction argu-

ments. We provide a roadmap of our proving strategy in this section.

Denote

Er:h[f(X0:K)] :=

∫
f(X0:r−1,yr:h,Xh+1:K)πr:h(yr:h)dyr:h,

Ek[f(X0:K)] :=

∫
f(X0:k−1, y,Xk+1:K)πk(y)dx,

and we write E(K+1):K [f(X0:K)] = f(X0:K) for convenience. We also write

var0:K(f(X0:K)) := E0:K

[
(f(X0:K)− E0:Kf(X0:K))

2
]

We first note that

f(X0:K)− E[f(X0:K)] =

K∑
k=0

(
E(k+1):K [f(X0:K)]− Ek:K [f(X0:K)]

)
.

For j < k,

E0:K

[(
E(j+1):Kf(X0:K)− Ej:Kf(X0:K)

) (
E(k+1):Kf(X0:K)− Ek:Kf(X0:K)

)]
=E0:K

[(
E(k+1):Kf(X0:K)− Ek:Kf(X0:K)

)
Ek:K

[(
E(j+1):Kf(X0:K)− Ej:Kf(X0:K)

)]]
= 0.

Thus, we have the following variance decomposition

var0:K(f(X0:K)) =

K∑
k=0

E0:K

[
Ek
[(
E(k+1):Kf(X0:K)− Ek:Kf(X0:K)

)2]]
.

The above decomposition allows us to focus on

Ek
[(
E(k+1):Kf(X0:K)− Ek:Kf(X0:K)

)2]
individually. Let Wk = X0:(k−1), Yk = Xk+1, Zk = X(k+2):K . We also write

πZ
k = π(k+2):K . For a fixed Wk = wk, we define

gk(wk, xk, yk) =

∫
f(wk, xk, yk, zk)πZ

k (zk)dzk,

ηk,i(wk, yk) =

∫
gk(wk, xk, yk)νk,i(xk)dxk,

θk,i(wk) =

∫
ηk,i(wk, yk)πk+1(yk)dyk, and θ̄k(wk) =

I∑
i=1

piθk,i(wk).
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Note that with these notations,

Ek+1:K [f(X0:K)] =

∫
gk(Wk, Xk, yk)πk+1(yk)dyk, Ek:K [f(X0:K)] = θ̄k(Wk).

Following similar lines of argument as (13), we have

Ek
[(
E(k+1):Kf(X0:K)− Ek:Kf(X0:K)

)2]
=

∫ (∫
gk(wk, xk, yk)πk+1(yk)dyk − θ̄k(wk)

)2

πk(xk)dxk

≤3

I∑
i=1

pi

∫
(gk(wk, xk, yk)− ηk,i(wk, yk))

2
νk,i(xk)dxkπk+1(yk)dyk︸ ︷︷ ︸

(A)

+ 3

I∑
i=1

pi

∫
(ηk,i(wk, yk)− θk,i(wk))2πk+1(yk)dyk︸ ︷︷ ︸

(B)

+3
∑
i,j

pipj (θk,i(wk)− θk,j(wk))2︸ ︷︷ ︸
(C)

.

(14)

We note that part (A) and (B) are variances of functions with respect to individ-

ual mixture component. Thus, they are easy to bound using Proposition 3. For

part (C), we utilize Proposition 8 and an induction argument on k to develop a

proper upper bound for the mean difference square. The details can be found

in Proposition 10 in Appendix E. The proof of Theorem 4 is also provided in

Appendix E.

5. Conclusion and future directions

LD is a popular sampling method, but its convergence rate can be signifi-

cantly reduced if the target distribution is a mixture of singular densities. ReLD

is a method that can circumvent this issue. It employs an additional LD process

sampling a high temperature version of the target distribution, and swaps the

values of the two processes according to a Metropolis-Hasting mechanism. More

generally, mReLD employs K additional LD processes sampling with different

temperature coefficients. In this work, we formulate a framework to quantify

the spectral gap of ReLD and mReLD. Our analysis shows that the spectral gap
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of ReLD does not degenerate when the mixture component becomes singular, as

long as the simulation parameters of ReLD scale properly with the singularity

parameter ε. While using mReLD can achieve the same convergence rate, the

simulation parameters have a weaker dependence on the singularity parameter.

While our results close some theoretical gaps for ReLD and mReLD, there

are several questions left unanswered. First, ReLD and mReLD are stochas-

tic processes, but not executable sampling algorithms. How to derive efficient

MCMC algorithms from them is an interesting research question. Notably, di-

rect simulation methods like Euler-Maruyama will incur sampling bias. While

using Metropolis adjusted Langevin algorithm (MALA) can remove such bias,

whether the spectral gap of mReLD can be inherited by its MALA implemen-

tation requires further analysis.

Second, high dimensionality is another major challenge for sampling prob-

lems besides multi-modality. Replica exchange alone may not be a good tool to

handle high dimensionality. Implementing ReLD on high dimensional distribu-

tions also have additional computational challenges, which often require novel

techniques to handle [16, 17, 18]. Our estimate for the spectral gap has an expo-

nential dependence on the dimension. This is mainly because our assumptions

on the target distribution are quite general. Better scaling on the dimension can

be obtained if we assume the existence of a lower effective dimension [32, 33]

or a sparse conditional structure [34, 35]. We also note that convergence met-

rics other than the spectral gap may have better dependence on the dimension.

Examples include MCMC variance [15] and round trip rates [17].

Lastly, we remark that ReLD and mReLD does not require any prior knowl-

edge of the locations of the mixture components. However, knowing the loca-

tions and other information can potentially lead to more efficient algorithms,

examples of which can be found in [36, 37].
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Appendix A. Proof of Proposition 1

Proof Claim 1) This is classical result one can find in [1, 6].

Claim 2) Let ν(x) ∝ φ(x/ε), i.e., ν(x) = 1
εd
φ(x/ε).

Because ∇φ(x/ε) = − 1
ε2φ(x/ε)x,

E
(ν
π

)
= 4

∫ ∥∥∥∥∇ φ(x/ε)

φ(x/ε) + φ((x−m)/ε)

∥∥∥∥2

π(x)dx

=
4

ε4

∫ ∥∥∥∥φ(x/ε)x(φ(x/ε) + φ((x−m)/ε))− φ(x/ε)(φ(x/ε)x+ φ((x−m)/ε)(x−m))

(φ(x/ε) + φ((x−m)/ε))2

∥∥∥∥2

π(x)dx

=
4‖m‖2

ε4

∫ ∣∣∣∣ φ(x/ε)φ((x−m)/ε)

(φ(x/ε) + φ((x−m)/ε))2

∣∣∣∣2 π(x)dx

=
4‖m‖2

ε4

∫
|r(x) + 1/r(x) + 2|−2

π(x)dx where r(x) = φ((x−m)/ε)/φ(x/ε)

=
4‖m‖2

ε4

(∫
A

⋃
B

|r(x) + 1/r(x) + 2|−2
π(x)dx+

∫
Ac

⋂
Bc
|r(x) + 1/r(x) + 2|−2

π(x)dx

)
,

where A = {‖x‖2 ≤ ‖m‖2/16}, B = {‖x−m‖2 ≤ ‖m‖2/16}. When x ∈ A,

r(x) = exp

(
−‖x−m‖

2 − ‖x‖2

2ε2

)
≤ exp

(
2‖x‖‖m‖ − ‖m‖2

2ε2

)
≤ exp

( 2
4‖m‖

2 − ‖m‖2

2ε2

)
= exp

(
−‖m‖

2

4ε2

)
.

(A.1)

Likewise, we can show that when x ∈ B, 1
r(x) ≤ exp

(
−‖m‖

2

4ε2

)
. Thus,∫

A
⋃
B

|r(x) + 1/r(x) + 2|−2
π(x)dx ≤ exp

(
−‖m‖

2

4ε2

)
. (A.2)

Next, we note that |r(x) + 1/r(x) + 2|−2 ≤ 1
16 always hold. Therefore,∫

Ac
⋂
Bc
|r(x) + 1/r(x) + 2|−2

π(x)dx ≤ 1

16

∫
Ac

⋂
Bc
π(x)dx

≤ 1

16

(∫
{
‖z‖2> ‖m‖

2

16ε2

} φ(z)dz +

∫
{
‖z−m‖2> ‖m‖

2

16ε2

} φ(z −m)dz

)

≤ 1

16
2 exp

(
−d

2

(
‖m‖2

16dε2
− 1

2
− log

(
‖m‖2

8dε2

)))
by Cramer’s bound

≤1

8
exp

(
− 1

64

‖m‖2

ε2

)
for ε ≤ ‖m‖

16
√
d
. (A.3)
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The last inequality holds because when ε ≤ ‖m‖
16
√
d
,

‖m‖2

8dε2
≥ 32 and log

(
‖m‖2

8dε2

)
<
‖m‖2

32dε2
.

Putting (A.2) and (A.3) together, we have

E
(ν
π

)
≤ 4‖m‖2

ε4

(
exp

(
−‖m‖

2

4ε2

)
+

1

8
exp

(
− 1

64

‖m‖2

ε2

))
≤ 5‖m‖2

ε4
exp

(
−‖m‖

2

64ε2

)
.

On the other hand, χ2(ν‖π) =
∫ ( ν(x)

π(x) − 1
)2

π(x)dx ≥
(∫ ∣∣∣ ν(x)

π(x) − 1
∣∣∣π(x)dx

)2

.

We also note that ν(x)− π(x) = 1
2

1
εd
φ(x/ε)− 1

2
1
εd
φ((x−m)/ε). Thus,(∫ ∣∣∣∣ν(x)

π(x)
− 1

∣∣∣∣π(x)dx

)2

=
1

4

1

ε2d

(∫
|φ(x/ε)− φ((x−m)/ε))| dx

)2

=
1

4

1

ε2d

(∫
|1− r(x)|φ(x/ε)dx

)2

≥ 1

4

1

ε2d

(∫
{‖x‖2≤‖m‖2/16}

∣∣∣∣1− exp

(
−‖m‖

2

4ε2

)∣∣∣∣φ(x/ε)dx

)2

by (A.1)

≥ 1

8

(∫
{
‖z‖2≤ ‖m‖

2

16ε2

} φ(z)dz

)2

by replacing x/ε with z

=
1

8

(
1−

∫
{
‖z‖2> ‖m‖

2

16ε2

} φ(z)dz

)2

≥ 1

8

(
1− exp

(
− 1

64

‖m‖2

ε2

))2

≥ 1

16
,

where we use Cramer bound again for ε ≤ ‖m‖
16
√
d
. Above all,

κ = max
u:u�π

χ2(u‖π)

E(u/π)
≥ χ2(ν‖π)

E(ν/π)
≥ ε4

80‖m‖2
exp

(
‖m‖2

64ε2

)
.

�

Appendix B. Proof of results in Section 2

Appendix B.1. Proof of Proposition 2

Proof Let f̄µ and f̄π be the mean of f under µ and π.

varµ(f(X)) =

∫
(f(x)− f̄µ)2µ(x)dx ≤

∫
(f(x)− f̄π)2µ(x)dx

≤ C
∫

(f(x)− f̄π)2π(x)dx ≤ C2κ

∫
Γ(f)(x)µ(x)dx.
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Appendix B.2. Proof of Proposition 3

Before we prove Proposition 3, we first introduce a few auxiliary lemmas.

Lemma 1 Given a ball B = B(x0, R) ⊂ Rd, uB satisfies a R2-PI:

varuB (f(X)) ≤ R2EuB [‖∇f(X)‖2]. (B.1)

This is a classical result, which can be found in [38].

For a given measure µ, we denote µD(x) = µ(x)1D(x)∫
D
µ(y)dy

, i.e., the measure µ

conditional on being in the bounded domain D.

Lemma 2 Given a ball B = B(x0, R) ⊂ Rd, suppose maxx∈B µ(x)/minx∈B µ(x) ≤

C. Then varµB (f(X)) ≤ C2R2EµB [‖∇f(X)‖2].

Proof Apply Proposition 2 and Lemma 1 we have the result. �

Proof [Proof of Proposition 3] The arguments we use here are similar to the

ones used in [30]. The only difference is that we use Lemma 2 to find the

bounding constants explicitly. Note that for any constant c,∫
(f(x)− c)2ν(x)dx ≤

∫
−LνV (x)

λV (x)
(f(x)− c)2ν(x)dx︸ ︷︷ ︸

(I)

+

∫
(f(x)− c)2 b

λV (x)
1B(x)ν(x)dx︸ ︷︷ ︸

(II)

.

For part (I), note that∫
−LνV (x)

V (x)
(f(x)− c)2ν(x)dx

=

∫ 〈
∇
(

(f(x)− c)2

V (x)

)
,∇V (x)

〉
ν(x)dx by equation (1.7.1) in [6]

=2

∫
f(x)− c
V (x)

〈∇f(x),∇V (x)〉ν(x)dx−
∫

(f(x)− c)2

V (x)2
‖∇V (x)‖2ν(x)dx

=

∫
‖∇f(x)‖2ν(x)dx−

∫ ∥∥∥∥∇f(x)− f(x)− c
V (x)

∇V (x)

∥∥∥∥2

ν(x)dx ≤
∫
‖∇f(x)‖2ν(x)dx.
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For part (II), recall νB is ν conditioned on being in B. Set c =
∫
f(x)νB(x)dx.∫

B

(f(x)− c)2

V (x)
ν(x)dx = Pν(X ∈ B)

∫
B

(f(x)− c)2

V (x)
νB(x)dx

≤ Pν(X ∈ B)

∫
B

(f(x)− c)2νB(x)dx as V (x) ≥ 1

≤ Pν(X ∈ B)C2R2

∫
B

‖∇f(x)‖2νB(x)dx by Lemma 2

≤ C2R2

∫
‖∇f(x)‖2ν(x)dx.

Putting the two parts together, we have varν(f) ≤
(

1
λ + bC2R2

λ

)
Eν [‖∇f(X)‖2].

�

Appendix C. Proof of Results in Section 3

Appendix C.1. Proof of Proposition 4

Proof Recall that H(x) = − log ν(x). Without loss of generality, we assume

m = 0 and H(0) = 0. We first note that ‖∇H(x)‖‖x‖ ≥ 〈∇H(x), x〉 ≥ c‖x‖2

and ‖∇H(x)‖2 ≥ c〈∇H(x), x〉. Then, by convexity of H, we have H(0) ≥

H(x)− 〈∇H(x), x〉, which implies that cH(x) ≤ c〈∇H(x), x〉 ≤ ‖∇H(x)‖2. For

V (x) = c
d‖x‖

2 + 1,

LνV (x) = −2c

d
〈∇H(x), x〉+ 2c ≤ −2

c2

d
‖x‖2 + 2c ≤ −cV (x) + 3c1‖x‖2≤ 3d

c
.

In addition, as ‖∇2H(x)‖ ≤ L, for some x′ on the line segment between x and

0, H(x) = H(0) + 1
2x

T∇2H(x′)x ≤ 1
2L‖x‖

2. Thus, if ‖x‖2 ≤ 3d
c ,

supx∈B ν(x)

infx∈B ν(x) ≤

exp
(

3dL
2c

)
. So Definition 2 is verified. Applying Proposition 3, we get

q =
1

c

(
1 + 3c

3d

c
exp(

3dL

c
)

)
.

Next, note that because

H(x)−H(0) ≥ H(x)−H(x/2) ≥ 〈∇H(x/2), x/2〉 ≥ c

4
‖x‖2,

we have 1
4c‖x‖

2 ≤ H(x) ≤ 1
2L‖x‖

2, which implies that

exp

(
−1

2
L‖x‖2

)
≤ exp(−H(x)) ≤ exp

(
−1

4
c‖x‖2

)
.
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Therefore,
∫

exp(−H(x))dx ≤
∫

exp
(
− 1

4c‖x‖
2
)
dx ≤

(
4π
c

)d/2
, and for ‖x‖2 ≤

3d
c , exp(−H(x)) ≥ exp(− 3dL

2c ). This leads to our estimate of a:

a =

∫
B

exp(−H(x))dx

exp(−H(x))Vd(3d/c)
d
2

≤ 1

Vd
exp

(
3Ld

2c

)(
4π

3d

)d/2
.

�

Appendix C.2. Proof of Proposition 5

Proof Without loss of generality, we assume x0 = 0. Let ν0 = minx∈B(0,R) ν(x)

and H(x) = − log ν(x). Note that because LνV (x) = −2γ〈∇H(x), x〉+ dγ and

LνV (x) ≤ −λV (x) when ‖x‖ ≥ R, 〈∇H(x), x〉 ≥ 1
2λ‖x‖

2. Let y = R
‖x‖x, then

H(x)−H(y) =

∫ 1

0

〈∇H(y + s(x− y)), x− y〉ds

=

∫ 1

0

〈∇H(y + s(x− y)), y + s(x− y)〉 ‖x‖ −R
R+ s(‖x‖ −R)

ds

≥ 1

2
λ

∫ 1

0

‖y + s(x− y)‖‖x− y‖ds

≥ 1

2
λ

∫ 1

0

〈y + s(x− y), x− y〉ds =
1

4
λ(‖x‖2 −R2).

Next, as ‖y‖2 = R2,

ν(x) ≤ ν(y) exp

(
−1

4
λ(‖x‖2 −R2)

)
≤ Cν0 exp

(
−1

4
λ(‖x‖2 −R2)

)
,

Meanwhile, for ‖x‖ ≤ R, ν(x) ≤ Cν0 ≤ Cν0 exp
(
− 1

4λ(‖x‖2 −R2)
)
. Then,

because
∫
ν(x)dx = 1, 1 ≤ Cν0 exp

(
1
4λR

2
) (

4π
λ

)d/2
. This implies

a ≤
uB(0,R)(x)

ν0
≤ C

VdRd
exp

(
1

4
λR2

)(
4π

λ

)d/2
.

�

Appendix C.3. Proof of Proposition 6

Next we prove a more general version of Proposition 6:
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Proposition 9 1. If πY (x) ∝ φ(x/M), then Assumption 2 holds with

R2 = 3M2(2d+ 1), Q = 2M2

(
1 +

9

2
(2d+ 1) exp(12d+ 8)

)
,

A =
1

Vd

(
2π

3(2d+ 1)

)d/2
exp (6d+ 4) .

2. Suppose π(x) =
∑I
i=1 piνi(x), where νi(x) are (c, L)-log concave densi-

ties with modes ‖mi‖ ≤ M . If πY (x) ∝ π(x)β with β = d(2M2c +

2M2L2/c)−1, then Assumption 2 holds with

R2 = 20M2

(
1 +

L2

c2

)
, Q = M2

(
1 +

L2

c2

)(
4

d
+ 100 exp

(
44
dL

c

))
,

A =
1

Vd

(
4π

5d

)d/2
exp

(
22
dL

c
+

5

4
d

)
.

3. If πY (x) ∝ φ(x/M)π(x)β, where νi(x) are (c, L)-log concave densities

with modes satisfying ‖mi‖ ≤ M and β ≤ (dM2c + dM2L2/c)−1, then

Assumption 2 holds with

R2 = 5M2(2d+ 1), Q = 2M2

(
1 +

25

2
(2d+ 1) exp (20d+ 30)

)
,

A =
1

Vd

(
8π

5(2d+ 1)

)d/2
exp (12d+ 16) .

Proof For claim 1), πY (x) ∝ φ(x/M). Consider Vi(x) = γ‖x − mi‖2 + 1

with γ =
(
M2(2d+ 1)

)−1
. We first note that

LπY Vi(x) = − 2γ

M2
〈x−mi, x〉+ 2dγ

= − γ

M2
‖x−mi‖2 +

γ

M2
‖mi‖2 −

γ

M2
‖x‖2 + 2dγ

≤ − γ

M2
‖x−mi‖2 + (2d+ 1)γ

≤ − 1

2M2
Vi(x) +

(
1

2M2
+ (2d+ 1)γ

)
1‖x−mi‖2≤3M2(2d+1)

= − 1

2M2
Vi(x) +

3

2M2
1‖x−mi‖2≤3M2(2d+1). (C.1)

Then, the bounding constants for the Lyapunov function are

λ =
1

2M2
, h =

3

2M2
, R2 = 3M2(2d+ 1),
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In addition, for x ∈ B(mi, R), we have ‖x‖2 ≤ 2R2 + 2M2. Thus, the density

ratio can be bounded by C = exp
(
R2+M2

M2

)
= exp(6d+ 4). By Proposition 3,

Q = (1 + hR2C2)/λ = 2M2 + 9M2(2d+ 1) exp(12d+ 8).

Moreover, A =
(2πM2)d/2 exp(

R2+M2

M2 )

VdRd
= 1

Vd

(
2π

3(2d+1)

)d/2
exp (6d+ 4) .

For claim 2), πY (x) ∝ π(x)β . Consider Vi(x) = γ‖x−mi‖2 + 1 with

γ ≤
(

2M2 + 2M2L
2

c2
+

2d

βc

)−1

.

Let Hi(x) = − log νi(x). We first note that

∇ log πY (x) = β∇ log π(x) = −
β
∑I
i=1 piνi(x)∇Hi(x)∑I

i=1 piνi(x)

and

−〈∇Vj(x),∇Hi(x)〉 = −2γ〈x−mj ,∇Hi(x)−∇Hi(mi)〉

≤ − 2γ〈x−mi,∇Hi(x)−∇Hi(mi)〉+ 2γ〈mj −mi,∇Hi(x)−∇Hi(mi)〉

≤ − 2cγ‖x−mi‖2 + 2γL‖mj −mi‖‖x−mi‖

≤ − cγ‖x−mi‖2 +
γL2

c
‖mj −mi‖2

≤− 1

2
cγ‖x−mj‖2 + cγ‖mj −mi‖2 +

γL2

c
‖mj −mi‖2

≤− 1

2
cVj(x) + 2cγM2 + 2

γL2

c
M2 +

1

2
c.

Then,

LπY Vj(x) ≤ −1

2
βcVj(x) + 2βcγM2 + 2β

γL2

c
M2 +

1

2
βc+ 2γd

= −1

4
βcVj(x)− 1

4
βcγ‖x−mj‖2 + βcγ

(
2M2 + 2

L2M2

c2
+

2d

βc

)
+

1

4
βc

≤ −1

4
βcVj(x) +

5

4
βc1‖x−mj‖2≤ 5

γ
.

For β = d
(
M2c+M2L2/c

)−1
, R2 = 5

γ = 20M2
(

1 + L2

c2

)
. Next, we note that

if ‖x − mj‖2 ≤ 5
γ , ‖x − mi‖2 ≤ 10

γ + 4M2 ≤ 11
5 R

2. Then, note that for any

region B, if we let ψ(x) := maxi
maxx∈B νi(x)
minx∈B νi(x) ,

maxx∈B π
Y (x)

minx∈B πY (x)
≤

(
∑
i pi maxx∈B νi(x))β

(
∑
i pi minx∈B νi(x))β

≤
(
∑
i piψminx∈B νi(x))β

(
∑
i pi minx∈B νi(x))β

= (ψ(x))β .
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Therefore

C =
maxB(mj ,R) π

Y (x)

minB(mj ,R) πY (x)
≤ max

i

(
maxB(mj ,R) νi(x)

minB(mj ,R) νi(x)

)β
≤ exp

(
1

2
L

11

5
R2β

)
= exp

(
22
dL

c

)
.

By Proposition 3,

Q =
1 + 5

4βc
5
γ exp(44dL/c)

1
4βc

= M2

(
1 +

L2

c2

)(
4

d
+ 100 exp

(
44
dL

c

))
.

The estimate of A can be obtained by Lemma 5,

A =
C

Vd
exp

(
1

16
βcR2

)(
16π

βcR2

)d/2
=

1

Vd
exp

(
22
dL

c
+

5

4
d

)(
4π

5d

)d/2
.

For claim 3), πY (x) ∝ φ(x/M)π(x)β . Consider Vi(x) = γ‖x − mi‖2 + 1.

Combining our analysis in claim 1) and claim 2), we have

LπY Vj(x) ≤−
(

1

2M2
+
βc

4

)
Vj(x)−

(
1

2M2
+
βc

4

)
γ‖x−mj‖2

+
1

2M2
+ βcγ

(
2M2 + 2

L2M2

c2
+

2d+ 1

βc

)
+

1

4
βc

≤− 1

2M2
Vj(x)− 1

2M2
γ‖x−mj‖2

+
1

2M2
+ βcγ

(
2M2 + 2

L2M2

c2

)
+ γ(2d+ 1).

For β ≤ (dM2c+ dM2L2/c)−1 and γ = (M2(2d+ 1))−1, we can set

R2 =
5

γ
= 5M2(2d+ 1) and h =

5

2M2
.

Then LπY Vj(x) ≤ − 1
2M2Vj(x) + h1‖x−mj‖2≤R2 . We next note that as

maxx∈B(mj ,R) φ(x/M)

minx∈B(mj ,R) φ(x/M)
≤ exp

(
R2 +M2

M2

)
= exp(10d+ 6) and

maxx∈B(mj ,R) π(x)β

minx∈B(mj ,R) π(x)β
≤ exp

(
1

2
L(2R2 + 4M2)β

)
≤ exp

(
10 + 7/d

1 + L2/c2
L

c

)
≤ exp(17/2),

we have

C ≤
maxx∈B(mj ,R) φ(x/M)

minx∈B(mj ,R) φ(x/M)

maxx∈B(mj ,R) π(x)β

minx∈B(mj ,R) π(x)β
≤ exp (10d+ 15) .
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By Proposition 3, Q = 1+hR2C2

1
2M2

= 2M2
(
1 + 25

2 (2d+ 1) exp (20d+ 30)
)
. Lastly,

the constant A can be obtain from Lemma 5:

A =
C

Vd
exp

(
R2

8M2

)(
8M2π

R2

)d/2
≤ 1

Vd
exp (12d+ 16)

(
8π

5(2d+ 1)

)d/2
.

�

Appendix C.4. Proof of Corollary 1

Proof Since νi is (l−2
M , l−2

m C)-log concave, by Lemma 4, Assumption 1 holds

with q = l2M + 9dl2M exp(3dC), r2
i = 3dl2i , a = 1

Vd

(
4π
3d

)d/2
exp

(
3dC
2

)
. Choos-

ing πY (x) ∝ φ(x/M)(π(x))β with β = 1
τ ≤ (dM2l−2

M + dM2l2M l
−4
m C2)−1, Propo-

sition 6 gives us R2 = O(M2d), Q = O(M2d exp(20d)), and A = O(exp(12d)).

Plug these estimates and r2 = 3dl2m into Theorem 2, we have

κ = max

{
3(56A+ 1)q,

3

τ

(
57Q+ 14aA

(
Rd+1

rd−1

)(
log

(
R

r

))1d=1
)
,

7aA

ρ

(
R

r

)d}

= O

(
exp(CDd) max

{
dl2M ,

1

τ
dMlm

(
M

lm

)d
,

1

ρ

(
M

lm

)d})
.

�

Appendix C.5. Proof of Corollary 2

To prove Corollary 2, we first introduce an auxiliary lemma.

Lemma 3 For any given β ∈ (0, 1], if ν is a (l−2, l−2C)-log concave density

with mode m, then µ(x) ∝ (ν(x))β is a Ly(Rβ , qβ , aβ) with λβ = βl−2, and a

suitable constant D so that

qβ = O

(
d exp(DdC)

λβ

)
, R2

β =
4d

λβ
= O

(
d

λβ

)
, Aβ = O(exp(DdC)).
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Proof We consider using V (x) = γ‖x −m‖2 + 1, with γ = λβ/(2d). Denote

H(x) = − log ν(x). Then,

LµV (x) = −2γβ〈x−m,∇H(x)〉+ 2dγ

≤ −2γβl−2‖x−m‖2 + 2dγ

= −2λβγ‖x−m‖2 + 2dγ

≤ −λβV (x) +
(
−λβγ‖x−m‖2 + λβ + 2dγ

)
≤ −λβV (x) + bβ1‖x−m‖2≤R2

β
.

where bβ = λβ + 2dγ = 2λβ by our choice of γ, and R2
β =

bβ
γλβ

= 4d
λβ
. Note that

max(logµ(x)− logµ(y)) = βmax(log ν(x)− log ν(y)).

Because βmaxx,y∈B(m,Rβ)(log ν(x)−log ν(y)) ≤ 1
2βl
−2CR2

β ≤ 2dC, Cβ ≤ exp(2dC).

Lastly, by Lemma 5, Aβ =
Cβ
Vd

exp
(

1
2λβR

2
β

)(
4π

λβR2
β

)d/2
= O(exp(DdC)), and

by Definition 3,qβ =
1+R2

βC
2
βbβ

λβ
= O

(
d exp(DdC)

λβ

)
. �

Proof [Proof of Corollary 2] Consider the following density:

π′k(x) ∝
I∑
i=1

pi(νi(x))βk , k = 1, . . . ,K − 1, π′0 = π0, π
′
K = πK .

By Lemma 3, π′k satisfies Assumptions 4 and 5 with

r2
k,i =

4dl2i
βk

, r2
k =

4dl2m
βk

, qk = O(1), ak = O(1), k = 0, . . . ,K − 1.

Moreover, by Lemma 4, q0 = l2M (1 + 9d exp(3dC)). From Proposition 6, for

βK ≤ 1
dM2(l−2

M +l−4
m l2MC2)

, we have

r2
K,i = O(M2d) = O(1), qK = O(M2d exp(20d)) = O(1), aK = O(exp(10d)) = O(1).

Then, by Theorem 3 varπ′0:K
(f(X0:K)) ≤ κ′Eπ′0:K

[ΓKR (f(X0:K))], with κ′ =

O(l2αM ) for some α ≤ 1, if the parameters τk, ρ satisfy

τk ≥ Ul−2α
M

(
βk−1

βk

)d/2
, k = 1, . . . ,K − 1, τK ≥ Ul−2α

M

(
βK−1

l2m

)d/2
,

ρ ≥ Ul−2α
M max

{(
βK−1

l2m

)d/2
,

(
βk−1

βk

)d/2}
. (C.2)
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for some U > 0. Note that
(∑I

i=1 piνi(x)
)βk
≥
∑I
i=1 piνi(x)βk , since xβk is

concave for 0 ≤ βk ≤ 1. On the other hand, for p0 = mini≤I pi,(
I∑
i=1

piνi(x)

)βk
≤ max

i
νi(x)βk ≤ 1

p0

I∑
i=1

piνi(x)βk .

Therefore, p0πk(x) ≤ π′k(x) ≤ πk(x) ≤ 1
p0
πk(x) for k = 1, . . . ,K − 1. By

Proposition 2, varπ0:K
(f(X0:K)) ≤ κEπ0:K

[ΓKR (f(X0:K))], with κ = p−2K
0 κ′. We

next verify that (C.2) holds. In scenario 1, for k = 1, . . . ,K, as βk = l
2k/K
m ,

l−2α
M

(
βk−1

βk

)d/2
≤ l−2α−d/K

m ≤ τk and l−2α
M max

k

(
βk−1

βk

)d/2
≤ l−2α−d/K

m ≤ ρ.

Thus, (C.2) holds. In scenario 2, βk = l
2k
K
m < 1 and d ≤ 2,(

βk−1

βk

)d/2
= l−d/Km ≤ l−2k/K

m = τk, max
k

(
βk−1

βk

)d/2
= l−d/Km ≤ ρ.

Thus, (C.2) holds with α = 0. In scenario 3, note that with our choice of βk

and τk, k = 1, . . . ,K(
βk−1

βk

)d/2
= l

d
2 (2( d−2

d )K−k+1−2( d−2
d )K−k)

m = l
−2( d−2

d )K−k

m = τk.

Meanwhile, because τ0 = 1 = l
−d( d−2

d )K−1

m

(
β0

β1

)d/2
, (C.2) holds with constant

α = −d(d−2
d )K−1. �

Appendix C.6. Proof of Proposition 7

Before we prove Proposition 7, we first present an auxiliary lemma.

Lemma 4 Suppose V (x) = exp( 1
2H(x)) is C2(Rd) with H(x) = −∞ and

V (x) = 0 for x /∈ Ω. Moreover, for a region B ⊂ Ω, 1
2∆H(x) − 1

4‖∇H(x)‖2 ≤

−λ0 for x ∈ Ω \ B. Then V (x) is a (λ0, h,B,C)-Lyapunov function for ν ∝

exp(−H(x)) with

h = max
x∈B

(
−1

4
‖∇H(x)‖2 +

1

2
∆H(x) + λ0

)
V (x), C =

maxx∈B ν(x)

minx∈B ν(x)
.
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Proof For x /∈ Ω, LνV (x) = 0. For x ∈ Ω,

LνV (x) =

(
−1

4
‖∇H(x)‖2 +

1

2
∆H(x)

)
V (x) ≤ −λ0V (x) + h1x∈B .

�

Proof [Proof of Proposition 7] Consider a clamp function ψ : R→ R satisfying

1) ψ is C2; 2) ψ̇ < 0, ψ̈/(ψ̇)2 ≤ C; 3) ψ(x) = 1 for all x ≤ 0; 4) ψ(x) = 0 for all

x ≥ 1. Let Ψi(x) = exp
(

1
ε logψ(

√
ndi(x))

)
. Then, we can construct

πε ∝
I∑
i=1

Ψi(x) exp(− 1
εHε(x)) =

I∑
i=1

exp

(
−1

ε
Qε,i(x)

)
,

where Qε,i(x) = − logψ(
√
ndi(x)) +Hε(x). We next verify that

1

2ε
∆Qε,i −

1

4ε2
‖∇Qε,i‖2 ≤ −

λ0

ε
. (C.3)

Note that (C.3) holds for any x ∈ Ωi since Qε,i(x) = Hε(x). When x ∈ Ω′i \Ωi,

∇Qε,i(x) = −
√
n
ψ̇(
√
ndi(x))

ψ(
√
ndi(x))

∇di(x) +∇Hε(x)

We first note that because i) ∇di(xn) → v⊥(x) for any xn → x ∈ ∂Ωi, ii)

−∇Hε(x) points toward the inside of Ωi for x ∈ ∂Ωi, and iii) ∇2di and ∇2Hε

are bounded, for n large enough, −〈∇di(x),∇Hε(x)〉 < 0 for x ∈ Ω′i \Ωi. Then,

1

4ε2
‖∇Qε,n(x)‖2 ≥ 1

4ε2
n‖∇di(x)‖2 ψ̇(

√
ndi(x))2

ψ(
√
ndi(x))2

+
1

4ε2
‖∇Hε(x)‖2.

We next note that

∆Qε,n(x) =− nψ̈(
√
ndi(x))

ψ(
√
ndi(x))

‖∇di(x)‖2 + n
ψ̇(
√
ndi(x))2

ψ(
√
ndi(x))2

‖∇di(x)‖2

−
√
n
ψ̇(
√
ndi(x))

ψ(
√
ndi(x))

∆di(x) + ∆Hε(x)

Thus, for ε small enough,

1

2ε
∆Qε(x)− 1

4ε2
‖∇Qε,n(x)‖2

≤− n

2ε

ψ̈(
√
ndi(x))

ψ(
√
ndi(x))

‖∇di(x)‖2 +
n

2ε

ψ̇(
√
ndi(x))2

ψ(
√
ndi(x))2

‖∇di(x)‖2 − n

2ε

ψ̇(
√
ndi(x))

ψ(
√
ndi(x))

∆di(x)

+
1

2ε
∆Hε(x)− 1

4ε2
n
ψ̇(
√
ndi(x))2

ψ(
√
ndi(x))2

‖∇di(x)‖2 − 1

4ε2
‖∇Hε(x)‖2

≤ 1

2ε
∆Hε(x)− 1

4ε2
‖∇Hε(x)‖2 ≤ −λ0

ε
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Lastly, we note that

exp

(
−1

ε
Hε(x)

)
≤

I∑
i=1

exp

(
−1

ε
Qε,i(x)

)
≤ I exp

(
−1

ε
Hε(x)

)
.

Moreover q(x) ∝ exp
(
− 1
εHε(x)

)
is a ε perturbation of π. Thus, πε is a ε

perturbation of π. �

Appendix C.7. Proof of Corollary 3

Proof Let H(x) = 1
2 (x2 − a2)2 and ε = 1/n. We first note that ∇H(x) =

2x(x2 − a2) and ∇2H(x) = 6x2 − 2a2. Thus,

1

2ε
∇2H(x)− 1

4ε2
‖∇H(x)‖2 =

3x2

ε
− a2

ε
− 1

ε2
x2(x2 − a2)2.

When |x− a|2 ≥ 3ε/a2 and x > 0,

1

ε2
x2(x2 − a2)2 =

1

ε2
x2(x− a)2(x+ a)2 ≥ 1

ε2
x2 3ε

a2
a2 ≥ 3x2

ε
.

Then, 1
2ε∇

2H(x)− 1
4ε2 ‖∇H(x)‖2 ≤ −a

2

ε . Similarly, when |x+ a|2 ≥ 3ε/a2 and

x < 0, we also have 1
2ε∇

2H(x) − 1
4ε2 ‖∇H(x)‖2 ≤ −a

2

ε . In this case, Hε = H

already satisfies (12). (There is no saddle point for this problem.)

Next if we split R into Ω1 = [0,∞) and Ω2 = (−∞, 0]. It is easy to see that

d1(x) = −x is C2 in (−∞, 0). In addition, ∇d1(x) = −1, which is the same as

the outward direction for Ω1 at x = 0. Similarly, d2(x) = x is C2 in (0,∞) and

∇d2(x) = 1 is the same as the outward direction for Ω2 at x = 0. Thus, the

existence of the πε follows from Proposition 7.

�

Appendix D. Proof of Proposition 8

Before we prove Proposition 8, we first present some auxiliary lemmas. Our

first result shows that we can replace a density having a (λ, b,B(x0, R), C)-

Lyapunov Lyapunov function with a uniform distribution, while keeping the

difference controlled.
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Lemma 5 Suppose ν has a (λ, b,B(x0, R), C)-Lyapunov function, then

(Eν [f(X)]− EuB [f(U)])
2 ≤ 2

1 + (b+ λ)R2C2

λ
Eν [‖∇f(X)‖2].

Proof Let f̄ν = Eν [f(X)] and f̄uB = EuB [f(U)]. Then(
f̄ν − f̄uB

)2 ≤ 2Eν [(f(X)− f̄ν)2] + 2Eν [(f(X)− f̄uB )2]

≤ 2
1 + bR2C2

λ
Eν [‖∇f(X)‖2] + 2CEuB [(f(X)− f̄uB )2] by Proposition 3

≤ 2
1 + bR2C2

λ
Eν [‖∇f(X)‖2] + 2CR2EuB [‖∇f(X)‖2] by Lemma 1

≤ 2
1 + bR2C2

λ
Eν [‖∇f(X)‖2] + 2C2R2Eν [‖∇f(X)‖2]

= 2
1 + (b+ λ)R2C2

λ
Eν [‖∇f(X)‖2].

�

Our second result bounds the mean difference square when moving from a

big Uniform ball to a small Uniform ball with the same center.

Lemma 6 Consider Br = B(x0, r) and BR = B(x0, R) with R ≥ r. Then when

d = 1,
(
EuBr [f(X)]− EuBR [f(X)]

)2

≤ R2 log(R/r)EuBR [‖∇f(X)‖2]; when d ≥

2,
(
EuBr [f(X)]− EuBR [f(X)]

)2

≤ Rd+1

(d−1)rd−1EuBR [‖∇f(X)‖2].

Proof Without loss of generality, we assume x0 = 0.

We first consider the case in which r = 1 and d ≥ 2. Let CV denote the vol-

ume of a d-dimensional unit ball. Consider the spherical coordinate of x. In par-

ticular, let t ∈ [0, R] denote the radial coordinate, and θ = (θ1, θ2, . . . , θd−1) de-

note the angular coordinate, i.e., it is a (d−1) dimensional vector with θi ∈ [0, π]

for i = 1, . . . , d − 2 and θn−1 ∈ [0, 2π). We also write ξ(θ) be a d-dimensional

vector on Sd−1 with ξ1(θ) = cos(θ1), ξi(θ) = sin(θ1) · · · sin(θi−1) cos(θi). for

1 < i < d, and ξd(θ) = sin(θ1) · · · sin(θd−1). Then, x = rξ(θ). We also write

dSd−1θ = sind−2(θ1) sind−3(θ2) . . . sin(θd−1)dθ

and Ω = [0, π]d−2 × [0, 2π). Then

EuBR [f(X)] =
1

CVRd

∫
Ω

∫ R

0

f(tξ(θ))td−1dtdSd−1θ =
1

CV

∫
Ω

∫ 1

0

f(Rtξ(θ))td−1dtdSd−1θ.
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Using the spherical coordinate representation, we have(
EuB1

[f(X)]− EuBR [f(X)]
)2

=

(
1

CV

∫
Ω

∫ 1

0

f(tξ(θ))td−1dtdSd−1θ − 1

CV

∫
Ω

∫ 1

0

f(Rtξ(θ))td−1dtdSd−1θ

)2

≤ 1

CV

∫
Ω

∫ 1

0

(f(Rtξ(θ))− f(tξ(θ)))2td−1dtdSd−1θ by Jensen’s inequality

=
1

CV

∫
Ω

∫ 1

0

(∫ R

1

d∑
i=1

∇xif(stξ(θ))tξi(θ)ds

)2

td−1dtdSd−1θ

≤ 1

CV

∫
Ω

∫ 1

0

R

∫ R

1

(
d∑
i=1

∇xif(stξ(θ))tξi(θ)

)2

dstd−1dtdSd−1θ by Jensen’s inequality

≤ R

CV

∫
Ω

∫ 1

0

∫ R

1

‖∇f(stξ(θ))‖2dstd+1dtdSd−1θ by Cauchy-Schwarz inequality and ‖ξ‖ = 1

=
R

CV

∫ R

1

∫
Ω

∫ 1

0

‖∇f(stξ(θ))‖2td+1dtdSd−1θds

=
R

CV

∫ R

1

∫
Ω

∫ s

0

‖∇f(rξ(θ))‖2rd+1drdSd−1θ
1

sd+2
ds by letting r = st

≤ R

CV

∫ R

1

∫
Ω

∫ s

0

‖∇f(rξ(θ))‖2rd−1drdSd−1θ
1

sd
ds

≤Rd+1

(
1

CVRd

∫
Ω

∫ R

0

‖∇f(rξ(θ))‖2rd−1drdSd−1θ

)∫ R

1

1

sd
ds ≤ Rd+1

d− 1
EuBR [‖∇f(X)‖2].

When d = 1, following similar arguments as above, we can show that

(
EuB1

[f(X)]− EuBR [f(X)]
)2

=

(
1

2

∫ 1

−1

f(Rt)− f(t)dt

)2

≤ 1

2

∫ 1

−1

R

∫ R

1

‖∇f(st)‖2dst2dt

We then change variable by r = st and find∫ 1

−1

∫ R

1

‖∇f(st)‖2dst2dt ≤
∫ R

1

∫ s

−s
‖∇f(r)‖2dr s

2

s3
ds ≤ log(R)−1)

∫ R

−R
‖∇f(r)‖2dr.

For general r > 0, we can simply set Z = X/r, g(X) = f(X/r) and q = R/r.

Because EuB1
[g(Z)] = EuBr [f(X)] and EuBq [g(Z)] = EuBR [f(X)],

(
EuBr [f(X)]− EuBR [f(X)]

)2

=
(
EuB1

[g(Z)]− EuBq [g(Z)]
)2

≤ qd+1

d− 1
EuBq [‖∇g(X)‖2].

Then, as EuBq [‖∇g(Z)‖2] = r2EuBR [‖∇f(X)‖2], we have the claim. �
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Proof [Proof of Proposition 8] To simplify the notations, we define B̄i =

B(mi, Ri), Bi = B(mi, ri), and ηi(y) =
∫
f(x, y)νxi (x)dx for i = 1, 2. Let Q̃ =

Q+R2A2 and q̃ = q + r2a2.

Step 1. Replace νY2 with uB̄2
. By Lemma 5, we can control the difference by(

EνX1 ⊗νY2 [f(X,Y )]− EνX1 ⊗uB̄2
[f(X,Y )]

)2

=

(∫
η1(y)νY2 (y)dy −

∫
η1(y)uB̄2

(y)dy

)2

≤2Q̃

∫
‖∇yη1(y)‖2νY2 (y)dy

≤2Q̃

∫
‖∇yf(x, y)‖2νX1 (x)νY2 (y)dy by Jensen’s inequality.

.

Likewise, we change νX1 to uB1 . By Lemma 5, we can control the difference by(
EνX1 ⊗uB̄2

[f(X,Y )]− EuB1
⊗uB̄2

[f(X,Y )]
)2

=

(∫ (∫
f(x, y)νX1 (x)dx−

∫
f(x, y)uB1

(x)dx

)
uB̄2

(y)dy

)2

≤
∫ (∫

f(x, y)νX1 (x)dx−
∫
f(x, y)uB1

(x)dx

)2

uB̄2
(y)dy by Jensen’s inequality

≤2q̃

∫
‖∇xf(x, y)‖2νX1 (x)uB̄2

(y)dy ≤ 2q̃A

∫
‖∇xf(x, y)‖2νX1 (x)νY2 (y)dy.

Step 2. Replace uB̄2
with uB2 . By Lemma 6, we can control the difference by(

EuB1
⊗uB̄2

[f(X,Y )]− EuB1
⊗uB2

[f(X,Y )]
)2

≤
∫ (∫

f(x, y)uB̄2
(y)dy −

∫
f(x, y)uB2

(y)dy

)2

uB1
(x)dx

≤R
d+1

rd−1

∫
‖∇yf(x, y)‖2uB̄2

(y)uB1(x)dydx

≤R
d+1

rd−1
aA

∫
‖∇yf(x, y)‖2νx1 (x)νy2 (y)dxdy,

when d ≥ 2. If d = 1, an additional log(R/r) is needed.

Step 3. The mean difference square in exchanging B1 and B2 can be bounded
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by the additional term in the carre du champ for replica exchange:

(
EuB1

⊗uB2
[f(X,Y )]− EuB2

⊗uB1
[f(X,Y )]

)2
≤
∫

(f(x, y)− f(y, x))2uB1
(x)uB2

(y)dxdy by Jensen’s inequality

≤
(
R

r

)d ∫
(f(x, y)− f(y, x))2(uB1

(x)uB̄2
(y) ∧ uB̄1

(x)uB2
(y))dxdy as

uBi (x)

uB̄i (x) =
Rdi
rdi
≤
(
R
r

)d
≤
(
R

r

)d
aA

∫
(f(x, y)− f(y, x))2

(
νX1 (x)νY2 (y) ∧ νX2 (y)νY1 (x)

)
dxdy.

Putting the three steps together, we have(
EνX1 ⊗νY2 [f(X,Y )]− EνX2 ⊗νY1 [f(X,Y )]

)2

≤7
(
EνX1 ⊗νY2 [f(X,Y )]− EνX1 ⊗uB̄2

[f(X,Y )]
)2

+ 7
(
EνX1 ⊗uB̄2

[f(X,Y )]− EuB1
⊗uB̄2

[f(X,Y )]
)2

+ 7
(
EuB1

⊗uB̄2
[f(X,Y )]− EuB1

⊗uB2
[f(X,Y )]

)2

+ 7
(
EνX2 ⊗νY1 [f(X,Y )]− EνX2 ⊗uB̄1

[f(X,Y )]
)2

+ 7
(
EνX2 ⊗uB̄1

[f(X,Y )]− EuB2
⊗uB̄1

[f(X,Y )]
)2

+ 7
(
EuB2

⊗uB̄1
[f(X,Y )]− EuB2

⊗uB1
[f(X,Y )]

)2

+ 7
(
EuB1

⊗uB2
[f(X,Y )]− EuB2

⊗uB1
[f(X,Y )]

)2
≤Ξx

∫
‖∇xf(x, y)‖2(νX1 (x)νY2 (y) + νX2 (x)νY1 (y))dxdy

+ Ξy

∫
‖∇yf(x, y)‖2(νX1 (x)νY2 (y) + νX2 (x)νY1 (y))dxdy

+ Ξe

∫
(f(x, y)− f(y, x))2

(
νX1 (x)νY2 (y) ∧ νX2 (y)νY1 (x)

)
dxdy,

where Ξx = 14q̃A,Ξy = 14Q̃+ 7aA
(
Rd+1

rd−1

) (
log
(
R
r

))1d=1
,Ξe = 7

(
R
r

)d
aA. �

Appendix E. Proof of Theorem 4

In order of handle the mean difference square, which appears as Part (C)

in (14), we define Xk(x0:K) = (f(wk, xk, yk, zk)− f(wk, yk, xk, zk))2sk(xk, yk),

and Γk(x0:K) =
∑K
l=k

(
τl‖∇xlf(x0:K)‖2 + ρXl(x0:K)

)
. Denote

Ẽν,k(f) :=

∫
τl‖∇xlf(wk, xk, yk, zk)‖2ν(xk)πk+1(yk)πZ

k (zk)dxkdykdzk.
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When ν = πk, we simply write Ẽν,k as Ẽk. We also define, for k = 0, 1, . . . ,K−1,

Ξek = 7
(
rk+1

rk

)d
akak+1, Ξxk = 28qkak+1,

Ξyk = 28qk + 7
(rk+1)

d+1

(rk)
d−1

akak+1

(
log

(
rk+1

rk

))1d=1

.

We first bound the mean difference square.

Proposition 10 Under Assumptions 4 and 5, for k ≤ K − 1,∑
i,j

pipj (θk,i(wk)− θk,j(wk))
2 ≤ ΞkEk:K [Γk(wk,Xk:K)] ,

where for any fixed α, γ > 1 with 1
α + 1

γ = 1,

Ξk = max

{
max

k+1≤l≤K−1
(4α)l−k−1

(
8αγΞxl
τl

+
2γΞyl−1

τl

)
,

2γΞxk
τk

, max
k≤l≤K−1

(4α)l−k
γΞel
ρ

}
.

Proof We prove the proposition by induction.

We want to show that for any fixed wk,

∑
i,j

pipj

(
θk,i(wk)− θk,j(wk)

)2

≤
K−1∑
l=k+1

(4α)l−k−1

(
8αγΞxl
τl

+
2γΞyl−1

τl

)
· τlẼk‖∇xlf‖2

+
2γΞxk
τk

τkẼk‖∇xkf‖2 +

K−1∑
l=k

(4α)l−k
γΞel
ρ

ρẼkXl(wk, xk, yk, zk).

(E.1)

For k = K − 1, (E.1) can be obtained from Proposition 8. Suppose (E.1)

holds for k + 1. Now, for k, We first note that θk,i =
∑I
h=1 pk+1,hζkih and∑

i,j

pipj(θk,i − θk,j)2 (E.2)

≤2α
∑
i,j

pipj (θk,i − ζkij)2︸ ︷︷ ︸
(a)

+γ
∑
i,j

pipj (ζkij − ζkji)2︸ ︷︷ ︸
(b)

+2α
∑
i,j

pipj (ζkji − θk,j)2︸ ︷︷ ︸
(c)

.

Note that part (a) and (c) are symmetric. For part (a), we have

∑
i,j

pipj(ζkij − θk,i)2 =
∑
i,j

pipj

(
I∑

h=1

ph(ζkij − ζkih)

)2

≤
∑
i,j,h

pipjph (ζkij − ζkih)
2
.
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By induction,∑
i

pi
∑
j,h

pjph (ζkij(wk)− ζkih(wk))
2

≤
∑
i

pi
∑
j,h

pjph

∫
(θk+1,j(wk, xk)− θk+1,h(wk, xk))2νk,i(xk)dxk

≤
K−1∑
l=k+2

(4α)l−k−2

(
8αγΞxl
τl

+
2γΞyl−1

τl

)
· τlẼk‖∇xlf‖2

+
2γΞxk+1

τk+1
Ẽk‖∇ykf‖2 +

K−1∑
l=k+1

(4α)l−k−1 γΞel
ρ

ρẼkXl(wk, xk, yk, zk).

For part (b), recall that ζkij =
∫
f(wk, xk, yk, zk)νk,i(xk)νk+1,j(yk)πZ

k (zk)dxkdykdzk

and ζkji =
∫
f(wk, xk, yk, zk)νk,j(xk)νk+1,i(yk)πZ

k (zk)dxkdykdzk. By the mean

difference square estimate in Proposition 8, we have

(ζkij(wk)− ζkji(wk))2

≤Ξxk
τk

τk

∫
‖∇xkf(wk, xk, yk, zk)‖2(νk,iνk+1,j + νk,jνk+1,i)(xk, yk)πZ

k (zk)dxkdykdzk

+
Ξyk
τk+1

τk+1

∫
‖∇ykf(wk, xk, yk, zk)‖2(νk,iνk+1,j + νk,jνk+1,i)(xk, yk)πZ

k (zk)dxkdykdzk

+
Ξek
ρ
ρ

∫
(f(wk, xk, yk, zk)− f(wk, yk, xk, zk))2×

(νk,i(xk)νk+1,j(yk) ∧ νk,j(yk)νk+1,i(xk))πZ
k (zk)dxkdykdzk.

Note that
∑
i,j pipjνk,i(xk)νk+1,j(yk) = πk(xk)πk+1(yk). Because a∧c+b∧d ≤

(a+ b) ∧ (c+ d),∑
i,j

(pipjνk,i(xk)νk+1,j(yk))∧(pipjνk,j(yk)νk+1,i(xk)) ≤ (πk(xk)πk+1(yk))∧(πk(yk)πk+1(xk)).

Thus,∑
i,j

pipj(ζkij(wk)− ζkji(wk))2 ≤2Ξxk Ẽk‖∇xkf‖2 + 2Ξyk Ẽk‖∇ykf‖2

+
Ξek
ρ
ρ

∫
(f(wk, xk, yk, zk)− f(wk, yk, xk, zk))2×

(πk(xk)πk+1(yk) ∧ πk(yk)πk+1(xk))πZ
k (zk)dxkdykdzk.
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Combining parts (a) – (c), we have∑
i,j

pipj (θi,k(wk)− θj,k(wk))
2

≤
K−1∑
l=k+1

(4α)l−k−1

(
8αγΞxl
τl

+
2γΞyl−1

τl

)
τlẼk‖∇xlf‖2

+
2γΞxk
τk

τkẼk‖∇xkf‖2 +

K−1∑
l=k

(4α)l−k
γΞel
ρ

ρẼkXl(wk, xk, yk, zk).

Setting

Ξk = max

{
max

k+1≤l≤K−1
(4α)l−k−1

(
8αγΞxl
τl

+
2γΞyl−1

τl

)
,

2γΞxk
τk

, max
k≤l≤K−1

(4α)l−k
γΞel
ρ

}
,

we have the result. �

Proof [Proof of Theorem 4] Recall the upper bound (14).

For part (A) By Assumption 4 and Proposition 3, we have

I∑
i=1

pi

∫
(gk(wk, xk, yk)− ηk,i(wk, yk))

2
νk,i(xk)dxkπk+1(yk)dyk

≤
I∑
i=1

piqk

∫
‖∇xkgk(wk, xk, yk)‖2νk,i(xk)πk+1(yk)dxkdyk

≤qk
∫
‖∇xkgk(wk, xk, yk)‖2πk(xk)πk+1(yk)dxkdyk.

For part (B) By Assumption 4 and Proposition 3, we have

I∑
i=1

pi

∫
(ηk,i(wk, yk)− θk,i(wk))2πk+1(yk)dyk

≤
I∑
i=1

piqk+1

∫
‖∇ykgk(wk, xk, yk)‖2νk,i(xk)πk+1(yk)dxkdyk

≤qk+1

∫
‖∇ykgk(wk, xk, yk)‖2πk(xk)πk+1(yk)dxkdyk.
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For part (C) From Proposition 10,∑
i,j

pipj (θi,k(wk)− θj,k(wk))
2

≤
K−1∑
l=k+1

(4α)l−k−1
(
8αγΞxl + 2γΞyl−1

)
Ẽk‖∇xlf‖2 + 2γΞxk Ẽk‖∇xkf‖2

+

K−1∑
l=k

(4α)l−kγΞel ẼkXl(wk, xk, yk, zk).

Putting parts (A) – (C) together, we have

E0:K

[
Ek
[(
E(k+1):Kf(X0:K)− Ek:Kf(X0:K)

)2]]
≤

K−1∑
l=k+2

3(4α)l−k−1

τl

(
8αγΞxl + 2γΞyl−1

) ∫
τl‖∇xlf(x0:K)‖2π0:K(x0:K)dx0:K

+
3

τk+1

(
8αγΞxk+1

+ 2γΞyk + qk+1

) ∫
‖∇xk+1

f(x0:K)‖2π0:K(x0:K)dx0:K

+
3

τk
(2γΞxk + qk)

∫
τk‖∇xkf(x0:K)‖2π0:K(x0:K)dx0:K

+

K−1∑
l=k

3(4α)l−k
γΞel
ρ

ρ

∫
Xl(x0:K)π0:K(x0:K)dx0:K .

Then

E0:K

[
(f(X0:K)− Ef(X0:K))

2
]

≤
K∑
k=0

E0:K

[
Ek
[(
E(k+1):Kf(X0:K)− Ek:Kf(X0:K)

)2]] ≤ κE0:K [ΓR(f(X0:K))],

where

κ = max
0≤k≤K−1

max

{
k−2∑
h=2

3(4α)k−h+1

τk

(
8αγΞxk + 2γΞyk−1

)
+

3

τk

(
(8αγ + 2γ)Ξxk + 2γΞyk−1

+ 2qk
)
,

k∑
h=0

3(4α)k−h+2

ρ
γΞek

}
.

�
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