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Abstract

Langevin diffusion (LD) is one of the main workhorses for sampling problems.
However, its convergence rate can be significantly reduced if the target dis-
tribution is a mixture of multiple densities, especially when each component
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on its convergence rate and choices of the temperatures. This paper addresses
these problems assuming the target distribution is a mixture of log-concave den-
sities. We show ReLLD can obtain constant or better convergence rates. We also
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exchange frequency only needs to be (1/K)-th power of the one in ReLD.
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1. Introduction

Given a d-dimensional distribution 7(z) o« exp(—H(x)), a standard way to

generate samples from 7 is simulating the overdamped Langevin diffusion (LD):

dX (t) = Viegm(X (t))dt + v2dB(t), (1)

where B(t) is a d-dimensional Brownian motion, for a long enough time hori-
zon. The main justification of this approach is that, under mild conditions, the
invariant measure of X (t) is the target distribution 7. This approach can be
quite efficient when the potential function/Hamiltonian H (x) is strongly-convex.
However, if H(x) has multiple local minima and each of them is located inside
a deep potential well, LD can be very inefficient. In such cases, LD will spend
a large amount time circulating inside one potential well before it can reach
another potential well (see, for example, [I]). Such behavior significantly slows
down its convergence rate to stationarity.

Replica exchange Monte Carlo, also known as parallel tempering, is a method
that has been used extensively in molecular dynamic (MD) and statistics to im-
prove the convergence rate of the sampling process when the target distribution
is multimodal [2]. When combined with LD, it considers simulating additional
LDs (beyond X (t)), where each of them is targeting a higher tempered version
of m. In general, a high temperature flattens the potential wells so that it is
easier for the corresponding LD to move between different potential wells. Pe-
riodically, the replicas exchange their locations through a Metropolis Hasting
mechanism. Such exchanges can help switch X (¢) out of its current potential
well while keeping 7 as its invariant measure. The exact formulation of Replica
exchange Langevin diffusion (ReLD) can be found in Section[2.3] Numerical ver-
sions of ReLD (through appropriate discretization) have been applied to various
applications and achieved significant efficiency gain over LD (see, e.g., [3, 4, []).

Despite the elegant intuition and empirical success of ReLD, there is limited
theoretical analysis of why and when it performs well. This is partly because

most analytical framework does not handle non-convex potential functions well.



ReLD as a Markov process is also more complicated to analyze than LD due to
the exchange dynamic. In this paper, we invetigate the performance of ReLD by
providing an explicit quantification of its spectral gap. This spectral gap char-
acterization provides guidance on how to choose the temperatures and swapping

intensities in ReLLD.

1.1. Spectral gap and slow LD convergence on mixture distributions

The convergence rate of a continuous time Markov process Z; can be char-
acterized by a quantity called the spectral gap. To formally define the spectral

gap, we first define the generator of Z; as
1
L)) = lim SE[f(Z:) = f(2)|Z0 = 2],

for f € D(L) where D(L) is a subset of C2(RY) such that the above limit
exists and C2(R?) is the space of twice continuously differentiable functions
with compact support. For most of the Markov processes discussed below, one

can simply use D(L£) = C2(R%). We define the associated carré du champ as

1
D(f) = 5(£(%) ~2L(f)),
and the Dirichlet form as £(f) = [T(f)r?(dx), where 7 is the invariant
distribution of Z;. The inverse spectral gap of Z; can then be defined as
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where we use var,(f) to denote the variance of f under pu. As a remark, the
domain of the operator defined above usually can be further extended, so that
C2(R?) is a core of it. The definition of x can also be extended (see [6] section
1.4 and 1.13). We restricted our discussion to C2(R?) for simplicity.

The reason why x controls the speed of convergence of Z; towards 7% can be
found in Theorem 4.2.5 of [6]. In particular, for any test function f € L?(7?),

i.e., square-integrable functions, there is a constant Cj such that
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In other words, E[f(Z;)|Zo = z] converges to the target expectation exponen-
tially fast with 7Z-a.s. initial conditions, and the convergence rate is 1/x, i.e.,
a smaller x leads to a faster convergence rate.

Using the inverse spectral gap, we can show that LD converges very quickly
for a singular Gaussian distribution, but very slowly for a mixture of two sin-
gular Gaussians. Let ¢ denote the density function of a d-dimensional standard

Gaussian random vector, i.e., ¢(x) = (27)~ %2 exp(—||z%/2).
Proposition 1 The inverse spectral gap k for LD satisfies the following bounds:
1. If m(x) < ¢(z/€), then k < €2.

[lm||*

2. Ifm(z) %Qﬁ(x/e)—i—%qﬁ((x—m)/e) ande < %, then k > 80[;”2 exp ( 61 )

The proof of Proposition [1| can be found in Appendix A (The first scenario is
well known). Proposition [1| indicates that one of the most challenging types of
densities for LD to sample is mixtures of “well-separated” singular densities,
even if each of them is Gaussian. When sampling a single Gaussian using LD,

the spectral gap is lower bounded by e 2.

In this case, a smaller value of €
leads to a faster convergence rate. However, when sampling a mixture of two
such Gaussians with well-separated modes, the convergence can be very slow
for small values of e. In particular, the spectral gap of LD is upper bounded by

80||m||?e~* exp(—||m||?/(64€?)), which is extremely small when e is small.

1.2. Replica exchange Langevin diffusion

We next introduce the replica exchange method by considering the scenario
where there are two replicas. The first one X (t) is defined in and the second

one Y (t) has a stronger stochastic force:
dY (t) = Vieg n(Y (t))dt — 7Y (t)/M?dt + 27dW (1), (3)

where W (t) is a d-dimensional Brownian motion, independent of B(t) in (),
and 7 is a parameter known as the temperature. M is a large number so that the

local minima of H(x) satisfy maxj<;<s ||m;|| < M. The stationary distribution



of Y(t) takes the form

™ (y) o< exp <—iH(y) - !ﬂi) :

When 7 is selected to be a large number, the effective Hamiltonian of Y (¢) is

approximately 7~'H (y), which has the same local minima as H(z), but the
height of the potential wells are only 1/7 of the latter. Thus, it is easier for Y (t)
to climb out of potential wells and visit other local minima.

Even though Y (t) is not sampling the target density , it can be used to
help X (t) sample 7 more efficiently. To do so, let p > 0 denote a swapping
intensity, so that sequential swapping events take place according to an inde-
pendent exponential clock with rate p. At a swapping event time ¢, X (t) and
Y (t) swap their positions (values) with probability s(X (¢),Y(¢)), where
m(y)r¥ (x)
(@)Y (y)

We refer to the joint process (X (¢), Y ()) as ReLD. It can be verified that @Y’

s(z,y) =1A

(4)

is the invariant distribution of ReLD under mild ergodicity conditions [7].
Exchanging X (¢) with Y(¢) can improve the convergence rate of X (t). We
demonstrate the basic idea through Figure As mentioned above, the main
reason why sampling directly from LD can be slow for multimodal 7 is that X (¢)
can be trapped in a potential well for a long time. In Figure |1} suppose X (t)
is currently in B(m1,r), which is a ball of radius r centered at the mode m;.
In order for X (¢) to visit a different mode ma, it needs to visit the boundary
of the potential well, i.e., the origin, and this can take a long time. On the
other hand, it is much easier for Y'(¢) to cross the potential wells. In particular,

2

Y (t) can move “freely” in a larger region demonstrated as B(0, R) in Figure |1}
which includes all the local minima. The exchange mechanism swaps X (¢)
and Y (t) with a decent chance if Y(¢) is in a different “high-probability” area
for X (t), say B(ma,r). This helps X (¢) visit the other potential well, which
effectively improves the convergence rate of X (¢). Our main objective in this

paper is to translate these intuitions into mathematically rigorous statements.

One major issue with ReLLD introduced above is that the exchanges may not



happen often enough. To see this, note that in Figure [I} when X (¢) is near the
first mode m1, the exchange probability can be very small unless Y(¢) is in
“high-probability” areas B(mi,r) or B(mse, ) as well. But since Y (¢) is circling
inside a large area B(0, R), the chance that it is in B(mq,r) or B(mg,r) can
be small if r < R. To amend this issue, we can simulate multiple parallel LDs
with an increasing sequence of temperatures. Then, we exchange the positions
of neighboring replicas. The above sampling scheme is referred to as mReLD.
Adding intermediate temperatures improves the small exchange probability
issue mentioned earlier. We illustrate the basic idea through Figure 2] where we
run three parallel LDs. The “high-probability” areas for Xo(¢), X1 (t), and X ()
are B(mq,79) UB(ma,79), B(my,r1) U B(mg,71), and B(0,r2) respectively. We
note that ro < r1 < r9. The exchange between X (t) and X2 (t) may not happen
often, since X5(¢) has only a small chance of being inside B(my, 1)U B(ma, o).
On the other hand, X (t) stays mostly inside B(mq,r1)UB(mz, 1), and thus has
a better chance of being inside B(mq,r¢) U B(mz,ro) than X5(t). Hence X ()
can exchange with X () more often. From this discussion, we see that adding
additional replicas, for which the neighboring replicas share similar potential
functions, improves the chance of successful exchanges. Meanwhile, exchanges
between non-adjacent replica are unlikely to happen, so we decide to exclude

them in our design of mReLD. In particular, we consider K 4+ 1 LDs
ka(t) :TkV10ng(Xk(t))dt+\/Hde(t), k=0,....K

with 1 =79 <7n, <--- < 7 and m9 = w. Exchange between two adjacent
levels takes place according to independent exponential clocks with rate p. At
a swapping epoch ¢ for the pair (k,k + 1), Xi(¢t) and Xj41(t) exchange their
positions (values) with probability sp (X (t), Xr+1(¢)), where

T (Thg 1) Ty 1 (T) (5)

Sp(Tg, Trpy1) = 1A .
@k, @ir) T (k) T 1 (Tht1)

We next show that by properly choosing the temperature and the swapping

intensity in ReLD and mReLD, we can substantially improve the convergence
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rate for Gaussian mixtures (including scenario 2 in Proposition. To highlight
the challenge in sampling efficiency, we focus on the dependence of the inverse
spectral gap on the parameter e (i.e., the depth of the potential well), while

keeping all other model parameters fixed.

Theorem 1 Suppose the target density is a mixture of isotropic Gaussian dis-

tributions: () Zle pi¢ (£=24), where maxi<i<g ||myl| < M for some con-
stant M < oco. For ReLD with T,p o< €%, the inverse spectral gap, K = O(1),
i.e., is independent of €. For mReLD, there exists a sequence of my’s such that

for T, = 6_%, k=1,...,K, and p = e~ “¥ the inverse spectral gap, k = 0(1).

In this section, we choose the Gaussian mixture due to its simplicity for
demonstration. In Section 2] we study the convergence rate of ReLD and
mReLD for mixtures of more general distributions. In particular, Theorem [1] is

a special case of Theorems [2] and |3| (see Corollaries |1| and |2| for more details).

1.8. Literature review and our contribution

Most standard Markov Chain Monte Carlo (MCMC) methods suffer from a
slow convergence rate when the target distribution has multiple isolated modes,
i.e., multimodal. Replica exchange Monte Carlo (ReMC), which is also known as

parallel tempering, has been proposed to speed up the convergence and has seen



promising performance in molecular dynamics and statistical mechanics (see, for
example, [3 [ 28 O 5]). In recent year, it has also been applied to machine
learning, such as training restricted Boltzmann machines [10, [IT},[12]; and solving
non-convex optimization problems [I3] [14]. There is also a growing interest in
designing new ReMC algorithms for improved performance [I5] 16, 17, 18], but
there are very few existing works analyzing the convergence rate of ReMC. The
closest to our work is [19], which establishes an upper bound for the inverse
spectral gap of replica exchange samplers. While their bound can be applied to
more general samplers than ours, such flexibility comes at a cost of tractability.
In particular, to calculate their bound, one needs to design an appropriate
partition of the state space and samplers that converge fast on the partition,
which can be highly nontrivial. In contrast, ReLD focuses on LDs, which can
be seen as concrete samplers. Our results also provide more explicit bounds and
there is no need to design the partition to implement the algorithm. Efficiency of
ReLD or similar versions of it is also studied in [I3} [I4]. The work [I3] analyzes
the spectral gap but does not provide an explicit quantification of the “speed-
up” due to swapping. In this work, we are able to quantify the speed-up effect by
developing a novel bound for the mean-difference estimates. Focusing on solving
non-convex optimization problems, [I4] considers a different performance metric
than the spectral gap. However, our refined spectral gap bounds can be applied
to their setting to quantify the benefit of adding extra replicas and guide related
parameter tuning.

A key question in implementation of ReLD or ReMC is how to set/tune the
temperature and the swapping rate. Most previous investigations rely on exten-
sive simulation experiments and heuristic arguments [20] 21l 22]. The work [7]
uses the large deviation theory to define a rate of convergence for the empirical
measure of ReLLD. It shows that the rate increases with the swapping intensity p.
Thus, an infinite swapping algorithm (ISA) is proposed. A more detailed large
deviation analysis of ISA is provided in [23]. Similar to our work, [24] studies
the ergodicity properties of ISA and derive bounds for the Poincaré inequality

constant. Recently, a series of works provide rigorous analysis on how to tune



the temperatures to achieve an asymptotically optimal exchange probability in
the high dimensional limit [I5] [I6] [18]. Similar to [I9], these analyses assume
the existence of some exact samplers of the target distributions and focus mostly
on the equilibrium behavior. In contrast, our spectral gap analysis focuses on
concrete diffusion processes and characterizes the non-equilibrium behavior.

A similar but slightly different sampling idea to ReLD is simulated temper-
ing, which considers dynamically changing the temperature of LD [25]. Several
tempering-based MCMC methods have been studied in the literature, includ-
ing annealing MCMC [26], tempered transition method [27], etc. Like ReLD,
there are very few theoretical results about its efficiency. The work [28] develops
lower bounds for the spectral gap of general simulated tempering chains, but
the bounds are too loose to provide concrete guidance on how to choose the
hyperparameters. Recently, [29] establishes a tighter bound for simulated tem-
pering LD. Their analysis specifics how to set the temperatures in the setting
where the target distribution is a mixture of log-concave densities with different
modes but the same shape. In contrast, our results allow the mixture compo-
nents to be of different shapes. One main challenge in implementing simulated
tempering is that one needs to estimate the normalizing constants of the target
distributions. In contrast, replica exchange avoids the need to deal with these

normalizing constants, as they are cancelled out in the exchange probabilities.

1.4. Organization and notation

The rest of the paper is organized as follow. In Section [2] we present the
main results, Theorems 2] and [3] which provide estimates on the inverse spectral
gap for ReLD and mReLD respectively. In Section we demonstrate how
to apply our results to mixtures of log-concave densities and the connection
between mixture models and the Morse function assumption in [I]. The proof
of the main results (Theorems [2| and [3]) are provided in Section [4l To keep the
discussion concise, all the technical results are proved in the appendices.

Given two vectors u,v € R?, we use |v|| to denote the Iy norm of v, and

(v,u) ;== uTv. Given a matrix A, we use || A|| to denote its ly-operator norm. For



any f € C%(R?), i.e., twice continuously differentiable functions, we use V f € R?
to denote its gradient, V2f € R?*¢ to denote its Hessian, and Af := tr(V2f).
We also denote B(zg, R) as a ball with center o and radius R.

When a distribution 7 is given, we use E, f and var,(f) to denote the mean
and variance of f under 7. For two distributions 7 and v on R?, we write their
product measure on R?? as 7 ® v. Since we consider mostly diffusion-type of
stochastic processes, it is reasonable to assume the associate distributions are
absolutely continuous with respect to the Lebesgue measure. When we refer to
a distribution 7, we assume it has a probability density function 7(z). Then,
we can use 7(z)/v(z) to denote the Radon-Nikodym derivative between 7 and
v. We define 0/0 = 0.

Our goal is to develop a proper upper bound for the inverse spectral gap
k, which can be translated to a lower bound for the spectral gap. As the
underlying distribution/process may involve several parameters, e.g., €,d, M in
the Gaussian mixture example and 7, p for ReLD, the exact characterization of
the upper bound can get quite involved. Therefore, we adopt the O notation.
For a nonnegative function f and a sequence of non-negative quantities A,
indexed by €, we write Ac = O(f(¢€)) if there is a constant C' > 0 independent of
€, such that A, < Cf(e). Ac = O(1) means A, < C. We also write A. = Q(f(¢))
if there is a constant C' > 0 independent of €, such that A, > Cf(e). Our goal

is to quantify the dependence of k on €, 7, and p.

2. General problem setup and results

We introduce the general setup of ReLD and study its performance when the
target distribution is of certain mixture type in this section. Our development
relies on applications of Poincaré inequality (PI). Therefore, we start by intro-
ducing some basic properties of PI. We then discuss general assumptions for the
type of density mixtures that our framework can handle. The main results are

presented in Theorems [2] and [3] in Sections [2.3] and [2.4] respectively.
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2.1. Poincaré inequality and Lyapunov function

Recall that the basic LD is given by
dX (t) = Vg m(X (t))dt + V2dB(t).
We denote L, as it generator, which takes the following form:
Lr(f) =(Vf, Viogm) + Af,

for f € C2(R%). Then, the associated carré du champ takes the form T'(f) =
[V£||?. The inverse spectral gap & in can also be viewed as the coefficient

in the PI, which is often refer to as the PI constant.
Definition 1 A density w follows k-PI if the following holds

vars(f) < / IV (@)|Pr(x)de, Vf € C2RY).

We next review some existing results of PI.

Proposition 2 (Holley—Stroock perturbation principle) Suppose for some
operator I' and density m, varz(f) < & [T(f)(z)r(z)dz for all f € CZ(R?).
Moreover, suppose there ezists a constant C' € (0, 00) such that C~1 < w(x)/u(z) <
C for all z. Then, var,(f) < C?*k [T(f)(x)u(z)dz for all f € C3(RY).

Proposition [2] indicates that if a density 7 follows a x-PI, then a mild per-
turbation of 7 also follows a PI. Note that I" here can be the carré du champ of
LD, but it can also be the carré du champ of ReLD.

The next result connects the Lyapunov function to the PI constant. The
connection was first established in [30]. Here, we present a slightly different

version of it.

Definition 2 A C2? function V(z) : R? — [1,00) is a (A, h, B,C)-Lyapunov
function for a density v(x) if the following holds

SUp,ep V(2)

L,V(r) < =AV(x)+ hlp(z), infyepv(x)

<C,

where \, h,C € (0,00) are positive constants and B C R? is a bounded domain.

11



Proposition 3 Suppose v has a (A, h, B(zg, R), C)-Lyapunov function. Then,

1+ hR2C?

BV

var, (f) <

Proposition [3| provides a convenient way to compute (upper bound) the PI
constant for a given density v. Based on Proposition 3| we define the following

notion of a density:

Definition 3 We say v is an Ly (R, q, a)-density with the center xq, if it has a
(A hy, B(zo, R), C)-Lyapunov function, with

1+ hR2C? <q and  sup UB(z0,R)(T)

<a,
A z€B(zo,R) U(.’E)

where up (s, ry denotes the uniform distribution on B(xo, R).

Remark 1 In our main theoretical development, we will consider replacing
v with up(s, r), since the latter is easier to handle. The constant a in the

Ly(q, R, a)-density roughly measures how well the uniform approzimation is.

2.2. Mixture Density

As discussed in Section [I} we are interested in understanding how replica
exchange improves the convergence of LD on a multimodal target density. Mul-

timodal densities often arise from mixture models:
I
n(x) =Y pivi(x), (6)
i=1

where p; > 0 with Zle p; = 1, and each v; has a single mode m;.

We next discuss what kind of mixture model would allow a replica exchange
process (X (t),Y(t)) to sample efficiently. First, each v; should be “easy” for
an LD of the form to sample directly, since the exchange mechanism can
only help X (¢) visiting different modes but not sampling an individual v; faster.
This requirement can be formulated through the existence of an appropriate

Lyapunov function for v; based on Proposition

12



Assumption 1 There are positive constants r;,q,a such that fori=1,...,1,

v; is an Ly(r;, q, a)-density with the center m;.

We will show in Propostion [4] that log-concave densities satisfy Assumption

Second, Y (t) should be able to visit different m;’s “easily”. Otherwise, it
cannot help X (t) reach certain modes. This requirement can be formulated as
requiring that m;’s are not too far from each other. Since our problem is shift
invariant, this is equivalent to assuming that there exists a constant M < oo

such that max;<;<y ||m;|| < M. In particular, M does not depend on d or q.

Remark 2 [t is worth mentioning that [1] imposes different assumptions on
the Hamiltonian H(x). In particular, it assumes H(x) is a Morse function and
there is an admissible partition so that a proper Lyapunov function exists within
each partition. Admittedly, this might be a more general assumption, since not
all densities can be written as a mixture @ However, this set of assumptions
requires more technical definitions and verification. Moreover, it can be shown
that under mild conditions, the setting in [1] can be converted to a mizture. We

will provide more details of the connection in Section [3.3

2.3. Spectral Gap for ReLD

We next formulate a general ReLD. First, pick a density 7Y and consider
the following two LDs driven by independent d-dimensional Browian motions
W=(t) and W¥(t):

dX (t) = Vieg m(X (t))dt + v2dW*(t),

(7)
dY (t) = 7V log 7 (Y (t))dt + V2rdW¥ (¢).

Swapping epochs are generated by an independent exponential clock with rate p.
At a swapping epoch ¢, we swap the positions of X (¢) and Y (¢) with probability
s(X(t),Y(t)), where s is defined in (). It is easy to see that the ReLD discussed
in Section [1fis a special case of (7)) with 7 (y) = exp(—LH(y) — %)

We consider a general ¥ here for two reasons. First, as we will discuss in

Section the temperature 7 is often “required” to be a large number. Then,

13



direct simulation of Y'(¢) with the Euler-Maruyama scheme would require a
very small stepsize. If 7¥ is a simple density, for example, a Gaussian density,
we can have direct access to the transition kernel of Y (¢) and avoid using any
discretization scheme. Second, it is easier to impose requirements on 7Y for the
replica exchange process to achieve good convergence rate. For a mixture-type

target distribution as in @, we impose the following assumption on 7Y :

Assumption 2 There are constants (R;,Q, A) so that for each mode m;, ©¥
is an Ly (R;, Q, A)-density with center m;, 1 =1,...,1.

We will show in Proposition |§| that many forms of 7Y satisfy Assumption
The generator of ReLLD, denoted by Lg, is then given by

Lrf(z,y) = lim %E[f(XhY;i) — fz,y)[Xo = 2,Yy = y]
= ‘sz(xvy) + TLyf(x’y) + ps(x,y)(f(y,a:) - f(xay))v

for f € CZ(R*), where Ly f(z,y) := (Vo f(2,y), Vologm(z)) + Ay f(z,y) and
Lyf(z,y) = (Vyf(z,y),Vylogm¥ (y)) + A, f(z,y). It is easy to verify that
7 ® 7Y is an invariant measure for ReLD. In particular, E,g-vLrf = 0. The

associated carré du champ for ReLLD is given by
1
Lrf(z,y) = §(£R(f2) —2fLR(f))

= [V F (@ I+ 7V ) P+ 5o, ) () = £ 0)?

for f € C%R??). Note that if we simply simulate X (¢) and Y (¢) accord-

(8)

ing to (7) without the exchange, the carre du champ will be ||V, f(z,y)[* +
7|V, f(z,y)||?. The exchange mechanism contributes to the additional positive
term %ps(x, y)(f(y,x) — f(z,y))? in Tr. While this helps lowering the inverse
spectral gap « in , the extent of improvement is far from obvious.

We next quantify the effect of the exchange mechanism on the spectral gap.

In addition to Assumptions [I] and [2] we also impose the following assumption:

Assumption 3 There are r > 0 and R > 0, such that the constants R;, i =
L....,I, and ri, i = 1...,I, from Assumptions [1] and [] satisfy R; < R and

%"’S%foralllgigl.
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Theorem 2 For ReLD defined in @, under Assumptions @ and@
varrgry (f(X,Y) < 6Ergry [Cr(F(X,Y))],

for all f € C%(R2?), where

la=1 d
K = max {3(56A + 1)g, g <57Q + 14aA (f;+11) <log (f)) ) , % <Jf) } .

In particular, if R, A,Q,a are O(1) constants, then k = O (q + (% + %) r%)

When q < 1, if we set T,p > Uq %~ for any o < 1 and U > 0, then
k=0(U"1g").

For mixture of singular densities with isolated modes, r and g can be very
small. For example, as we will explain in more details in Section r?q =
O(e€?) for the Gaussian mixture model in Proposition If we choose 7, p > 779,
then x = O(1), i.e., it does not depend on 7 or q. If we choose 7,p > ¢ 1r=9,

then k = O(q). In this case, the spectral gap is of the same order as the smallest

spectral gap of the component densities in the mixture.

2.4. Spectral Gap for mReLD

Considering K + 1 LDs

dX;(t) = ;Vieg mi(X;(t))dt + V21 dW;(t), i=0,....,K 9)

with 1 =179 <7, <.-- <7 and 19 = 7. Exchange between two adjacent
levels takes place according to independent exponential clocks with rate p. At
a swapping epoch t for the pair (k,k+1), k=0,..., K — 1, Xi(t) and Xy y1(t)
exchange their positions with probability s (X (t), Xg+1(t)), which is defined in
[@). Let xjy = (zx, ..., 2;) and mpy = 7, @ - - @ m;. Note that each z, € R? for
k=0,1,...,K. The generator of mReLD takes the form: for f € C2(R4K+1)),

K
LE(f(xow) = Y (Th{Va, f(Xouk), V1og me (X0:x))) + T Ao, f (X0:k))
k;o
+ Z P8k (Tr, Ty 1) (f (Xo:10) — F(X0:(k=1)> Tt 15 Thr X(k42):K ) -
k=0
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The corresponding carré du champ and Dirichlet from are

K
T5(f(x0k)) =Y 7k Ve f (x0:50) |
k=0

K

+ Z P8k (@hy Trg1) (f (Xo:k) — F(X0:(k—1)» Tt 15 Tr X (o256 )
k=0

and EX (f) = [TE(f)mo.x (dxo. k) respectively for f € C2(RUK+Y),

We make the following assumptions about 7 ’s.

Assumption 4 There are positive constants qi, Tk, ar for k =0,..., K, i =
1,...,1, such that: 1) mp(x) = 25:1 pivi,i(x), where vy ; is an Ly (rg.q, qk, ar)-
density with center m;; 2) For each m;, 7 is an Ly (rk i, ki, ax )-density with

center m;.

Assumption 5 There is an increasing sequence 0 < rog <1y < -+ < rg, such
that the constants r;, k =0,...,K, i =1,...,1, from Assumption |Z| satisfy
Tht1,i/Thi < Tha1/Th, for all0 <k <K —-1and1<i<I, andrg; <rg, for

alll <i <.

Theorem 3 For mReLD defined in @, suppose Assumptions 4| and @ hold,
and K, q, ap,ri, k=1,..., K, are all O(1) constants. Then,

Uarﬂo:K(f(XO:K)) < K’]EWU:K [Fg(f(XUK))L (10)

for all f € C2(RYE+D) where

d
sz(max{qO,<1+l>(rk> ,1<k<K}>. (11)
T \Tk P Tk—1

« d
In particular, when qo < 1, for any o < 1,U > 0, if we choose 1, > U (q%) (T—’“)

Tk—1

«a d
and p > U maxi<p<k (%0) (,fi"l) ; then k = O(U~'qg).

k—

The exact estimate of x is quite complicated. We provide the explicit ex-
pression in Theorem [4] In Theorem [3| we assume K, qx,ar, 7%, 1 <k < K, are

all fixed O(1) constants to simplify the estimate. For mixture models with small
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values of rg and qo, if we can construct m’s such that i /ry_1 = @( (rK/ro)l/K )
fork=1,..., K, we can set 1, p > (TK/ro)d/K to achieve k = O(1). If we fur-
ther enlarge 1, p > qo_1 (TK/ro)d/K, then £ = O(qp). In this case, the spectral

gap matches the smallest spectral gap of the component densities in the mixture.

3. Applying replica-exchange to different densities

In this section, we investigate ReLD for some specific examples. We first
present some general properties of log-concave densities. In particular, we show

they are Ly (R, g, a)-densities (Definition .

Definition 4 A density v is a (c, L)-log-concave density if H = —logv is C?
and (VH(z) = VH(y),z —y) > cllz —y|?, [V2H(2)|| < L,Vz,y.

Proposition 4 Ifv is (c, L)-log-concave and m is its mode, then V(z) = 5|z —

m|* + 1 is a (\ h, B,C)-Lyapunov function of v with A\ = ¢, h = 3¢, B =
B m,+/2¢ ), and C = exp (%) This implies that v is a Ly(r, q,a)-density

c ’

3Ld) (47‘r)d/2

2c 3d

with ¢ = ¢ + 2 exp ( =

3dL _ /3d _ 1
C),r— 7,anda—7dexp(

, where Vg

denotes the volume of a d-dimensional ball with unit radius.

We also provide a bound for a in the Ly (R, g, a)-density, based on a specific
form of the (A, h, B(xg, R), C)-Lyapunov function.

Proposition 5 Suppose v has a (A, h, B(zo, R), C)-Lyapunov function of form
V(x) = v|lz—z0|*+1. Thenv is a Ly (R, q,a)-density with a = V% exp (1AR?) (

We next provide some specific forms of 7 that satisfies Assumption

Proposition 6 Assume maxi<;<y ||m;|| < M for some M < co.
1. If ¥ () < ¢(x/M), then Assumption@ holds with R?> = O(M?d), Q =
O(M?dexp(12d)), and A = O(exp(6d)).
2. If ™ (x) o ¢(x/M)m(x)?, vi(z)’s are (c,L)-log concave densities, and
B < (dM?c+dM?L?/c)~t, then Assumption@ holds with R?> = O(M?d),
Q = O(M?dexp(20d)), and A = O(exp(12d)).

17
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Proposition [6] indicates that Assumption [2]is similar to requiring all modes,

m;’s, being bounded by a constant that does not depend on d.

3.1. ReLD for mixture of log-concave densities

. . . I

A general Gaussian mixture model can be written as m(z) = >_;_; pivi(x),
1 1 Ty—1 —172
(z) = ——L— —Le—m)T  (z—my)). 2 <y <
where v;(z) RIETS exp(—3(x—m;)" X, (r—m;)). Suppose C™H17 = %; =
12, Iy <1; <lpr <1, where C is known as the condition number. Then, v; is
—2 -2 -2 -2 ..

(I;7,Cl; 7)-log-concave. For general (I;~,Cl; *)-log-concave densities, we have

the following result:

Corollary 1 Suppose ™ = Zle piv; where v;’s are (1;2, li_QC)—log concave den-
sities with modes m;’s, and ||m;|| < M. Let I, = min;l;, lpy = max;l;, and

T > dM?1,7 + dM?13,1,4C%. Then, varygy f < KErgovTr(f) holds with

d d
x = O | exp(CDd) max{ di3,, 1szm M ,1 M ,
T lm) " p \ln
where D is a fized constant.

We next provide some interpretations of Corollary [} As s is the inverse
spectral gap, we refer to 1/k as the convergence rate. First, consider the Gaus-
sian mixture model in scenario 2 of Propositionwhere 2 =03 =€eandC=1.
By choosing 7,p = Q(e~%72), 3 = 771 < € and k = O(e?). This matches the
convergence rate of LD when 7(z) o< ¢(z/€). We can also set 7,p = O(e~%),
which leads to k = O(1). In addition, our result allows the Gaussian compo-
nents to be of different scales. For example, I = (2, = ¢ and 3 = I3, = e.
In this case, if 7 = Q(max{e~¢,e3}) and p = Q(e7 4 !), B =771 < e 3 and
k= O(I3;) = O(e). This matches the convergence rate of LD for m = v5.

In general, for fixed values of d and C, 7 and p need to scale as (M/l,,)? for
the convergence rate to be of a constant order. To see the intuition behind this,
note that with a high temperature, Y (¢) can be seen as a random search in the
set {||z|| < M} with speed 7. At any time ¢, the chance that it is in a radius-,,
neighborhood of a mode m; is (I,,/M)%. Thus, to have a constant convergence

rate, it is necessary for Y; to run at a speed 7 = O((M/l,,)%). Meanwhile, p
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is rate of checking whether the exchange takes place, and it needs to be of the
same scale as 7.

In implementations, when applying discretization schemes like Euler-Maruyama
for ReLD, the step size often needs to scale as min {1/7,1/p}. If M = O(1) and
lm = O(e), the computational cost of ReLD is roughly O(e~¢). While this can
be quite high, it is much better than the computational cost of using LD alone,
which is roughly O(exp(De™?)) as shown in Proposition [l When taking com-
putational cost into account, it is of practical interest to further reduce 7 and

p, which can be achieved by mReLD.

8.2. mReLD for mizture of log-concave densities
In this section, we demonstrate how the mReLD result applies to the mix-
ture models discussed in Section [3.1l Following the practical choice in MD

simulation, we assume the invariant measure for X (t) takes the form
me(x) o (w(x))P*, k=0,1,....,.K —1

for some inverse temperature §j € [0,1]. Note that this choice makes the drift
term of Xj,(t) being a multiple of V log(m(X(t))), which is generally accessible.

When the target distribution is a mixture of log concave densities, our char-
acterization of the spectral gap depends on whether we need to synchronize 7
with Bi. In particular, if the speed of simulation for X(¢), which is described
by 7%, does not need to match the temperature é, then (Bk)i1<k<k can be
chosen as a geometric sequence for efficient simulation. If 7, needs to be ﬁ%,

(Bk)1<k<k can be a geometric sequence for d = 1, 2. But for d > 3, our analysis

requires $; to be log geometric.

Corollary 2 Suppose mg = m = Zlepil/i, where v; is (l;Q,Zi_QC)—log concave
densities with modes m; and ||m;|| < M fori = 1,...,I. Let l, = min;l;,

Iy = max; l;. Consider running mReL D with
m(x) o (m(2), k=1,...,K -1, mg(z) o (m(z))’ p(x/M).

With K,d,C, M all being O(1) constants,
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2k

Loif B =1 7o =1, and 74, p > 1> % for0<a<1,k=1,....K, then
holds with k = O(139);

2. ifd <2, 7 = B! :l;b% fork=0,1,....K, and p > ln" % then
holds with k = O(1);

2(d52) -

k
3.ifd>3, mo=0 =17 =B =1lm ° fork=1,...,K, and
o d=2 k-1
p> lT_n2, then holds with k = O(lmd( ) )

d
Consider the mixture of Gaussian densities in scenario 2 of Proposition

2k

where 12, = 13, = ¢ and C = 1. By choosing 7%, p = Q(e_%_Z), By = €%,
for k =1,..., K, we have k = O(e~2). This matches the LD convergence rate
when 7(z) o ¢(x/e), i.e., a single Gaussian. We can also set 73, p = Q(e~¥K)
and B = 6%7 which leads to kK = O(1). Comparing the discussion following
Corollary |1 we note that the parameters 73, p are reduced from e~ % to e~ X.
This in practice can be computationally more desirable. Lastly, Corollary

combined with Corollary [2| (scenario 1 with a = 0) proves Theorem

3.8. Morse Hamiltonian functions

The paper [I] considers a general density model based on the Morse function:
m(x) o exp(—H(z)/€),

where H(x) is a nonnegative Morse function. Due to Proposition [2] we say

me(2) o< exp(—He(x)/€e) (or He(x)) is an € perturbation of 7(z) (or H(z)) if
|H(x) — Ho(x)| < De, V€ R? for some constant D € (0, 00).

The paper [1] further assumes that H (z) has a finite set of local minima {m, ..., ms},

a partition {Q;}1<;<; of R%, and a e-perturbation of H(x), H.(z) so that
S A() = S IVH@I? < =22, Ve ¢ UB(mi,av®), (12
e AH() = 1 (@ < ==, Vo mi, ave),

where B(m;, av/€) C Q;. Moreover, €; is the attraction basin of m; for gra-
dient flows driven by VH,, ie., Q; = {z € R? : limy,ooxy = my, & =

—VH(z),x0 = x}.
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We next consider a transformation of the partition framework in [I] into a

mixture model. Define
. , ) 1
d;(xz) = min{||z — y|||ly € %} and Q = {x 2di(x) < }
n
We assume d?(x) is C? on ] for sufficiently large n with bounded derivatives.

Proposition 7 Suppose 7(x) exp(f%H(x)), Q ={z:0<di(z) < ﬁ},

and the following conditions hold:

1. There is an € perturbation H.(x) such that holds.

2. The boundary of Q; is reqular enough so that d?(z) is C* on ., and
for any x,, = x € 0Q;, Vd;(x,) — vy (x), where vy (x) is the outward
direction orthogonal to 0%;.

3. There exists D, € (0,00) such that Ad;(x) < D, |VH(z)|| < D, and
AH (z) < D,.

Then, for e sufficiently small, there exists a density w., which is an € perturbation
of m and . (x) Elepil/i(x), where v; has a (Ao/€, ho/e, B(m;,av/€),C)-

Lyapunov function for certain fized constants hy and C.

We next provide a simple concrete example to demonstrate how mixtures of
singular densities arise in practice, and how to implement the Morse function
framework discussed above. Suppose we want to obtain the posterior density
p(x|y1, - .., yn) where the prior is N'(0,2) and the observation is y; = 22 +¢&;, & ~
N(0,1). The posterior density is given by

p(z|y1, ..., Yn) o< exp (; <2x2 + Z(zQ - yi)2>> o exp (—%(:ﬁ — mn)Q) .

where m,, = % Sy — % It is easy to see that when m,, > 0, p(z|y1,...,yn)
has two modes: +,/m,,. For m,, = 1, this density is also known as the double-

well potential. Following Proposition [7] we can decompose it into a mixture:

Corollary 3 For mn(z) o exp(—3n(z? —a?)?) with a > 0, 7(z) x v4 () +v_(z)

where vy (z) = exp(—zn(z? — a?)*)1{z > 0} and v_(z) = exp(—3zn(z? —
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a?)?)1{z < 0}. Moreover, for € sufficiently small, there is a density m., which is
an € perturbation of m and . (z) o< v1(x)+ve(z) where v1 has a (na®,nh, B(a,/nr),C)-
Lyapunov function and vo has a (na®,nh, B(—a,~/nr),C)-Lyapunov function

for certain fized constants h,C.

4. Proof techniques

In this section, we provide detailed analysis on how the replica-exchange
mechanism speeds up the convergence. To make the presentation concise, we

allocate most of the technical verification to the appendix.

4.1. Analysis of ReLD

We first explain how to prove Theorem[2] Our proof utilizes the PI. The key
is to match (bound) the variance, var,g.v (f(X,Y)), with the carré du champ
of ReLD, i.e., 'y in .

Let 0 = Ergny [f(X,Y)], miy) = [ f(,y)vi(z)de and 6; = [ n;(y)7 (y)dy,
fori=1,2,...,I. First, based on the form of 7, the variance of f(X,Y’) can be

decomposed as
I —
vt oo (FOGY)) = Y01 [ (F(a9) = 0)wi(a)r” () dady.
i=1

Then, because f(z,y) =60 = (f(z,y) —mi(y)) + (n:(y) — 0:) + (0 — 0), by Cauchy-

Schwarz inequality, we can further decompose the variance as

I
v (F(X.Y) <33 p, / (F(2,y) — m(y)vile)n (y)dady

i=1

)
, , (13)
+33 J0uw) = 607 Wiy +3 3 i (85— 6,7

i,7=1

(B) (©)

To see part (C), note that as § = Eleplﬂi,
2
1 ) 1 I
D opil0i—0)2=>"pi [ D pi0i—0:) | <D pipi(0; — 0;)%.
i=1 i=1 j=1 i
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In the decomposition 7 part (A) is the variance of f under v; with y
being fixed. Part (B) is the variance of 7; under 7¥. Since v; and ¥ satisfy
the Lyapunov condition, parts (A) and (B) can be controlled using Proposition
Thus, the key is to develop an upper bound for the mean difference square
in part (C): (0; — 0;)> = (B, g [[(X, V)] = By grv [[(X,Y)])",

When running LD alone, [I] provides an estimate of the difference between
E,, [f(X)] and E,,[f(X)] (see Theorem 2.12 in [I]). The estimate depends on
the saddle height, and when v; < ¢((z — m;)/€), it grows exponentially in 1/e.
One of the main technical contribution of this paper is to find an upper bound
for the mean difference in the ReLLD setting. In particular, we establish that
the ratio between the mean difference square and the carré du champ of ReL.LD
stays invariant when e goes to zero. To achieve a better PI constant, we need
to exploit the additional exchange term that arises in the carré du champ for

ReLD:
Ergry [ps(X,Y)(F(Y, X) = f(X,Y))?]

=3 pwip / (. 2) — Fo, )2 ma(@)n” () A (3 ()Y () dady

<p / (P 2) — £, 9)*(r(@)m (1) A (r()r” () dady.

In the following, we refer to (v;(z)7Y (y)) A (vj(y)7Y (z)) as a “maximal cou-
pling density” as its formulation is similar to the L;-maximal coupling between
vi(z)m¥ (y) and v;(y)mY (z) [31]. However, this “maximal coupling density” is
still difficult to deal with. To resolve the challenge, we replace v; by up(m, r,)
which is the uniform distribution on B(m;,r;), and ¥ by u B(m,,R;) Using ap-
propriate bounding arguments. The “maximal coupling density” with uniform
distributions is much easier to handle, and we can build proper bound for the
transformed mean difference square under uniform distributions. Following this

idea, we establish the following bound for the mean difference square.

Proposition 8 Consider four densities vi<, vy, vy v . Suppose v¥ is a Ly(r;, q,a)-

density with center m; for ¢ = 1,2. Similarly, suppose uiY is a Ly(R;,Q, A)-

density with center m; for i = 1,2. Moreover, for i = 1,2, there are constants
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R, 7, a, A such that R; < R and R;/r; < R/r. Then
(EBurony X))~ By (X Y)])
<z, [ 1921 PO @0 ) + v @) ()dody
+2, [ 19,0 PO @ ) + v @) ()dody

+E / (F(@y) — Fly,0)? (X @) () AvE () (@) dady,

where 2, = 14(q + r?a®)A, E, = 14(Q + R*A?%) + TaA (fjjf) (log (%))l‘hl,
and 2, = (%)daA.

The proof Proposition [§is in
Proof [Proof of Theorem 2] Recall the decomposition in (13).
For part (A). By Assumption |I| and Proposition |3 we have
[0 =)@ sy < o [ V270 P )dody.
For part (B). By Assumption [2| and Proposition [3, we have
[t = 002" Wy < @ [ 190 Gy
<9 J 19,5 0) Pos(a)m () dady,

where the second inequality follows from Jensen’s inequality since Vn;(y) =

IV f(x,y)vi(z)dz.

For part (C). Under Assumptions [2/and [3, for each center m;, i = 1,...,I, 7%
is a Ly(R;, Q, A)-density with R; < R, R;/r; < R/r. Thus, by setting v;* =1,

and v} = 7Y in Proposition [8] we have

( [ @ sy - | f(a:,y>uj<x>wY<y>dmdy)
<=, / IV £, 9) [P (s(@) ¥ () + v ()7 ())dzdy
+ 21 [ 19, 1@ P @) () + i) ()dody

—_

+ %P/(f(x,y) - f(y,2))? (Vi(m)wy(y) A uj(y)ﬂ'y(x)) dzdy.
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Putting the bounds for (A) — (C) together, because 3, ; pipj (vi(z)T (y) +

vj(z)m¥ (y)) = 2m(2)7" (y) and

szpj vi(2)m" (y) Av(y)r (2)) < (w(@)7" (1)) A (m(y)n" (2)),

vat gy (F(X,Y)) <3(q + 25,) / IV (2, ) [P () () ddy
+3(2+2%) [V, s nlPa@s ()dedy
+ 3% / (F(z,9) — £, 2)? ((@)7" (9) A (y)n” (2)) dady

StEqgqry Tr(f(X,Y))],

(a5 ((3)) ) 22 (5}

where

N lw

K = max {3(56A + 1)g,

4.2. Analysis of Multiple ReLD

We first rephrase Theorem [3]into a more detailed version as follows:
Theorem 4 For mReLD defined in @, under Assumptions and@

V7o, (f(Xo:k)) < KErg e [Fg(f(XO:K))L

where

k h+1

k—2
> (B0 +212)
K = max maXx ayz =
0<k<K-1 Pt Th Y Lk Y Yr—1

k

3 _ _ 3(da)k—h+2

+E ((80[’7 + 27):‘301‘-, + 2’7:‘241‘-,—1 + 2(]k) ’ E ( )p V=er (>
h=0

for any a,y > 1 with 1/a+1/y =1, and

(re) ™ i)
Ezk = 28qkak+1, E 28qk+1 + 7W6Lkak+l <10g ( >) s
Tk

d
_ —_ Tk+1
Ey_y =0, Ee =7 ( ) GOkt

Tk
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The proof of Theorem [4] builds on the analysis of ReLD and induction argu-
ments. We provide a roadmap of our proving strategy in this section.

Denote

Er:n[f(Xo:x) /f Xo:r—15 Yrihy X 1:6 ) T (Vi ) A rons
Ex[f(Xo:x)] /f (Xosk—1,Y, Xe1:5) Tk (y)dz,
and we write E(x 1.5 [f(Xo.x)] = f(Xo:x) for convenience. We also write
varg i (f(Xo.x) = Boc | (f(Xo.xc) = Eoc f (Xo))?

We first note that

K
J(Xo.x) — E[f(Xo:x)] = Z (Eges1y:x [f (Xo:x)] = B [f (Xo:x)]) -
k=0

For j < k,

Eo:x [(Es1):x f(Xo:ix) = Ejir f(Xo0:x)) (Eger1):x f (Xo:ix) — Brerc f(Xo:k)) |

=Eo:x [(E(es1y:rf (Xo:i) = Brere f(Xo:x)) Brere [(Ejg1):x f (Xoex) — Bjere f(Xo:x))]] = 0.
Thus, we have the following variance decomposition

varo. i (f(Xo:x) Z]Eo K {]Ek [ (k1) f (Xor) — Ek:Kf(XO:K))2H :
The above decomposition allows us to focus on

By [(E(k+1):Kf(XO:K) - Ek;Kf(Xo;K))Q]

individually. Let Wy = Xo.(x—1), Yx = Xp+1, Zr = X(g42):x. We also write

TE = T(ky2).x. For a fixed Wy, = wy,, we define

9k (Wi, Tk, Yi) :/f(Wk,xk,yk,Zk)ng(Zk)de,

Mie,i (Wi, Yi) = /gk(wk7xkayk)Vk,i(xk)dl'ky

Or,i(Wy) = /nkz(wk7yk)7rk+1(yk)dyk7 and Oy (wy,) szakz Wp).
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Note that with these notations,

Ep1:x[f(Xo:x)] = /gk(wkaXk»yk)ﬂ'kJrl(yk)dyk; Ep: i [f(Xo:x)] = Ok (Wi).
Following similar lines of argument as , we have
2
Ey, [(E(kJrl):Kf(XO:K) — Er:x f(Xo:x)) }

=/ (/gk(wk,xk,yk)ﬁkﬂ(yk)dyk - 9k(Wk))27Tk(xk)d$k

I
<3 pi / (90 (Whs s Yk) = T (Wi, Uk))? Vi (@) A g () iy
i=1

(A)

I
+3 Zpi /(nk,i(wky yk) = Ori(Wk))*Tr1 (yr)dyx +3 Zpipj (Ori(Wi) — Or 5 (w))?.
i=1 (B) i, (C)

(14)

We note that part (A) and (B) are variances of functions with respect to individ-
ual mixture component. Thus, they are easy to bound using Proposition 3| For
part (C), we utilize Proposition [8|and an induction argument on k to develop a
proper upper bound for the mean difference square. The details can be found

in Proposition [I0] in The proof of Theorem [4 is also provided in

Append

5. Conclusion and future directions

LD is a popular sampling method, but its convergence rate can be signifi-
cantly reduced if the target distribution is a mixture of singular densities. ReLD
is a method that can circumvent this issue. It employs an additional LD process
sampling a high temperature version of the target distribution, and swaps the
values of the two processes according to a Metropolis-Hasting mechanism. More
generally, mReLD employs K additional LD processes sampling with different
temperature coefficients. In this work, we formulate a framework to quantify

the spectral gap of ReLLD and mReLD. Our analysis shows that the spectral gap
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of ReLLD does not degenerate when the mixture component becomes singular, as
long as the simulation parameters of ReLLD scale properly with the singularity
parameter e. While using mReLD can achieve the same convergence rate, the
simulation parameters have a weaker dependence on the singularity parameter.

While our results close some theoretical gaps for ReLD and mReLD, there
are several questions left unanswered. First, ReLD and mReLD are stochas-
tic processes, but not executable sampling algorithms. How to derive efficient
MCMC algorithms from them is an interesting research question. Notably, di-
rect simulation methods like Euler-Maruyama will incur sampling bias. While
using Metropolis adjusted Langevin algorithm (MALA) can remove such bias,
whether the spectral gap of mReLD can be inherited by its MALA implemen-
tation requires further analysis.

Second, high dimensionality is another major challenge for sampling prob-
lems besides multi-modality. Replica exchange alone may not be a good tool to
handle high dimensionality. Implementing ReLLD on high dimensional distribu-
tions also have additional computational challenges, which often require novel
techniques to handle [16] 17 [I8]. Our estimate for the spectral gap has an expo-
nential dependence on the dimension. This is mainly because our assumptions
on the target distribution are quite general. Better scaling on the dimension can
be obtained if we assume the existence of a lower effective dimension [32] [33]
or a sparse conditional structure [34] [35]. We also note that convergence met-
rics other than the spectral gap may have better dependence on the dimension.
Examples include MCMC variance [I5] and round trip rates [17].

Lastly, we remark that ReLLD and mReL.D does not require any prior knowl-
edge of the locations of the mixture components. However, knowing the loca-
tions and other information can potentially lead to more efficient algorithms,

examples of which can be found in [36, [37].
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Appendix A. Proof of Proposition

Proof Claim 1) This is classical result one can find in [T} [@].
Claim 2) Let v(z) o ¢(z/e), ie., v(z) = Lo(x/e).
Because Vo(z/e) = — L o(z/e)x,
vy _ o(x/€)
£() =4/ Ve e —mya
al

p(z/)z(d(z/e) + o((x —m)/€)) — d(x/e)(dp(x/e)x + ¢((x —m)/e)(x — m))
et ((x/€) + d((x —m)/€))?
4||m||2 x/e —m)/e)

/‘ )+ </> (a? —m)/e))?

/|r 2)+1/r(z) + 2| ?w(x)de  where r(z) = ¢((x —m)/e)/d(x/€)

2
m(x)dx

7(x)dz

m(z)dx

:4||m||2

4jm]?

=1 </ Ir(z) +1/r(z) + 2|72 m(x)dr + / |r(z) +1/r(x) + 2|72 7r(x)dx> ,
€ AUB Ac () Be

where A = {||z]|? < ||m|?/16}, B = {||x — m||? < ||m|?/16}. When = € A,

z —ml|]? — ||z|? 2zl|m]| = [|m||?
() = exp (_II 2||62 [Edl )gexp< [E 2\€|2 [[m]| )

(A1)
o (A1 1PN ?
- 2¢2 4e2 -
Likewise, we can show that when x € B, ( ) < exp( ‘ “ ) Thus,
Ir(z) 4+ 1/r(x) + 2| > w(z)dz < exp | — [ A2
< exp - (A.2)
AUB 4e

Next, we note that |r(z) + 1/r(z) + 2| > < 15 always hold. Therefore,

/ Ir(z) + 1/r(z) + 2| > 7 (z)dz < % m(x)dx
Ac () B¢ Ac (N Be

1
16 (A(nzub';gj} o /{|zm|2>";gg;} e m)dz>

1 d([lm]* 1 [[m|* ;
SEQ exp <—2 <16d62 —3~ log Sde2 by Cramer’s bound

1 ||m]? m
o ( 64 H 62” ) for e < Il (A.3)
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i ; Al
The last inequality holds because when e < 6V

2 2 2
I 52 g (U5 < Ll
€

Putting (A.2) and (A.3)) together, we have

£(2) < A (o (U)o (LMY Sl ()
)
-

Ydx > ( ”(I) - 1‘W(x)d:r)2.

On the other hand, x?(v||w) = (w(m) () dx
%% (z — )/e) Thus,

We also note that v(z) — 7(z) = 5 S ¢(x/e

(/ w(w)dx)2 - ( [ 166010~ otz —mjeplaz)
([ r@rewa)

2
11 2
242d</ 1—eXp< ”)’d) x) by (A.1)
€ {llzlI*<lIm||>/16}

2
1
3 (/ ) ¢(z)dz> by replacing x /e with z
8 \Hjzjp< tmi? )

- 513< /{|Z|2>m } )
oo (5 E)) = 5

where we use Cramer bound again for e < 1”67”} Above all,

2 2 4 2
ulr) _ X2 € [[m]|
N7 s ) = Ewjm) = 80[ml2 P

v(z)

m(x)

Y

Y

Appendix B. Proof of results in Section

Appendiz B.1. Proof of Proposition |3

Proof Let f, and f; be the mean of f under y and .

var, (/X)) = [ (#@) = ) Puede < [ (1) = FoPu(o)ds
<c/ (2)dz < C?r / (F)(@)u(z)da.
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Appendiz B.2. Proof of Proposition[3

Before we prove Proposition [3] we first introduce a few auxiliary lemmas.
Lemma 1 Given a ball B = B(xo, R) C R?, up satisfies a R?>-PI:

vary, (f(X)) < R2Eu, [IIVF (X)), (B.1)

This is a classical result, which can be found in [3§].

— %, i.e., the measure
D

conditional on being in the bounded domain D.

For a given measure p, we denote up(x)

Lemma 2 Given a ball B = B(zg, R) C RY, suppose max,¢p p(r)/ mingep pu(z) <
C. Then var,, (f(X)) < C2R?E, [|VF(X)|].

Proof Apply Proposition 2] and Lemma [1| we have the result. O

Proof [Proof of Proposition [3] The arguments we use here are similar to the
ones used in [30]. The only difference is that we use Lemma [2| to find the

bounding constants explicitly. Note that for any constant c,

[t - s < [ @) - Putaris + [(10) - o s tn(v(ede.
i )

For part (I), note that
| @)~ oPviayis
< ((f z) = ) vV (z )>V(x)da: by equation (1.7.1) in [6]

o
_2/f xzx (Y F (), VV (@) (x)dx—/anwz)Pu(x)dz
= [Ivs@IPvi)ds - [ HW ) 1) e oyl @y < J IR
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For part (II), recall v is v conditioned on being in B. Set ¢ = [ f(x)vp(z)dx.

)~ G-
A—Tﬁrfud—mwemé—ﬁﬁrfam

<P(X € B) [ (f(0) ~ Prm(o)ds as V(o) =

B

<P,(X € 3)0232/ IV £()|2vp(x)dz by Lemma ]
B
<CR [ |95() Pula)do

Putting the two parts together, we have var, (f) < ()\ + bczR2) AIVEX) ).

O
Appendix C. Proof of Results in Section
Appendiz C.1. Proof of Proposition[{
Proof Recall that H(z) = —logv(z). Without loss of generality, we assume

m = 0 and H(0) = 0. We first note that ||VH(2)|||z| > (VH(x),z) > c||z|?
and |[VH(x)||*> > ¢(VH(z),z). Then, by convexity of H, we have H(0) >
H(x) — (VH(z),z), which implies that cH (x) < ¢(VH(z),z) < ||VH(z)||?. For
V() = Slall? + 1,

2 2
L,V (x)= —EC<VH(33),$> +2c< —2%||a:||2 +2c < —cV(x)+ 3cly)2<aa-

In addition, as |[V2H(z)|| < L, for some ' on the line segment between = and

0, H(z) = H(0) + LaTV2H(«/)x < LL||2[|2. Thus, if [|z[|2 < 3¢, SPeczr() o

¢ infrepr(z) =

exp (SdL) So Definition [2|is verified. Applying Proposition l we get

1 L
q= - (1 + 3Cﬁ exp(—gd )) .
c c c

Next, note that because
H(z) — H(0) = H(z) — H(x/2) = (VH(2/2),%/2) = zllxllz,
we have Icl|z||? < H(z) <

1 L||z||?, which implies that

L
1 2 1 2
exp | —5Lllz] z)) < exp { —zcfz|
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Therefore, [exp(—H(z))dz < [exp (—1c|z|?) dz < (%)d/z, and for ||z||? <

34 exp(—H(z)) > exp(—34L). This leads to our estimate of a:

o= [ exp(—H(x))dx iex 3Ld\ (4n /2
- exp(_H(.’E))Vd(?)d/C)% = Va p( 2¢ ) <3d> )

Appendiz C.2. Proof of Proposition[5

Proof Without loss of generality, we assume ¢ = 0. Let vy = mingep(o,r) ()
and H(z) = —logv(z). Note that because £,V (z) = —2¢(VH(z), x) + dvy and
L,V (z) < =AV(z) when ||lz|| > R, (VH(z),z) > $A[|z|?. Let y = ”TR”.'L‘, then

H(x) — Hy) = / (VEH(y + s(z — y)). 7 — )ds

] = R

————ds
R+ s(||] - R)

- / (VH(y + sz — 1)),y + s(z — y))

\%

1 1
> 5 [+ st =l - s
0
I 1 .
> 20 [y ste =)o - )ds = DA(lel? - R
0
Next, as [ly? = B2,
1 1
vlo) < vipyexp (~ Mol = 7)) < Croonp (~allal? - 7).

Meanwhile, for |z| < R, v(z) < Cry < Crpexp (—3A(||z]|*> — R?)). Then,

because [v(z)dr =1, 1 < Crgexp (;AR?) (%)d/Z. This implies

/2
UB(O,R)(m) C 1 9 4
< < — —_— .
S S\ A

Appendiz C.3. Proof of Proposition[q

Next we prove a more general version of Proposition [6}
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Proposition 9 1. If 7¥(z) x ¢(x/M), then Assumptz’on@ holds with

R*=3M?*(2d+1), Q=2M? (1 + g(Qd + 1) exp(12d + 8)) ,

1 or  \¥?
A= — (T d+4).
Va <3(2d+ 1)> exp (6d +4)

2. Suppose w(x) = Zle pivi(x), where v;(x) are (¢, L)-log concave densi-
ties with modes |[m;|| < M. If n¥(z) o w(x)? with B = d(2M?c +
2M?2L?/c)~t, then Assumptz’on@ holds with

2 2
R? =20M? <1+L2>, Q= M? (1+L2) <§+1006xp (44dL)>,
C C C
d/2
1 [4r dL 5

3. If 7¥(x) x ¢(x/M)m(z)?, where vi(x) are (c,L)-log concave densities
with modes satisfying |mil| < M and B < (dM?*c + dM?L?/c)™!, then
Assumption [9 holds with

R?=5M?*(2d+1), Q=2M? (1 + 22—5(2d+ 1) exp (20d + 30)> ,

/2
1 8w
= (T 12d + 16) .
Vd<5(2d+1)) exp (12d + 16)

Proof For claim 1), 7¥(z) &< ¢(z/M). Consider V;(z) = ||z — m;[|*> + 1
with v = (M?(2d + 1))_1. We first note that

2
Lor Vi) = =225 (= mi, ) + 2dy
Y Y v
= —an —m|* + WHW‘H2 - WH%H2 + 2dy
~
< *an —mil” + (2d + 1)y
1 1
< —mVi(w) tlogp ™ (2d + 1)y | Ljjpem,|2<3Mm2(2d+41)
1 3
= —MW(JU) + o2 He—mil2<sne 2a+1)- (C.1)

Then, the bounding constants for the Lyapunov function are

1 3

)\: h:
2M?’ 2M?’

R? =3M?(2d + 1),
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In addition, for z € B(m;, R), we have ||z||*> < 2R? + 2M?2. Thus, the density
ratio can be bounded by C' = exp (Rz+ ) = exp(6d +4). By Proposition

Q=01+ thC2)/>\ = 2M? + 9M?(2d + 1) exp(12d + 8).

(27 M?)4/2 ex ( ) - d/2
Moreover, A = Vdde M2 = V% (m) exp (6d +4).

For claim 2), 7Y (z) o w(z)”. Consider V;(x) = |z — m||?> + 1 with

2 24\ !
(2M2+2M2+ﬁ) )

Let H;(x) = —logv;(x). We first note that

BY 1 pivi(x)VH; (@)
ViegnY (z) = BV log nn(z) = — =1
g (e =7 g(e) Zizlpﬂ/i(w)

and

—(VV;(@).VHi(z)) = ~29(x —m;, VH,(x) — VH(m,)

< —2v(x —m;, VH;(z) — VH;(m;)) + 2y(m; — m;, VH;(x) — VH;(m;))

<~ 2eylle = mill + 21Lm; — o — |

< evllr =il + 2
S—éww—mm%mﬂmfme+ﬂfwu—mw
s-%cvj( )+ 2eyM? + 272 J\42+5

Then,

L.vVi(z) < %BCV()—i—QBnyMQ—i—QB M? + Bc—l—Q*yd

1 L L2M2 2d\ 1
= —;BcVj(z —my|? 2M? +2 )
1V (o) = gerls — gl + ey (2002 4 255 4 50) 4 6
1 5
< = PVi@) + 1Al ey <2

For f =d (MQ(:—l—MQLQ/c)_l7 R? = % = 20M? (1 + ﬁ—:) . Next, we note that
if |z —my|* < %, lz —m;|? < m +4M? < 1L R?. Then, note that for any

region B, if we let 1(z) := max; m“gim,

max,ep 7 ()

(Z pimaXgepB Vz( )) < (leﬂﬁ minwEB Vz(x))ﬂ
mingep 7Y () = (32, pimingep vi(x))? ~ (32, pi mingep vi(x))?

IN

= ((x))".
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Therefore

C = D8XB(m;.R) ”:(33) < max (méxB(mj,R) Vi(ﬂ?))ﬁ
ming(,; g 7 () i\ ming g, gy vi(z)

1_11 dL
<exp|=L—R?B| =exp (22— ).
2 5 c
By Proposition [3]

1+ 3Bc2 exp(44dL/c L2 4 dL
= 4 71 ( /):M2 (1+2> <+100exp(44)>.
18c c d c

The estimate of A can be obtained by Lemma

c 1 160 \Y* 1 dL 5 4\ 2
A= — — BeR? — 22—+ fd .
v, P <1GBCR ) (ﬂcR2> Ty, P ( ) (5d>

For claim 3), 7¥(z) o« ¢(z/M)r(x)?. Consider Vi(z) = 7|z — m;||* + 1.

Combining our analysis in claim 1) and claim 2), we have

1 1
Ly Vj(z) < (2M2 +ﬂ4‘/’)vj(1’)— (W+ic) vz —my||?
L2M2 2d + 1
+ 5 >+ <Bc

1 2
2 513 T Bey (ZM +2
1
s oV -

1
WWHJJ—WJHQ
2 2

L2M
+ Bey (2M2 +2

1
2d +1).
- )+t )
For B < (dM?c+ dM?L?/c)~! and v = (M?(2d + 1))~!, we can set

5
2M?2°

R* = % =5M?*(2d + 1) and h =

Then L.vV;(x) < — 5372 V;(2) + hljjz—m, |2<r2. We next note that as

MaX,c B(m,,R) d(x/M)
minmEB(mj,R) ¢($/M

2 M2
< exp Lkt = exp(10d + 6) and
M?2

maXzEB(mj,R) 71—(1')5

mianB(mj,R) 7'('(3;‘)[3

1 d L
< exp (;L(2R2 + 4M2)6> < < 0+7/
we have

v M v B
< MAXeeB(m,, B P(z/ )m‘flxxeBmJ,R) W(»T)ﬁ < exp (10d 4 15)
MNge B(m,,R) P(x/M) MNge B(m,,R) m(z)
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By Proposjtion 3 Q = % = 2M2 (1 =+ 22*5(2d + 1) exp (20d + 30)) Lastly,
M2
the constant A can be obtain from Lemma

C R2\ /8M2r\Y* 1 st \Y?
A= — < — 12 1 _ .
VdeXp<8M2>< R ) < 7, o (12d 4 16) (5(2d+1)>

Appendiz C.4. Proof of Corollary[]]

Proof Since v; is (l;f,l”C)—log concave, by Lemma (4, Assumption |1| holds

m

with ¢ = 13, 4+ 9dI3, exp(3dC), r?=3dl?, a= V% (?,}—g)d/2 exp (24€) . Choos-
ing ¥ (z) o ¢(x/M)(m(2))? with 8 = L < (dM21,7 +dM?13,1;,4C%)~, Propo-
sition [6] gives us R? = O(M?d), Q = O(M?dexp(20d)), and A = O(exp(12d)).

Plug these estimates and r? = 3dI2, into Theorem [2| we have

d+1 la=1 d
k =max < 3(56A4 + 1)g, 3 57Q + 14aA Rf log R , Tad (R
T rd=1 r p \r
d d
=0 <exp(CDd) max{d@, ldMlm (lM) 71 <IM) }) )
T m P \lm

Appendiz C.5. Proof of Corollary[3

To prove Corollary [2} we first introduce an auxiliary lemma.

Lemma 3 For any given 8 € (0,1], if v is a (I72,172C)-log concave density
with mode m, then p(z) < (v(x))? is a Ly(Rg,qs,a5) with \g = BI™2, and a
suitable constant D so that

dexp(DdC Ad d
=0 (epr(ﬂ)) , R2=Z=0 <> . Ag = O(exp(DdC)).
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Proof We consider using V(z) = 7||z — m|®> + 1, with v = As/(2d). Denote
H(xz) = —logv(x). Then,
L,V (x) =—-2v8{x —m,VH(x))+ 2dy
< =298 2|z — m|* + 2dy
— oy — ml? + 2y

< =gV (x)+ (—Ag’y”x —m|*+ Ag + 2d7)

IN

—)\/3‘/(.’13) + bﬁl”-’ﬂ—mHQSR% .

where bg = Ag + 2dy = 2Ag by our choice of v, and R% = »beﬂﬁ = %. Note that

max(log () — log u(y)) = fmax(logv(x) — logv(y)).

BecauseBmaxz’yeg(m’Rﬁ)(log v(z)=logr(y)) < %BZ_QCR% < 2dC, Cp < exp(2dC).
d/2
_ C 1 4 _
Lastly, by Lemma Ag = V—fexp (5)\5}?%) (W) = O(exp(DdC)), and

2 2
by Definition qﬁ - L _ o (deotbi)), -

Proof [Proof of Corollary [2] Consider the following density:

I
(1) o Zpi(l/i(x))ﬁ’“,k =1,...,.K -1, 7y=mo,Tx ="K.
=1

By Lemma (3] 7, satisfies Assumptions 4] and [5| with

o Adiz Adl3,
o B B
Moreover, by Lemma 4] gy = [3,(1 + 9dexp(3dC)). From Proposition |§|, for

rE = g =0(), ar,=0(1), k=0,...,K—1.

1
Pr = AME(L 2,0, ey e have
r2. .= O(M?*d) = 0(1), qx = O(M?dexp(20d)) = O(1), ax = O(exp(10d)) = O(1).
K,i

Then, by Theorem |3| vary (f(Xo:x)) < n’]EﬂézK[Fg(f(Xo:K))], with ' =

O(I39) for some a < 1, if the parameters 7, p satisfy

d/2
7 > UL (5‘“ ﬁﬁl) 7
k lm

/2 /2
p > Ul *maz { (/6;;_1> , <BZ;1> } . (C.2)
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d/2
) . k=1,....K —1, TK>UlM2a<




Br
for some U > 0. Note that (Zi[:l piui(:r)) > Zle pivi(w)Pr | since 2P+ is

concave for 0 < ; < 1. On the other hand, for py = min;<; p;,

I B I
1
(Zm(m)) < maxvi(a) <5 pvie)™.
i=1 0 =1

Therefore, pomi(x) < 7 (z) < mp(z) < pioﬂ'k(x) for k =1,...,K —1. By
Proposition 2} vars,, . (f(Xo:x)) < Ko, [TK (f(Xo.x))], with & = py 2K s/, We
next verify that (C.2)) holds. In scenario 1, for k =1,... K, as f; = l%f/K,

B d/2 B d/2
ZX/IQOL ( 1) < l;2a—d/K < 7, and ZX/IQOL m’?x( 51) < Z;LQ(x—d/K < p.
k k

Thus, (C.2) holds. In scenario 2, 8 = l%k <landd<2,
/2 /2
(5k—1> — K < K (ﬁk—l) — K <,
Br k Br

Thus, (C.2)) holds with o« = 0. In scenario 3, note that with our choice of S
and 7, k=1,..., K

_9(d=2)K—k
lm( d ) = Tk-

(ﬁkl i — l%@(d%iz)’(”““—2(%2)f<fk) _
Br m

i —d(452)K-1 3 d/2 .
Meanwhile, because 79 = 1 = I, = ¢ (17(1)) (T2 holds with constant
0= —d(z2) "

Appendiz C.6. Proof of Proposition[]

Before we prove Proposition |Z|, we first present an auxiliary lemma.

—oo and

Lemma 4 Suppose V(x) exp(H(z)) is C*(RY) with H(z) =
V(z) =0 for x ¢ Q. Moreover, for a region B C Q, :AH(z) — 1||VH(z)|* <
—Xo for x € Q\ B. Then V(x) is a (Ao, h, B, C)-Lyapunov function for v «

exp(—H(x)) with

1 1 maxgep V(T)
= ——||VH 24+ _AH = 2
h max ( 4||V ()| + 5 () + Ao) V(z), C —
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Proof For z ¢ Q, L,V (z) =0. For z € Q,
1 1
L,V(x)= (4|VH(:17)||2 + 2AH(1’)> V(z) < =AV(z)+ hlzen.
]

Proof [Proof of Proposition@ Consider a clamp function ¢ : R — R satisfying
1) 9 is C% 2) o < 0,45/(1)? < C; 3) ¢(x) = 1 for all x < 0; 4) p(x) = 0 for all
x> 1. Let W;(z) = exp (L log(y/nd;(x))) . Then, we can construct

WEO(Z\IJ x) exp(— Zexp< Qez ))7
where Q;(z) = —log ¥ (y/nd;(z)) + He(z). We next verify that
1 1 Y
Note that holds for any = € Q; since Q. ;(x) = He(x). When x € Q] \ Q,,
W (v/ndi(x))
\Y% €,% de VHe
Quila) =~V VIS o) + V()

We first note that because i) Vd;(z,) — vy (z) for any z, — = € 9%, ii)
—VH_(z) points toward the inside of §; for x € 9Q;, and iii) V2d; and V?H,
are bounded, for n large enough, —(Vd;(z), VHc(x)) < 0 for z € Q\ ;. Then,

D(/ad(2)?
11V Qun@)P > gl Ve )P S VL)
We next note that
__nﬁ(\/ﬁd (2)) 2 nl/’(\/ﬁdz(m))2 ()12
) nz&(\/ﬁdmw»
V() ) AH)
Thus, for € small enough,
1 1 ,
2 8Q.() ~ 15V Q)]
I 0 o 1 ) s ndadG)
< gt VO 2 YOI 2 ) A4
+ oA ) — 1o SO 0 ) - v )
<G AH(2) — 1| VHL ()] < 0
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Lastly, we note that

exp (—1&(@‘)) < izj;eXp (—1626,1'(%‘)) < Texp (—1H6($)> :

Moreover g(x) o exp (—%He(x)) is a € perturbation of w. Thus, 7. is a ¢

perturbation of 7. O

Appendiz C.7. Proof of Corollary[3

Proof Let H(z) = (2> — a*)? and € = 1/n. We first note that VH(z) =
2z(2? — a?) and V2H (x) = 622 — 2a2. Thus,
322 a? 1

1 2 1 2 20,2 2\2
—V2H(z) - — |VH == _2 _= —a?)?
V() - S IVH@)? = 2 - S — S22t - a?)

When |z — a|? > 3¢/a? and x > 0,

3€ 32
2502 >

1
—22(2? —a?®)? = =2z —a)*(x +a)® > T
€

a €

Then, -V?H(z) — || VH(z)|]* < —%. Similarly, when |z + a|> > 3¢/a? and
z < 0, we also have -V2H(z) — 25| VH(2)|]? < —“—52. In this case, H. = H
already satisfies . (There is no saddle point for this problem.)

Next if we split R into 1 = [0, 00) and Qs = (—00,0]. It is easy to see that
di(z) = —x is C? in (—00,0). In addition, Vd;(z) = —1, which is the same as
the outward direction for Q; at z = 0. Similarly, da(x) = x is C? in (0, 00) and
Vds(z) = 1 is the same as the outward direction for 5 at 2 = 0. Thus, the
existence of the 7. follows from Proposition [7]

O

Appendix D. Proof of Proposition

Before we prove Proposition [8] we first present some auxiliary lemmas. Our
first result shows that we can replace a density having a (A, b, B(zo, R),C)-
Lyapunov Lyapunov function with a uniform distribution, while keeping the

difference controlled.

45



Lemma 5 Suppose v has a (A, b, B(zg, R), C)-Lyapunov function, then
b+ \)R?C?
E1(X)] - By [fO)])? < 2 IV g g2y
Proof Let f, =E,[f(X)] and f,, = E,,[f(U)]. Then

(fo = Fus)” S 2E(F(X) = Jo)?] + 2B, [(F(X) — fun)?]

2,12
< o U 19 £ (X)) 4 20 [(7(X) ~ Fun)?) by Proposition
1+bR*C?
< 9m EOTE R [V (X)) + 20 BB [ V£ (X)) by Lemmal]
1+ bR2C?
< 2 TR [V (X)) + 202 PR [V (X))

+ (b+ N)R2C?

1
=2—— B J[IVFX)I.

O

Our second result bounds the mean difference square when moving from a

big Uniform ball to a small Uniform ball with the same center.

Lemma 6 Consider B, = B(zo, ) and Br = B(xo, R) with R > r. Then when
4 =1, (Bup, [f(X)] ~ Bup /(X)) < R2log(R/r)Eu, [V F(X)|): whend >
<

2, (EuBT[f(X)]*EuBR[f(X)]) T B, [V (X))

Proof Without loss of generality, we assume xy = 0.

We first consider the case in which r = 1 and d > 2. Let Cy denote the vol-
ume of a d-dimensional unit ball. Consider the spherical coordinate of x. In par-
ticular, let ¢ € [0, R] denote the radial coordinate, and 6 = (61,602, ...,04_1) de-
note the angular coordinate, i.e., it is a (d—1) dimensional vector with 6; € [0, 7]
fori=1,...,d—2and 0,_1 € [0,27). We also write () be a d-dimensional
vector on S with & (0) = cos(61), &(0) = sin(6y)---sin(6;_1) cos(d;). for
1 <i<d,and &(0) =sin(f;) - - -sin(fg—_1). Then, z = r&(A). We also write

dga-160 = sin®=2(0;) sin?3(6y) .. . sin(H4_1)dO

and Q = [0,7]972 x [0,27). Then

E X)) =t "’ ()14 didga 10 = ~ 1 Rt£(0))t* ' dtdga—r0
vl = o [ [ st aaseo = o [ [ presto)e-tavaga .
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Using the spherical coordinate representation, we have

Euy, [(X)] ~ By [F(X)])
( )

— (Clv/ /1 FtE(0)t  dtdga—16 — Clv/ﬂ/ol f(Rtf(H))tdldtdsdlﬂ)

_C // (RtE(B)) — f(t€(9)))*t? Ldtdga—10 by Jensen’s inequality
1%

2
1 p—

:7// (/ szif(stﬁ(@)t&(@)ds) 4 dtd g6

_CV // / (Z vhf St§ tgz( )) dstd_ldtdsd71€ by Jensen’s inequality

_C / / / |V f(st&(9))||?dst L dtdga—16 by Cauchy-Schwarz inequality and ||€| = 1
1%

e / /| / IV £(st€(0)) 269 dtd a1 0ds

0o / // |V f(re@))|*rt drdga- 19 —5ds by letting r = st
1%

< Vfre0))*rttdrdga- 19 ~ds
c
1%

R 1 Rd+1
SRd+1<CVRd/Q/O ||Vf(r§(0))||27’d1d7"d5d10>/1 205 < T Bus, [IVF O]

When d = 1, following similar arguments as above, we can show that

(5 1900 B 500) = (& [ s = g0t <2 [ [y sonpiasia

We then change variable by r» = st and find

1 R R s 2 R
| [ ivsenpasti< [© [ 19iePaas < osm-n [ 9ie)F

2

For general r > 0, we can simply set Z = X/r, g(X) = f(X/r) and ¢ = R/r.
Because By, [9(2)] = By, [F(X)] and By, [9(2)] = Euy, [£(X)),

2 2 d+1
(Bu, (X)) = Bu [1(3)])” = (B, 0(2)] ~ Buy, 9(2)])” < L, (IV(X) ).

Then, as E, [[IVg(2)]?] = rzEuBR [[IV£(X)||?], we have the claim. O
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Proof [Proof of Proposition I To simplify the notations, we define B; =
B(m;, R;), B; = B(m;,r;), and n;(y) = [ f(z,y)v¥(z)dx for i = 1,2. Let Q=
Q + R?A% and § = ¢ + r%a’.

Step 1. Replace v with up,. By Lemma we can control the difference by

2
(Eulx®u§' [f(Xv Y)] - Euf@ugz [f(Xa Y)])
2
= ( / m(y)vy (y)dy — / m(y)ug, (y)dy>
<2Q [ IVm@)* ()dy
§2Q/ IV, f (2, y)||Pvi¥ (z)v3 (y)dy by Jensen’s inequality.
Likewise, we change v;¥ to up,. By Lemma we can control the difference by
2
(EUIX ®u3 [f(Xv Y)] - E’U.Bl ®’u52 [f(X7 Y)])
2
([ ([ sttt @ite~ [ s ppum )is ) s, i)
2
S/ (/ fx, )i (z)dx — /f(x, Yy)up, (x)dx) ug, (y)dy by Jensen’s inequality
<2q [ 192t s, (o)dy < 224 [ 1925 )P @0 ).
Step 2. Replace ug, with up,. By Lemma @, we can control the difference by

(B, s, [FOC Y] B s, 7 V)

S/ (/ f(fmy)ulg(y)dy—/f(x,y)UBz(y)dy>2uBI (x)dx

Rd+1
< / V07 )l Pus, (), ()i

[ 19,5 )P @ sy,

when d > 2. If d = 1, an additional log(R/r) is needed.

Step 3. The mean difference square in exchanging B; and By can be bounded
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by the additional term in the carre du champ for replica exchange:

(EU51 ®up, [f(Xa Y)] - Eu32®u51 [f(X, Y)])2

< /(f(a:, y) — f(y,7))*up, (x)up,(y)drdy by Jensen’s inequality

d
<(2) [0 = £ un, (s, ) A s, (hum )y os 245 = 5 < ()"

r

< <R>daA [ @)= £ (@0 () A o} (@) dndy,

Putting the three steps together, we have
(Euf(@y; f(X,Y)] = E xguy [f(X, Y)])2

<7 (Byrany )]~ By FOCY) 47 (B, 1Y)~ Buy o (X, V)
7 (B, g, [T V)]~ Bu g, [F(XY)])
T (B (X))~ By P YN) 47 (B, TG Y]~ By, (X V)])
7 (Buy g, K Y)] ~ Bu o, [F(XV)])
+ 7 (Bup, 8, (X, V)] = Bupoun, [F(X, YV)])*

<=0 [ IV @) PO @0 )+ v (@ ()dody
42, [ 19, @) P02 @0 () + v (@0 () dody

+Ee/(f($,y) = fly,2))? (vi* (2)vy (y) A vy (y)wi (2)) dady,

where 2, = 1434, 5, = 14Q + 7aA (871) (log (£))"*7 2 = 7(£)"ad. D

Appendix E. Proof of Theorem

In order of handle the mean difference square, which appears as Part (C)
in 7 we define Xk(x():K) - (f(wk7zk7yka zk) - f(wkaykaxkazk))2sk(zkayk)a
and Ty (x0.x) = Zfik (Tl Vo f (x0:1) 1> + le(x():K)) . Denote

E, x(f) ::/Tl”lef(WkaxkvykaZk)||2V(xk)7rk+1(yk)ﬂlg(zk)dwkdykdzh
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When v = 7y, we simply write Eyﬁk as Ek. We also define, for k =0,1,..., K—1,

d
—_ T —_
':‘ek - 7 ( k+1> a’kak+1a :*wk = 28(]kak+17

Tk

d+1 1g=1
Eyk = 28qk + 77(7%4_1371 ApQf41 (log (rk+1)> .
(Tx) Tk

We first bound the mean difference square.
Proposition 10 Under Assumptions[f] and[3, for k < K —1,

> pipj (Ori(wi) — Ok (Wi))? < ExBrux [Tr(wi, X))
2%

where for any fized o,y > 1 with X + % =1,

- 1 [ 8avE 292, 2vE 7=t
Z) = max max  (4a) k71 Ty = 7 Tk max (4a)! RIZe L
k+1<I<KK-1 Tl Tl Tk k<IKK-1 p

Proof We prove the proposition by induction.
We want to show that for any fixed wy,

K-1

2 - -
1 [ 8avE, 272y, ~
sz'pj <0k,i(wk) 9k,j(Wk)) < Z (4a)l =t ( Vo | 21w ) k|| Va, 2
i) I=kt+1 i i
27': ~ K-1 ,-y': —~
+ T”TkEkHkafHQ +> (4a)l_kTelP]Ele(Wk7$ky Yk, Zk)-
1=k

(E.1)

For k = K — 1, (E.1) can be obtained from Proposition Suppose (E.1)
holds for k + 1. Now, for k, We first note that 6 ; = 22:1 Dk+1,hCkin and

> pipi(Oki — Ok 5)? (E.2)
i
<2a Zpipj (Ori — Crig)> +v Zpipj (Crij — Crji)® +2ax Zpipj (Crji — On.)?
(@) (b) (©
a ¢

Note that part (a) and (c) are symmetric. For part (a), we have

; 2
> pipj(Crij — O0ki)> = > pip; <Z Pr(Crij — Ckih)) <> pipipn (Grij — Cran)” -
irj i h=1

.3,h
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By induction,
Zpi ijph (Chig (W) = Crin(wi))?
ik

< Zpi ijph /(9k+1,j(wk7$k) — Op1,0 (Wi, Jfk))QVk,i(xk)dﬂﬂk

i gn
< 3 oy (M B0 gy o, g
Ti Tl
I=h+2
27E - K-1 Ze, ~
+ TRV P+ Y (Aa) TR S pR X (Wi, T, Yk, Zi).
Tk+1 I—hi1 P

For part (b), recall that Crij = [ f(Wk, Tk, Yns 2k )Vk,i (k) V11,5 (Y ) 72 (21 ) dz g dyrdzy,
and Cuji = [ f(Why Tk, Yir 2 )V (T ) Vi1, (Y )72 (21 ) dag dyrdzy,. By the mean
difference square estimate in Proposition [8] we have

(Crij(Wi) = Crji(wi))?

S:_Zka/Hvzkf(wkaxk,ykyzk)||2(’/k,iyk+l,j + Vi Vit 1,0) (Ths Y7L (2 dardypdzy,
k

+ %Tkﬂ / IV f (Wi The, Uiy ) 12 (kv 1.5 + Ve jVks10) (Th, Ui ) T2 (21 ) dog dyrdzy,
1

+ _‘;kp/(f(wka'rkvykazk) - f(wkvykaxlwzk))Qx

(ki (@)Wt 1,5 (U) A Vi (Y)Wt i (ox)) 72 (21 )y dyrdzy,.

Note that Z” DiDiVk,i(Tk) V1,5 (Yk) = Tr(Tr)Tet1 (Y ). Because aAc+bAd <
(a+b)A(c+d),

Z(piijk,i(xk)VkH,j(yk))/\(pipjl/k,j (yk)VkJrl,i(-Tk)) < (7Tk(xk)ﬂ'kJrl(yk))/\(ﬂ'k(yk)ﬂ'k+1(-Tk))~

Thus,

> 0i0i (g (Wi) = Chji(Wi))? <2, B[V 117 + 22, Eie | Vo, 1
]

—

(=T

+ P P/(f(Wk,xkayk,Zk) — [ (Wi Yie, 21, 21)) 2 X

(e (@) Tht1 (W) A 7o (yi) s (20)) 78 (21) d g dyrdaz.
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Combining parts (a) — (c), we have

Zpipj (051 (Wi) — 81,6 (wi))?

! 8ay= 2vE ~
< Y ()i (B025m 2B ) oy g2
Tl

T
I=k+1
2,}/’:' ~ K-1 ,-Y': ~
+ T“TkEkHmeHZ +> (4a)likTeLP]Ele(Wka$k7yk-7zk)~
1=k
Setting
SayE 29E, 2= =
Ek:max{ max (4oz)l_k_1( AV =y + i yll), 7 T max (élcy)l_k—’y el},
k+1<I<KK-1 Tl Tl Tk k<IKK-1 P
we have the result. O

Proof [Proof of Theorem [4] Recall the upper bound (14).
For part (A) By Assumption 4| and Proposition |3, we have

I
> b / (95 (W, Ty Yk) = i (Wi Uk))? Vi i (00) dem 41 (g ) Ay
i=1

I
SzpiQk/||va:kgk(wka-Tkayk)||2Vk,i($k)7'rk+1(yk)dxkdyk
i=1

<qk / IV, g1 (Wi, T, yk)H27Tk(xk)7rk+1(yk)dxkdyk~

For part (B) By Assumption [4| and Proposition (3] we have
I
Zpi /(ﬂk,i(wkayk) — Ok i(Wk))*Trr1 () dyi
i=1

I
<> pite / IV 9 (Whes ey Y ) [P0k i (20) Tk 1 (yi ) d iy

i=1

<Qr+1 / 1V 95 (Wi, T, yi) || 27k (2 ) T 1 (Y ) ey
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For part (C) From Proposition [10]

Zpipj (031 (W) — 0. (Wi))”
0]
K-1

< Z (4O‘)lik71 (80475361 + Q’YEyl—l) Ek||vxlf||2 + Q’YExkEkHvxkﬂF
I=k+1

+ %(4@)17’6754@?@ (Wk, Tk Yks Zk)-
1=k
Putting parts (A) — (C) together, we have
Eo. i [Ek [(E(kJrl):Kf(XO:K) - ]Ek:Kf(XO:K))2H
< [il 3(40[3_2_16_1 (Sa'yEIl + Q’YEyl_l) /Tl||Vxlf(X0;K)H2’/T0;K(X0:K)dX0:K

I=k+2

+

— (8aVEay,y + 295y, + qhs1) / Va0 £ (%0: ) 1P 0: 16 (%0: 16 ) dXo0: ¢
+

3 -
+a(27:zk +q1c)/TkHvzkf(XO:K)||27TO:K(XO:K)dXO:K

K-1

+ 3(404)17]@%/3/XZ(XO:K)WO:K(XO:K)dXo:K
=k

Then
Eo |(F(Xou) — Ef (Xo.x)?]

K
< ZEO:K [Ek {(]E(kJrl):Kf(XO:K) - Ek:Kf(XO:K))QH < kEo.x[Tr(f(Xo:x))]s
k=0

where

k—2
3(4a)k—h+1 _ _
T T ok {;12—:2 B (B, + 20y

k

3 _ _ 3(4a)k—t2 _

—&—; ((Sav +27)25, + 2795, , + 2qk) , E 7( )p Ve ¢ -
° h=0
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