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Abstract. This paper concerned with a diffusive predator–prey model with fear effect. First, some
basic dynamics of system is analyzed. Then based on stability analysis, we derive some conditions
for stability and bifurcation of constant steady state. Furthermore, we derive some results on the
existence and nonexistence of nonconstant steady states of this model by considering the effect
of diffusion. Finally, we present some numerical simulations to verify our theoretical results. By
mathematical and numerical analyses, we find that the fear can prevent the occurrence of limit
cycle oscillation and increase the stability of the system, and the diffusion can also induce the chaos
in the system.

Keywords: diffusion, stability, fear effect, predator–prey model.

1 Introduction

Since Lotka [11] and Volterra [17] proposed famous Lotka–Volterra equations, the con-
struction and study of models for the population dynamics of predator–prey interactions
has been an important topic in theoretical ecology. According to different background,
researchers have proposed many types of predator–prey models, and rich dynamics of
these systems have been investigated extensively [6, 8, 18, 21]. In the wild, it is easy
to observe that the reduction of prey is due to the direct killing of predators, which is
reflected by functional responses in the predator–prey model such as Holling type and
Beddington–DeAngelis [1, 7, 9, 10, 16, 24].
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However, a new study suggested that the behavior of the prey can be changed by the
predator, and it could have a greater impact than direct killing. In fact, Zanette et al. [22]
found that the offspring production of the song sparrows reduced by 40% because of the
fear from predator. To model the fear effect in predator–prey interactions, Wang et al. [19]
proposed a predator–prey model as follows:

du

dt
= ur0f(k, v)� du� au

2 � g(u)v,

dv

dt
= v
�
�m+ cg(u)

�
,

where r0 is the birth rate of the prey, d is the natural death rate of the prey, a represents
the death rate due to intraspecies competition. The parameter k refers to the level of fear,
which reflects the reduction of prey growth rate due to the antipredator behavior. With
the increase of k, the growth rate of prey decreases. In [19], the authors consider that
the functional response g(u) is the linear (g(u) = pu) or the Holling type II (g(u) =
p/(1 + qu)). Their theoretical results show that fear effect could improve the stability of
the predator–prey system.

It is considered that the trait effect has reduced the growth rate of the prey due to fear
of predators, and the prey has been subjected to a strong Allee effect caused by mating
during reproduction. Inspired by this idea, [14] considered a predator–prey model with
the trait effect that reduced the growth rate of the prey due to fear of predators, and the
prey has been subjected to a strong Allee effect caused by mating during reproduction.
Their results showed that the fear effect does not affect the stability of the equilibria,
but with the increasing of the cost of fear, the equilibrium density of predator decreases.
Sasmal and Takeuchi [15] studied a predator–prey model that incorporates fear effect due
to the presence of predator and group defense. Wang et al. [23] investigated a predator–
prey model incorporating the fear of predators and a prey refuge, and they found that the
fear effect can not only reduce the population density of predator, but also stabilize the
system by excluding the existence of periodic solutions. Here, we remark that all models
in these papers did not consider the factor of diffusion.

It should be pointed out that in real life, species are heterogeneous in space, so
individuals tend to migrate to areas with low population density, which will increase the
possibility of survival. Hence, some researchers considered reaction–diffusion predator–
prey model by incorporating the fear effect into prey population. Niu et al. [4] inves-
tigated a diffusive predator–prey model with the fear effect. Taking the mature delay
as bifurcation parameter, they found that the delay can induce Hopf and Hopf–Hopf
bifurcations. Wang and Zou [20] proposed and analyzed a reaction–diffusion–advection
predator–prey model. [3] investigated a diffusive predator–prey model with fear effect.
Their results show that for the Holling type II predator functional response case, there
exist no nonconstant positive steady states for large conversion rate.

Motivated by these pioneer work and note that none of the above mentioned models
considered the Holling III functional response, we are led to consider a diffusive predator–
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prey model as follows:

@u

@t
= d1�u+

ru

1 + kv
� �1u� au

2 � m1u
2
v

b+ u2
, (x, t) 2 ⌦ ⇥ (0,+1),

@v

@t
= d2�v + v

✓
��2 +

m2u
2

b+ u2

◆
, (x, t) 2 ⌦ ⇥ (0,+1),

u(x, 0) = u0(x), v(x, 0) = v0(x), x 2 ⌦,

@u(t, x)

@n
=
@v(t, x)

@n
= 0, t > 0, x 2 @⌦,

(1)

where u(x, t), v(x, t) denote the density of the prey and the predator at location x and
time t, respectively. r is the birth rate of prey, �1 is the natural death rate of prey, a
represents the death rate due to intraspecies competition. The parameter k reflects the
level of fear, which drives antipredator behaviours of the prey. m1u

2
/(b+ u

2) is Holling
type-III function (see [5]). The parameter �2 is the death rate of predator. ⌦ ✓ RN is
a bounded region with smooth boundary @⌦, and n denotes the outward normal vector to
the boundary @⌦. The homogeneous Neumann boundary condition indicates that there is
no population flow across the boundary.

We also assume that u0(x), v0(x) 2 C([�⌧, 0], X), and X is defined by

X =

⇢
u, v 2 W

2,2(⌦):
@u

@n
=
@v

@n
= 0, x 2 ⌦

�
.

In this paper, our goal is to investigate the dynamical properties of (1) such as global
existence of the solutions, stability and bifurcation of the constant steady state. In addi-
tion, we will use energy estimates to obtain of the dynamic and steady state solutions and
so to discuss the nonexistence and existence of spatial patterns.

Our paper is organized as follows. In Section 2, we study some basic dynamics of
the system. In Section 3, we obtain the stability and bifurcation of the equilibria. In
Section 4, we investigate the nonexistence and existence of the nonconstant steady state.
In Section 5, numerical results are presented to verify the theoretical results.

2 Basic dynamics

In this section, we discuss some basic dynamics of system (1) including the existence of
solution and the priori bound of the solution.

First, we let |⌦| be the Lebesgue measure of ⌦ and denote

��'(·, t)
��
L1(⌦)

=

Z

⌦

��'(x, t)
�� dx,

��'(·, t)
��
L1(⌦)

= ess sup
x2⌦

��'(x, t)
��,

��'(·, t)
��
C(⌦)

= max
x2⌦

��'(x, t)
��.
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Theorem 1. For system (1), the following conclusions are true:
(i) If u0(x) > 0, v0(x) > 0, then system (1) admits a unique solution (u(t, x),

v(t, x)) > (0, 0) for t 2 (0,+1) and x 2 ⌦̄;
(ii) If r < �1, then

limmax
t!1, x2⌦

u(x, t) = 0, limmax
t!1, x2⌦

v(x, t) = 0;

(iii) If r > �1, then any solution (u(x, t), v(x, t)) of (1) satisfies

lim sup
t!+1

u(t, x) 6 r � �1

a
.

In addition,

��u(·, t)
��
C(⌦̄)

6 K1,
��v(·, t)

��
C(⌦̄)

6 C
⇤
,

where K1 = max{K,max⌦̄ u0(x)}, and C
⇤

depends on r, �1, �2, m1, m2,

u0(x), v0(x) and ⌦;
(iv) If r < �1 + a

p
�2b/(m2 � �2), then

limmax
t!1, x2⌦

v(x, t) = 0.

Proof. (i) Define

f(u, v) =
ru

1 + kv
� �1u� au

2 � m1u
2
v

b+ u2
, g(u, v) = v

✓
��2 +

m2u
2

b+ u2

◆
,

then fv = �kru/(1+kv)2 � m1u
2
/(b+u

2) 6 0 and gu = 2m2buv/(b+u
2)2 > 0

in R2
+ = {u > 0, v > 0}. Consequently, system (1) is a mixed quasimonotone system.

Consider the following ordinary differential equation model:

du

dt
=

ru

1 + kv
� �1u� au

2
,

dv

dt
= v

✓
��2 +

m2u
2

b+ u2

◆
,

u(0) = ū0, v(0) = v̄0.

(2)

where ū0 = sup
⌦
u0(x), v̄0 = sup

⌦
v0(x). Let (ũ(t), ṽ(t)) be the unique solution of

system (2). Then (0, 0) and (ũ(t), ṽ(t)) are the lower solution and upper solution of
system (1). Thus, according to the [13, Thm. 8.3.3], system (1) has a unique globally
defined solution (u(x, t), v(x, t)), which satisfies

0 6 u(x, t) 6 ũ(t), 0 6 v(x, t) 6 ṽ(t).

The strong maximum principle ensures that u(x, t), v(x, t) > 0 (x 2 ⌦̄).
(ii) The first equation of system (2) implies that

du

dt
=

ru

1 + kv
� �1u� au

2 6 u(r � �1).

Obviously, r < �1 leads ũ ! 0 as t ! 1. Consequently, v(x, t) ! 0.
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(iii) It is noted that

@u

@t
� d1�u =

ru

1 + kv
� �1u� au

2 � m1u
2
v

b+ u2
6 ru� �1u� au

2
.

Thus, by the comparison principle, one have

lim sup
t!+1

max
⌦̄

u(x, t) 6 r � �1

a
.

The maximum principle ensures that ku(·, t)kC(⌦̄) 6 K1 for all t > 0.
Let U(t) =

R
⌦
u(x, t) dx, V (t) =

R
⌦
v(x, t) dx, then

dU

dt
=

Z

⌦

ut dx = d1

Z

⌦

�u dx+

Z

⌦


ru

1 + kv
� �1u� au

2 � m1u
2
v

b+ u2

�
dx

=

Z

⌦


ru

1 + kv
� �1u� au

2 � m1u
2
v

b+ u2

�
dx, (3)

dV

dt
=

Z

⌦

vt dx = d2

Z

⌦

�v dx+

Z

⌦

✓
v

✓
��2 +

m2u
2

b+ u2

◆◆
dx

=

Z

⌦

✓
v

✓
��2 +

m2u
2

b+ u2

◆◆
dx. (4)

Multiplying both sides of Eq. (3) by m2/m1, then combining with Eq. (4), we obtain
✓
m2

m1
U + V

◆

t

= ��2V +
m2

m1

Z

⌦

✓
ru

1 + kv
� �1u� au

2

◆
dx

6 ��2
✓
m2

m1
U + V

◆
+

✓
m2

m1
(r � �1) + �2

◆
U.

Noting that ku(·, t)kC(⌦̄) 6 K1 proved above, we have U(t) 6 K1|⌦|. Thus
✓
m2

m1
U + V

◆

t

6 ��2
✓
m2

m1
U + V

◆
+M2, (5)

where M2 = ((m2/m1)(r � �1) + �2)K1|⌦|.
The integration of inequity (5) results in

Z

⌦

v(x, t) dx = V (t) <
m2

m1
U(t) + V (t)

6
✓
m2

m1
U(0) + V (0)

◆
e��2t +

M2

�2

�
1� e��2t

�
,
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Figure 1. Invariant region R↵ for system (1).

which means that

��v(·, t)
��
L1(⌦)

6 m2

m1

��u0(·)
��
L1(⌦)

+
��v0(·)

��
L1(⌦)

+
M2

�2
:= K2.

From [2, Thm. 3.1] we have kv(·, t)kL1(⌦) 6 K3, where K3 depends on K2 and
kv0(x)kL1(⌦). As a result, there is a C

⇤ such that kv(·, t)k
C(⌦) 6 C

⇤.

(iv) Obviously, lim sup
t!+1 max⌦̄ u(x, t) 6 (r � �1)/a proved above that if r <

�1 + a

p
�2b/(m2 � �2), then v(x, t) ! 0 uniformly on ⌦ as t ! 1.

Theorem 2. The trapezoidal region

R↵ =

⇢
(u, v)

��� 0 6 u 6 ū, 0 6 v 6
✓

m2

�2m1
(r � �1) + 1

◆
ū� u

�
,

ū > (r � �1)/a, is a positively invariant region for system (1) (see Fig. 1).

Proof. The reaction kinetics do not point out of R↵ along u = 0, v = 0, and u = ū.
Setting

W (u, v) = v �
✓
m2(r � �1)

�2m1
+ 1

◆
ū+ u

and denoting the outward normal to R↵ along the line W (u, v) by @W := (@W/@u,

@W/@v) = (1, 1), then denoting f = (f, g)T, one obtain

@W · f |v=(m2(r��1)/(�2m1)+1)ū�u

=
ru

1 + kv
� �1u� au

2 � �2m1

m2
v 6 (r � �1)u� �2m1

m2
v

=

✓
r � �1 +

�2m1

m2

◆
(u� ū) 6 0

as 0 6 u 6 ū. Consequently, R↵ is an invariant region.
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3 Constant steady state solutions, stability and bifurcation

3.1 Constant steady state solutions

Theorem 3. For system (1), the following conclusions hold:
(i) If r 6 �1, then system (1) has only the trivial constant solution E0 = (0, 0);

(ii) If �1 < r 6 �1+a

p
�2b/(m2 � �2), then system (1) has a predator-free constant

steady state solution E1 = ((r � �1)/a, 0) denoting the extinction of predator,

while system has no positive constant steady state solution;
(iii) If r > �1 + a

p
�2b/(m2 � �2), then system (1) has a unique positive constant

steady state solution.

Proof. Obviously, (i) and (ii) hold. The positive constant steady state solution E
⇤ =

(u⇤
, v

⇤) satisfies

r

1 + kv
� �1 � au� m1uv

b+ u2
= 0, ��2 +

m2u
2

b+ u2
= 0. (6)

From the second equation of (6) we have u
⇤ =

p
�2b/(m2 � �2). Then according to the

first equation of (6), we obtain

B1v
2 +B2v +B3 = 0, (7)

where

B1 = km1u
⇤
,

B2 = m1u
⇤ + �1ku

⇤2 + b�1k + aku
⇤3 + abku

⇤
,

B3 = (�1 � r)
�
b+ u

⇤2�+ au
⇤3 + abu

⇤
.

Clearly, B1, B2 > 0. Therefore, Eq. (7) has at most a positive root as that B3 < 0, which
means that r > �1 + a

p
�2b/(m2 � �2). Therefore, we have the conclusion.

3.2 Stability

Recall that 0 = µ0 < µ1 < µ2 < · · · < µn < · · · ! 1 are the eigenvalues
of the Laplace operator �� on ⌦ under homogeneous Neumann boundary condition,
and S(µn) is the space of eigenfunctions corresponding to µi in W

1,2(⌦). Let X =
[W 1,2(⌦)]2 and {�ij : j = 1, . . . , dim[S(µn)]} be an orthonormal basis of S(µn), and
Xi,j = {c�i,j : c 2 R2}. Then

X =
1M

i=1

Xi and Xi =

dim[S(µj)]M

j=1

Xij .

Assume that (u, v) is a constant solution of system (1), then we have
✓
�t

 t

◆
= L

✓
�

 

◆
= D

✓
��

� 

◆
+ J(u,v)

✓
�

 

◆

Nonlinear Anal. Model. Control, 27(5):841–862, 2022
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with domain X = {(�, ) 2 H
2(⌦)⇥H

2(⌦): @�/@ = 0}, where

D =

✓
d1 0
0 d2

◆
, J(u, v) =

✓
A1(u, v) A2(u, v)
A3(u, v) A4(u, v)

◆

and

A1(u, v) =
r

1 + kv
� �1 � 2au� 2m1buv

(b+ u2)2
, A2(u, v) = � rkuv

(1 + kv)2
� m1u

2

b+ u2
,

A3(u, v) =
2m2buv

(b+ u2)2
, A4(u, v) = ��2 +

m2u
2

b+ u2
.

For each i = 0, 1, . . . , Xi is invariant under the operator L, and � is an eigenvalue of L
on Xi if and only if � is an eigenvalue of �µnD+J(u, v) for all n 2 {0, 1, 2, . . . } := N0.

The direct calculation shows

�
2 � Tn�+Dn = 0, (8)

where
Tn = �(d1 + d2)µn +A1(u, v) +A4(u, v),

Dn = d1d2µ
2
n
�
�
A1(u, v)d2 +A4(u, v)d1

�
µn

+A1(u, v)A4(u, v)�A2(u, v)A3(u, v).

Theorem 4.

(i) If r < �1, then E0 = (0, 0) is globally asymptotically stable.

(ii) If �1 < r 6 �1 + a

p
�2b/(m2 � �2), then E1 = ((r � �1)/a, 0) is globally

asymptotically stable.

(iii) If m1v
⇤(u⇤2 � b)/(b+ u

⇤2)2 � a < 0, then E
⇤

is locally asymptotically stable.

Proof. (i) For E0 = (0, 0), the corresponding characteristic equation is

(�+ d1µn � r + �1)(�+ d2µn + �2) = 0.

Clearly, we obtain

�1 = r � �1 � d1µn, �2 = ��2 � d2µn.

Hence, if r < �1, then E0 is locally asymptotically stable. Note that there is no other
constant steady states in this case. This means that E0 is indeed globally asymptotically
stable.

(ii) For E1 = ((r � �1)/a, 0), the corresponding characteristic equation is

(�+ d1µn + r � �1)

✓
�+ d2µn + �2 �

m(r � �1)2

a2b+ (r � �1)2

◆
= 0.

Obviously,

�1 = �1 � r � d1µn, �2 = ��2 +
m(r � �1)2

a2b+ (r � �1)2
� d2µn.

https://www.journals.vu.lt/nonlinear-analysis
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Consequently, if �1 < r 6 �1 + a

p
�2b/(m2 � �2), then E1 = ((r� �1)/a, 0) is locally

asymptotically stable. In fact, E1 is globally asymptotically stable.
It follows from Theorem 1 that lim sup

t!+1 max⌦̄ u(·, t) 6 (r��1)/a, so for ✏ > 0,

u(·, t) 6 r � �1

a
+ ✏, t > t1.

By the second equation of (1) we have

vt � d2�v 6 v

✓
m2(

r��1

a
+ ✏)2

b+ ( r��1

a
+ ✏)2

� �2

◆
, t > t1.

Therefore, lim sup
t!+1 max⌦̄ v(·, t) 6 0, and there exists t2 > t1 such that v(·, t) 6 ✏,

t > t2. Then by first equation of (1), one have

ut � d1�u > ru

1 + k✏
� �1u� au

2 � m1u
2
✏

b+ u2
, t > t2, x 2 ⌦.

Then we obtain that lim inft!+1 min⌦̄ u(·, t) > (r � �1)/a. Combining with
lim sup

t!+1 max⌦̄ u(·, t) 6 (r � �1)/a allows us to derive

limmax
t!+1, ⌦̄

����u(·, t)�
r � �1

a

���� = 0.

Hence, E1 is globally asymptotically stable when �1 < r 6 �1 + a

p
�2b/(m2 � �2).

(iii) For the positive steady state E
⇤ = (u⇤

, v
⇤), A4(u⇤

, v
⇤) = 0 and A1(u⇤

, v
⇤) =

u
⇤(m1v

⇤(u⇤2 � b)/(b+ u
⇤2)2 � a). Hence, the corresponding characteristic equation is

�
2 �

�
A1(u

⇤
, v

⇤)� (d1 + d2)µn

�
�+ d1d2µ

2
n

�A1(u
⇤
, v

⇤)d2µn �A2(u
⇤
, v

⇤)A3(u
⇤
, v

⇤) = 0.

Obviously,
�1 + �2 = �µn(d1 + d2) +A1(u

⇤
, v

⇤),

�1�2 = d1d2µ
2
n
�A1(u

⇤
, v

⇤)d2µn �A2(u
⇤
, v

⇤)A3(u
⇤
, v

⇤).
(9)

All roots of (9) have negative real parts if

m1v
⇤(u⇤2 � b)

(b+ u
⇤2)2

� a < 0. (10)

Therefore, the positive constant steady state E
⇤ = (u⇤

, v
⇤) is locally asymptotically

stable when condition (10) holds.

Remark 1. Theorems 3 and 4 show that when r 2 (0, �1], system has only trivial constant
solution E0 = (0, 0), and it is globally asymptotically stable; when r increases and enter
the interval (�1, �1+a

p
�2b/(m2 � �2)), E0 loses its stability to a predator-free constant

steady state E1; and when r further passes �1 + a

p
�2b/(m2 � �2), E1 loses its stability

to a positive steady state E⇤. We can conclude that as the parameter r increases, the model
experiences two bifurcations of constant steady state.

Nonlinear Anal. Model. Control, 27(5):841–862, 2022
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Remark 2. Obviously, the conditions of Theorem 4 are independent of the diffusion.
Consequently, the conclusions of Theorem 4 are still valid for the corresponding ODE
model. In addition, we can also conclude that the diffusion cannot destabilize the positive
steady state E⇤. Therefore, the PDE system (1) cannot occur Turing instability/bifurcation.

3.3 Hopf bifurcation

In this subsection, we will discuss the bifurcation of system (1). Let the parameters r, k,
a, b, �1, �2, m1, m2 and d1 be fixed, and take d2 > 0 as a bifurcation parameter.

Theorem 5.

(i) If m1v
⇤(u⇤2 � b)/(b + u

⇤2)2 = a holds, then spatially homogeneous Hopf

bifurcation occurs.

(ii) If d1µ1 < A1(u⇤
, v

⇤), let n0 be the largest positive integer such that A1(u⇤
, v

⇤)�
d1µn0 > 0. In addition, we assume that d2n1 6= d2n2 whenever n1 6= n2,

1 6 n1, n2 < n0, and

A1

2d1
< µ1 < min

⇢
�A1 +

p
�A2A3,

A1

d1

�
. (11)

Then system (1) undergoes spatially inhomogeneous Hopf bifurcation at (dH2n, E
⇤)

for 1 6 n 6 n0, where d
H

2n = (A1(u⇤
, v

⇤)� d1µn)/µn.

Proof. (i) If m1v
⇤(a2 � b)/(b+ u

⇤2)2 = a holds, then T0 = 0, Tn 6= 0 (n > 1),
D0 > 0, and Dn > 0 (n > 1). Therefore, Eq. (8) has a pair of pure imaginary roots
� = {±

p
D0ı}/, which means that spatially homogeneous Hopf bifurcation occurs.

(ii) From the assumption it follows that T1(dH21) = 0, Tn(dH21) 6= 0 for n > 0 and
T0(d20) = B1(u⇤

, v
⇤) > 0. In addition, D0(d20) = �A2(u⇤

, v
⇤)A3(u⇤

, v
⇤) > 0 for any

d2 > 0. Clearly,

D1(d
H

21) = �d
2
1µ

2
1 + 2d1A1µ1 �A

2
1 �A2A3.

Obviously, if condition (11) holds, then D1(dH21) > 0. Moreover, if µ1 > B1/(2d1), then

dDn

dµn

= 2d1d2µn �A1d2 > 2d1d2µ1 �A1d2 > 0.

Therefore, Dn(dH21) is nondecreasing with respect to n. Hence, when n > 2, Dk(dH21) >
D1(dH21) > 0. Therefore, when d2 is near dH21, Eq. (8) has a pair of conjugate eigenvalues

� =
1

2

�
�T1(d2)±

q
T

2
1 (d2)� 4D2

1(d2)
 
.

Clearly, Re0(�) = �µ1/2 6= 0.
As a result, Hopf bifurcation occurs at (dH21, E⇤), which also means that system (1)

has a family of inhomogeneous periodic solutions near E⇤.
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4 Nonconstant steady states

In this section, we will discuss nonexistence and existence of nonconstant steady state of
system (1). To this end, we consider the following elliptic system:

�d1�u =
ru

1 + kv
� �1u� au

2 � m1u
2
v

b+ u2
, x 2 ⌦,

�d2�v = v

✓
�2 �

m1u
2

b+ u2

◆
, x 2 ⌦.

(12)

4.1 A priori estimates

To derive some priori estimates for nonnegative solutions of system (12), we need the
following technical lemma [12].

Lemma 1 [Maximum principle]. Suppose that ⌦ is a bounded domain in Rn
and g 2

C(⌦̄)⇥ R. If z 2 H
1(⌦) is a weak solution of the inequalities

�z + g
�
x, z(x)

�
> 0 in ⌦,

@z(x)

@n
6 0 on @⌦

and if there is a constant K such that g(x, z) < 0 for z > K, then z 6 K a.e. in ⌦.

Lemma 2 [Harnack inequality]. Suppose that c(x) 2 C(⌦) and ! 2 C
2(⌦)\C

1( ¯c⌦)
is a positive classical solution to �!(x)+c(x)!(x) = 0 in⌦ subject to the homogenuous

Neumann boundary condition. Then there exists a positive constant C⇤ = C⇤(kc(x)k↵,⌦)
such that

max
⌦̄

!(x) 6 C⇤ min
⌦̄

!(x).

For the sake of discussion, we shall write ^ = ^(d1, d2, r, k, �1, �2,m1,m2, a, b).

Theorem 6 [Upper bounds]. Suppose that (u(x), v(x)) is a nonnegative solution of (12),
then either (u(x), v(x)) is one of constant solutions (0, 0) and ((r � �1)/a, 0) or for

x 2 ⌦, (u(x), v(x)) satisfies

0 < u(x) < M1, 0 < v(x) < M2, (13)
where

M1 =
r � �1

a
, M2 =

m1(r � �1 +
d1�2

d2
)2

4am2�2
.

Proof. If there exists x0 2 ⌦ satisfying v(x0) = 0, then by the strong maximum
principle, v(x) ⌘ 0 and

�d1�u = (r � �1)u� au
2
, x 2 ⌦,

@u

@n
= 0, x 2 @⌦.

Thus, u ⌘ 0 or u ⌘ (r � �1)/a. Otherwise, u(x) > 0 and v(x) > 0 for x 2 ⌦.

Nonlinear Anal. Model. Control, 27(5):841–862, 2022

https://doi.org/10.15388/namc.2022.27.27535


852 J. Liu, Y. Kang

Further, from Lemma 1 we obtain that u(x) 6 (r � �1)/a := M1, and by the strong
maximum principle, we have u(x) < M1 for all x 2 ⌦. Then

�
✓
d1�u+

m2

m1
d2�v

◆
=

ru

1 + kv
� �1u� au

2 � m1�2v

m2

6
✓✓

r � �1 +
d1�2

d2

◆
u� au

2

◆
� �2

d2

✓
d1u+

m2

m1
d2v

◆

6
(r � �1 +

d1�2

d2
)2

4a
� �2

d2

✓
d1u+

m2

m1
d2v

◆
.

It can be obtained from the maximum principle that

d1u+
m2

m1
d2v <

d2(r � �1 +
d1�2

d2
)2

4a�2
.

Therefore,

v 6 m1

d2m2

✓
d1u+

m2

m1
d2v

◆
<

m1(r � �1 +
d1�2

d2
)2

4am2�2
:= M2. ⇤

Theorem 7. Let d
⇤

be a fixed positive constant. Then for d1, d2 > d
⇤
, there exists two

positive constants C and C with C < C depending possibly on ^ such that any solutions

(u(x), v(x)) of system (12) satisfies

C 6 u(x), v(x) 6 C.

Proof. We choose C = max{M1,M2}, so u(x), v(x) 6 C for any x 2 ⌦.
Next, we shall prove u(x), v(x) > C. Let

c1(x) = d
�1
1

✓
r

1 + kv(x)
� �1 � au(x)� m1u(x)v(x)

b+ u2(x)

◆
,

c2(x) = d
�1
2

✓
��2 +

m1u
2(x)

b+ u2(x)

◆
.

Thus,
��c1(x)

�� 6 d
�1
1 (r � �1 + aC),

��c2(x)
�� 6 d

�1
2

✓
�2 +

m1C
2

b+ C
2

◆
.

Lemma 2 shows that there exists a positive constant C2 such that

max
⌦̄

u(x) 6 C2 min
⌦̄

u(x), max
⌦̄

v(x) 6 C2 min
⌦̄

v(x).

Hence, now it remains to prove that there exists C3 > 0 such that

max
⌦̄

u(x) > C3, max
⌦̄

v(x) > C3. (14)
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Contrariwise, let us assume that (14) does not hold. Then there exists a sequence
(un(x), vn(x)) such that

max
⌦̄

un ! 0 or max
⌦̄

vn ! 0 as n ! +1. (15)

By the regularity theory for elliptic equations, there exists a subsequence of {(un, vn)},
which will be denoted again by {(un, vn)} such that {(un, vn)} ! (u0, v0) in C

2(⌦̄) as
n ! +1. Note that u0 6 (r � �1)/a and from (15) either u0 ⌘ 0 or v0 ⌘ 0. Therefore,
we have that

(i) u0 ⌘ 0, v0 6⌘ 0; or u0 ⌘ 0, v0 ⌘ 0;
(ii) u0 6⌘ 0, v0 ⌘ 0.

Also, {(un, vn)} satisfy (13), so do u and v. Letting n ! 1, we get that {(un, vn)}
is a positive solution of (12). Therefore, by integrating Eq. (12) for un and vn over ⌦, we
have

Z

⌦

✓
run

1 + kvn
� �1un � au

2
n
� m1u

2
n
vn

b+ u2
n

◆
dx = 0,

Z

⌦

vn

✓
��2 +

m1u
2
n

b+ u2
n

◆
dx = 0.

(i) In this case, u0 ⌘ 0, then

��2 +
m1u

2
n

b+ u2
n

! ��2 < 0

and vn > 0, then Z

⌦

vn

✓
��2 +

m1u
2
n

b+ u2
n

◆
< 0

for sufficiently large n. So, we obtain a contradiction.
(ii) If u0 6⌘ 0, v0 ⌘ 0, using the first equation of (12). So, u0 ⌘ (r��1)/a for large n.

Thus

��2 +
m1u

2
n

b+ u2
n

!
m1

(r��1)
2

a2

b+ (r��1)2

a2

� �2 6= 0.

So, we have Z

⌦

vn

✓
��2 +

m1u
2
n

b+ u2
n

◆
6= 0

for a sufficiently large n, which is a contradiction. This completes the proof.

4.2 Nonexistence of nonconstant positive steady states

In this subsection, we show the nonexistence of positive steady state solutions when the
diffusion coefficients d1 and d2 are large.
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Theorem 8. For any fixed r, k, �1, �2, m1, m2, b and a, there exists a positive constant

d
⇤

such that if min{d1, d2} > d
⇤
, then (12) has no nonconstant solutions.

Proof. Assume that (u(x), v(x)) is nonnegative solution of (12). Denote

ū =

R
⌦
u(x) dx

|⌦| and v̄ =

R
⌦
v(x) dx

|⌦| .

Obviously,
R
⌦
(u� ū) dx = 0 and

R
⌦
(v � v̄) dx = 0. For the purpose of discussions, let

H(u, v) = u
2
v/(b+ u

2). By the mean value theorem of bivariate functions, we have

H(u, v)�H(ū, v̄) = H
0
u
(⇠, ⌘)(u� ū) +H

0
v
(⇠, ⌘)(v � v̄).

Obviously, Hu = 2buv/(b+u
2)2 6 K1, Hv = u

2
/(b+u

2) 6 1, where K1 = 2M1M2/b.
Multiplying both sides of the first equation of (12) by u� ū and using Theorem 6, we

get

d1

Z

⌦

��r(u�ū)
��2 dx

= �

Z

⌦

(u�ū)

✓
ru

1+kv
��1u�au

2�H(u, v)� rū

1+kv̄
+�1ū�aū

2�H(ū, v̄)

◆
dx

6 (r+rkM2+�1+2M1a)

Z

⌦

(u�ū)2 dx+(rkM1 + 1)

Z

⌦

ku�ūkkv�v̄k dx

6
✓
r+rkM2+�1+2M1a+

rkM1 + 1

2

◆Z

⌦

(u�ū)2 dx

+
rkM1 + 1

2

Z

⌦

(v�v̄)2 dx. (16)

Applying Theorem 6 and by multiplying v� v̄ to the second equation in (12) and then
integrating on ⌦, we have

d2

Z

⌦

��r(v � v̄)
��2 dx

=

Z

⌦

(v � v̄)
�
�2(v � v̄) +H(u, v)�H(ū, v̄)

�
dx

6 (�2 + 1)

Z

⌦

(v � v̄)2 dx+K1

Z

⌦

ku� ūkkv � v̄k dx,

6
✓
�2 + 1 +

K1

2

◆Z

⌦

(v � v̄)2 dx+
K1

2

Z

⌦

(u� ū)2 dx. (17)
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Using the Poincaré inequality,

µ1

Z

⌦

(u�ū)2 dx 6
Z

⌦

��r(u�ū)
��2 dx, µ1

Z

⌦

(v�v̄)2 dx 6
Z

⌦

��r(v�v̄)
��2 dx,

where µ1 is the second eigenvalue of the Laplace operator �� on ⌦ under homogeneous
Neumann boundary condition.

Combining (16) and (17) leads to

d1µ1

Z

⌦

(u� ū)2 dx+ d2µ1

Z

⌦

(v � v̄)2 dx

6 A

Z

⌦

(u� ū)2 dx+B

Z

⌦

(v � v̄)2 dx,

where

A = r + rkM2 + �1 + 2M1a+
rkM1 + 1

2
+

K1

2
,

B =
rkM1

2
+

3

2
+ �2 +

K1

2
.

This implies that

min{d1, d2} > d
⇤ =

1

µ1
max{A,B},

then we can conclude that

r(u� ū) = r(v � v̄) = 0. ⇤

4.3 Existence of nonconstant positive steady states

To study the existence of nonconstant positive solutions, we use Leray–Schauder degree
theory. Let w = (u, v) and

F(w) =

✓
ru

1 + kv
� �1u� au

2 � m1u
2
v

b+ u2
, v

✓
��2 +

m2u
2

b+ u2

◆◆T

.

Thus, (12) can be rewritten as

�D�w = F(w) in
@w

@n
= 0 on ⌦,

or equivalently,

F(w) := w � (I ��)�1(D�1F(w) +w) on X, (18)

where (I � �)�1 represents the inverse of I � � with the homogeneous Neumann
boundary condition. From (18), by a direct computation, we have

Fw(w⇤) = I � (I ��)�1
�
D

�1Fw(w⇤) + I
�
, w⇤ = (u⇤

, v
⇤).
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Clearly,

H(d1, d2;µ) = det
⇥
µI �D

�1Fw(w⇤)] =
1

d1d2
det
⇥
µD � Fw(w⇤)

⇤
,

= µ
2 � A1(u⇤

, v
⇤)

d1
µ1 �

A2(u⇤
, v

⇤)A3(u⇤
, v

⇤)

d1d2
,

where

A1(u
⇤
, v

⇤) = u
⇤
✓
m1v

⇤(a2 � b)

(b+ u⇤)2
� a

◆
,

A2(u
⇤
, v

⇤) = �
✓

rku
⇤
v
⇤

(1 + kv⇤)2
+

m1v
⇤

b+ u
⇤2

◆
< 0,

A3(u
⇤
, v

⇤) =
2m2bu

⇤
v
⇤

(b+ u
⇤2)2

> 0.

Obviously, if A1(u⇤
, v

⇤) < 0, then H(d1, d2;µ) > 0 for all µ > 0. If

d2A1(u
⇤
, v

⇤) >
p
�4d1d2A2(u⇤, v⇤)A3(u⇤, v⇤),

then H(d1, d2;µ) = 0 has two positive roots as follows:

µ
� =

d2A1(u⇤
, v

⇤)�
p
d
2
2A

2
1(u

⇤, v⇤) + 4d1d2A2(u⇤, v⇤)A3(u⇤, v⇤))

2d1d2
,

µ
+ =

d2A1(u⇤
, v

⇤) +
p
d
2
2A

2
1(u

⇤, v⇤) + 4d1d2A2(u⇤, v⇤)A3(u⇤, v⇤))

2d1d2
.

Set � = {µ0, µ1, µ2, . . . } and ⇤ = {µ > 0: µ�
< µ < µ

+}. Obviously,

lim
d2!1

µ
�(d1, d2) = 0, lim

d2!1
µ
+(d1, d2) =

B1(u⇤
, v

⇤)

d1
.

Theorem 9. Assume that

d2

d1
>

�4A2(u⇤
, v

⇤)A3(u⇤
, v

⇤)

A
2
1(u

⇤, v⇤)

and there exist i, j 2 N such that 0 6 µj < µ
�

< µj+1 6 µi < µ
+

< µi+1, andP
i

k=j+1 m(µk) is odd. Then there exists at least one nonconstant solution of (12).

Proof. Let d⇤ be defined in Theorem 8, and for t 2 [0, 1],

At(w) , (��+ I)�1

 
u+ ( 1�t

d⇤ + t

d1
)f(u, v)

v + ( 1�t

d⇤ + t

d2
)g(u, v)

!
.

Consider the following problem:

At(w) = w in ⌦,
@w

@n
= 0 on @⌦. (19)
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It is easy to see that solving (12) is equivalent to find a fixed point of At(w) with t = 1.
w⇤ is the unique constant solution of (19) for any t 2 [0, 1]. By the definition of d⇤ in
Theorem 8, one have that E⇤ is the only fixed point of A0.

deg(I �A0, ⇤, 0) = index(I �A0, ⇤, E
⇤) = 1.

Since F = I �H(·, 1) and if (12) has no nonconstant positive solution, then we have

deg
�
I �A1, ⇤, (0, 0)

�
= index(F ,w⇤) = (�1)

Pi
k=j+1 m(µk) = �1.

In addition, by the homotopy invariance of the topological degree,

deg(I �A0, ⇤, 0) = deg(I �A1, ⇤, 0),

which is a contradiction.

5 Numerical results and discussions

In this section, we take some numerical simulations to discuss the effect of diffusion and
the cost of fear.

5.1 The effect of diffusion

In order to discuss the effect of diffusion, in ⌦ = (0, 20), we assume the parameters
values: r = 0.8, k = 30, �1 = 0.2, a = 0.02, b = 0.02, m1 = 0.6, m2 = 0.3,
�2 = 0.2, d1 = 0.001 and d2 = 0.5. A direct calculation shows that system (1) has
a positive steady state E

⇤ = (0.2, 0.0528). According to Theorem 4, the positive steady
state is unstable. Figure 2 shows that system (1) has a stable limit cycle around the positive
steady state E

⇤ with the initial conditions u0(x) = 0.2 + 4 · 10�4 cos(2x), v0(x) =
0.0528 + 5 · 10�4 cos(2x).

However, if we change the diffusion rate of d2 to be d2 = 1, we find that the stable
limit cycle is broken with the occurrence of spatial pattern (see Fig. 3), where the periodic
pattern disappears and a strip pattern appears.

Figure 2. The positive steady state E⇤ = (0.2, 0.0528) is unstable, and there exists a stable limit cycle with
the initial values u0(x) = 0.2+4 · 10�4 cos(2x), v0(x) = 0.0528+5 · 10�4 cos(2x) and the diffusion rate
d2 = 0.5.
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Furthermore, if we vary the diffusion coefficient d2 from d2 = 1 to d2 = 0.002, then
we find that system (1) is chaotic (see Fig. 4).

We further find that different initial conditions with the same diffusion rate d2 = 1.2
can lead to different spatial patterns that can be stationary or periodic (Fig. 5).

Figure 3. The emergent stationary spatial pattern with the initial values u0(x) = 0.2 + 4 · 10�4 cos(2x),
v0(x) = 0.0528 + 5 · 10�4 cos(2x) and the diffusion rate d2 = 1.
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Figure 4. System (1) is chaotic with the initial values u0(x) = 0.2 + 4 · 10�4 cos(2x), v0(x) = 0.0528 +
5 · 10�4 cos(2x) and the diffusion rate d2 = 0.002.
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Figure 5. Spatial patterns and spatially averaged population dynamics for different random perturbed initial
conditions with the same diffusion rate d2 = 1.2.

5.2 Effect of the cost of fear

Choose r = 0.8, k = 50, �1 = 0.2, a = 0.2, b = 0.02, m1 = 0.6, m2 = 0.3, �2 = 0.2,
d1 = 0.001, d2 = 1 and ⌦ = (0,⇡). Calculations show that system (1) has a unique
positive steady state E

⇤ = (0.0325, 0.2000). According to Theorem 4, we observe that
the positive steady state E⇤ of system (1) is locally asymptotically stable, and the dynamic
behaviors of system (1) is illustrated graphically in Fig. 6.

From above discussions we can obtain that fear can affect the stability of the positive
steady state, and it can induce the Hopf bifurcation, which is different from the results
found in [14, 19] with linear functional response (see Fig. 9). Figure 9 shows that there
exists a threshold value k0 such that when k 2 (0, k0], system (1) has a periodic solution.
But when k passes the threshold value, then system becomes stable.

Figure 6. The positive steady state E⇤ = (0.0325, 0.2000) is locally asymptotically stable.
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Figure 7. Hopf bifurcation of system (1) with k = 20.37.

Figure 8. The positive steady state v⇤ with varying the cost of fear k.

Figure 9. The maximum and minimum of prey u and predator v with the cost of fear k varying in [0, 50].

If we choose k = 20.37, while other parameters do not change, according to The-
orem 5, system (1) undergoes spatial homogeneous Hopf bifurcation (see Fig. 7). It is
shown that system (1) has spatially homogeneous periodic solutions emerged from the
positive steady state E

⇤.
In addition, we find that the positive steady state can be changed by the different

value of the cost of fear. Figure 8 shows that the positive steady state v
⇤ decreases with

increasing of the cost of fear.

6 Conclusion

A diffusive predator–prey model with the fear effect is studied in our paper. We derive
some basic dynamics of the system and give condition for the existence of the positive
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steady state. According to eigenvalue analysis method, we investigate the stability and
bifurcation of the positive constant steady state. We also give some conditions for the
nonexistence and existence of nonconstant solutions of the system.

Theorems 3 and 4 show that the birth rate of prey r can not only induce the static
bifurcation, but also can induce saddle-node bifurcation.

Theorem 4 indicates that the diffusion can not induce the Turing instability/bifurcation.
However, Theorem 5 provides that the diffusion can induce the inhomogeneous Hopf
bifurcation, which can lead to the formation of spatial patterns. Furthermore, Theorem
9 shows that system (12) has at least one nonconstant positive solution under the effect
of the diffusion. From Section 5.1 we can obtain that the different diffusion rate d2 can
lead to different spatial patterns, which can be periodic (Fig. 2), stationary (Fig. 3) and
chaotic (Fig. 4). In addition, we also find that system has different spatial patterns with
the different initial conditions (Fig. 5).

We further obtain that the fear effect can reduce the density of predator: with increas-
ing the cost of fear, the density of predator population decreases at the positive steady
state (see Fig. 8). From Section 5.2 it is obtained that the fear can prevent the occurrence
of limit cycle oscillation and increase the stability of the system (see Fig. 9).
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