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We prove the existence of a pathwise weak solution to the single-phase, miscible displace-
ment of one incompressible fluid by another in a porous medium with random forcing.
Our system is described by a parabolic concentration equation driven by an additive
noise coupled with an elliptic pressure equation. We use a pathwise argument combined
with Schauder’s fixed point theorem.
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1. Introduction and Main Result

1.1. Description of the model

The oil recovery process in petroleum engineering uses the technique of injecting
a fluid or a solvent into special reservoir wells in order to reduce the resident oil
viscosity and thereby enhance its recovery at the production wells. When a misci-
ble fluid is pumped into injection wells, the evolution of the mixture during this
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process is physically described as a miscible displacement flow model in porous
media, see [20]. Under appropriate physical assumptions, such model was mathe-
matically introduced and studied by Peaceman and Rachford in [18], see also [17]
for more description of the model. We are interested in the single-phase, misci-
ble displacement flow model in a porous medium, of one incompressible fluid by
another. This model is described by a nonlinear coupled elliptic–parabolic system.

The invading fluid is injected and produced into the reservoir wells. These wells
were first modeled as modified Dirac masses. However, the length of the wells is
represented by a wellbore diameter, so that wells could be later modeled by measures
and by distribution functions supported over the wellbore diameter. Hence, the
choice of these particular external forces is dictated by physical and mathematical
motivations. In this paper, we consider a stochastic perturbation into the miscible
displacement flow model in a porous medium. In particular, we represent the wells
source and sink terms with random distribution. We first present the deterministic
models.

Let U be a bounded open domain in R
2 with a Lipschitz continuous bound-

ary ∂U , that represent the porous medium, and [0, T ] be the time interval of the
displacement of the fluid. The model is described by the following coupled elliptic–
parabolic system (1.1)–(1.3):

∇ · v(x, t) = qI(x, t) − qP (x, t) on U × [0, T ], (1.1)

where v is the Darcy velocity of the fluid, defined by

v(x, t) = − k(x)
μ(c(x, t))

(∇p(x, t) − ρ(c(x, t))g(x, t)), (1.2)

and μ and ρ are, respectively, the viscosity and the density of the fluid mixture, k is
the absolute permeability of the porous medium, and g represents the gravitational
vector.{

φ(x)∂tc(x, t) −∇ · (D∇c− c v)(x, t) + (qP c)(x, t) = (qI ĉ)(x, t) on U × [0, T ],

c(x, 0) = c0(x) on U ,
(1.3)

where φ is the porosity of the medium, ĉ the concentration of the injected fluid in the
medium, D is the diffusion–dispersion tensor or coefficient and qI , qP ≥ 0 represent
the sum of injection well source terms and production well sink terms, respectively.
The coupled elliptic parabolic system (1.1)–(1.3) describes the behavior of the total
fluid pressure of the mixture p, the Darcy velocity v of the fluid mixture, computed
with respect to the concentration c of one of the components in the mixture with
initial condition c0(x),

(p, v, c) : U × [0, T ] → R × R
2 × R,

(x, t) �→ (p(x, t), v(x, t), c(x, t)).

There is an extensive literature devoted to the study of this model both the-
oretically and numerically. The miscible displacement system of fluids in porous
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media was first studied by Peaceman and Rachford in [16, 18], where a numerical
investigation for approximating solutions to the system in dimension d = 2, was
obtained and compared to the laboratory data for the displacements of oil with
less-viscous solvents, see also [17]. After that, various numerical techniques and
methods to approximate the discrete solution of the above system were obtained
and reported by various authors, see, for instance, [3, 4, 6, 7, 9, 23] and references
cited therein. Moreover, the displacement flow model in porous medium was theo-
retically studied and analyzed by Sammon [19], where the viscosity μ was assumed
independent of the concentration c, and that D > 0 the diffusion coefficient is inde-
pendent of the velocity v. Furthermore, the author considered that the injection
qI and production qP well source/sink terms are supported near its well location
(i.e. as a modified Dirac delta function, which is nonzero only near its well loca-
tion) which leads to a singular behavior of the solution near wells. In [15], the
author established well-posedness results for the stationary displacement problem
depending on the viscosity (i.e. for Mobility ratio M = μ(0)

μ(1) sufficiently close to
one), assuming a concentration-dependent viscosity μ(c), a regularized velocity-
dependent diffusion–dispersion tensor D(v), and under the assumptions that the
injection and production wells are non-negative elements of Lr(U), r ∈ (d,∞), d
being the spatial dimension.

In [11], Feng extended Sammon’s [19] result but for concentration-dependent
viscosity μ(c), a velocity-dependent dispersion–diffusion tensor D(v), and under the
assumption that the source function qI and qP are not supported or concentrated
near the wells, but they are smoothly distributed over the reservoir (i.e. square
integrable), see also [5] for specific boundary condition, and [1] for asymptotic
behavior of the solutions when the molecular diffusion effects are neglected.

In [10], Fabrie and Gallouët have studied the displacement of miscible and
immiscible flow with wells action modeled by measures, i.e. the source terms qI , qP

can be written in terms of a spatial measure. The author obtained existence result
under assumption that a concentration-dependent viscosity μ(c), and that diffusion–
dispersion tensor D(v) is bounded. This result was later extended to a generalized
diffusion–dispersion tensor in [8].

In this paper, we propose the induced sources terms to be stochastic, in
particular, we introduce an additive noise in the parabolic concentration equa-
tion. The stochastic perturbation is described by an additive noise Ẇ (t), where
W (t) is an H1(U)-valued Wiener process defined on a complete probability space
(Ω,F , {Ft}t,P) with expectation E, and covariance Q, bounded linear operator on
L2(U) of trace class:{
W (x, t, ω) ∈ L2(Ω, C([0, T ];H1(U))),

D(x)∇W (x, t, ω) · �n = 0 for x ∈ ∂U and for a.e. (t, ω) ∈ [0, T ]× Ω.
(1.4)

We prove the existence of weak solution to the stochastic miscible displacement-
type model in a porous medium, using a pathwise argument similar to [2, 12]. First,
for a fixed ω ∈ Ω, we solve for (p(t), v(t), c(t)), the system (2.2)–(2.4), then we
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prove the measurability of the process. Thus, we obtain the existence of the process
(p(t), v(t), c(t)) for P-a.e. ω ∈ Ω.

Let us mention that our work is the first step on studying the following stochastic
model. From now on, we denote by

κ(c(x, t, ω)) :=
k(x)

μ(c(x, t, ω))
, v(x, t, ω) = −κ(c(x, t, ω))∇p(x, t, ω),

f(x, t, ω) := (qI ĉ)(x, t, ω), h(x, t, ω) := qI(x, t, ω) − qP (x, t, ω),

q(x, t, ω) := qP (x, t, ω),

where f, h, q :U × [0, T ] × Ω → R. Neglecting gravity g in the Darcy velocity and
assuming φ ≡ 1, the model reads

⎧⎪⎪⎨
⎪⎪⎩
v(t) = −κ(c(t))∇p(t),
∇ · v(t) = h(t),

d c(t) −∇ · (D(x)∇c(t) − c(t) v(t))dt + q(t) c(t)dt = f(t)dt+ dW (t)

(1.5)

with the initial condition c(x, 0) = c0(x), (ω, x) ∈ U × Ω. The main variable is the
stochastic process (p(t), v(t), c(t))

(p, v, c) : U × [0, T ]× Ω → R × R
2 × R,

(x, t, ω) �→ (p(x, t, ω), v(x, t, ω), c(x, t, ω)),

that satisfies the no-flow boundary conditions, which results from vanishing perme-
ability at the reservoir boundary ∂U ,

D∇c(x, t) · �n = 0, (x, t) ∈ ∂U × [0, T ], (1.6)

v(x, t) · �n = 0, (x, t) ∈ ∂U × [0, T ], (1.7)

where �n is the outward normal vector to ∂U . According to boundary condition
(1.7), we assume the following compatibility condition:

∫
U
h(t, x)dx :=

∫
U
qI(x, t) − qP (x, t)dx = 0 ∀ t ∈ [0, T ].

Moreover, we normalize the pressure p by an average condition, to eliminate any
arbitrary constants in the solution p of the elliptic equation,

∫
U
p(x, t)dx = 0, t ∈ [0, T ]. (1.8)

Note that throughout, we assume that and sink source qI , qP ≥ 0.
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1.2. Functional setting and notations

The usual Sobolev spaces H1,p(U), where p ∈ [1,∞], with norm ‖ · ‖H1,k := ‖ · ‖1,k

will be used. When p = 2, we simply write H1(U), and ‖ · ‖1 the H1-norm. The
H−1(U) is defined as the dual space of H1, and we denote by 〈·, ·〉(H−1,H1) the dual
pair. Since U is a bounded domain in R

2, then the H1-norm and the semi-norm are
equivalent: There exists b0 > 0, such that b0‖u‖1 ≤ ‖∇u‖L2 ≤ ‖u‖1. We also use
the Sobolev embedding H1(U) ⊂ Lr(U), for r ≥ 2.

The L2 inner product is simply denoted by 〈·, ·〉, i.e. for f, g ∈ L2(U), 〈f, g〉 :=∫
U f(x)g(x)dx, unless otherwise state for the dual. We denote by ‖·‖0 the L2-norm.

Throughout this paper, C denotes a positive constant, that may change from line
to line, which depends on the domain U , dependence on other parameters will be
specified.

Let {ek}∞k=1 ⊂ H1(U) be an orthonormal basis of L2(U), which also an orthog-
onal basis in H1(U). The construction of such a basis can be obtained from nor-
malizing eigenpairs of the Laplace differential operator U . Throughout this paper,
we use this basis to construct Galerkin approximations of solution to the concen-
tration evolution (parabolic equation). To this end, for a fixed m ∈ N, we denote
by Hm := span{ek}k=m

k=1 and we define Πm to be the orthogonal projection of H1

onto Hm.

For a Banach space X , we define Lp(0, T ;X) the space of measurable functions
u : [0, T ] → X, such that for 0 < p <∞,

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u(t)‖p
Xdt

) 1
p

<∞ and

‖u‖L∞(0,T ;X) := ess sup
0≤t≤T

|u(t)‖X .

We denote by C0,σ(0, T ;X) the space of Hölder continuous functions u : [0, T ] →
X, equipped with the norm

‖u‖C0,σ(0,T ;X) := sup
s∈[0,T ]

‖u(s)‖X + sup
s,t∈[0,T ]

s�=t

‖u(s) − u(t)‖X

(s− t)σ
.

We also recall the following compactness embedding result, which is an appli-
cation of Yu A. Dubinsky’s Theorem, as H1(U) ⊂ L2(U) ⊂ H−1(U) and we refer
the reader to [22, Theorem 4.1] for more details and general setting.

Proposition 1.1. (Dubinsky’s Theorem) Let 1 < q < ∞, and M be a bounded
set in Lq(0, T ;H1(U)) consisting of function equicontinuous in C([0, T ];H−1(U)).
Then, M is relatively compact in Lq(0, T ;L2(U)) and C(0, T ;H−1(U)).

1.3. Assumptions and main results

We establish the existence of a stochastic process to the nonlinear coupled elliptic–
parabolic stochastic system, under some hypotheses on the data.
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Assume the following assumptions hold, for P-a.e. ω ∈ Ω:

(A.1) c0 ∈ L2(U).
(A.2) h, q ∈ L∞([0, T ];L2(U)).
(A.3) f ∈ L2(0, T ;L2(U)).
(A.4) D ∈ L∞(U) and there exist D∗, D∗ > 0 such that D∗ < D(x) ≤ D∗ for a.e.

x ∈ U .
(A.5) κ ∈ C(R) ∩ L∞(R), with 0 < κ∗ ≤ κ(ξ) ≤ κ∗ for a.e. ξ ∈ R.

(A.6.1) W ∈ L2(Ω, L2(0, T ;H1(U))).
(A.6.2) D(x)∇W (x, t, ω) · �n = 0, for x ∈ ∂U and for a.e. (t, ω) ∈ [0, T ]× Ω.

Definition 1.1. A stochastic process (p(t), v(t), c(t)) is called a weak solution
to the system (1.5) on [0, T ], with initial condition c0 ∈ L2(U), if the triple
(p(t), v(t), c(t)) satisfies for P-a.e. ω ∈ Ω,

p(·, ω) ∈ L∞(0, T ;H1,r(U)), v(·, ω) ∈ L∞(0, T ;Lr(U)2), (1.9)

c(·, ω) ∈ C([0, T ];L2(U)) ∩ L2(0, T ;H1(U)), (1.10)

where 2 ≤ r <∞, and for a.e. 0 ≤ t ≤ T,

v(x, t) = −κ(c(x, t))∇p(x, t),
∫
U
p(t, x)dx = 0, (1.11)

Γ(v(t), φ) = 〈h(t), φ〉 ∀φ ∈ H1(U), (1.12)

〈c(t), ψ〉 +
∫ t

0

Λ(c(s), v(s), ψ)ds = 〈c0, ψ〉 +
∫ t

0

〈f(s), ψ〉ds

+ 〈W (t), ψ〉 ∀ψ ∈ H1(U), (1.13)

where

Λ(c(t), v(t), ψ) := 〈D∇c(t),∇ψ〉 − 〈c(t) v(t),∇ψ〉 + 〈q(t)c(t), ψ〉, (1.14)

Γ(v, φ) := −〈v(t),∇φ〉. (1.15)

Theorem 1.1. Under the assumptions: (A.1)–(A.7), there exists a stochastic pro-
cess (p, v, c) solution to the coupled elliptic–parabolic system (1.5) in the sense of
the Definition 1.1, and for P-a.e. ω ∈ Ω.

‖p‖L∞(0,T ;H1(U)) ≤ (κ∗b20)
−1‖h‖L∞(0,T ;L2(U)), (1.16)

‖c‖2
L∞

T (0,T ;L2(U)) ≤ 2βeT + 2‖W‖2
L∞(0,T ;L2(U)), (1.17)

‖c‖2
L2(0,T ;H1(U)) ≤ 2(D∗b20)

−1(β + 1)eT + 2‖W‖2
L2(0,T ;H1(U)), (1.18)

where

β := ‖c0‖2
0 +

3
D∗

‖W‖2
L2(0,T ;H1(U))

(
1
b0

2 ‖q‖2
L∞(0,T ;L2(U)) + (D∗)2

+ (κ∗)2‖h‖2
L∞(0,T ;L2(U))

)
+ ‖f‖2

L2(0,T ;L2(U)). (1.19)
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Moreover,

sup
0≤t≤T

‖p(t)‖1,r ≤ C(r, κ∗, κ∗)‖h‖L∞(0,T ;L2(U)). (1.20)

The following section is devoted to the proof of Theorem 1.1. We use path-
wise argument combined with Schauder’s fixed point theorem and a measurability
argument.

The proof is organized as follows; in Sec. 2.1.1, for a given concentration c(t) :=
α̃(t)+W (t) we prove the existence of the pressure p

α̃
(t) and the velocity v

α̃
(t), using

the Lax–Milgram theorem for the elliptic equation. In Sec. 2.1.2, for a fixed (p
α̃
, v

α̃
),

we construct α̃(t), respectively, the concentration c
α̃
(t), solution to the parabolic

equation through a Galerkin approximation. In Sec. 2.1.3, we obtain the existence
of a pathwise solution (p(t), v(t), c(t)) using Schauder’s fixed point theorem. We
prove that there exists a fixed point α̃(t) = α(t), respectively, c

α̃
(t) = c(t), such

that (p(t), v(t), c(t)) is a solution to (1.5) in sense of Definition 1.1, for P-a.e.,
ω ∈ Ω. Finally, in Sec. 2.2 we conclude the proof of Theorem 1.1, by checking the
measurability of the process (p(t), v(t), c(t)).

2. Proofs of Main Results

The existence a weak solution to the system (1.5) is achieved via pathwise and
measurability argument. In order to construct a weak solution to the system (1.5)
for a fixed ω ∈ Ω, we define⎧⎪⎪⎨

⎪⎪⎩
α(x, t) := c(x, t) −W (x, t), where W (t)

is the Brownian motion defined in (1.4),

α0(x) := c(x, 0) +W (x, 0) = c0(x).

Since by assumption D(x)∇c(x, t) · �n = D(x)∇W (x, t) · �n = 0 on ∂U , then α(t)
satisfies the boundary condition

D(x)∇α(x, t) · �n = 0 for x ∈ ∂U and for a.e. t ∈ [0, T ]. (2.1)

Hence, we rewrite the elliptic–parabolic system (1.11), (1.12) and (1.13) for a.e.
0 ≤ t ≤ T,

v(t) := −κ(α(t) +W (t))∇p(t), (2.2)

Γ(v(t), φ) := −〈v(t),∇φ〉 = 〈h(t), φ〉 ∀φ ∈ H1(U) (2.3)

and

〈∂tα(t), ψ〉 + Λ(α(t), v(t), ψ) = −Λ(W (t), v(t), ψ)

+ 〈f(t), ψ〉 ∀ψ ∈ H1(U), (2.4)

where

Λ(α(t), v(t), ψ) = 〈D∇α(t),∇ψ〉 − 〈α(t) v(t),∇ψ〉 + 〈q(t)α(t), ψ〉,
Λ(W (t), v(t), ψ) = 〈D∇W (t),∇ψ〉 − 〈W (t) v(t),∇ψ〉 + 〈q(t)W (t), ψ〉.
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2.1. Existence of pathwise weak solution

2.1.1. Existence and uniqueness of solution to the elliptic equation

In this section, we prove existence and uniqueness of a solution (p(t), v(t)) to
Eqs. (2.2) and (2.3), respectively, to (1.11) and (1.12), for a given concentra-
tion c

α̃
(t). Indeed, for α̃(t) ∈ L2(0, T ;L2(U)) (i.e. for a given concentration

c
α̃
(t) := α̃(t) + W (t)), we prove that there exist a unique solution p(t) := p

α̃
(t)

for the elliptic equation (2.3), using Lax–Milgram theorem and the fact that p sat-
isfies (1.8). Consequently, we obtain the existence and uniqueness of v(t) := v

α̃
(t),

which satisfies (2.2).

Lemma 2.1. Given ω ∈ Ω, α̃ ∈ L2(0, T ;L2(U)) and h ∈ L∞(0, T ;L2(U)) then
there exist (p

α̃
(t), v

α̃
(t)) satisfying (2.3) and (2.2) for a.e. t ∈ [0, T ], such that

pα̃ ∈ L∞(0, T ;H1(U)), vα̃ ∈ L∞(0, T ;L2(U)2)

and

‖p
α̃
(t)‖1 ≤ (κ∗b20)

−1‖h(t)‖0. (2.5)

Moreover, there exists 2 < r0 ≤ ∞ such that for r ∈ [2, r0), pα̃ ∈ L∞(0, T ;H1,r(U))
and

‖p
α̃
(t)‖1,r ≤ C(r, κ∗, κ∗)‖h(t)‖0, (2.6)

where r0 depends only on κ∗, κ∗,U .

Proof of Lemma 2.1. Let ω ∈ Ω, t ∈ [0, T ], α̃ ∈ L2(0, T ;L2(U)), h ∈
L∞(0, T ;L2(U)) fixed. Recall that, Γ(v(t), φ) = 〈κ(α̃(t) +W )∇p(t),∇φ〉, then one
can see that Γ is a bilinear mapping in H1(U) with respect to p and φ. Moreover,
Γ is bounded and coercive in H1,

|Γ(v(t), φ)| = |〈κ(α̃(t) +W (t))∇p(t),∇φ〉| ≤ κ∗‖∇p(t)‖0‖∇φ‖0

and

|Γ(v(t), p(t))| = |〈κ(α̃(t) +W (t))∇p(t),∇p(t)〉|
≥ κ∗‖∇p(t)‖2

0 ≥ b20κ∗‖p(t)‖2
1. (2.7)

Then, by the Lax–Milgram theorem there is a unique solution p := pα̃(·, t) ∈ H1(U)
to (2.3) for all φ ∈ H1(U), and a unique v

α̃
:= κ(α̃ + W )∇p

α̃
∈ L2(U)2, for a.e.

t ∈ [0, T ]. Thus, there exists a unique (p
α̃
(t), v

α̃
(t)) solution to Eqs. (2.2) and (2.3),

for a.e t ∈ [0, T ]. Using the fact that Γ(v
α̃
(t), p

α̃
(t)) = 〈h(t), p

α̃
(t)〉 in (2.7), we

obtain (2.5) and that p
α̃
∈ L∞(0, T ;H1(U)), v

α̃
∈ L∞(0, T ;L2(U)2).

By Meyer’s type estimate (see, for examples, [13, Theorem 2; 14]), there exist
r0 > 2 such that if p ∈ H1(U) is a solution of 〈κ(α̃ + W )∇p,∇φ〉 = F (φ), ∀φ ∈

2240022-8
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H1(Ω) and F ∈ H−1,r(U) for r ∈ [2, r0), then p ∈ H1,r(U) and there exists constant
C̃(r) that depends only on κ∗, κ∗,U and r such that

‖p‖1,r ≤ C̃(r)‖F‖−1,r ∀ r ∈ [2, r0). (2.8)

Moreover, r0 depends on κ∗, κ∗,U . In our case, p = pα̃ and F (φ) = 〈h, φ〉 where
h ∈ L2(U), then

|F (φ)| ≤ ‖h‖0‖φ‖1 ≤ C‖h‖0‖φ‖1,r,

which implies that ‖F‖−1,r ≤ C(r)‖h‖0, where C(r) depends only on κ∗, κ∗,U and
r. This concludes the proof of Lemma 2.1. �

2.1.2. Existence of concentration, for fixed velocity

We construct a weak solution to the parabolic equation (2.4), respectively, to (1.13),
using a Galerkin approximation in finite-dimensional Hm subspace of H1, for fixed
ω ∈ Ω.

Recall that, we assumed that c(x, t) := α(x, t) +W (x, t), with initial condition
c0(x) = α(x, 0). We fix (vα̃ , pα̃) the unique solution to Eqs. (2.2) and (2.3) given by
Lemma 2.1.

Let {ek}∞k=1 ⊂ H1(U) be an orthonormal basis of L2(U), which also an orthog-
onal basis in H1(U). For a fixed m ∈ N, we denote by Hm := span{ek}k=m

k=1 and we
consider Πm to be the orthogonal projection of H1 onto Hm. Next, we prove the
existence and uniqueness of solution the projected system of (2.4).

We denote by cm0 the projection of c0 onto Hm, thus cm0 = αm(0) =∑m
k=0〈c0, ek〉ek. Applying the projection Πm into the solution α(t) of Eq. (2.4),

we have Πm(α(t, x)) := αm(t, x) : [0, T ] → H1(U), with the form

αm(t, x) :=
m∑

j=1

Xj,m(t)ej(x), (2.9)

where, Xj,m(t) satisfies for t = 0,Xj,m(0) := 〈c0, ej〉.

Lemma 2.2. Fix m ∈ N, α̃ ∈ L2(0, T ;L2(U)) and v
α̃

= κ(α̃ + W )∇p
α̃
, where p

α̃

is a unique solution of (2.3). Then there exists a unique solution αm(t) of

〈∂tαm, ψ〉 + Λ(αm, vα̃ , ψ) = −Λ(W, vα̃ , ψ) + 〈f, ψ〉 ∀ψ ∈ Hm. (2.10)

Moreover,

αm ∈ L∞(0, T ;L2(U)) ∩ L2(0, T ;H1(U)), ∂tαm ∈ L2(0, T ;H−1(U)), (2.11)

αm ∈ C0,σ(0, T ;H−1(U)), for 0 ≤ σ ≤ 1
2
, uniformly w.r.t. to m. (2.12)
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Proof.

• Step 1. Existence and uniqueness of αm: Let Xj,m = [0, T ] → R, j = 1, . . . ,m.
and set

αm(t, x) :=
m∑

j=1

Xj,m(t)ej(x), with Xj,m(0) := 〈c0, ej〉.

We take ψ = ek in (2.10), we have

〈∂tαm, ek〉 + Λ(αm, pα̃
, ek) = −Λ(W, p

α̃
, ek) + 〈f, ek〉.

Denote by λk(t) := −Λ(W, p
α̃
, ek)+〈f, ek〉 and using the orthogonality condition,

we have

〈∂tαm, ek〉 =
m∑

j=1

X ′
j,m(t)〈ej , ek〉 = X ′

k,m(t),

Λ(αm, pα̃
, ek) :=

m∑
j=1

Xj,m(t)Λj,k
m (t), where

Λj,k
m (t) := 〈D∇ej ,∇ek〉 − 〈ej vα̃

(t),∇ek〉 + 〈q(t)ej , ek〉.

This yields to an equivalent ordinary differential equation (ODE) system:

⎧⎪⎨
⎪⎩
X ′

k,m(t) +
m∑

j=1

Xk,m(t)Λj,k
m (t) = λk(t), k = 1, . . . ,m,

Xk,m(0) := 〈c0, ek〉.
(2.13)

Letting

X ′
m(t) := (X ′

1,m, . . . ,X ′
m,m)T , Xm(t) := (X1,m, . . . ,Xm,m)T ,

(Mm(t))j,k := ({Λj,k
1 (t), . . . ,Λj,k

m (t))T , λ(t) := (λ1(t), . . . , λm(t))T .

We rewrite (2.13) as

X ′
m(t) +Mm(t)Xm(t) = λ(t),

then for each fixed m ∈ N, we obtain a linear ODE. Using the standard existence
theory for the first-order initial value problems (IVPs), there exists a unique and
absolute continuous Xm(t) solution to (2.13), thus there exists a unique solution
αm(t) for Eq. (2.10) for a.e. t ∈ [0, T ], with ek as a test function. Finally, there
exists a unique αm(t) solution of (2.10) for a.e. t ∈ [0, T ] and for any ψ ∈ Hm,

i.e. for ψ =
∑m

k=1〈ψ, ek〉ek.

2240022-10
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• Step 2. Regularity of αm(t). First, we prove that αm ∈ L∞(0, T ;L2(U)). Using
αm(t) as a test function in (2.10), with the fact that D∗ < D(x) and that

−〈αm(t)v
α̃
(t),∇αm〉 + 〈q(t)αm(t), αm〉 =

1
2
〈h(t) + 2q(t), αm(t)2〉,

we obtain

1
2
d

dt
‖αm(t)‖2

0 +D∗‖∇αm(t)‖2
0 +

1
2
〈h(t) + 2q(t), α2

m(t)〉

≤ J1(t) + J2(t) + J3(t) + J4(t),

where

J1(t) := |〈D∇W (t),∇αm(t)〉|, J2(t) := |〈W (t)v
α̃
(t),∇αm(t)〉|,

J3(t) := |〈q(t)W (t), αm(t)〉|, J4(t) := |〈f(t), αm(t)〉|.

We estimate each term separately, using Hölder estimate, (2.5) and (2.6),

J1(t) ≤ D∗‖W (t)‖1‖∇αm(t)‖0,

J2(t) ≤ ‖W (t)‖Ls‖v
α̃
(t)‖Lr‖∇αm(t)‖0

≤ κ∗‖W (t)‖1‖pα̃
‖1,r‖∇αm(t)‖0

≤ κ∗‖W (t)‖1‖h(t)‖0‖∇αm(t)‖0,

where 1
r + 1

s = 1
2 . In the last estimate, we used the fact that H1(U) ⊂ Lr(U), for

r ∈ [2,∞). Next, we have

J3(t) ≤ 1
b0
‖q(t)‖0‖W (t)‖1‖∇αm(t)‖0,

J4(t) ≤ 1
2
‖f(t)‖2

0 +
1
2
‖αm(t)‖2

0.

Hence,

1
2
d

dt
‖αm(t)‖2

0 +D∗‖∇αm(t)‖2
0 ≤ 1

2
‖f(t)‖2

0 +
1
2
‖αm(t)‖2

0 +
D∗
2

‖∇αm(t)‖2
0

+
3

2D∗
‖W (t)‖2

1

(
1
b0

2 ‖q(t)‖2
0 + (κ∗)2‖h(t)‖2

0 + (D∗)2
)
.

Thus,

d

dt
‖αm(t)‖2

0 +D∗‖∇αm(t)‖2
0 ≤ ξ(t) + ‖αm(t)‖2

0, (2.14)

where ξ(t) := 3
D∗

‖W (t)‖2
1(

1
b02 ‖q(t)‖2

0 + (κ∗)2‖h(t)‖2
0 + (D∗)2) + ‖f(t)‖2

0.
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Integrating in time on [0, t], for 0 < t < T, we obtain

‖αm(t)‖2
0 ≤ ‖αm(0)‖2

0 +
∫ t

0

ξ(s)ds+
∫ t

0

‖αm(s)‖2
0ds. (2.15)

Using Grönwall’s inequality, we get

‖αm(t)‖2
0 ≤ et[‖αm(0)‖2

0 +
∫ t

0

ξ(s)ds] ≤ et[‖αm(0)‖2
0 + C],

where C does not depend on m, as W ∈ L2(0, T ;H1(U)), f ∈ L2(0, T ;L2(U)) and
h, q ∈ L∞(0, T ;L2(U)). Using the fact that by construction ‖αm(0)‖0 ≤ ‖c0‖0,

we obtain

‖αm(t)‖2
L∞(0,T ;L2(U)) ≤ βeT , (2.16)

where β is defined as (1.19),

β :=
3
D∗

‖W (t)‖2
L2(0,T ;H1(U))

(
1
b0

2 ‖q(t)‖2
L∞(0,T ;L2(U))

+ (κ∗)2‖h(t)‖2
L∞(0,T ;L2(U)) + (D∗)2

)
+ ‖f(t)‖2

L2(0,T ;L2(U)) + ‖c0‖2
0,

which yield αm ∈ L∞(0, T ;L2(U)) and αm ∈ L2(0, T ;L2(U)).
Next, we prove that αm ∈ L2(0, T ;H1(U)) and ∂tαm ∈ L2(0, T ;H−1(U)).

Integrating (2.14) on [0, T ], we get

‖αm(T )‖2
0 +D∗‖∇αm(t)‖2

L2(0,T ;L2(U))

≤ ‖αm(0)‖2
0 +

∫ T

0

ξ(s)ds+ ‖αm‖2
L2(0,T ;L2(U)).

Hence,

b20D∗‖αm(t)‖2
L2(0,T ;H1(U)) ≤ β + ‖αm‖2

L2(0,T ;L2(U)),

which yields

‖αm(t)‖2
L2(0,T ;H1(U)) ≤ (b20D∗)−1(β + 1)eT .

Thus, αm ∈ L2(0, T ;H1(U)).
Next, we prove that ∂tαm ∈ L2(0, T ;H−1(U)). As the test function ψ ∈ Hm

in (2.10), one may consider any function ϕ ∈ H1(U), such that ϕ = ψ+ ψ̃, where
ψ ∈ Hm and ψ̃ in (Hm)⊥ the orthogonal subspace to Hm. Using the form (2.9)
of αm(t) and the orthogonality of the basis {ek}∞k=1, we have

〈∂tαm(t), ϕ〉(H−1 ,H1) = 〈∂tαm(t), ψ + ψ̃〉 = 〈∂tαm(t), ψ〉.
Using, ϕ = ψ+ψ̃ ∈ H1(U), as a text function in (2.10), taking the supremum over
ϕ ∈ H1(U), such that ‖ϕ‖1 ≤ 1, with a similar estimate as for Jk(t), k = 1, 2, 3, 4,
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and integrating in time from 0 to T, we obtain

‖∂tαm‖2
L2(0,T ;H−1(U)) ≤ [(‖αm(t)‖L2(0,T ;H1(U)) + ‖W (t)‖L2(0,T ;H1(U)))

× (D∗ + κ∗‖h(t)‖L∞(0,T ;L2(U)) + ‖q(t)‖L∞(0,T ;L2(U)))

+ ‖f(t)‖L2(0,T ;L2(U))]2.

Since αm,W ∈ L2(0, T ;H1(U)), f ∈ L2(0, T ;L2(U)) and h, q ∈
L∞(0, T ;L2(U)) then ∂tαm ∈ L2(0, T ;H−1(U)). This concludes the proof of
(2.11).

Finally, we prove αm ∈ C0,σ(0, T ;H−1). Integrating (2.10) over (s, t), such
that 0 ≤ s < t ≤ T, for ψ ∈ H1(U), with ‖ψ‖1 ≤ 1. We have

|〈αm(t) − αm(s), ψ〉| ≤ I1 + I2,

where I1 :=
∫ t

s
|Λ(αm(τ), v

α̃
, ψ)|dτ and I2 :=

∫ t

s
|Λ(W (τ), v

α̃
, ψ)| + |〈f, ψ〉|dτ.

Using Cauchy–Schwarz and Hölder’s inequalities with Sobolev embedding
H1(U) ⊂ Ls(U), for s ∈ [2,∞), we obtain

I1 + I2 ≤
∫ t

s

‖ψ‖1(‖αm(τ)‖1 + ‖W (τ)‖1)
(
D∗ +

κ∗

b20κ∗
‖h(τ)‖0 + ‖q(τ)‖0

)

+ ‖f(τ)‖0‖ψ‖0dτ.

By (2.11) and Hölder’s inequalities, we obtain

I1 + I2 ≤ ‖ψ‖1(t− s)
1
2 (‖αm‖L2(0,T,H1(U)) + ‖W‖L2(0,T,H1(U)))

×
(
D∗ +

κ∗

b20κ∗
‖h‖L∞(0,T,L2(U)) + ‖q‖L∞(0,T,L2(U))

)

+ ‖f‖L2(0,T,L2(U))‖ψ‖0(t− s)
1
2 .

By taking the supremum over all s, t ∈ [0, T ], we obtain αm ∈ C0, 1
2 (0, T ;H−1),

thus αm ∈ C0,σ(0, T ;H−1), for 0 ≤ σ ≤ 1
2 . This concludes the proof of

Lemma 2.2.

Lemma 2.3. Given c0 ∈ L2(U), α̃ ∈ L2(0, T ;L2(U)), p
α̃

∈ L2(0, T ;H1(U)) and
v

α̃
∈ L2(0, T ;L2(U)2) solution of (2.2) and (2.3), then there exists a unique solution

α(t) of (2.4), such that

α ∈ C(0, T ;L2(U)) ∩ L2(0, T ;H1(U)), α ∈ C0,σ(0, T ;H−1(U)),

for 0 ≤ σ ≤ 1
2

and ∂tα ∈ L2(0, T ;H−1(U)).

Proof.

• Step 1. Existence of α(t).
Due the regularity of αm(t), given by (2.11) and (2.12), the sequence of the
functions {αm}m∈N is bounded in L2(0, T ;H1(U)) and in C0,σ(0, T ;H−1(U)), for

2240022-13
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0 ≤ σ ≤ 1
2 . Then, by Proposition 1.1, there exists a subsequence {αmj (t)}j∈N,

and α(t) such that

αmj → α strongly in L2(0, T ;L2(U)),

αmj → α strongly in C(0, T ;H−1(U)).

Moreover, {αm}m∈N is bounded in L∞(0, T ;L2(U)) ∩ L2(0, T ;H1(U)) then one
can obtain

αmj −⇀ α weak-star in L∞(0, T ;L2(U)),

αmj −⇀ α weakly in L2(0, T ;H1(U)).

Applying (2.10) for any ψ ∈ H1(U), as a test function and integrating in time
over (0, t), we obtain

〈αm(t), ψ〉 +
∫ t

0

Λ(αm(s), v
α̃
(s), ψ)ds = 〈cm0 , ψ〉

−
∫ t

0

Λ(W (s), v
α̃
(s), ψ) + 〈f(s), ψ〉ds.

Passing to the limit to each term and using the fact by construction cm0 converge
to c0, we get

〈α(t), ψ〉 +
∫ t

0

Λ(α(s), v
α̃
(s), ψ)ds = 〈c0, ψ〉

−
∫ t

0

Λ(W (s), vα̃(s), ψ) + 〈f(s), ψ〉ds ∀ψ ∈ H1(U). (2.17)

Using standard argument, one can check that α(0) = c0. Now, we rewrite (2.17) as

〈∂tα(t), ψ〉 + Λ(α(t), vα̃(t), ψ) = −Λ(W (t), vα̃(t), ψ)

+ 〈f(t), ψ〉 ∀ψ ∈ H1(U).

This equality and the fact that α ∈ L2(0, T ;H1(U)) ∩ L∞(0, T ;L2(U)) implies
that ∂tα ∈ L2(0, T ;H−1(U)). As a consequence of [21, Lemma 1.2, Chap. 3], we
have α ∈ C(0, T ;L2(U)). Furthermore, using the same argument as in proof of
Lemma 2.2 (Step 2), we have α ∈ C0,σ(0, T ;H−1(U)), for 0 ≤ σ ≤ 1

2 .
• Step 2. Uniqueness of α(t). Let α1(t) and α2(t) two weak solution of (2.4), with
α1(0) = α2(0). We have

〈∂t(α1(t) − α2(t)), ψ〉 + Λ((α1 − α2), vα̃ , ψ) = 0, ψ ∈ H1(U).

Recall that

Λ((α1 − α2), vα̃
, ψ) = 〈D∇(α1 − α2),∇ψ〉 + 〈(α1 − α2)vα̃

,∇ψ〉
+ 〈q(α1 − α2), ψ〉, (2.18)
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and due to the fact that qI , qP ≥ 0, we have

h(t, x) + 2q(t, x) ≥ 0, for a.e, x ∈ U ∀ t ∈ [0, T ]. (2.19)

Take ψ = α1 − α2, and using (2.19), we obtain

1
2
d

dt
‖(α1 − α2)(t)‖2

0 = −1
2
‖D∇(α1 − α2)(t)‖2

0

− 1
2
〈h(t) + 2q(t), ((α1 − α2)(t))2〉 ≤ 0.

Integrating in time over (0, t), and as α1(0) = α2(0), we get ‖α1(t) − α2(t)‖0 =
0, thus the solution α(t) of (2.4) is unique and this concludes the proof of
Lemma 2.3.

2.1.3. Proof of Theorem 1.2 (fixed point argument)

In this section, we prove the existence of a weak solution (p(t), v(t), c(t)) to the
system (1.5), for fixed ω ∈ Ω. Using Schauder’s fixed point theorem, we prove that
there exists an α̃(t) = α(t) such that (pα(t), vα(t), α(t)) is a solution of (2.2)–(2.4).
Since, c(t) = α(t) + W (t), then we obtain the existence (p(t), v(t), c(t)) to the
system (1.5).

Lemma 2.4. Given c0 ∈ L2(U), then there exists a stochastic process
(p(t), v(t), c(t)), weak solution to the system (1.5) on [0, T ], with initial condition
c(0) = c0 in L2(U), such that (p(t), v(t), c(t)) satisfies assumptions of Definition 1.1.

Proof. Define

Φ : L2(0, T ;L2(U)) → L2(0, T ;L2(U))

α̃ �→ Φ(α̃) := α(x, t),

where α(t) is the unique solution of (2.4) with α(0) = c0, given by Lemma 2.3.

• Step 1. Continuity of the mapping Φ :L2(0, T ;L2(U)) → L2(0, T ;L2(U)).

Let α̃n ⊂ L2(0, T ;L2(U)) such that α̃n → α̃, in L2(0, T ;L2(U)). Denote by κ(α̃+
W ) := κα̃ , κ(α̃n +W ) := κα̃n

and let (pα̃n
, vα̃n

) and (pα̃ , vα̃) be the corresponding
solution to α̃n, respectively, to α̃ of the elliptic equation (2.3) and (2.2). Then, we
claim the following.

Claim 2.1.

lim
n→+∞ ‖v

α̃n
− v

α̃
‖L2(0,T ;L2(U)) = 0. (2.20)

Proof. Since α̃n → α̃, in L2(0, T ;L2(U)), then there exists a subsequence, which
we will denote it by {α̃n}, such that α̃n(t, x) → α̃(t, x) for a.e., (t, x) ∈ [0, T ]×U .
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Moreover, κ ∈ C(R) ∩ L∞(R), thus by Lebesgue dominated convergence theorem
we have

‖(κα̃ − κα̃n
)∇pα̃‖L2(0,T :L2(U)) → 0, as n→ ∞. (2.21)

From (2.2) and (2.3), we have

〈κα̃n
∇pα̃n

− κα̃∇pα̃ ,∇φ〉 = 0 ∀φ ∈ H1(U). (2.22)

By adding and subtracting the mixed term κα̃n
∇pα̃ and taking φ = pα̃n

− pα̃ in
(2.22), we have

κ∗‖∇(pα̃n
− pα̃)‖2

0 ≤ |〈(κα̃n
− κα̃)∇pα̃ ,∇(pα̃n

− pα̃)〉|. (2.23)

Integrating in time [0, T ] and using Young’s and Cauchy–Schwarz inequalities, we
obtain

κ∗‖∇(pα̃n
− pα̃)‖2

L2(0,T ;L2(U)) ≤
1

2κ∗
‖(κα̃n

− κα̃)∇pα̃‖2
L2(0,T ;L2(U))

+
κ∗
2
‖∇(p

α̃n
− p

α̃
)‖2

L2(0,T ;L2(U)).

Hence,

‖∇(pα̃n
− pα̃)‖2

L2(0,T ;L2(U)) ≤
1
κ2∗

‖(κα̃n
− κα̃)∇pα̃‖2

L2(0,T ;L2(U)). (2.24)

Adding and subtracting the mixed term κα̃n
∇pα̃ and using (2.23) and (2.24), we

get

‖κα̃n
∇pα̃n

− κα̃∇pα̃‖2
L2(0,T ;L2(U))

≤ ‖κ
α̃n

∇(p
α̃n

− p
α̃
)‖2

L2(0,T ;L2(U)) + ‖(κ
α̃n

− κ
α̃
)∇p

α̃
‖2

L2(0,T ;L2(U))

≤
(

(κ∗)2

(κ∗)2
+ 1
)
‖(κ

α̃n
− κ

α̃
)∇p

α̃
‖2

L2(0,T ;L2(U)).

Passing to the limit, as n goes to ∞ and using (2.21), we obtain (2.20) and this
concludes the proof of Claim 2.1.

Since Φ(α̃n) = αn(t, x), where αn(t) is a sequence of solution to Eq. (2.4):{〈∂tαn, ψ〉 + Λ(αn, vα̃n
, ψ) = −Λ(W, v

α̃n
, ψ) + 〈f, ψ〉 ∀ψ ∈ H1(U),

αn(0) = c0.
(2.25)

From Lemma 2.3, we have

Φ(α̃n) ∈ C(0, T ;L2(U)) ∩ L2(0, T ;H1(U)), (2.26)

Φ(α̃n) ∈ C0,σ(0, T ;H−1(U)), for 0 ≤ σ ≤ 1
2
, ∂tΦ(α̃n) ∈ L2(0, T ;H−1(U)),

(2.27)
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which yields,

Φ(α̃n) = αn −⇀ Y weakly in L2(0, T ;H1(U)) ∩ L∞(0, T ;L2(U)), (2.28)

and from Proposition 1.1,

Φ(α̃n) = αn → Y strongly in L2(0, T ;L2(U)) ∩C(0, T ;H−1(U)). (2.29)

Integrating (2.25) in time over (0, t), we obtain

〈αn(t), ψ〉 +
∫ t

0

Λ(αn(s), v
α̃n

(s), ψ)ds

= 〈c0, ψ〉 +
∫ t

0

〈f(s), ψ〉ds −
∫ t

0

Λ(W (s), v
α̃n

(s), ψ)ds ∀ψ ∈ H1(U).

(2.30)

Passing to the limit in (2.30) and using Claim 2.1, (2.29) and (2.28), we obtain

〈Y (t), ψ〉 +
∫ t

0

Λ(Y, v
α̃
(s), ψ)ds

= 〈c0, ψ〉 −
∫ t

0

Λ(W (s), v
α̃
(s), ψ)ds+

∫ t

0

〈f(s), ψ〉ds, ∀ψ ∈ H1(U).

(2.31)

Note that, the convergence of the advection term 〈αnvα̃n
,∇ψ〉 in (2.30) follows

from the fact that the sequence αn converges to Y strongly in L2(0, T ;L2(U)), and
Claim 2.1 (one may use standard density argument, if necessary).

Using a standard argument (see [21, Sec. 1.3, Chap. 3]), one can check that
Y (0) = c0. Thus,

〈∂tY, ψ〉 + Λ(Y, v
α̃
, ψ) = −Λ(W, v

α̃
, ψ) + 〈f, ψ〉 ∀ψ ∈ H1(U).

From Lemma 2.3, the solution of Eq. (2.4) is unique, we conclude that Y = α :=
Φ(α̃). By (2.29), we have Φ(α̃n) = αn → Φ(α̃) = α in L2(0, T ;L2(U)). Then, the
mapping Φ is continuous.

• Step 2. Existence of a weak solution c.

From Lemma 2.3, we have Φ(α̃) = α(t) ∈ L2(0, T ;H1(U))∩C0,σ(0, T ;H−1), for 0 ≤
σ ≤ 1

2 . By Proposition 1.1, the range of Φ is relatively compact in L2(0, T ;L2(U)).
Since Φ is a continuous mapping with a relatively compact range then by Schauder’s
fixed point theorem there exists a fixed point α̃ such that Φ(α̃(t)) = α̃(t), where
α̃(t) is a solution of

〈∂tα̃, ψ〉 + Λ(α̃, v
α̃
, ψ) = −Λ(W, v

α̃
, ψ) + 〈f, ψ〉 ∀ψ ∈ H1(U).
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Since c(t) = α̃(t) +W (t), then c(t) is a solution of

〈c(t), ψ〉 +
∫ t

0

Λ(c(s), vc(s), ψ)ds

= 〈c0, ψ〉 +
∫ t

0

〈f(s), ψ〉ds+ 〈W (t), ψ〉 ∀ψ ∈ H1(U). (2.32)

Then, there exists a weak solution c(t) to the parabolic equation in (1.5), which
satisfies (1.13).

• Step 3. Conclusion.

Finally, from Step 2 and Lemma 2.1 there exist (p(t), v(t), c(t)) weak solution to the
system (1.5) on [0, T ] for fixed ω ∈ Ω, with initial condition c0 ∈ L2(U). Moreover,
the triple (p(t), v(t), c(t)) satisfies assumptions of Definition 1.1. This concludes the
proof of Lemma 2.4.

2.2. Measurability

The measurability of the process (p(t), v(t), c(t)), defined on (Ω,F , {F}t,P) is
obtained by using that the mapping

F : (Ω,F) → C([0, T ];H1(U)), ω �→W (·)(w)

is measurable, and for every z ∈ L2(U), t ∈ [0, T ], by checking that the mapping

G : C([0, t);H1(U)) → R × R,

W �→ (〈c(t), z〉, 〈p(t), z〉)
is continuous. The continuity is proved using the same strategy for proving the
convergence in Step 1 of the proof of Lemma 2.4. Hence composing these two map-
ping, the mapping G ◦ F (ω) = (〈c(t)(ω), z〉, 〈p(t)(ω), z〉) ∈ R

2 is measurable, which
means that ω �→ c(t)(ω) and ω �→ p(t)(ω) are F -measurable. The measurability of
the process v(t) is a straightforward consequence from the measurability of the
process p(t).
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