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1 | INTRODUCTION

Efforts to relate empirical measurements of population growth to
dynamical models can be traced back to the origins of ecology. For
example, in his famous study proposing the logistic growth model,
Verhulst (1838) presented the fitted time-series for the human popu-
lation growth of France and Belgium. Interest in contrasting empirical
data with models for population dynamics has only grown through
the years (Gilpin, 1973; Powell & Steele, 2012), with the develop-
ment of sophisticated approaches (Ellner et al., 2002) accounting
for different sources of errors (Carpenter et al., 1994; De Valpine &
Hastings, 2002), and important applications such as forecasting pop-
ulation trajectories (Clark et al., 2001; Sugihara et al., 2012), model-
ling the evolution of disease epidemics (Du et al., 2017), and detecting
chaos in natural systems (Perry et al., 2012; Sugihara & May, 1990).
Because of theintrinsic difficulty of manipulating natural systems,
much of the literature on these issues has historically focused on in-
ferring the parameters of dynamical models from time-series obser-
vations (Downing et al., 2020; Ives et al., 2003; Vandermeer, 1969).
With the advent of high-throughput laboratory techniques, how-
ever, a different approach has become viable. Instead of attempt-
ing to learn the parameters of a model by analysing the fluctuations
of several interacting populations through time, it is possible to
use steady-state abundances recorded for a variety of community
compositions, each captured at a single time point, to infer model
parameters (Ansari et al., 2021; Fort, 2018; Maynard et al., 2020;
Voit et al., 2021; Xiao et al., 2017). For a species pool of interest, the
initial species composition is manipulated in a series of experiments,
and then the resulting set of final community compositions can be
used to estimate the parameters of a statistical model. For example,
to infer the interactions among n species, one could perform a se-
ries of experiments where species are grown in isolation, or in pairs,
triplets or larger subsets (Dormann & Roxburgh, 2005; Friedman
et al.,, 2017). Once any transient dynamics have elapsed, the densi-
ties of all surviving species are recorded. Provided that a sufficiently
large and diverse set of sub-systems (i.e. distinct species composi-
tions) have been observed, it is possible to infer the parameters of
a statistical model for species interactions from these static mea-
surements (Carrara et al., 2015; Maynard et al., 2020). Such statis-
tical models can be derived from corresponding dynamical models,
thereby linking static estimates to models for population dynamics.
We build upon previous work (Carrara et al., 2015; Maynard
et al., 2020; Xiao et al., 2017) in which the density of each species is
assumed to be linearly related to the densities of the other speciesina
community. This statistical structure arises naturally from the ubiqui-
tous generalized Lotka-Volterra (GLV) dynamical model (Lotka, 1920;
Volterra, 1926)—although it is not necessary for dynamics to obey this
simple model to yield a good fit to data (Maynard et al., 2020). While
very easy to formulate, this type of statistical model is both difficult
and computationally expensive to fit. Here, we extend the approach of
Maynard et al. (2020) in three main ways to overcome issues that have
limited the application of these methods. First, we introduce a fast
iterative algorithm that finds parameters yielding a good fit to data.

This algorithm can be used in conjunction with more rigorous—but
less efficient—fitting approaches by providing a high-quality starting
point for numerical likelihood optimization. We show that this hybrid
approach is computationally very efficient and produces better results
than current methods. Second, we derive simplified versions of the
statistical model by exploiting the parallel between the model struc-
ture and Lotka-Volterra dynamics. These versions of the model re-
quire the estimation of fewer parameters, while still providing a good
fit to data and retaining a clear ecological interpretation. Finally, we
show that a more sophisticated error model for the observations re-
sults in a Weighted Least Squares (WLS) problem that can be solved
efficiently. Extending the error structure offers more flexibility to fit
empirical data, especially when the variance of experimental obser-
vations changes with the mean, as typically seen in ecological data
(Grilli, 2020; Taylor, 1961). To illustrate these improvements, we exam-
ine four recently published datasets spanning communities of plants
(Kuebbing et al., 2015), phytoplankton (Ghedini et al., 2022) and bac-
teria (Chu et al., 2021), as well as simulated data.

2 | MATERIALS AND METHODS
2.1 | Experimental setup and data

Given a pool of n species, suppose we have performed a large set
of experiments in which different combinations of species are co-
cultured for a suitably long time. At the end of each experiment
(once transient dynamics have elapsed), we measure and record
the biomass/density of each extant species. The experiments
encompass a variety of initial compositions and initial densities, and
are conducted with replication. Provided that our measurements,
after any species extinctions, span a sufficient variety of sub-
communities, we can fit a simple statistical model to these empirical
‘endpoints’, which may, in turn, be used to predict the densities of
each species in any unobserved subset of species, and in particular
whether the given subset will coexist.

To test our models, we use four recently published datasets that
have a suitable experimental design. In particular, we consider two
datasets from Kuebbing et al. (2015), who selected two pools (na-
tives and non-natives) of four plants each, and grew them in 14 out of
15 possible combinations of species. Similarly, Ghedini et al. (2022)
considered five phytoplankton species, and grew them in monocul-
ture, in all possible pairs, and all together. Finally, we consider a sub-
set of the data from Chu et al. (2021), consisting of four bacterial
strains co-cultured along with Pseudomonas fluorescens in different
combinations. A detailed description of each dataset is reported in
Supporting Information S1.

2.2 | Asimple statistical framework

We start by summarizing the statistical framework presented in
Maynard et al. (2020), which we will extend below. The framework
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assumes that we have measured densities for several of the possi-
ble communities of coexisting species we can form from a pool of n
species. The approach rests on two main assumptions. First, we take
each observed measurement to be a noisy realization of a ‘true’ value:

20 = x4 ), W
That is, the observed density of species i when grown in community k,
)”(?k), is given by a ‘true’ value, x‘fk), modified by an error term, e'fk). We can
arrange our empirical data in a matrix X, with n columns (one for each
species in the pool) and as many rows as the number of observed com-
munities. In particular, in = )"(}k) if species i is present in community k,
and zero otherwise. Similarly, &,; = efk) if species i is in community k

and zero otherwise. Then, we can rewrite Equation 1 in matrix form:

X=X+8. (2)

When several replicates are available, we assume that the den-

sity recorded for species i in community k and replicate r follows

)—z,{k,r) i(k)

=X +efk"); that is, all replicate measurements of species i in
community k stem from the same true value (to recover the notation
in Equation 2, we simply stack the replicates in matrix X and the cor-
responding true means in matrix X). This assumption amounts to ruling
out ‘true multi-stability’ in the underlying dynamics (Xiao et al., 2017)—
if a set of species coexists, we require that it always reaches the same
attractor (be it an equilibrium, cycle or chaotic attractor). Notice, how-
ever, that this framework is compatible with the fact that experiments
initialized with the same set of species may yield distinct sets of coexist-
ing species at the experimental endpoint. This could occur if stochastic
dynamics or differences in initial densities drive two experimental sys-
tems to different attractors. Because this framework exclusively uses
data gathered at the end of each experiment, it is completely blind to
initial conditions; we only require that communities that reach the same
final composition have also reached the same dynamical attractor.
Second, following Maynard et al. (2020), we assume the true
species' densities in a given community are linearly related to each
other. For any species i in community k, we can express these den-

sities by writing:

X = a; — Zﬁiixki’

j#i

where q;is the density that species i would attain when grown inisolation,
and the coefficients g; model the effects of the other species in commu-
nity k on the density of species i. Importantly, §; depends only on the
identities of the species, and not on the community we are modelling—
this assumption amounts to ruling out higher-order interactions or other
nonlinearities that would make the per-capita effect of species j on spe-
cies i dependent on the state of the system. Rearranging, we obtain:

ﬂ..
¥ =X+ lxk,: 1
P

Y BXy=1,
i

with B; = 1/«; and B; = f; / ;. Naturally, systems with sufficiently
strong higher-order effects (or highly nonlinear systems) would be in-
compatible with this assumption. Indeed, Maynard et al. (2020) used
simulations to show that, while the framework is generally quite ro-
bust to model misspecification, strong higher-order interactions result
in poor fit and poor inference of true parameters. Conversely, good fit
to the data would suggest the absence of strong higher-order interac-
tions or nonlinearities.

Because X); = 0 whenever species j is not present in community
k, we can define the sub-matrix B® obtained by retaining only the
rows and columns of B corresponding to species that are present in
community k. We similarly take X% to be a vector containing only
the densities of the species in k, and 1% to be a vector of ones with
as many elements as X®. Then the model can be written in matrix
form as BOX® = 1® for each community k.

Suppose that we have estimated a matrix Band we want to make
a prediction about a set of species k, such as whether these species
can coexist. We solve the corresponding equation for X%,

X® = (B® )-11<k>y (3)

with two possible outcomes: (a) all the components in X% are positive,
in which case we predict that the species can coexist with densities
X® or (b) some of the components in X®) are negative, which we inter-
pret as the impossibility of coexistence of this combination of species
(Maynard et al., 2020).

Arguably, the simplest version of this statistical model is ob-
tained by assuming that errors are independent, identically dis-
tributed random values sampled from a normal distribution, such
that X,; ~ ' (X5, 02) whenever species i is in community k. Then,
fitting the model requires minimizing the sum of squared deviations
between the observed data and model predictions (Ordinary Least
Squares, OLS).

This suggests a straightforward method to fit the model: pro-
pose a matrix B, compute the predicted densities for all species
in all observed communities using Equation 3, and search for the
matrix B that minimizes the deviations between the observed data
X and the predicted X. Unfortunately, this method is quite ineffi-
cient and computationally very expensive, as it requires inverting a
sub-matrix of B for each observed community, and there may be up
to 2" — 1 unique community compositions that can be built from a
pool of n species. Moreover, the problem of minimizing deviations is
markedly non-convex—starting from different initial estimates, we
are likely to converge to different (and thus in general sub-optimal)
solutions.

To circumvent this problem, Maynard et al. (2020) proposed a
simple analytical approach (dubbed the ‘naive method’) to find a
rough estimate of B from observed data; this initial estimate of B can
then be used as a starting point for more sophisticated fitting rou-
tines. However, as discussed in their study, this method suffers from
a number of issues (detailed in Supporting Information S3). In partic-
ular, the statistical model assumes that observations are noisy, while
the naive method assumes that they have been observed precisely
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and that instead Equation 3 only holds approximately. In practice,
this means that this approach does not provide the maximum like-
lihood estimate for B when the data are noisy. One of the goals of
the present work is to build an iterative algorithm that is not only
computationally efficient, but that also improves upon the naive
estimate for B by yielding a superior starting point for subsequent

parameter search.

3 | RESULTS

3.1 | A fast,iterative algorithm to estimate
parameters

We want to find the maximum likelihood estimate for the matrix B,

that is, the choice of B minimizing the sum of squared deviations:
2
SsSQ = kz Z 2 ()?fk,r) _X§k>) ]
r 1

The computational bottleneck we face is that determining the pre-
dicted abundances x’ from the matrix B (via Equation 3) for all com-
munity compositions is very expensive (requiring the inversion of many
matrices). We therefore develop an algorithm in which this expensive
calculation is performed only seldomly and at defined intervals, and
optimization is carried out in between these steps without having to
re-calculate the predicted xi(k). To achieve this goal, we divide the pro-
cess of optimizing B into two steps: a prediction step (computation-
ally expensive), and a numerical optimization step (computationally
cheaper). By alternating between the two steps, we quickly converge
to a good draft matrix B.

To construct this algorithm, we derive two ‘auxiliary’ matrices
that are useful for computation. Having arranged our data in the ma-
trix X as detailed above, we take X = X + & (Equation 2), transpose
each side and multiply by B. We obtain the sum of two new matrices:

BX" =BX" +B&" =PT + 5. (4)
In the remainder of this section, we use P and S simply as a conve-
nient means to build our algorithm—we discuss their ecological inter-
pretation in Supporting Information S4. From Equation 4, we have
B-1PT = XT and B-1ST = &". Our sum of squared deviations is simply
the squared Frobenius norm of &, Z,.i%g =& ||§ = || €|, and from

Equations 2 and 4, we can write:

&7 =1BsT|
= IX"-B7PT )

Our goal is therefore to find a matrix B such that B-1PT is as close as
possible to the observed data XT. However, neither B nor P are known,
although P can be calculated from X and B, and hence from B. We there-
fore attempt to minimize the sum of squared deviations through an
iterative algorithm reminiscent of the expectation-maximization ap-
proach (Moon, 1996):

1. Propose a candidate matrix B;

2. Consider B to be fixed, and use it to compute X via Equation 3
(prediction step);

3. Compute PT = BX';

4. Consider P to be fixed, and find an updated B~! by numerically
minimizing | X' — B-1PT || (optimization step). Invert it to recover
an updated B;

5. Repeat steps 2-4 until convergence.

In principle, this iterative algorithm depends on the proposal of
the initial matrix; for our numerical experiments, we always start
from the identity matrix (i.e. no interactions between species).
Finally, we perform an additional numerical optimization to refine
the results produced by this algorithm. The algorithm above may
return values of X,; <0, because the solution minimizing the sum
of squared deviations does not need to contain only non-negative
densities. Clearly, such solutions would be biologically unattain-
able, and qualitatively incompatible with the observed data. Thus,
when numerically refining the solution, we only accept proposals
that yield non-negative predictions for the observed densities.

While this algorithm is not guaranteed to find the maximum like-
lihood estimate of B, we observe that in practice, the combination
of our iterative algorithm and the final numerical optimization step
yields very good solutions. In all cases, we converge on a solution
that is superior to the result using the naive method. As shown in
Figure 1 (and Supporting Information S8), the SSQ typically decays
rapidly with the number of iterative steps, and the final numeri-
cal search provides an additional improvement. While for the data
presented here the algorithm converges smoothly, in principle, one
could observe the SSQ oscillating as the algorithm progresses. As
for gradient descent and similar methods, this problem can be allevi-
ated by introducing a ‘momentum’ (Polyak, 1964; Qian, 1999): when
updating matrix B in Step 4, one could take a weighted average of
the matrix used to compute P (the current estimate of B), and the
matrix that maximizes the likelihood given P (the new estimate of B).
The addition of momentum would help achieve a smooth, monotonic
decay of the SSQ, at the cost of having to take a larger number of

steps before convergence.

3.2 | Simplified versions of the model

Fitting the n? parameters of the interaction matrix B requires hav-
ing observed a sufficiently varied set of experimental community
compositions. It is necessary to observe each of the n species in
at least n distinct communities, and each pair of species coexist-
ing in at least one community (for a full derivation of these condi-
tions, see Supporting Information S2). These are very demanding
requirements, and therefore many published datasets do not con-
tain a sufficient variety of communities to allow the identification
of all parameters. These conditions grow more onerous with the
number of species in the pool, making the approach impractical
for species pools of even moderate size. To address this issue, we
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FIGURE 1 Sum of squared deviations

Ghedini (2022)

(shown in log-scale, y-axis) for the initial
matrix B = |, at each successive iteration
of the algorithm, and after the numerical
maximization (colours). The data from
Ghedini et al., (2022). Is used as an
example. The dashed line marks the
SSQ obtained using the naive method of
Maynard et al. (2020).

500 -

300 -

SSQ

100+

propose a nested set of simplified versions of the statistical model
that use fewer parameters, but retain the basic model structure and
a straightforward ecological interpretation. The data requirements
are greatly reduced, scaling linearly, rather than quadratically with
n (see Supporting Information S7 for detailed data requirements).
These simpler models have the added benefit of being extremely
efficient to fit from a computational standpoint (Supporting
Information Sé), and useful for model selection, especially when
one suspects that the full model with n? parameters may be suscep-
tible to overfitting.

We follow a disciplined approach to develop these simpler mod-
els: we consider a version of the MacArthur's consumer-resource
model (MacArthur, 1970) in which each species has access to its own
private resources, and all species have access to a shared resource
(Supporting Information S5). By progressively reducing the number
of free parameters in the model, we obtain simpler structures for the
matrix B (Table 1).

Given that the matrix B can be interpreted as detailing pairwise
interactions (i.e. the effect of the density of species j on species
i), the model B = D(d) + vw' corresponds to the following ecologi-
cal picture: each species interacts with conspecifics through their
private resources (corresponding to the coefficients d;) and with all
species via the shared resource. Interactions arising from the shared
resource are given by the product of a resource utilization vector
w (i.e. attack rates), and a resource transformation vector v, where
each species is characterized by its v; and w; values. The interpreta-
tion of the simpler models is similar: by considering equal transfor-
mation rates one makes vw’ = w' symmetric, and by assuming that
all species also have the same attack rates, vw” = a11". Note that
in all these simplified models, the intraspecific interactions (i.e. the
diagonal elements of B) are modelled with great flexibility; the reduc-
tion in parameters is obtained by assuming that interspecific interac-
tions follow a simple pattern, defined by a few traits for all species.

In Figure 2, we show the fit of these four models when analysing
the data reported in Ghedini et al. (2022).

iteration

initialization (B=1) ® iterative step ® numerical optimization

For all datasets, we find the same qualitative results: the full
model (n? parameters, 25 parameters for the dataset of Ghedini
et al. (2022)) and the simplified model in which only two values
per species determine all interspecific interactions (3n — 1 param-
eters, 14 for Ghedini et al. (2022)) have very similar performance
(Supporting Information S8), while any further simplification results
in a marked loss of fit. These trends are evident when contrasting

the total SSQ across models and datasets (Figure 3).

3.3 | Allowing the variance to change
with the mean

So far, we have assumed that errors are independent and identically
distributed for all measurements. In many situations, however,
this assumption would be quite unrealistic. For example, some
species could systematically grow to much higher density than
others—resulting in potentially larger absolute errors in their
measurement—or measurements might be made on a small sub-plot
or sample volume and then extrapolated to the whole plot or volume
through multiplication. In such cases, the data would display marked
heteroskedasticity (i.e. the variance would change with species
density).

In Figure 4, we show that the variance scales with a power of the
mean in the phytoplankton data from Ghedini et al. (2022). This is in
fact the expected behaviour of many ecological systems, as posited
by Taylor's law (Gaston & McArdle, 1994; Routledge & Swartz, 1991;
Taylor, 1961).

A possible approach to dealing with the systematic heteroske-
dasticity observed in these datasets is to use WLS instead of OLS.
To implement this approach, each squared residual is divided by
the variance of the corresponding distribution, which is equivalent
to measuring residuals as standard deviations of the standardized
data. Here for simplicity we use the variance in the observed X;k’”
to estimate the variance a?k)Z (a more sophisticated approach would
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Number of
Model parameters
B arbitrary n?
B =D(d) + vw' 3n-1
B =D(d) +w'" 2n
B=D(d)+al1" n+1

Ghedini (2022), OLS

Interpretation

Arbitrary interactions between the species

Arbitrary intraspecific interactions; interspecific
interactions B;; = v;w; given by the product
of the ‘resource transformation’ of species i
(v), and the ‘attack rate’ of species j (w))

Arbitrary intraspecific interactions; resource
transformation is the same for all species

Arbitrary intraspecific interactions; resource
transformation and attack rates are the
same for all species

TABLE 1 Simpler versions of the model
derived by considering a MacArthur's
consumer-resource model in which
species have access to a private pool

of resources as well as a shared pool of
resources. See Supporting Information S5
for a derivation

(a)

(b)

B=D(d)+0o 11" B=D(d)+w" A 05 A-D A-S A-T
0301 = : 44 ra
J . 0254 O 0.4 3l PR,
7.5' V2 ,/ 020_ 03_ 6 2_ 6
s y 0.15 0.2 T 0.2 A
5.0 ’ i 0.104 —&— Oj'& i - -&- ;
0%’ © 0”0 © A A D A S AT
] 7 ° ,/
1 ‘ ’ -T-D-S- A-Ti D D-S
25 A ‘ o 1.25 o
’ ! 34 892- % 0.51 1 , @
’ ] 75 ] ]
o 0,0/ ° cee/ o > 5_ & 8;’2' 812_ )
> Vi = ) i K
= r ;. % 0 o.oo-dﬁ- — 04215 ol |
£ 0.0+ 9 ADSTTi A Ti D D S
5 4 D-Ti s S-Ti T
D B =D(d)+vw" arbitrary B S 125 o~
g s P Q. 1.00+ 3 \ﬁv 34 0.5
3 751 , ’ 9 0.751 6 2 0.4
o / i -
e / i 822-& 4 A 11 q%e 0.31 #
- / . T = T T T T
50 Al et D Ti S S i T
e »
/' Re T-D T-S T-Ti Ti
2.5+ , ’ 0.5 6 a 44 ]gg_ T o0 s
st 03] 5] 075 S
% o’ 0.2 % el 11 050'&@ 1] *
;" ’ 0.1- 0 A | 0251 4
F s T I T T
0.04f ' — . ' — species
0.0 25 5075 00 25 5075
observed densit
y O B=D()+a11" A B=D(d)+w'
model
species ©¢ A e D o S e T e Ti + B=D(@)+w' X  arbitrary B

FIGURE 2 (a) Observed species (colour) densities (x-axis) vs. predicted densities (y-axis) for the data from Ghedini et al. (2022), when
fitting the four versions of the model (panels). Replicate measurements for each species/community are reported as semi-transparent points
and the mean for each species/community combination as a solid point. (b) Observed species (colour, x-axis) densities (y-axis). Boxplots show
the distribution of the species densities across replicates, with the median density reported as a solid coloured line; the mean density is
represented by the coloured triangle. Predicted values for each species in each community are represented by black open symbols (one for
each of the four versions of the model).

call for the simultaneous estimation of means and variances, as in
methods based on iteratively reweighted least squares). The WLS
approach can be interpreted as reweighting the relative importance
of errors made in our predictions, such that small errors made when

estimating low species abundances are penalized as much as larger

with low abundance.

errors made when predicting higher species abundances. This is in
contrast to OLS, where a 1% error in estimating the density of a
species with high abundance contributes much more to the sum of

squared deviations than the same proportional error for a species
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FIGURE 3 Sum of squared deviations between observed and predicted densities for the four datasets considered, fitted using the four

models in Table 1 in order of decreasing model complexity.

Since experimental replicates are necessary to estimate these
variances, we must have replicates for all communities (as we do for
all the datasets considered here) to implement the WLS approach in
this straightforward manner.

In Figure 5 (and Supporting Information S8), we compare
these two error structures and find that we indeed observe
a better fit for species with lower abundances when the WLS
approach is used. This has important implications for the qual-
itative prediction of species' coexistence, because for a spe-
cies present at low abundance in a community, the numerical
difference between a positive abundance and a negative abun-
dance (corresponding to a predicted lack of coexistence) could
be quite small.

Finally, in Supporting Information S9, we perform simulations
in which observations are taken from distributions with known
mean-variance relationship, and fit the data using OLS, WLS or a
likelihood-based approach. In all cases, we find that WLS outper-
forms OLS, allowing us to fit the data well and recover with good

confidence the parameters used to generate the data.

3.4 | Predicting experiments out-of-sample

For the empirical datasets considered here, we always find good
agreement between the observed and the fitted values when using
the full model under either an OLS or WLS scheme. We also consider
a leave-one-out (LOO) cross-validation approach, to verify that the
models capture real features of the interactions between species
in the communities, and are not simply over-fitting the data. For a
dataset in which m experimental communities have been measured,
we implement the LOO approach by designating one of the commu-
nities (along with any replicates) as out-of-sample (sometimes also
called ‘out-of-fit’, as in Maynard et al. (2020)), and fitting our model
on the remaining m — 1 communities. This process can be repeated
for each of the m communities in turn, and we then compare the
predicted species' abundances with their experimentally observed
values, as shown in Figure 6 (and Supporting Information S8). While
the quality of the predictions is necessarily worse, in almost all cases
we would have correctly predicted the experimental outcome both

qualitatively (i.e. possibility of coexistence) and quantitatively.
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34 FIGURE 4 Mean (x-axis) vs. variance (y-
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FIGURE 5 Observed (x-axis) vs. predicted (y-axis) species densities in all communities using the data by Ghedini et al. (2022), when fitting the
simplified model B = D(d) + vw' and either minimizing the sum of squared deviations (Ordinary Least Squares [OLS]) or the sum of standardized
squared deviations (Weighted Least Squares [WLS]). Replicate measurements for each species/community are reported as semi-transparent points;
the mean for each species/community combination is reported as a solid point. In OLS, small (proportional) deviations of highly abundant species (e.g.
Synechococcus sp., in green) are penalized more than larger (proportional) deviations of lower-abundance species (e.g. Tisochrysis lutea, in yellow). In
contrast, when performing WLS each data point is standardized by its corresponding variance, levelling the importance of each measurement.

4 | DISCUSSION

In this study, we have further developed a simple, extensible frame-
work to infer species' interactions from experimental data where

community composition has been manipulated, and showcased its
potential by testing this approach on datasets spanning plant, phyto-
plankton and bacterial communities, as well as simulations. We have
improved the computational performance of the fitting routines,
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data, our models would suggest a lack of coexistence.

derived simplified versions of the model and extended the error
structure used to capture the variability in the data.

Previous studies have used a variety of approaches to model this
type of experimental data, including bottom-up ‘assembly rules’, in
which the focus is on observing all possible pairs of species and using
the outcomes to predict coexistence of larger species assemblages
(Dormann & Roxburgh, 2005; Friedman et al., 2017); methods re-
lying on monocultures and LOO communities (Ansari et al., 2021;
Venturelli et al., 2018), using the extremes of very simple and highly
speciose communities to infer pairwise interactions; and methods
based on time-series that use fluctuations to estimate interaction
strengths and the effects of environmental variables on ecological
dynamics (Downing et al., 2020; Ives et al., 2003).

Our framework bridges the dynamical and statistical per-
spectives of these approaches. Importantly, though the models
presented here are statistical in nature, they have a straightfor-
ward connection to the GLV dynamical model. By exploiting this
parallel, we have derived a family of simplified models that put

a premium on the ecological interpretability of the parameters.
While an alternative approach to model regularization would be
data-driven, machine learning methods (e.g. enforcing the sparsity
or parsimony of B through a penalized regression), we have shown
that ecologically motivated model constraints are a viable option.
By clearly relating statistical and dynamical models, we retain the
ability to probe other properties of these systems, for example in
relation to invasibility, assembly and dynamical stability (Maynard
et al., 2020).

Using our framework, we are able to obtain quantitative predic-
tions for coexistence and abundances of an arbitrary set of species
both in- and out-of-sample, even for datasets that comprise just a
fraction of the possible sub-communities that may be formed from
a fixed pool of species. Here, our simpler models are used to fit the
relatively sparse datasets when fitting the full model is impossible.
As the number of combinations that can be formed from a set of
n species grows exponentially with n, this ability to predict species
abundances out-of-sample is critical for exploring larger systems.
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Additionally, the good performance out-of-sample indicates that the
models are capturing meaningful information about species interac-
tions, rather than merely over-fitting the data.

Remarkably, we find that a model where interspecific interac-
tions are approximated by a simplified structure, while intraspecific
interactions are modelled more freely, achieves a comparable level
of accuracy to the full model for the datasets. These results suggest
that interspecific interactions in these systems are not completely
idiosyncratic, but rather are largely characterized by a lower-
dimensional structure. This observation agrees with the finding that
simple rules govern the structure of interactions in microbial com-
munities (Friedman et al., 2017), as well as recent work suggesting
that plant-plant competitive interactions are characterized by low
dimensionality (Stouffer et al., 2021). Similarly, these patterns are
consistent with the success of a sparse-modelling approach demon-
strating that, when considering only a few focal species of plants,
many heterospecific interactions can be captured by a generic in-
teraction term (Weiss-Lehman et al., 2022). Our results suggest that
effective interspecific interactions sit in between extremely low
dimensional (i.e. as in the model with identical interspecific inter-
actions, which has a poor performance across all datasets) and fully
structured pairwise interactions (arbitrary B).

Naturally, to develop these simple models, we need to make cer-
tain strong assumptions about the community dynamics. Here we
have ruled out ‘true-multi-stability’, in which a set of species can
coexist at distinct configurations of abundances. We have also ne-
glected higher-order or highly nonlinear interactions, which would
make the effect of species i on j context dependent. While we would
expect this framework to perform poorly when these assumptions
are violated, the good agreement with experimental data suggests
that departures from these strict assumptions are modest. However,
relaxing these assumptions could further expand the applicability of
these methods.

Another area that deserves further exploration is quantify-
ing uncertainty in the point estimates produced by this approach.
While one could gauge these effects via bootstrapping of experi-
mental data, we instead advocate a fully Bayesian approach to un-
certainty quantification, for example as implemented by Maynard
et al. (2020), because deriving a posterior distribution for the matrix
B would also allow one to determine the probability of coexistence
for a set of species, and better characterize the correlations between
species abundances. Both bootstrapping and Markov chain Monte
Carlo would require evaluating the predicted values for a set of pa-
rameters a large number of times. In this respect, the computational
gains afforded by our simplified models could be key to making such
approaches viable in future studies.

The main outstanding problem with our approach is the as-
sumption that dynamics have reached a steady state, and thus the
observed community composition is the ‘true’ final composition for
the system. Violations of this assumption can greatly complicate
inference. Suppose, for example, that we have two species, A and

B, and that A excludes B asymptotically. If we sample this system

before the extinction of B, we force the model to find parameters
consistent with the robust coexistence of A and B, thereby biasing
the results considerably. This problem of ‘spurious coexistence’ is
especially troublesome for microbial communities, where species'
presence is frequently determined by sequencing. Sequencing-
based methods often detect some species at very low densities
(Venturelli et al., 2018), potentially spuriously, making it difficult
to discriminate between coexistence of rare species and actual
extinctions masked by ‘background noise’. A Bayesian approach
could make it possible to simultaneously impute the ‘true’ final
composition (i.e. which species are truly coexisting in the sample,
taken as a latent parameter) as well as determine the distribution
of parameters.

This general framework can be further extended in a number
of directions. For example, one could introduce a more sophis-
ticated error model assuming that species abundances are cor-
related within communities (e.g. overestimating the density of a
predator could be associated with an underestimate of the den-
sities of its prey). Similarly, we could assume more generally that
observed densities )”(‘fk") are sampled from a particular distribution
(e.g. Gamma or Inverse Gaussian), with mean xi(k) and ancillary pa-
rameters controlling the shape of the distribution. In this case,
instead of minimizing the sum of squared deviations, we would
maximize the likelihood of the parameters for the chosen distri-
bution. Preliminary results shown in Supporting Information S9
demonstrate that indeed we are able to recover the parameters
used to generate simulated data with specified error models. The
ability to model the data using a variety of distributions would
bring this framework one step closer to the flexibility that charac-
terizes Generalized Linear Models while maintaining the connec-
tion to ecological dynamics.

Overall, the methods presented here make it easier to contrast
experimental data with simple models for population dynamics, re-
turning parameters that have clear ecological interpretation, and
allowing us to test predictions in a straightforward manner. The
type of ecological data examined here are appearing with increasing
frequency in the ecological literature, and these methods provide a
complementary (or alternative) approach to model-fitting via time-
series analysis. The minimal data needed to fit the simplified models
and the fact that each experimental community can be measured
just once (possibly destructively) make this framework especially ap-
pealing and cost-effective.
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