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Social insect colonies’ robust and efficient collective behaviors without any central control con-
tribute greatly to their ecological success. Colony migration is a leading subject for studying
collective decision-making in migration. In this paper, a general colony migration model with
Hill functions in recruitment is proposed to investigate the underlying decision making mech-
anism and the related dynamical behaviors. Our analysis provides the existence and stability
of equilibrium, and the global dynamical behavior of the system. To understand how piecewise
functions and Hill functions in recruitment impact colony migration dynamics, the comparisons
are performed in both analytic results and bifurcation analysis. Our theoretical results show
that the dynamics of the migration system with Hill functions in recruitment differs from that
of the migration system with piecewise functions in the following three aspects: (1) all popula-
tion components in our colony migration model with Hill functions in recruitment are persistent;
(2) the colony migration model with Hill functions in recruitment has saddle and saddle-node
bifurcations, while the migration system with piecewise functions does not; (3) the system with
Hill functions has only equilibrium dynamics, i.e. either has a global stability at one interior
equilibrium or has bistablity among two locally stable interior equilibria. Bifurcation analysis
shows that the geometrical shape of the Hill functions greatly impacts the dynamics: (1) the
system with flatter Hill functions is less likely to exhibit bistability; (2) the system with steeper
functions is prone to exhibit bistability, and the steady state of total active workers is closer to
that of active workers in the system with piecewise function.
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1. The Main Text

Social insect colonies are well-known for their com-
plex and robust collective actions through cooper-
ation of individuals [Pratt et al., 2005; Feng, 2022;
Feng et al., 2021]. Without any central control,
group members in these species can make collec-
tive decisions accurately by sharing local informa-
tion [Mallon et al., 2001]. Over the past few decades,
this superior ability of social insect colonies has
aroused great interest from biologists [Theraulaz
et al., 2003]. Moreover, the mechanism of collec-
tive decision-making also inspires the development
of many other fields such as computer science [Naj-
jar & Gaudiot, 1990], insect-like robots [Bose et al.,
2017], and gene expression [Mattick & Gagen, 2001].
Thus, it is significant to study the potential mech-
anisms underlying collective behaviors.

Colony migration in social insects is a leading
example of collective decision-making [Pratt, 2005].
Although extensive experimental works reveal the
individual behavior and recruitment rule in migra-
tion process [Mallon et al., 2001; Franks et al.,
2007; Gordon & Mehdiabadi, 1999; Franks et al.,
2003; Pratt & Sumpter, 2006], it is still an early
stage to explore the underlying mechanism and
the interactions between multiple components in
migration system. Mathematical modeling [Pratt
et al., 2002, 2005] has been shown as a power
tool to gain a deeper understanding on such mech-
anisms and predict collective dynamics regarding
how social insect colonies make decisions in choos-
ing new colony sites. In [Wang et al., 2022], we pro-
posed and studied a general colony migration model
with a switching function in recruitment to explore
the dynamics and the effects of key parameters on
the outcomes of collective migration. The general
model of colony migration system can be written as
follows:

dS

dt
= −αsaS − βlsSL − βcsSC

+ αasA + αlsL + αcsC,

dA

dt
= αsaS + βlsSL + βcsSC − αasA − αalA,

dL

dt
= αalA − αlcH(A,L,C)L − αlsL,

dC

dt
= αlcH(A,L,C)L − αcsC,

(1)

where S, A, L and C represent searching popula-
tion, assessing population, leading population and
carrying population, respectively; αsa is the inde-
pendent discovery rate, which is inversely propor-
tional to the distance between old nest to new
site; βls and βcs are recruitment rates of leaders
and carriers, respectively; αal is the transition rate
of assessors into leaders, which is proportional to
the quality of new site; αas, αls and αcs are the
transition rates from assessors, leaders and carri-
ers into searchers, respectively; αal is the transition
rate of leaders into carriers. The recruitment func-
tion H(A,L,C) in [Wang et al., 2022] is defined
as a piecewise function to describe the recruitment
switching

H(A,L,C) =

{
0, if A + L + C < Θ,

1, if A + L + C > Θ.
(2)

The recruitment decision defined in this piecewise
function H(A,L,C) is scored as 1 if the size of
active workers (A + L + C) in new site reaches
quorum threshold Θ; otherwise, the recruitment
decision is scored as 0.

The main dynamical results of Model (1) with
H(A,L,C) being a switching function as (2) are
concluded as follows: (1) the populations of S, A
and L are persistent; (2) the system can have one
or two locally stable equilibria; (3) there are three
possible dynamic patterns, i.e. the system may be
globally stable at one equilibrium, bistable between
one boundary equilibrium and one interior equilib-
rium or exhibit fluctuating dynamics without any
interior equilibrium.

In the general model of the colony migration
System (1), H(A,L,C) is a function describing the
probability of recruitment switching between popu-
lation L and population C in a collective nest-choice
process. Motivated by [Pratt et al., 2002], the paper
in [Wang et al., 2022] defined H(A,L,C) as a piece-
wise function in (2). However, the assumption of
switching function is not realistic as suggested in
the recent work of [Pratt et al., 2005] which showed
that the probability of recruitment switching would
be better modeled by Hill functions (3)

H(A,L,C) =
(A + L + C)k

Θk + (A + L + C)k
, (3)

where A + L + C is the mean nest population at
new site, Θ is the quorum threshold at which the
probability of switching recruitment is equal to 0.5,
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Fig. 1. Plots of H(A,L, C) defined by Eq. (3) with Θ = 2
and varying values of k = 1.2, 3, 7, 31. The larger value of k
leads to step-function like shape.

and k determines the nonlinearity of the response,
i.e. the higher k leads to a more step-like function
(see Fig. 1). Thus, we are interested in how the
dynamics of the colony migration System (1) behave
when it incorporates Hill functions (3) instead of
a piecewise function (2). More specifically, we can
explore how values of k impact the dynamics of the
colony migration System (1). According to empiri-
cal work [Pratt et al., 2005, 2002], carriers usually
recruit faster than leaders, and the leaving rates of
assessors, leaders and carriers generally decrease in
sequence. Thus, in this paper, we always assume
that βls < βcs and αcs < αls < αas.

First we have

dS

dt
+

dA

dt
+

dL

dt
+

dC

dt
= 0

as S + A + L + C = N where N is constant. Thus
we can let W = A+ L + C, V = L + C and U = C,
and reduce System (1) to the following equivalent

3D-System (4):

dW

dt
= [αsa + βlsV + (βcs − βls)U ](N − W )

−αasW + (αas − αls)V + (αls − αcs)U,

dV

dt
= αalW − (αal + αls)V + (αls − αcs)U,

dU

dt
= αlc

W k

Θk + W k
(V − U) − αcsU.

(4)

In this paper, we aim to investigate the dynamic
patterns of the colony migration model (4) and com-
pare it with the dynamical results of the system
in [Wang et al., 2022]. The rest of this paper is
organized as follows. In Sec. 2, we present the exis-
tence and local stability of equilibrium, and study
the global dynamical behaviors of colony migration
System (4). In Sec. 3, we perform bifurcation anal-
ysis to compare the dynamic behavior between Sys-
tem (4) and the colony migration system with a
switching function. In Sec. 4, we give a brief con-
clusion of our study.

2. Mathematical Analysis

In this section, we perform a mathematical analysis
on the dynamics of colony migration model (4). Let
σ = min{αas,αls,αcs}. Then, we provide the basic
dynamical result regarding Model (4) as shown in
Theorem 1 which indicates that Model (4) is bio-
logically well-defined.

Theorem 1. System (4) is positive invariant in R3
+,

and every trajectory of Model (4) is attracted to the
compact set

Ω = {(W,V,U) ∈ R3
+ : U ≤ V ≤ W ≤ N}.

Moreover, any solution of System (4) satisfies

lim inf
t→∞

W (t) ≥ αsaN

αsa + σ
,

lim inf
t→∞

V (t) ≥ αalαsaN

(αls + αcs + αal)(αsa + σ)
,

lim inf
t→∞

U(t) ≥ αlcαalαk+1
sa Nk+1

[Θk(αsa + σ)k + αk
saN

k](αal + αls + αcs)(αsa + σ)(αlc + αcs)
.

Proof. For System (4), we have

W ′|W=0 = αsaN > 0, V ′|V =0 = αalW ≥ 0, U ′|U=0 = αlc
W k

Θk + W k
V ≥ 0.

2250213-3



November 24, 2022 11:41 WSPC/S0218-1274 2250213

L. Wang et al.

It then follows that all the trajectories of System (4)
from R3

+ will enter and remain in the region

Ω = {(W,V,U) ∈ R3
+ : U ≤ V ≤ W ≤ N}.

From System (4), there exists

σ = min{αas,αls,αcs}

such that

dW

dt
≥ −(αsa + σ)W + αsaN,

which implies

αsaN

αsa + σ
≤ lim inf

t→∞
W (t) ≤ lim sup

t→∞
W (t) ≤ N.

Therefore, W is uniformly persistent. From Sys-
tem (4), we also have

dV

dt
≥ αalαsaN

αsa + σ
− (αcs + αls + αal)V,

dU

dt
≥ αlcαalαk+1

sa Nk+1

[Θk(αsa + σ)k + αk
saN

k](αal + αls + αcs)(αsa + σ)
− (αlc + αcs)U.

It then follows that

lim inf
t→∞

V (t) ≥ αalαsaN

(αls + αcs + αal)(αsa + σ)
,

lim inf
t→∞

U(t) ≥ αlcαalαk+1
sa Nk+1

[Θk(αsa + σ)k + αk
saN

k](αal + αls + αcs)(αsa + σ)(αlc + αcs)
.

This completes the proof. !

Notes. Theorem 1 implies that W , V , U are
always uniformly persistent. It follows that Sys-
tem (4) with Hill functions in recruitment has no
boundary equilibrium. This result is different from
the colony migration System (1) with H(A,L,C)
being a switching function shown in (2) which can
have a locally stable boundary equilibrium when the
colony size (N) is small. Biologically, the locally sta-
ble boundary equilibrium implies that the migration
fails and the new site does not have carriers (popula-
tion U), so that the system might stabilize at failed
migration state. Mathematically, our result shows
that our System (4) with Hill functions in recruit-
ment can always have population in the carrier even
though migration may not be successful.

Next, we state the existence of interior equilib-
rium of System (4) as follows. We first define

h(W ) = µk+2W
k+2 + µk+1W

k+1 + µkW
k

+ µ2W
2 + µ1W + µ0, (5)

where

µk+2 = −αal(βcsαlc + βlsαcs),

µk+1 = αal(βcsαlc + βlsαcs)N − αcs(αas + αal)

× (αlc + αls) − αsa[αlc(αcs + αal)

+ αcs(αal + αls)],

µk = αsaN [αlc(αcs + αal) + αcs(αal + αls)],

µ2 = −αcsαalβlsΘk,

µ1 = αcsαalβlsNΘk − αcs[αsa(αal + αls)

+ αls(αas + αal)]Θk,

µ0 = αsaαcs(αal + αls)NΘk.

Let

Ŵ =
(k− 1)µk+1 + (k− 1)

√
µ2

k+1 − 4
k2 − 4
k2 − 1

µkµk+2

−2(k + 2)µk+2
.

Denote two positive roots of h′′(W ) = 0 as Wa, Wb

with Wa < Wb, and denote two larger positive roots
of h′(W ) = 0 as W a, W b with W a < W b. Then, we
have the following result.

Theorem 2. Suppose that k ≥ 2, then we have:

(1) If h′′(Ŵ ) > 0, h′(Wa)h′(Wb) < 0 and
h(W a)h′(W b) < 0, then System (4) has three
interior equilibria;

(2) If h′′(Ŵ ) > 0, h′(Wa)h′(Wb) < 0 and
h(W a)h′(W b) = 0, then System (4) has two
interior equilibria;
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(3) Otherwise, System (4) has a unique interior
equilibrium.

Proof. Any interior equilibrium of System (4) must
satisfy the following algebraic equations

z1(W,V,U) := [αsa + βlsV + (βcs − βls)U ]

× (N − W ) − αasW + (αas − αls)V

+ (αls − αcs)U = 0,

z2(W,V,U) := αalW − (αal + αls)V

+ (αls − αcs)U = 0,

z3(W,V,U) := αlc
W k

Θk + W k
(V − U) − αcsU = 0.

(6)

Solving the second and third equations in (6) yields

V =
αal[αlcW k + αcs(Θk + W k)]W

αlc(αcs + αal)W k + αcs(αal + αls)(Θk +W k)
,

U =
αlcW kV

αlcW k + αcs(Θk + W k)
.

Substituting (2) into the first equation in (6) gives

h(W ) = 0. (7)

Obviously, if the interior equilibrium exists, its W
coordinate is the positive root of (7). Next, we dis-
cuss the existence of the positive roots of (7).

Straightforward calculation leads to

h′(W ) = (k + 2)µk+2W
k+1 + (k + 1)µk+1W

k

+ kµkW
k−1 + 2µ2W + µ1,

h′′(W ) = W k−2[(k + 2)(k + 1)µk+2W
2

+ (k + 1)kµk+1W + k(k − 1)µk] + 2µ2,

:= f(W ) + 2µ2.

It is easy to verify that f(0) = 0. Since k ≥ 2, f(W )
increases on (0, Ŵ ) and decreases on (Ŵ ,+∞). It
then follows that h′′(W ) = 0 has two positive roots
denoted by Wa, Wb with Wa < Wb if f(Ŵ ) > −2µ2,
h′′(W ) = 0 has one positive root denoted by Wc if
f(Ŵ ) = −2µ2, and h′′(W ) = 0 has no positive root
if f(Ŵ ) < −2µ2. It implies that, if f(Ŵ ) > −µ2,
h′(W ) decreases on (0,Wa), increases on (Wa,Wb)
and decreases on (Wb,+∞), and if f(Ŵ ) ≤ −µ2,
h′(W ) decreases on (0,+∞). Then, we can discuss
the positive roots of h′(W ) = 0 in the following two

cases:

(1) If f(Ŵ ) > −µ2, then h′(W ) = 0 has three posi-
tive roots denoted by W1, W2, W3 with W1 < W2 <
W3 when µ1 > 0, h′(Wa)h′(Wb) < 0, h′(W ) = 0
has two positive roots denoted by W4, W5 with
W4 < W5 when µ1 > 0, h′(Wa)h′(Wb) = 0 or
µ1 < 0, h′(Wb) > 0, h′(W ) = 0 has one positive root
denoted by W6 when µ1 > 0, h′(Wa) > 0 or µ1 > 0,
h′(Wb) < 0 or µ1 < 0, h′(Wb) = 0, and h′(W ) = 0
has no positive root when µ1 < 0, h′(Wb) < 0.

(2) If f(Ŵ ) ≤ −µ2, then h′(W ) has one positive
root W6 when µ1 > 0, and h′(W ) has no positive
root if µ1 ≤ 0.

Denote two larger positive roots of h′(W ) = 0
as W a and W b with W a < W b. Since the fact that
the monotonicity of smooth functions is related to
the sign of their first-order derivatives, we can con-
clude the existence of positive roots of h(W ) = 0 as
follows:

(1) If h′(W ) = 0 has no positive root or h′(W ) = 0
has one positive root W6, then h(W ) decreases on
(0,+∞). It follows that h(W ) = 0 has one positive
root.

(2) If h′(W ) = 0 has two positive roots W a and W b,
then h(W ) = 0 can have three positive roots when
h(W a)h(W b) < 0, h(W ) = 0 can have two positive
roots when h(W a)h(W b) = 0, and h(W ) = 0 can
have one positive root when h(W a)h(W b) > 0.

(3) If h′(W ) = 0 has three positive roots W1,
W a and W b, then h(W ) = 0 can have three pos-
itive roots when h(W a)h(W b) < 0, h(W ) = 0 can
have two positive roots when h(W a)h(W b) = 0,
and h(W ) = 0 can have one positive root when
h(W a)h(W b) > 0.

From the above discussion, we can conclude
that System (4) can have one, two or three interior
equilibria. This completes the proof. !

Notes. Theorem 2 shows that System (4) can have
one, two or three interior equilibria. It implies that
System (4) may exhibit bistability between two
locally stable interior equilibria which is illustrated
in detail in Theorem 4. The colony migration system
with a switching function (2) can have one locally
stable boundary equilibrium point or one locally
stable interior equilibrium point or both that may
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lead to bistability between these two locally stable
equilibrium points.

Denote the unique interior equilibrium as
E∗(W ∗, V ∗, U∗) and three interior equilibria as
E∗

1(W ∗
1, V

∗
1, U

∗
1), E∗

2(W ∗
2, V

∗
2, U

∗
2), E∗

3(W ∗
3, V

∗
3, U

∗
3)

respectively with W ∗
1 < W ∗

2 < W ∗
3. From the proof

of Theorem 2, the equilibria E∗
1, E∗

2 may coalesce
into one equilibrium denoted by E∗

12. In this case,
System (4) has two equilibria E∗

12 and E∗
3. Similarly,

the equilibria E∗
2, E∗

3 may coalesce into one equilib-
rium denoted by E∗

23. In this case, System (4) has
two equilibria E∗

1 and E∗
23. Let W s(E∗

i ) denote the
stable manifold of E∗

i , W u(E∗
i ) denote the unsta-

ble manifold of E∗
i and W c(E∗

i ) denote the center
manifold of E∗

i . Then, we are able to state the local
stability of System (4).

Theorem 3

(1) If System (4) has a unique interior equilibrium
E∗, then the equilibrium E∗ is always locally
asymptotically stable;

(2) If System (4) has three interior equilibria E∗
1,

E∗
2 and E∗

3, then the equilibria E∗
1 and E∗

3

are always locally asymptotically stable, and the
equilibrium E∗

2 is a saddle with two-dimensional
stable manifold W s(E∗

2) and one-dimensional
unstable manifold W u(E∗

2);
(3) If System (4) has two interior equilibria E∗

12
and E∗

3, then the equilibrium E∗
3 is always

locally asymptotically stable, and the equilib-
rium E∗

12 has one-dimensional center manifold
W c(E∗

12) and two-dimensional stable manifold
W s(E∗

12);
(4) If System (4) has two interior equilibria E∗

1

and E∗
23, then the equilibrium E∗

1 is always
locally asymptotically stable, and the equilib-
rium E∗

23 has one-dimensional center manifold
W c(E∗

23) and two-dimensional stable manifold
W s(E∗

23).

Proof. Denote E#(W#, V#, U#) as an arbitrary
equilibrium of System (4). Then, the Jacobian
matrix of System (4) at E# is

J(E#) =





A11 A12 A13

αal −(αal + αls) αls − αcs

αlc(V# − U#)
kΘkW k−1

#

(Θk + W k
#)2

αlc

W k
#

Θk + W k
#

−αlc

W k
#

Θk + W k
#

− αcs




, (8)

where

A11 = −[αas + αsa + βlsV# + (βcs − βls)U#],

A12 = βls(N − W#) + αas − αls,

A13 = (βcs − βls)(N − W#) + αls − αcs.

Let λ1(E#), λ2(E#) and λ3(E#) be the roots
of characteristic equation of J(E#), and assume

Rλ1(E#) ≤ Rλ2(E#) ≤ Rλ3(E#).

Note that all off-diagonal elements of J(E#) are
non-negative and all diagonal elements are negative.
Let Mi (i = 1, 2, 3) be the leading principal minors
of J(E#) with i rows. Then straight forward alge-
braic calculations give

(−1)1M1 = αlc

W k
#

Θk + W k
#

+ αcs > 0,

(−1)2M2 = αlc

W k
#

Θk + W k
#

(αal + αcs)

+ αcs(αal + αls) > 0,

(−1)3M3 = −det(J(E#)),

where det(J(E#)) is the determinant of matrix
J(E#). Since (−1)1M1 > 0 and (−1)2M2 > 0,
it follows from the well-known M-matrix theory
that the stability of matrix J is determined
by the sign of det(J(E#)). In particular, if
det(J(E#)) < 0 then the matrix J is stable, and
if det(J(E#)) > 0 then the matrix J is unstable. In
what follows we prove that det(J(E∗)), det(J(E∗

1)),
det(J(E∗

3)) < 0, det(J(E∗
2)) > 0 and det(J(E∗

12)),
det(J(E∗

23)) = 0.
On the one hand, from the proof of Theorem 2,

substituting (7) into the first equation of (6) yields

z1(W,V (W ), U(W )) = h(W ), (9)
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which satisfies h(W#) = 0, and it is easy to verify
the sign of h′(W#) through simple calculation. On
the other hand, for the following functions

z2(W,V,U) = αalW − (αal + αls)V

+ (αls − αcs)U,

z3(W,V,U) = αlc
W k

Θk + W k
(V − U) − αcsU,

(10)

the Implicit Function theorem implies that there
exist continuously differentiable functions V =
V (W ) and U = U(W ) defined by (10) in a neigh-
borhood ∆ of W# such that

(1) V (W#) = V#, U(W#) = U#;
(2) for W ∈ ∆, the functions satisfy the equa-

tions z2(W,V (W ), U(W )) ≡ 0, z3(W,V (W ),
U(W )) ≡ 0;

(3) for W ∈ ∆, we have

dV (W )
dW

∣∣∣∣
W=W#

= −
det

(
∂(z2, z3)
∂(W,U)

)

det
(

∂(z2, z3)
∂(U, V )

)

∣∣∣∣∣∣∣∣
W=W#

,

dU(W )
dW

∣∣∣∣
W=W#

= −
det

(
∂(z2, z3)
∂(V,W )

)

det
(

∂(z2, z3)
∂(U, V )

)

∣∣∣∣∣∣∣∣
W=W#

.

By differentiating both sides of function (9) with
respect to W , we get that

∂z1

∂V

∂V

∂W

∣∣∣∣
W=W#

+
∂z1

∂U

∂U

∂W

∣∣∣∣
W=W#

+
∂z1

∂W

∣∣∣∣
W=W#

= h′(W#).

It implies that

h′(W#) det
(

∂(z2, z3)
∂(V,U)

)∣∣∣∣
W=W#

=
(

∂z1

∂W
det

(
∂(z2, z3)
∂(V,U)

)
− ∂z1

∂U
det

(
∂(z2, z3)
∂(W,U)

)

+
∂z1

∂V
det

(
∂(z2, z3)
∂(W,V )

))∣∣∣∣
W=W#

= det(J(E#)).

Since

det
(

∂(z2, z3)
∂(V,U)

)∣∣∣∣
W=W#

= αalαlc

W k
#

Θk + W k
#

+ αcsαal + αcsαls,

we have

det(J(E#)) =

[
αalαlc

W k
#

Θk + W k
#

+ αcsαal + αcsαls

]

h′(W#).

From the relations between the derivative of Eq. (5)
at roots and polynomial coefficients, we have
that h′(W ∗), h′(W ∗

1 ), h′(W ∗
3) < 0, h′(W ∗

2) > 0
and h′(W ∗

12), h′(W ∗
23) = 0. Thus, det(J(E∗)),

det(J(E∗
1)), det(J(E∗

3)) < 0, det(J(E∗
2)) > 0 and

det(J(E∗
12)), det(J(E∗

23)) = 0. It then follows from
M-matrix theory that all eigenvalues of J at E∗,
E∗

1 and E∗
3 have negative real parts. Therefore, the

equilibria E∗, E∗
1 and E∗

3 are locally asymptotically
stable.

Since

λ1(E∗
2) + λ2(E∗

2) + λ3(E∗
2) = Tr J(E∗

2) < 0,

λ1(E∗
2)λ2(E∗

2)λ3(E∗
2) = detJ(E∗

2) > 0,

where Tr J(E∗
2) is the trace of matrix J(E∗

2),
together with Perron–Frobenius theorem, we have
that

Rλ1(E∗
2) < 0, Rλ2(E∗

2) < 0, λ3(E∗
2) > 0.

Thus, E∗
2 is a saddle point with dimW s(E∗

2) = 2
and dimW u(E∗

2) = 1.
Next, let us consider the local stability of equi-

libria E∗
12 and E∗

23. Since

detJ(E∗
12) = 0, det J(E∗

23) = 0

and the fact that the eigenvalues are continuous
functions of the entries of matrix [Horn & Johnson,
2012], it follows that

λ3(E∗
12) = 0, λ3(E∗

23) = 0.

Then, we have

Rλ2(E∗
12) < 0, Rλ2(E∗

23) < 0.

2250213-7
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Thus, dim W s(E∗
12) = 2, dim W c(E∗

12) = 1,
dimW s(E∗

23) = 2, dim W c(E∗
23) = 1. This com-

pletes the proof. !

Notes. The colony migration system with a
switching function (2) only has the sink, i.e. the
equilibrium point is always locally stable if it exists.
However, Theorem 3 implies that System (4) also
has the saddle point and the critical point at which
the saddle point and the sink coalesce. The exis-
tence of saddle leads to the bistability of System (4)
which is further illustrated in Theorem 4. The
biological interpretation for the bistability case is
that the size of active workers in the new site will
eventually stabilize at two different levels depend-
ing on the initial conditions of each population.
When the number of active workers in the new
site stabilizes at a lower level, most active work-
ers of the colony reject the new site and search
the other sites. When the number of active work-
ers in the new site stabilizes at a higher level, most
active workers commit themselves to the new site
and move the whole passive population to the new
site rapidly.

Theorem 3 has presented the local stability of
each equilibrium of System (4). Next, let us explore

the global dynamics of this system. We state the
results as follows.

Theorem 4

(1) If System (4) has a unique interior equilibrium
E∗, the equilibrium E∗ is globally asymptotically
stable in Ω;

(2) If System (4) has three interior equilibria E∗
1,

E∗
2 and E∗

3, the system has switch phenomenon,
i.e. System (4) has a two-dimensional stable
manifold W s(E∗

2) for E∗
2 which separate Ω into

two regions B(E∗
1) and B(E∗

3), where B(E∗
1) is

the basin of attraction of E∗
1 and B(E∗

3) is the
basin of attraction of E∗

3;
(3) If System (4) has two interior equilibria E∗

12
and E∗

3, System (4) has a two-dimensional sta-
ble manifold W s(E∗

12) for E∗
12 which separate

Ω into two regions B(E∗
12) and B(E∗

3), where
B(E∗

12) is the basin of attraction of E∗
12 and

B(E∗
3) is the basin of attraction of E∗

3;
(4) If System (4) has two interior equilibria E∗

1
and E∗

23, System (4) has a two-dimensional sta-
ble manifold W s(E∗

23) for E∗
23 which separate

Ω into two regions B(E∗
1) and B(E∗

23), where
B(E∗

1) is the basin of attraction of E∗
1 and

B(E∗
23) is the basin of attraction of E∗

23.

Proof. The Jacobian of System (4) has the form

J =





A11 A12 A13

αal −(αal + αls) αls − αcs

αlc(V − U)
kΘkW k−1

(Θk + W k)2
αlc

W k

Θk + W k
−αlc

W k

Θk + W k
− αcs




,

where

A11 = −[αas + αsa + βlsV + (βcs − βls)U ],

A12 = βls(N − W ) + αas − αls,

A13 = (βcs − βls)(N − W ) + αls − αcs.

Since αas > αls > αcs and βcs > βls, it follows
that the off-diagonal entries of the Jacobian matrix
are non-negative in Int Ω. Obviously, System (4)
is cooperative in IntΩ. Furthermore, the Jacobian
matrix is irreducible in Int Ω. It then follows that
the flow generated by (4) is strongly monotone
in IntΩ. Next, we discuss the global stability of
System (4) in the following cases.

Case (1 ). If System (4) has a unique interior equi-
librium E∗, Theorem 3 implies that the equilibrium

E∗ is always locally asymptotically stable. It then
follows from Theorem 4.1.2 in [Smith, 2008] that all
the solutions of System (4) are convergent to the
unique equilibrium E∗, i.e. E∗ is globally asymp-
totically stable.

Case (2 ). If System (4) has three interior equilib-
ria E∗

1, E∗
2 and E∗

3, the equilibria E∗
1 and E∗

3 are
locally asymptotically stable and the equilibrium
E∗

2 is unstable. It then follows from Theorem 4.1.2
in [Smith, 2008] that Cl(B(E∗

1)∪B(E∗
3)) = Ω. Thus,

the two-dimensional stable manifold for E∗
2 sepa-

rates Ω into two parts, one contains E∗
1 and one

branch W u
1(E∗

2) of the unstable manifold for E∗
2, the

other contains E∗
3 and the other branch Wu

2(E∗
2) of

the unstable manifold for E∗
2. This implies that all

2250213-8
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the solutions of System (4) are convergent to either
E∗

1 or E∗
3.

Case (3 ). If System (4) has two interior equilib-
ria E∗

12 and E∗
3, by using Theorem 4.1.2 in [Smith,

2008], we have Cl(B(E∗
12) ∪ B(E∗

3)) = Ω. It then
follows that System (4) has a two-dimensional sta-
ble manifold W s(E∗

12) for E∗
12 which separates Ω

into two regions B(E∗
12) and B(E∗

3). Thus, all the
solutions of System (4) are convergent to either E∗

12
or E∗

3.

By using the same arguments as Case (3), we
can prove that when System (4) has two inte-
rior equilibria E∗

1 and E∗
23, System (4) has a two-

dimensional stable manifold W s(E∗
23) for E∗

23 which
separates Ω into two regions B(E∗

1) and B(E∗
23).

This completes the proof of Theorem 4. !

Notes. Theorem 4 suggests that the global
dynamics of System (4) is similar to the dynam-
ics of colony migration system with switching func-
tions (2) in the following way: the system is either
globally stable or exhibits bistability. We should
point out that the dynamics of colony migration
system with switching functions (2) also has oscil-
lations when the parameters do not satisfy βls < βcs

and αcs < αls < αas. Due to the complex of Sys-
tem (4) in this case, we cannot prove or rule out
the existence of fluctuation theoretically but sim-
ulations suggest that the colony migration model
with Hill functions in recruitment (4) does not show
fluctuating dynamics. The bifurcation analysis in
the next section presents that System (4) does not
have fluctuation while the colony migration system
with switching function (2) has oscillations.

3. Impacts of Recruiting Functions
Being Piecewise or Hill
Functions: Comparisons

In this section, we compare the dynamics of the
colony migration model with Hill functions in
recruitment (4) and the colony migration model
with a switching function (2) in recruitment to
explore (1) how different recruitment functions
may lead to different dynamics and (2) how the
shape of Hill functions in recruitment measured by
the parameter k may impact the dynamics. More
specifically, we perform varied bifurcation analysis
to address those two questions when the system
with switching functions (2) (i) has one boundary
attractor; (ii) has one interior attractor; (iii) has

0 10 20 30 40
0

50

100

150

200

N

Fig. 2. Two-parameters bifurcation diagrams of the system
with switching functions (2) when βls = 0.002, βcs = 0.079,
αas = 0.24, αls = 0.12, αcs = 0.07, αal = 0.032, αlc = 0.15,
αsa = 0.01. In the blue region, the switching system has a
unique interior equilibrium point Es which is globally sta-
ble; In the black region, the switching system has a unique
boundary equilibrium point Ef which is globally stable; In
pink region, the switching system has two attractors Es and
Ef which lead to bistability.

bistability between the boundary attractor and
the interior attractor; and (iv) has fluctuating
dynamics.

We first provide typical results of the system
with a switching function (2) that can be described
by the bifurcation diagram in Fig. 2. Then, by using
the same parameters’ values, we perform extensive
numerical simulations on the existence and stability
of equilibrium points of our current System (4) with
different values of k in Hill functions. The typical
examples are shown in Figs. 2–4, and we can con-
clude the results through comparisons as follows:

Case (i). When the colony migration model with
a switching function (2) in recruitment has a global
boundary attractor denoted by Ef (see the black
region in Fig. 2), our colony migration model with
Hill functions in recruitment (4) always has a unique
globally stable interior equilibrium point E∗ for var-
ied values of k (see the blue region at the bottom
of Fig. 3).

Case (ii). When the colony migration model with
a switching function (2) in recruitment has the glob-
ally stable interior attractor denoted by Es (see the
blue region in Fig. 2), our colony migration model
with Hill functions in recruitment (4) also has the
globally stable interior equilibrium point E∗ (see

2250213-9
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(a) k = 2 (b) k = 6

0 10 20 30 40
0

50

100

150

200

N

(c) k = 31

Fig. 3. Two-parameters bifurcation diagrams of the colony migration model with Hill functions in recruitment (4) for dif-
ferent values of k. The other parameters are taken the same as in Fig. 2. In blue regions, the system has a unique interior
equilibrium point E∗ which is globally stable; In red regions, the system has three interior equilibria E∗

1, E∗
2, E∗

3 which lead
to the bistability between E∗

1 and E∗
3 in our System (4).

the blue region at the top of Fig. 3) for varied val-
ues of k. Note that the steady value of E∗ for Sys-
tem (4) in this case is larger than that of E∗ for
System (4) in case (i) [see the difference between
Figs. 5(a) and 5(c)].

Case (iii). When the colony migration model with
a switching function (2) in recruitment has bistabil-
ity between two attractors Ef and Es (see the pink
region in Fig. 2), our colony migration model with
Hill functions in recruitment (4) will stabilize at the
unique interior equilibrium E∗ or have bistability
between two interior attractors E∗

1 and E∗
3 [see the

red regions in Figs. 3(a) to 3(c)]. Specifically, the
smaller the value of k, our current System (4) with
large colony size N is more likely to have a global

stable interior attractor E∗; conversely, the larger
the value of k, our System (4) is prone to be bistable
between E∗

1 and E∗
3.

Case (iv). When the colony migration model with
a switching function (2) in recruitment has fluctuat-
ing dynamics [see the green region in Fig. 4(a)], the
numerical simulations show that the colony migra-
tion model with Hill functions in recruitment (4)
does not oscillate [see Fig. 4(b)].

Figure 5 is presented to further illustrate the
relationship between the colony migration model
with Hill functions in recruitment (4) and the sys-
tem with switching function (2). We choose three
different sets of N , Θ from Fig. 3 and obtain the
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(a) (b)

Fig. 4. Two-parameters bifurcation diagrams of the system with switching function (2) and System (4) when βls = 0.033,
βcs = 0.079, αas = 0.24, αls = 0.012, αcs = 0.07, αal = 0.007, αlc = 0.15, αsa = 0.01. In the blue regions, the colony migration
system has a globally stable interior equilibrium point Es; in the green region, the colony migration system exhibits oscillation;
In the black region, the colony migration system has a globally stable boundary equilibrium point Ef . (a) Bifurcation diagram
of the system with switching function (2) and (b) bifurcation diagram of System (4).

5 10 15 20 25 30
k

2.1

2.15

2.2

2.25

2.3

2.35

2.4

W
(t

)

E*

5 10 15 20 25 30
k

0

20

40

60

80

100

W
(t

)

E3
*

E1
*

E2
*

(a) N = 45, Θ = 35 (b) N = 100, Θ = 20

5 10 15 20 25 30
k

186.7

186.75

186.8

186.85

186.9

W
(t

)

E*

(c) N = 200, Θ = 10

Fig. 5. One-parameter bifurcation diagrams of System (4) with varying k.The other parameters are the same as in Fig. 2. The
blue star is stable node of System (4); the green star is saddle of System (4). Ef and Es are the stable boundary equilibrium
point and the stable interior equilibrium point of colony migration system with switching function (2) respectively.
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variation of equilibrium of System (4) with k as
shown in Fig. 5 which suggests that

(a) When the system with switching function (2)
has a global attractor Ef or Es, the population
of the active workers W is close to the popula-
tion of W for the colony migration model with
Hill functions in recruitment (4) for any value k;

(b) When the system with switching function (2)
exhibits bistability between Ef and Es, our
System (4) also has two attractors E∗

1 and E∗
3

as k increases, and both systems have similar
population size of active workers that is not
impacted much by the value of k.

Bifurcation analysis implies that, when k is large
enough, the dynamics of our current System (4) is
very similar to that of the system with switching
function (2).

4. Conclusion

Nest choice by ants is the leading subject for the
study of collective decision making. Many exper-
imental studies have explored complicated indi-
vidual behaviors in colony migration processes.
However, there are limited works focused on the
underlying mechanisms in dynamical environment
by using mathematical modeling and the related
analysis. In this paper, we have proposed a general
differential equations model to study the dynamics
of colony migration system with Hill functions in
recruitment.

The dynamical results of our colony migration
model with Hill functions in recruitment (4) are
summarized as follows: (i) All the populations in our
colony migration model (4) are persistent; (ii) our
colony migration model (4) can have one or two
or three interior equilibrium which are sink, sad-
dle point or saddle-node point; (iii) There are two
dynamic patterns in our model (4), i.e. the system
can have a unique interior equilibrium which is glob-
ally asymptotically stable, or all the solutions are
convergent to the two different attractors depend-
ing on their initial values when the model (4) has
three interior equilibria.

Bifurcation analysis is performed to investigate
the effects of k on the dynamics of our model (4).
The results show that: (i) When k is large enough,
the steady state of our colony migration model
with Hill functions in recruitment (4) is very sim-
ilar to that of system with switching function (2);
(ii) When k is small, our colony migration model

with Hill functions in recruitment (4) is less likely
to exhibit bistable. Specifically, under the same
parameters, when the system with switching func-
tion (2) has global stability at Ef or Es, our
model (4) also has global stability at its unique inte-
rior equilibrium E∗, while when the system with
switching function (2) has bistability between Ef

and Es, the colony migration model (4) will have
a unique interior equilibrium E∗ which is globally
asymptotically stable by decreasing the value of k.

This paper provides a theoretical framework
for studying the collective migration dynamics of
social insects when the models have different forms
of recruitment functions, i.e. Hill functions versus
piecewise functions. This is our first attempt to
explore how we should model the biological systems
as the dynamical outcomes would be very differ-
ent for the same biological system under different
assumptions. Next, we will explore the dynamics of
colony migration in more complex and realistic sce-
narios by incorporating more available sites into the
framework.
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