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Music Source Separation With Generative Flow

Ge Zhu
Anton Selitskiy

Abstract—Fully-supervised models for source separation are
trained on parallel mixture-source data and are currently state-
of-the-art. However, such parallel data is often difficult to obtain,
and it is cumbersome to adapt trained models to mixtures with new
sources. Source-only supervised models, in contrast, only require
individual source data for training. In this paper, we first leverage
flow-based generators to train individual music source priors and
then use these models, along with likelihood-based objectives, to
separate music mixtures. We show that in singing voice separation
and music separation tasks, our proposed method is competitive
with a fully-supervised approach. We also demonstrate that we
can flexibly add new types of sources, whereas fully-supervised
approaches would require retraining of the entire model.

Index Terms—Generative source separation, glow, singing voice
separation, music source separation.

I. INTRODUCTION

USIC source separation involves separating a music mix-
M ture into multiple source signals. It plays an important
role in many downstream tasks [1] in music signal processing
including melody extraction, lyric recognition and music search.
Consequently, many algorithms have been proposed for various
problem settings of music source separation in the past decades.

We categorize existing approaches as either supervised or

unsupervised based on the availability of separated clean training
data. An approach is supervised when any clean sources are
available during training; an approach is unsupervised when no
such data is available. Further, we define supervised approaches
including the following two settings during training:

1) Fully-supervised approaches: Both mixtures and their
corresponding individual sources are available.

2) Source-only supervised approaches: Only clean individ-
ual sources are available. This approach is sometimes re-
ferred to as unsupervised [2], though we feel that learning
to model source data is a form of supervision.
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In recent literature, fully-supervised approaches achieve the
state-of-the-art performance in source separation tasks. These
approaches often involve training a model (e.g., a deep neural
network) on parallel mixture-source data to map mixtures to
their underlying sources (or their corresponding masks) [3].
Such data can be naturally recorded or crafted to follow the
real distribution of mixtures and their underlying sources. For
example, the MUSDB 18 dataset [4] consists of songs along with
their corresponding individual sources. Such datasets, however,
are difficult to construct or obtain. An alternative approach in-
volves synthesizing training mixtures by randomly mixing clean
training sources. This fully-supervised approach is referred to
specifically as synthetic full-supervision.

In the source-only supervised setting, a common approach
involves first using the individual sources to learn models of the
source domains and then using these models to perform sepa-
ration of mixtures during inference. Notably, the non-negative
matrix factorization (NMF) [5], [6] based source separation is
built upon the concept of a signal dictionary. Other approaches
learn a probabilistic model [7], [8], [9] for each source, and
then separate the mixture with a signal reconstruction objective.
More recently, the generative source separation framework [10]
has gained much attention with the emergence of expressive
deep generative models and various optimization techniques;
for example, implicit generative models such as generative
adversarial networks (GANs) have been used to train source
priors [10], [11], [12] which can then be used to separate
sources with gradient-based methods [2], [10]. Jayaram and
Thickstun [13] train an explicit prior and sample with Langevin
dynamics to perform source separation in the image domain;
however, such sampling methods can be slow even with parallel
sampling [14].

In this paper, we focus on a source-only supervised, generative
approach to music source separation. More specifically, we
1) train flow-based generators to model the spectrograms of
various instruments; and 2) apply gradient-based optimization
to separate sources at inference. Compared to fully-supervised
methods, our approach only needs access to clean individual
sources at train time; practically, it is easier to obtain individual
source data than paired mixture-source data. Although synthetic
full-supervision approach is shown to outperform traditional
data augmentation [15], [16] techniques, it requires a large
amount of combinations of the sources [17], [18]. Compared
to existing source-only supervised, generative methods, we find
that using flow-based models provides two advantages in par-
ticular. First, flow-based models are invertible and thus have
zero representation error; this is not the case for GAN-based
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generative priors [19]. This representation capability is bene-
ficial for optimizing a reconstruction objective during separa-
tion. Second, we find empirically that the separation process
converges quickly and that our approach is faster than current
sampling-based methods.

On singing voice separation and music source separation
tasks, we show that our proposed method outperforms current
source-only separation approaches and achieves competitive
performance with one of the fully-supervised methods. Further-
more, we demonstrate that we are able to flexibly add a new
source. In contrast, in fully-supervised systems, to separate new
sources, it is required to either alter the entire network architec-
tures or prepare paired target source tracks and accompaniment
tracks following one-versus-all training paradigm [20]. We make
the code! publicly available.

II. BACKGROUND
A. Generative Source Separation

Source separation involves separating a mixture X into n in-
dividual sources s;. Under an instantaneous mixing setting [21],

we have:
n
x =Y asi, )
i=1

where «; is the mixing coefficient. For simplicity, we assume
«; = 1. In probabilistic modeling framework [9], [10], [13],
we can assume that different sources have different statistical
behavior. Specifically,

S; ~ pG(Si)7

2

n
Xlsla"'asn’vpmim X Zsi 3 (3)
1=1

where po models sources s;, and p,,;; models the mixture
conditioned on the sum of sources. p,,;, is often fixed and
chosen explicitly to model the noise between the sum of clean
sources and the final mixture. To perform source separation, one
could first train models pg to model the source distributions.
Then, to perform separation, sources s; could be found to
maximize the above maximum a posteriori (MAP) objective,
using a preferred method of optimization. This method would
be considered source-only supervised, as only individual sources
are seen during training.

B. Flow Models

Normalizing flow is a generative model that transforms a
random variable z with a simple distribution p,(z) (Gaussian
in our case) into a target random variable y ~ py (y) through an
invertible function fy. Using the change of variables formula,
the log probability of y can be written as:

8f9 (Z)
oz |’ )

Often, fy is a composition of neural invertible flow layers, for
which the Jacobians are efficient to compute. This allows for

log py (y) = log p(z) — log |det

Open source code: github.com/gzhu06/GenerativeSourceSeparation.
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efficient computation of the total log-determinant term in (4).
Since zis Gaussian, the log p, (z) term can directly be computed;
thus, fp can be trained to maximize the log probability of data,
log py (y). In the case of source separation, we can use flow
models as prior distributions pg.

III. PROPOSED METHOD
A. Glow Priors

Having witnessed the success in solving inverse problems
with flow-based 2D image priors [19], we use Glow [22] as our
generative model backbone to learn source priors from 2D audio
magnitude spectrograms. One motivation for modeling music
priors in the spectral domain is that the magnitude spectrograms
of singing voice and background music have different structures,
which may facilitate separation; singing voice spectrograms tend
to be sparse while background music spectrograms tend to be
low rank and change more slowly [23]. Note that the magnitude
spectrogram of the mixture is not the exact sum of those of the
sources due to phase differences; however, the sum is a good
approximation as shown in NMF-based methods [24].

Fig. 1 illustrates the training and inference (i.e., separation)
process of our proposed flow-based model. For the task of music
source separation, we train a set of independent Glow priors
(named InstGlow), one for each source.

We adapt the Glow [22] as the flow-based generator backbone
and use z; ~ N(0,I) as the latent prior. Our glow generator
consists of a squeeze layer, 12 flow blocks, and an unsqueeze
layer. The squeeze and unsqueeze operation follows the design
in [25]. In each step of flow, we use an activation normalization
layer, an invertible 1x1 convolution layer [25], and an affine
coupling layer in [26] without local conditioning.

B. Inference

In the separation stage, we assume that we have knowledge
of sources presented in the mixture and apply all of the prede-
fined source priors to separate corresponding components. As
mentioned in Section II-A, we use MAP [8] as the separation ob-
jective and apply an iterative optimization to separate predefined
sources:

S$1,...,8, = argmax logp(sy,..
S1,.-+,8n

)

.y Sp|X)

= argmax log p(x|sy, ...

S1,..438n

) Sn) =+ Z logp(si)a
i=1
(6)

where x is the observed mixture. In (6) we assume statistical
independence among all source tracks. In the above MAP for-
mulation, we can also optimize over latent variable z; rather than
s;, as there is a bijection between them from the Glow model,
S; = fé (Zi).

To model p(x|s1,...,sy) in the instantaneous mixing, we
assume an independent additive residual noise n over the sum of
the sources [8], i.e., p(x[s1,...,8,) = p(x —>.I's;) = p(n).
We assume that the spectrogram magnitude of the residual noise
follows a Poisson distribution, then the log-likelihood of the
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Fig. 1.

Diagram for proposed flow-based generative source separation. Stage 1: training source prior models with instrument-specific unconditional models

(InstGlow), one for each source. Stage 2: separating sources by searching the optimal latent code {z; } to optimize an MLE or an MAP objective.

Generators
vocals

Negative Log-Likelihood

Test Samples

Fig. 2. Boxplots of NLLs of pre-trained ‘vocals,” ‘drums,” ‘bass’ and ‘other’
Glow generators (different colors) on a total of 100 one-minute test audio pieces
from the four source categories (different columns). Each data point is the NLL
of one generator on one test audio piece.

mixture (first term in (6)) becomes equivalent to the negative
generalized KL-divergence. Because we are using flow-based
models, the second term in (6) (the exact log-likelihood of
the source priors) can be computed directly. We optimize the
objective (6) by searching the latent space within the support
of pre-trained generators [19], [27]. Since both terms in (6) are
differentiable with respect to z;, we perform this optimization
with gradient descent. During optimization, we initialize z; = 0
to bias the latent codes towards zero in order to align with the
target z; after the source specific priors are trained. This bias
could be viewed as a simpler prior, with the benefit of being
more robust to high out-of-distribution likelihoods. After finding
the optimal latent codes z;, we can compute the spectrograms
of sources using the Glow models with s; = f{(z;). Eventually,
we synthesize the source waveforms using inverse-STFT with
the recovered source spectrogram and the mixture phase.

C. Prior Reweighting

Previous works on speech enhancement [28], audio source
separation [29], and image inpainting tasks [19], [27] have found
that flow-based models tend to assign high probability density
to some out-of-distribution data while assigning low density to
some in-distribution data. We find similar phenomena in our
experiments. We computed the negative log-likelihoods (NLLs)
of the four pretrained Glow priors on the 100 one-minute source
tracks from the test partition in MUSDB18 shown in Fig. 2.
We observe that the estimated NLLs are highly correlated and

overlapping with each other for the same samples, suggesting
that the pre-trained instrument generators are not discriminative
enough in differentiating unseen instruments at inference.

To address this concern, we empirically re-weigh the prior
term in (6) with coefficient y € [0, 1], initially proposed in [19].
We can discard the prior term in (6) by choosing v = 0 and
arrive at a maximum likelihood estimation (MLE) objective.
Notice that, we keep the zero initialization of z; in the MLE
approach to avoid trivial solutions for (6) without the prior term
constraints. Also note that in this MLE objective we effectively
treat our Glow model as an implicit generator [30], though in
our case sources are deterministically related to the latents.

IV. EXPERIMENTS

A. Dataset

We train the source priors for vocals, bass, drums and
other using the train subset of the MUSDB18 and guitar
and piano from the train subset of Slakh2100 (i.e. we do not
use bass, drums source tracks from Slakh2100 to train the
source priors). For preprocessing, we use the mono channel and
downsample the tracks into 22.05 kHz and split them into 5-
second non-silent segments. We use spectrograms with 1024-
point FFT size and 256-point hop size as input features.

For MUSDBI18 evaluation, we test both multi-instrument
separation and singing-accompaniment separation. To construct
accompaniment tracks, we sum the separated non-vocal sources.
For Slakh2100-submix evaluation, we select and remix the
subtracks of the top four instrument categories (piano, bass,
guitar and drums) from the original Slakh2100. We split
the test portion into one-minute segments to fit into memory.
We measure the global signal-to-distortion ratio (SDR) defined
in Music Demixing Challenge [36] of each segment with
museval toolbox [37] to evaluate separation performance.
Following [36], we remove silent segments in the test data,
where SDR is undefined.

B. Baselines and Training

We use Conv-TasNet, Demucs(v2) [16], open-unmix [20]
and Wave-U-Net [35] as fully-supervised baseline systems.
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TABLE I
COMPARISON OF SOURCE SEPARATION SYSTEMS WITH MEDIAN SDR (DB) ACROSS TRACKS ON THREE SETTINGS OF TWO TEST SETS

Method NNfura]l( Supervision MUSDB18-22.05kHz [4] Slakh2100-submix [31]
etworks Vocals  Bass  Drums  Other Acc. Bass Drums  Guitar  Piano
INSTGLOW-MLE (OURS) Glow Source-only 3.92 2.58 3.85 2.37 9.82 1.54 6.14 1.85 0.80
INSTGLOW-MAP (OURS) Glow Source-only 3.66 2.51 3.70 1.99 9.52 1.39 5.95 1.51 0.51
LQ-VAE [32] VQ-VAE Source-only 0.16 - - - 4.47 - - - -
GAN-PRIOR [2] SpecGAN Source-only -0.44 0.48 -0.40 0.32 4.29 0.09 0.85 -0.01 -0.42
Conv-TasNet [33] TCN Full 7.00 4.19 5.25 3.94 12.84 497 9.95 - -
Demucs (v2) [34] U-Net Full 7.14 5.50 6.74 4.16 1294 548 10.21 - -
Open Un-mix [20] BiLSTM Full 6.86 4.88 6.35 3.86 1275  4.66 8.64 - -
Wave-U-Net [35] Wave-U-Net Full 5.06 2.63 3.74 1.95 7.02 0.01 391 - -

Grey cells indicate that the system is unable to separate that source type unless it is retrained from scratch using one-versus-all paradigm and on the

same kind of sources as the test set.

We directly use the authors’ pre-trained models trained on
MUSDBI18. Since MUSDB18 does not contain guitar and pi-
ano source tracks, these models cannot separate such sources
in Slakh2100-submix without preparing paired source-mixture
data and retraining from scratch.

We also compare our model to source-only supervision sys-
tems, using GAN-prior [2] and LQ-VAE [32] as baselines.
During separation, we apply projected gradient descent (PGD)
on the reconstruction objective to search for the latent codes.
For LQ-VAE, we apply the authors’ method as-is.

For source priors training, we use the Adam [38] optimizer
at a learning rate of le-4 for 1000 epochs. During separation,
we use the Adam optimizer at a learning rate of 0.01 for 150
iterations. Each iteration takes 0.3 seconds during evaluation on
NVIDIA 2080Ti GPU. We also conduct an ablation study on
MLE and MAP optimization objectives.

C. Results

We start by comparing different variants of our proposed
method, shown in the first two rows in Table I. We observe that
the InstGlow with the MLE objective achieves the best results in
terms of SDR across all of the tasks. For the InstGlow models,
the MLE objective that only uses KL-divergence achieves better
performance than MAP estimation; this differs from results in
image domain [27], where MAP estimation shows better perfor-
mance. One reason may be due to the independence assumption
of instrument sources in MAP estimation in (6). Another reason
may result from the fact that deep generative models lack of
discriminative abilities to distinguish data of other classes [39],
especially for the high dimensional data [39].

When comparing to source-only supervision systems shown
in the middle rows of Table I, our proposed InstGlow signif-
icantly outperforms the other systems. While the results for
the GAN-prior [2] are perhaps surprisingly poor, our find-
ings are consistent with the authors of LQ-VAE, who report
that the GAN-prior performs poorly on the drum-piano toy
dataset. We suspect the LQ-VAE baseline performs poorly
due to the relatively small dataset (MUSDBI18) on which we
trained it. Note that in a similar method to LQ-VAE, [40],
[41] uses a pre-trained Jukebox VQ-VAE-model (on 1.2 mil-
lion songs) [42], and El Amri et al. [40] achieved comparable
performance to fully-supervised methods. However, for a fair

comparison with our method and the GAN-prior baseline, we
only pre-train LQ-VAE on the MUSDB dataset. Also note that
LQ-VAE is only able to separate two sources, due to its training
paradigm.

We compare our best performing system, InstGlow-MLE,
with the fully-supervised baselines. On the MUSDBIS test
set, a statistical test shows that InstGlow-MLE significantly
outperforms Wave-U-Net in other, and achieves comparable
results in bass and drums, although there is still a large gap
behind Wave-U-Netin vocals. By listening to the separated vocal
samples from InstGlow-MLE, we found that they contain more
interference from other sources, which could be eased by adding
regularization such as coherence loss [43].

On the Slakh2100-submix test set, we can only compare
with fully-supervised models on the bass and drums sources,
as their models are trained on MUSDB 18 which does not con-
tain guitar and piano tracks. We observe that InstGlow-MLE
achieves better results than Wave-U-Net without retraining on
bass and drums sources from Slakh2100 dataset, showing its
generalization ability to new datasets. Finally, we additionally
train guitar and piano priors using only the source data from
the Slakh2100 training subset and apply them to separate the
corresponding tracks in the Slakh2100-submix test subset. We
find that the separation performance of guitar and piano is
similar to that of the bass source but lower than that of the
drum source; this relatively weak performance may be due to the
significant pitch range overlap of guitar and piano [31]. We find
this training paradigm promising given the above observations,
as InstGlow only requires instrument data and can be used to
separate sources undefined in MUSDB 18, which is not easily
feasible in fully-supervised models.

V. CONCLUSION

In this paper, we employed flow-based generators for music
source separation in the source-only supervision setting. To the
best of our knowledge, we are the first to report successful
separation results in this setting on benchmark separation tasks,
achieving significantly better results than other source-only su-
pervised methods. Future work is to bridge the performance
gap between our method and fully-supervised approaches by
potentially scaling up with more instrument data in the wild as
well as to extend it to more general settings.
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