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Music Source Separation With Generative Flow
Ge Zhu , Graduate Student Member, IEEE, Jordan Darefsky, Fei Jiang ,

Anton Selitskiy , Graduate Student Member, IEEE, and Zhiyao Duan , Member, IEEE

Abstract—Fully-supervised models for source separation are
trained on parallel mixture-source data and are currently state-
of-the-art. However, such parallel data is often difficult to obtain,
and it is cumbersome to adapt trained models to mixtures with new
sources. Source-only supervised models, in contrast, only require
individual source data for training. In this paper, we first leverage
flow-based generators to train individual music source priors and
then use these models, along with likelihood-based objectives, to
separate music mixtures. We show that in singing voice separation
and music separation tasks, our proposed method is competitive
with a fully-supervised approach. We also demonstrate that we
can flexibly add new types of sources, whereas fully-supervised
approaches would require retraining of the entire model.

Index Terms—Generative source separation, glow, singing voice
separation, music source separation.

I. INTRODUCTION

M
USIC source separation involves separating a music mix-

ture into multiple source signals. It plays an important

role in many downstream tasks [1] in music signal processing

including melody extraction, lyric recognition and music search.

Consequently, many algorithms have been proposed for various

problem settings of music source separation in the past decades.

We categorize existing approaches as either supervised or

unsupervised based on the availability of separated clean training

data. An approach is supervised when any clean sources are

available during training; an approach is unsupervised when no

such data is available. Further, we define supervised approaches

including the following two settings during training:

1) Fully-supervised approaches: Both mixtures and their

corresponding individual sources are available.

2) Source-only supervised approaches: Only clean individ-

ual sources are available. This approach is sometimes re-

ferred to as unsupervised [2], though we feel that learning

to model source data is a form of supervision.
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In recent literature, fully-supervised approaches achieve the

state-of-the-art performance in source separation tasks. These

approaches often involve training a model (e.g., a deep neural

network) on parallel mixture-source data to map mixtures to

their underlying sources (or their corresponding masks) [3].

Such data can be naturally recorded or crafted to follow the

real distribution of mixtures and their underlying sources. For

example, the MUSDB18 dataset [4] consists of songs along with

their corresponding individual sources. Such datasets, however,

are difficult to construct or obtain. An alternative approach in-

volves synthesizing training mixtures by randomly mixing clean

training sources. This fully-supervised approach is referred to

specifically as synthetic full-supervision.

In the source-only supervised setting, a common approach

involves first using the individual sources to learn models of the

source domains and then using these models to perform sepa-

ration of mixtures during inference. Notably, the non-negative

matrix factorization (NMF) [5], [6] based source separation is

built upon the concept of a signal dictionary. Other approaches

learn a probabilistic model [7], [8], [9] for each source, and

then separate the mixture with a signal reconstruction objective.

More recently, the generative source separation framework [10]

has gained much attention with the emergence of expressive

deep generative models and various optimization techniques;

for example, implicit generative models such as generative

adversarial networks (GANs) have been used to train source

priors [10], [11], [12] which can then be used to separate

sources with gradient-based methods [2], [10]. Jayaram and

Thickstun [13] train an explicit prior and sample with Langevin

dynamics to perform source separation in the image domain;

however, such sampling methods can be slow even with parallel

sampling [14].

In this paper, we focus on a source-only supervised, generative

approach to music source separation. More specifically, we

1) train flow-based generators to model the spectrograms of

various instruments; and 2) apply gradient-based optimization

to separate sources at inference. Compared to fully-supervised

methods, our approach only needs access to clean individual

sources at train time; practically, it is easier to obtain individual

source data than paired mixture-source data. Although synthetic

full-supervision approach is shown to outperform traditional

data augmentation [15], [16] techniques, it requires a large

amount of combinations of the sources [17], [18]. Compared

to existing source-only supervised, generative methods, we find

that using flow-based models provides two advantages in par-

ticular. First, flow-based models are invertible and thus have

zero representation error; this is not the case for GAN-based
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generative priors [19]. This representation capability is bene-

ficial for optimizing a reconstruction objective during separa-

tion. Second, we find empirically that the separation process

converges quickly and that our approach is faster than current

sampling-based methods.

On singing voice separation and music source separation

tasks, we show that our proposed method outperforms current

source-only separation approaches and achieves competitive

performance with one of the fully-supervised methods. Further-

more, we demonstrate that we are able to flexibly add a new

source. In contrast, in fully-supervised systems, to separate new

sources, it is required to either alter the entire network architec-

tures or prepare paired target source tracks and accompaniment

tracks following one-versus-all training paradigm [20]. We make

the code1 publicly available.

II. BACKGROUND

A. Generative Source Separation

Source separation involves separating a mixture x into n in-

dividual sources si. Under an instantaneous mixing setting [21],

we have:

x =

n
∑

i=1

αisi, (1)

where αi is the mixing coefficient. For simplicity, we assume

αi = 1. In probabilistic modeling framework [9], [10], [13],

we can assume that different sources have different statistical

behavior. Specifically,

si ∼ pG(si), (2)

x|s1, . . . , sn ∼ pmix

(

x

∣

∣

∣

∣

∣

n
∑

i=1

si

)

, (3)

where pG models sources si, and pmix models the mixture

conditioned on the sum of sources. pmix is often fixed and

chosen explicitly to model the noise between the sum of clean

sources and the final mixture. To perform source separation, one

could first train models pG to model the source distributions.

Then, to perform separation, sources si could be found to

maximize the above maximum a posteriori (MAP) objective,

using a preferred method of optimization. This method would

be considered source-only supervised, as only individual sources

are seen during training.

B. Flow Models

Normalizing flow is a generative model that transforms a

random variable z with a simple distribution pz(z) (Gaussian

in our case) into a target random variable y ∼ py(y) through an

invertible function fθ. Using the change of variables formula,

the log probability of y can be written as:

log py(y) = log pz(z)− log

∣

∣

∣

∣

det
∂fθ(z)

∂z

∣

∣

∣

∣

. (4)

Often, fθ is a composition of neural invertible flow layers, for

which the Jacobians are efficient to compute. This allows for

1Open source code: github.com/gzhu06/GenerativeSourceSeparation.

efficient computation of the total log-determinant term in (4).

Sincez is Gaussian, the log pz(z) term can directly be computed;

thus, fθ can be trained to maximize the log probability of data,

log py(y). In the case of source separation, we can use flow

models as prior distributions pG.

III. PROPOSED METHOD

A. Glow Priors

Having witnessed the success in solving inverse problems

with flow-based 2D image priors [19], we use Glow [22] as our

generative model backbone to learn source priors from 2D audio

magnitude spectrograms. One motivation for modeling music

priors in the spectral domain is that the magnitude spectrograms

of singing voice and background music have different structures,

which may facilitate separation; singing voice spectrograms tend

to be sparse while background music spectrograms tend to be

low rank and change more slowly [23]. Note that the magnitude

spectrogram of the mixture is not the exact sum of those of the

sources due to phase differences; however, the sum is a good

approximation as shown in NMF-based methods [24].

Fig. 1 illustrates the training and inference (i.e., separation)

process of our proposed flow-based model. For the task of music

source separation, we train a set of independent Glow priors

(named InstGlow), one for each source.

We adapt the Glow [22] as the flow-based generator backbone

and use zi ∼ N (0, I) as the latent prior. Our glow generator

consists of a squeeze layer, 12 flow blocks, and an unsqueeze

layer. The squeeze and unsqueeze operation follows the design

in [25]. In each step of flow, we use an activation normalization

layer, an invertible 1x1 convolution layer [25], and an affine

coupling layer in [26] without local conditioning.

B. Inference

In the separation stage, we assume that we have knowledge

of sources presented in the mixture and apply all of the prede-

fined source priors to separate corresponding components. As

mentioned in Section II-A, we use MAP [8] as the separation ob-

jective and apply an iterative optimization to separate predefined

sources:

ŝ1, . . . , ŝn = argmax
s1,...,sn

log p(s1, . . . , sn|x) (5)

= argmax
s1,...,sn

log p(x|s1, . . . , sn) +
n
∑

i=1

log p(si),

(6)

where x is the observed mixture. In (6) we assume statistical

independence among all source tracks. In the above MAP for-

mulation, we can also optimize over latent variable zi rather than

si, as there is a bijection between them from the Glow model,

si = f i
θ(zi).

To model p(x|s1, . . . , sn) in the instantaneous mixing, we

assume an independent additive residual noisen over the sum of

the sources [8], i.e., p(x|s1, . . . , sn) = p(x−
∑n

i si) = p(n).
We assume that the spectrogram magnitude of the residual noise

follows a Poisson distribution, then the log-likelihood of the
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Fig. 1. Diagram for proposed flow-based generative source separation. Stage 1: training source prior models with instrument-specific unconditional models
(InstGlow), one for each source. Stage 2: separating sources by searching the optimal latent code {zi} to optimize an MLE or an MAP objective.

Fig. 2. Boxplots of NLLs of pre-trained ‘vocals,’ ‘drums,’ ‘bass’ and ‘other’
Glow generators (different colors) on a total of 100 one-minute test audio pieces
from the four source categories (different columns). Each data point is the NLL
of one generator on one test audio piece.

mixture (first term in (6)) becomes equivalent to the negative

generalized KL-divergence. Because we are using flow-based

models, the second term in (6) (the exact log-likelihood of

the source priors) can be computed directly. We optimize the

objective (6) by searching the latent space within the support

of pre-trained generators [19], [27]. Since both terms in (6) are

differentiable with respect to zi, we perform this optimization

with gradient descent. During optimization, we initialize zi = 0
to bias the latent codes towards zero in order to align with the

target zi after the source specific priors are trained. This bias

could be viewed as a simpler prior, with the benefit of being

more robust to high out-of-distribution likelihoods. After finding

the optimal latent codes zi, we can compute the spectrograms

of sources using the Glow models with si = f i
θ(zi). Eventually,

we synthesize the source waveforms using inverse-STFT with

the recovered source spectrogram and the mixture phase.

C. Prior Reweighting

Previous works on speech enhancement [28], audio source

separation [29], and image inpainting tasks [19], [27] have found

that flow-based models tend to assign high probability density

to some out-of-distribution data while assigning low density to

some in-distribution data. We find similar phenomena in our

experiments. We computed the negative log-likelihoods (NLLs)

of the four pretrained Glow priors on the 100 one-minute source

tracks from the test partition in MUSDB18 shown in Fig. 2.

We observe that the estimated NLLs are highly correlated and

overlapping with each other for the same samples, suggesting

that the pre-trained instrument generators are not discriminative

enough in differentiating unseen instruments at inference.

To address this concern, we empirically re-weigh the prior

term in (6) with coefficient γ ∈ [0, 1], initially proposed in [19].

We can discard the prior term in (6) by choosing γ = 0 and

arrive at a maximum likelihood estimation (MLE) objective.

Notice that, we keep the zero initialization of zi in the MLE

approach to avoid trivial solutions for (6) without the prior term

constraints. Also note that in this MLE objective we effectively

treat our Glow model as an implicit generator [30], though in

our case sources are deterministically related to the latents.

IV. EXPERIMENTS

A. Dataset

We train the source priors for vocals, bass, drums and

other using the train subset of the MUSDB18 and guitar

and piano from the train subset of Slakh2100 (i.e. we do not

use bass, drums source tracks from Slakh2100 to train the

source priors). For preprocessing, we use the mono channel and

downsample the tracks into 22.05 kHz and split them into 5-

second non-silent segments. We use spectrograms with 1024-

point FFT size and 256-point hop size as input features.

For MUSDB18 evaluation, we test both multi-instrument

separation and singing-accompaniment separation. To construct

accompaniment tracks, we sum the separated non-vocal sources.

For Slakh2100-submix evaluation, we select and remix the

subtracks of the top four instrument categories (piano, bass,

guitar and drums) from the original Slakh2100. We split

the test portion into one-minute segments to fit into memory.

We measure the global signal-to-distortion ratio (SDR) defined

in Music Demixing Challenge [36] of each segment with

museval toolbox [37] to evaluate separation performance.

Following [36], we remove silent segments in the test data,

where SDR is undefined.

B. Baselines and Training

We use Conv-TasNet, Demucs(v2) [16], open-unmix [20]

and Wave-U-Net [35] as fully-supervised baseline systems.
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TABLE I
COMPARISON OF SOURCE SEPARATION SYSTEMS WITH MEDIAN SDR (DB) ACROSS TRACKS ON THREE SETTINGS OF TWO TEST SETS

We directly use the authors’ pre-trained models trained on

MUSDB18. Since MUSDB18 does not contain guitar and pi-

ano source tracks, these models cannot separate such sources

in Slakh2100-submix without preparing paired source-mixture

data and retraining from scratch.

We also compare our model to source-only supervision sys-

tems, using GAN-prior [2] and LQ-VAE [32] as baselines.

During separation, we apply projected gradient descent (PGD)

on the reconstruction objective to search for the latent codes.

For LQ-VAE, we apply the authors’ method as-is.

For source priors training, we use the Adam [38] optimizer

at a learning rate of 1e-4 for 1000 epochs. During separation,

we use the Adam optimizer at a learning rate of 0.01 for 150

iterations. Each iteration takes 0.3 seconds during evaluation on

NVIDIA 2080Ti GPU. We also conduct an ablation study on

MLE and MAP optimization objectives.

C. Results

We start by comparing different variants of our proposed

method, shown in the first two rows in Table I. We observe that

the InstGlow with the MLE objective achieves the best results in

terms of SDR across all of the tasks. For the InstGlow models,

the MLE objective that only uses KL-divergence achieves better

performance than MAP estimation; this differs from results in

image domain [27], where MAP estimation shows better perfor-

mance. One reason may be due to the independence assumption

of instrument sources in MAP estimation in (6). Another reason

may result from the fact that deep generative models lack of

discriminative abilities to distinguish data of other classes [39],

especially for the high dimensional data [39].

When comparing to source-only supervision systems shown

in the middle rows of Table I, our proposed InstGlow signif-

icantly outperforms the other systems. While the results for

the GAN-prior [2] are perhaps surprisingly poor, our find-

ings are consistent with the authors of LQ-VAE, who report

that the GAN-prior performs poorly on the drum-piano toy

dataset. We suspect the LQ-VAE baseline performs poorly

due to the relatively small dataset (MUSDB18) on which we

trained it. Note that in a similar method to LQ-VAE, [40],

[41] uses a pre-trained Jukebox VQ-VAE-model (on 1.2 mil-

lion songs) [42], and El Amri et al. [40] achieved comparable

performance to fully-supervised methods. However, for a fair

comparison with our method and the GAN-prior baseline, we

only pre-train LQ-VAE on the MUSDB dataset. Also note that

LQ-VAE is only able to separate two sources, due to its training

paradigm.

We compare our best performing system, InstGlow-MLE,

with the fully-supervised baselines. On the MUSDB18 test

set, a statistical test shows that InstGlow-MLE significantly

outperforms Wave-U-Net in other, and achieves comparable

results in bass and drums, although there is still a large gap

behind Wave-U-Net in vocals. By listening to the separated vocal

samples from InstGlow-MLE, we found that they contain more

interference from other sources, which could be eased by adding

regularization such as coherence loss [43].

On the Slakh2100-submix test set, we can only compare

with fully-supervised models on the bass and drums sources,

as their models are trained on MUSDB18 which does not con-

tain guitar and piano tracks. We observe that InstGlow-MLE

achieves better results than Wave-U-Net without retraining on

bass and drums sources from Slakh2100 dataset, showing its

generalization ability to new datasets. Finally, we additionally

train guitar and piano priors using only the source data from

the Slakh2100 training subset and apply them to separate the

corresponding tracks in the Slakh2100-submix test subset. We

find that the separation performance of guitar and piano is

similar to that of the bass source but lower than that of the

drum source; this relatively weak performance may be due to the

significant pitch range overlap of guitar and piano [31]. We find

this training paradigm promising given the above observations,

as InstGlow only requires instrument data and can be used to

separate sources undefined in MUSDB18, which is not easily

feasible in fully-supervised models.

V. CONCLUSION

In this paper, we employed flow-based generators for music

source separation in the source-only supervision setting. To the

best of our knowledge, we are the first to report successful

separation results in this setting on benchmark separation tasks,

achieving significantly better results than other source-only su-

pervised methods. Future work is to bridge the performance

gap between our method and fully-supervised approaches by

potentially scaling up with more instrument data in the wild as

well as to extend it to more general settings.
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