




Table 1. The audio silence and visual masking experiment

on the AVA dataset. The mean average precision (mAP) is

displayed.

RothNet TalkNet

AVA 79.29% 92.28%

Audio silence 33.61% 27.50%

Visual masking 39.87% 55.20%

that current models may not be able to detect unsynchronized

videos as ªNot Speakingº. With our definition for unsyn-

chronization in Section 1, we augment public benchmarks

by synthesizing the audio-visual mismatched and misaligned

videos from the original videos to test the existing models.

We use ªRothNetº to refer to the multimodal framework

proposed in [6] as it is a good representative of predominant

methods. As a common ASD framework, RothNet takes 11

consecutive face frames and their corresponding audio as in-

put, extracts audio and visual features respectively, and con-

catenates them for further classification. We also choose the

TalkNet model [11] as it achieves the SoTA performance.

AVA-ActiveSpeaker (AVA) [6]. The AVA dataset is de-

rived from 188 movies around the world. Each movie is an-

notated from 15 minutes to 30 minutes with face bounding

boxes, entities, and speaking labels. And they are human-

annotated with ASD labels at the frame level. There are some

dubbed movies in the dataset, and speakers that were active

in the original videos are also labeled as active in the dubbed

versions. However, according to our definition, they should

be considered inactive speakers in the videos, given the un-

synchronization between the audio and visual modalities.

Active Speakers in the Wild (ASW) [5]. The ASW

dataset consists of 30.9 hours of face tracks from 212 YouTube

videos, including debates, press conferences, talk shows, etc.

The length of face tracks ranges from 0.2 to 233.0 seconds.

There is no dubbed video in the ASW dataset.

3.1. Unsynchronization test by augmentation

We propose a mechanism to create unsynchronized video seg-

ments (mismatched and misaligned) from original test videos.

We then sample from both the unsynchronized videos and the

original ones to create augmented test sets where unsynchro-

nized videos take different proportions. These test sets have

the same total number of videos. We apply such augmentation

to both the AVA validation set and the ASW test set.

Specifically, mismatched video segments are created by

randomly swapping the audio of speaking segments of the

original videos. For each face track, we replace the audio

of each speaking segment with another random speaking seg-

ment from different videos. These mismatched speaking seg-

ments show lip movements in the video and speaking voices

in the audio, but these activities do not match. Their ASD

labels are set as negatives. For the not-speaking segments in

the original videos, they stay the same.

Misaligned video segments are created by shifting the

original audio of speaking segments in time. Specifically, we

randomly shift the speaking segment’s original audio to the

left or the right by a time shift greater than 125 ms, which

is the human detectable threshold of any delay. Besides, the

shift is circular, i.e., the audio signals shifted beyond one end

boundaries are circulated back to the other end. In this way,

the activities within the video segment are preserved, and

only the synchroniatinon is destroyed.

The performances of RothNet and TalkNet on the aug-

mented sets with five different proportions of unsynchronized

videos are displayed in Fig. 2. As the curves show, the mAPs

of the two models degrade rapidly when the amount of unsyn-

chronized data increases. This shows that both ASD models

do not properly model audio-visual synchronization. We hy-

pothesize that they rely on each individual modality’s features

and some basic audio-visual correlations to classify videos,

but ignore the synchronization cue.

3.2. Understanding what existing ASD models learn

To verify that every single modality contributes to the pre-

dictions, we remove key information from audio and visual

tracks. We silence the audio tracks or mask the bottom 30%

of visual frames of each face track with zero to cover the lips

in the AVA test set. As shown in Table 1, both models deteri-

orate dramatically in both cases. This shows that both models

do use voice activity and lip movement information for ASD.

Then, we train a voice activity detection (VAD) model and

a lip movement detection model modified from the audio and

visual frontends of TalkNet. The probability of speaking is

calculated as the product of the probabilities predicted by the

two models. The mAP of such a combined model in the AVA

val set is 90.72%, which is close to that of TalkNet, indicating

that using only a VAD and a lip movement detection model is

able to perform comparably with the SoTA ASD models.

4. METHOD

As discussed in Section 3, current supervised ASD models

fail in unsynchronized cases. To address the issue, we pro-

pose cross-modal contrastive learning, which is compatible

with any supervised ASD models. We apply our method to

the SoTA model TalkNet [11] and the predominant baseline

model RothNet [6] as two examples. Apart from cross-modal

contrastive learning, we also apply positional encoding in the

attention module when fusing audio and visual embeddings.

We elaborate on the architecture and training of Sync-

TalkNet and Sync-RothNet in this section, but we believe

that our proposed method can be used for any supervised

models to encourage synchronization modeling. The TalkNet

and RothNet combined with our method are named as Sync-

TalkNet and Sync-RothNet.
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Fig. 3. Illustration of the batch formulation in cross-modal

contrastive learning. Samples above the dashed line are the

features of the original batch, and those below are the artifi-

cially unsynchronized samples that are mismatched embed-

dings. Colors represent embeddings from different samples,

shapes denote modalities, and dashed or solid borders denote

the ASD labels in the original batch. Better viewed in color.

4.1. Cross-modal contrastive learning

To alleviate the lack of unsynchronized data in the training

dataset, we augment the features in the embedding space to

enforce contrastive learning. Given a batch of embeddings

(Vi, Ai) extracted from the frontends and their correspond-

ing ASD labels yi, where yi ∈ RT and yti ∈ {0, 1}, we de-

fine yti = 1 if the speaker is actively speaking at the given

time t, otherwise yti = 0. For contrastive learning, as illus-

trated in Fig. 3, we augment a mini-batch of original samples

(Vi, Ai, yi). We define positive samples as the ASD label yi
contains at least one yti = 1, and we define such positive

samples set as Γ. Among the positive samples, we create ad-

ditional negative sample by randomly exchanging the audio

embeddings Aγ of a face tracks with audio embeddings of an-

other positive sample Aφ(γ), where γ and ϕ(γ) are indexes of

two randomly selected face tracks from Γ, and ϕ(γ) is differ-

ent from γ. Mathematically, the additional contrastive sam-

ples are (Vγ , Aφ(γ), yγ), where γ, ϕ(γ) ∈ Γ and ϕ(γ) ̸= γ.

In the unsynchronized contrastive samples, the visual face

track γ is hardly synchronized with the audio from face track

ϕ(γ). The loss of the training is composed of binary cross-

entropy (BCE) loss from the original samples and the loss

from contrastive samples, L = BCEloss(fb(Vi, Ai), yi) +
β ·BCEloss(fb(Vγ , Aφ(γ)), 0), where β controls the balance

between the two losses and is set to 1 in our experiments. The

number of frames in a mini-batch is set as 2500, while the

number of face tracks varies as in [11].

Although the augmented training set only contains mis-

matched videos as negative samples, as demonstrated in Sec-

tion 5.1, such trained models are able to handle not only mis-

matched videos but also misaligned videos during inference.
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Fig. 4. Model architecture of our proposed Sync-TalkNet.

4.2. Model architecture: Sync-TalkNet

The frontend of TalkNet consists of two streams. The visual

frontend takes the T RGB face frames vi ∈ RT×3×Hv×Wv

of face track i as input, where Hv and Wv are the height and

width of the face frames, respectively. Then the visual em-

beddings Vi ∈ RT×d are computed through a 3D convolu-

tional layer, a ResNet block , [21] and a temporal convolu-

tional block. The audio frontend ingests the Mel-frequency

cepstral coefficient (MFCC) vectors ai ∈ R4T×Ha computed

from the corresponding audio signals of face track i. The au-

dio frame rate is 4 times the 25 FPS video frame rate, and Ha

is the dimension of the MFCC vectors. The audio embeddings

Ai ∈ RT×d are computed by ResNet34 [21].

The backend makes predictions of speaking probability

in every video frame from the visual and audio embeddings

through several attention modules pi = fb(Vi, Ai) ∈ RT .

We denote the attention module as Attention:

Attention(X,Y ) = softmax(
Query(Ŷ )Key(X̂)T√

d
)Value(X̂),

where X̂ = X + PE, Ŷ = Y + PE.
(1)

X and Y are encodings from modalities, either audio,

visual, or audio-visual. Query, Key, and Value are lin-

ear layers. The PE is the positional encoding. Firstly,

cross-modal features are computed with cross-attention

module, where F a→v
i = Attention(Ai, Vi) and F v→a

i =
Attention(Vi, Ai). Then the F a→v

i and F v→a
i are concate-

nated and passed through the self-attention layer F av
i =

Attention(F a→v
i ⊗ F v→a

i , F a→v
i ⊗ F v→a

i ). Lastly, the

binary classifier obtains the output from the F av
i .

Positional Encoding (PE). Without the positional encod-

ing, the cross-attention layer is permutation-invariant for the

inputs, which makes it difficult for the model to learn the syn-

chronization between visual and audio. Therefore, we add the

sinusoidal positional encoding [22] PE ∈ RT×d to the inputs

of the cross-attention and self-attention layer,

Besides TalkNet, we also apply our method to Roth-

Net [6], as described in Section 3. RothNet makes predictions

for one central frame at each time. We apply cross-modal

contrastive learning to train Sync-RothNet.
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Table 2. The mean average precision (mAP) of the five models on the augmented sets and original sets.

AVA-mismatch AVA-misalign ASW-mismatch ASW-misalign AVA val set ASW test set

RothNet [6] 40.24% 43.58% 44.55% 41.17% 79.29% 89.68%

TalkNet [11] 53.91% 53.97% 55.31% 54.79% 92.28% 96.64%

SyncNet [15] 71.27% 61.49% 87.21% 67.18% 82.15% 92.40%

Sync-RothNet 72.14% 71.87% 79.62% 82.37% 77.69% 89.86%

Sync-TalkNet 79.31% 74.91% 87.39% 89.15% 89.81% 97.40%

Table 3. The three highest and three lowest TPRs on the

AVA val set of the proposed method.

Video ID 053oq2xB3oU P60OxWahxBQ BCiuXAuCKAU

TPR 2.14% 8.17% 9.34%

Video ID ax3q-RkVIt4 j5jmjhGBW44 4ZpjKfu6Cl8

TPR 59.71% 61.37% 62.67%

5. EXPERIMENTS

5.1. Performance of the proposed method

Unsynchronization test. To evaluate the performance of the

models in unsynchronized cases, we utilize the augmented

test sets as described in Section 3.1. Using 50% synthe-

sized data (either mismatched or misaligned) and 50% orig-

inal data, we curate AVA-mismatch, AVA-misalign, ASW-

mismatch, ASW-misalign sets. We test Sync-TalkNet and

Sync-RothNet on the augmented and original test sets. Ta-

ble 2 displays the results. Sync-TalkNet and Sync-RothNet

significantly outperform the two supervised baseline models

RothNet and TalkNet in the augmented test sets. In par-

ticular, Sync-TalkNet achieves better results than the SoTA

model TalkNet on an original dataset: the ASW test set. The

mAP of Sync-TalkNet is slightly lower than TalkNet on the

AVA val set. It is reasonable because the AVA dataset con-

tains dubbed movies in both the training and the validation

sets; The unsynchronized speaking segments are labeled as

positive in this dataset, damaging the performance of Sync-

TalkNet, which leverages synchronization cues. Cross-modal

contrastive learning loss is similar to the augmentation of

mismatched data, while Sync-TalkNet and Sync-RothNet

also work well on misaligned data. This verifies the ability of

synchronization modeling in our proposed method.

Sync-TalkNet and Sync-RothNet are trained in a super-

vised manner. The self-supervised ASD models such as Sync-

Net [15] is trained by distinguishing matched and mismatched

audio-visual pairs. Thus SyncNet is also able to detect audio-

visual synchronization as shown in Table 2, achieving compa-

rable results to our model in the unsynchronized mismatched

test sets. However, our proposed models as supervised models

perform better than SyncNet on the original datasets and un-

synchronized misaligned test sets. Generally speaking, super-

vised models gain better capacity for usual ASD, while self-

supervised models better leverage the synchronization cue,

Table 4. Ablation study of cross-model contrastive learning

and positional encoding on the ASW augmented test sets.
ASW-mismatch ASW-misalign

Sync-TalkNet 87.39% 89.15%

w/o contr. learning 56.22% 54.71%

w/o both PE 84.06% 86.24%

w/o cross-attention PE 84.49% 84.37%

w/o self-attention PE 85.99% 87.37%

since self-supervised models are trained through synchroniza-

tion classification. Our proposed method is able to leverage

both advantages, achieving excellent performance on both the

original datasets and unsynchronization augmented datasets.

Narrated videos detection. According to our definition,

any face track in dubbed movies should not be regarded as

speaking. However, there are some dubbed movies in the

AVA dataset and they are labeled as speaking which mis-

leads the training and evaluation of ASD models with syn-

chronization cues. We use Sync-TalkNet trained on the ASW

dataset to filter out the dubbed movies in the AVA valida-

tion set. We calculate the true positive rate (TPR), the ratio

of the positively predicted frames to the positively labeled

frames. Lower TPR indicates the more likely the video is

from a dubbed movie. In the dubbed movies of the AVA val

set, the positively labeled frames are from the unsynchronized

speaking segments. Out of the 33 videos, we respectively

display the videos with the three highest TPR and the three

lowest TPR in Table 3. Through manual checking, we ver-

ified that the three videos with the lowest TPR are dubbed

movies, and the three with the highest TPR are not dubbed

movies. Although the samples are limited, this result does

suggest that Sync-TalkNet might be able to be used to detect

unsynchronization in narrated videos.

5.2. Ablation study

To model synchronization, we apply positional encoding and

cross-modal contrastive learning. We conduct an ablation

study of Sync-TalkNet for these two modules as shown in

Table 4. According to the results, cross-modal contrastive

learning plays an important role in learning synchronization.

Removing the positional encoding, the performance degrades

but does not degrade catastrophically. We believe that with

the guidance of contrastive learning, the model learns the
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weak timeline information through the zero-padding of con-

volutional layers in the frontend [23]. However, our model

with the positional encoding still performs better.

As introduced in Section 4.2, there are cross-attention

and self-attention modules in the model architecture. Sync-

TalkNet applies positional encoding on both the attention

modules. We study the effect of disposing of one of the

two positional encodings. As the results in Table 4, apply-

ing positional encoding on both the attention module helps

Sync-TalkNet better perceive the timeline information.

6. CONCLUSION

In this paper, we argued that audio-visual synchronization

is an important cue for active speaker detection (ASD), and

clarified the definition of active speakers to explicitly require

audio-visual synchronization. This was motivated by our ex-

periments which showed that state-of-the-art supervised ASD

models neglect this synchronization in their decision-making.

Not modeling synchronization would make them unreliable

for many downstream tasks and real-life applications. We

then proposed to apply cross-modal contrastive learning and

positional encoding in the attention modules to supervised

ASD models. Our method outperforms supervised and self-

supervised models in artificially unsynchronized cases and

regular benchmarks. For future work, we plan to broaden the

definition of active speakers to speaking activities shown in

either modality; This would include the audio-visual synchro-

nized cases in this paper, as well as speaking activities that are

invisible or inaudible.

7. REFERENCES

[1] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman,

ªVoxCeleb2: Deep speaker recognition,º in Proc. Interspeech,

2018, pp. 1086±1090.

[2] Joon Son Chung, Jaesung Huh, Arsha Nagrani, Triantafyl-

los Afouras, and Andrew Zisserman, ªSpot the conversation:

Speaker diarisation in the wild,º in Proc. Interspeech, 2020.

[3] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wil-

son, Avinatan Hassidim, William T Freeman, and Michael Ru-

binstein, ªLooking to listen at the cocktail party: a speaker-

independent audio-visual model for speech separation,º ACM

Transactions on Graphics, vol. 37, no. 4, pp. 1±11, 2018.

[4] Ross Cutler and Larry Davis, ªLook who’s talking: Speaker

detection using video and audio correlation,º in Proc. ICME,

2000, pp. 1589±1592.

[5] You Jin Kim, Hee-Soo Heo, Soyeon Choe, Soo-Whan Chung,

Yoohwan Kwon, Bong-Jin Lee, Youngki Kwon, and Joon Son

Chung, ªLook who’s talking: Active speaker detection in the

wild,º in Proc. Interspeech, 2021, pp. 3675±3679.

[6] Joseph Roth, Sourish Chaudhuri, Ondrej Klejch, Radhika Mar-

vin, et al., ªAVA active speaker: An audio-visual dataset for

active speaker detection,º in Proc. ICASSP, 2020.

[7] Advanced Television Systems Committee, ªATSC implemen-

tation subcommittee finding: Relative timing of sound and vi-

sion for broadcast operations,º IS-191, vol. 26, 2003.

[8] Israel D. Gebru, Xavier Alameda-Pineda, Radu Horaud, and

Florence Forbes, ªAudio-visual speaker localization via

weighted clustering,º in Proc. IEEE International Workshop

on Machine Learning for Signal Processing (MLSP), 2014.

[9] Joon Son Chung, ªNaver at ActivityNet Challenge 2019±

task B active speaker detection (AVA),º arXiv preprint

arXiv:1906.10555, 2019.

[10] Baptiste Pouthier, Laurent Pilati, Leela K. Gudupudi, Charles

Bouveyron, and Frederic Precioso, ªActive speaker detection

as a multi-objective optimization with uncertainty-based mul-

timodal fusion,º in Proc. Interspeech, 2021, pp. 2381±2385.

[11] Ruijie Tao, Zexu Pan, Rohan Kumar Das, Xinyuan Qian,

Mike Zheng Shou, and Haizhou Li, ªIs someone speaking?

exploring long-term temporal features for audio-visual active

speaker detection,º in Proc. ACM Multimedia, 2021.

[12] Yuanhang Zhang, Susan Liang, Shuang Yang, Xiao Liu,

Zhongqin Wu, Shiguang Shan, and Xilin Chen, ªUniCon: Uni-

fied context network for robust active speaker detection,º in

Proc. ACM Multimedia, 2021, pp. 3964±3972.

[13] Okan KÈopÈuklÈu, Maja Taseska, and Gerhard Rigoll, ªHow

to design a three-stage architecture for audio-visual active

speaker detection in the wild,º in Proc. ICCV, 2021.

[14] Andrew Owens and Alexei A Efros, ªAudio-visual scene

analysis with self-supervised multisensory features,º in Proc.

ECCV, 2018, pp. 631±648.

[15] Joon Son Chung and Andrew Zisserman, ªOut of time: auto-

mated lip sync in the wild,º in Proc. ACCV, 2016, pp. 251±263.

[16] Yifan Ding, Yong Xu, Shi-Xiong Zhang, Yahuan Cong, and

Liqiang Wang, ªSelf-supervised learning for audio-visual

speaker diarization,º in Proc. ICASSP, 2020, pp. 4367±4371.

[17] Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Na-

grani, Andrea Vedaldi, and Andrew Zisserman, ªAudio-visual

synchronisation in the wild,º in Proc. BMVC, 2021.

[18] Jiyoung Lee, Soo-Whan Chung, Sunok Kim, Hong-Goo Kang,

and Kwanghoon Sohn, ªLooking into your speech: Learning

cross-modal affinity for audio-visual speech separation,º in

Proc. CVPR, 2021, pp. 1336±1345.

[19] Sefik Emre Eskimez, You Zhang, and Zhiyao Duan, ªSpeech

driven talking face generation from a single image and an emo-

tion condition,º IEEE Transactions on Multimedia, 2021.

[20] Minsu Kim, Joanna Hong, and Yong Man Ro, ªLip to speech

synthesis with visual context attentional GAN,º in Proc.

NeurIPS, 2021, pp. 2758±2770.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,

ªDeep residual learning for image recognition,º in Proc.

CVPR, 2016, pp. 770±778.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

et al., ªAttention is all you need,º in Proc. NeurIPS, 2017.

[23] Osman Semih Kayhan and Jan C van Gemert, ªOn translation

invariance in CNNs: Convolutional layers can exploit absolute

spatial location,º in Proc. CVPR, 2020, pp. 14274±14285.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 04,2022 at 23:32:11 UTC from IEEE Xplore.  Restrictions apply. 


