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Abstract—Speaker diarization aims to determine “who spoke
when” in multi-speaker scenarios. Audio-visual speaker diariza-
tion leverages visual information in addition to audio signals and
has shown improved performance. Existing audio-visual methods
extract speaker embeddings for each video clip using audio and
facial features, and then perform clustering according to their
similarity. However, this approach would not work well for noisy
or overlapped speech where audio features are corrupted, nor
for off-screen speakers where visual features are missing. In
this work, we propose dynamic vision-guided speaker embedding
(DyViSE), a novel method for leveraging visual information to
extract speaker embeddings in a multi-stage system. DyViSE
uses dynamic lip movement information to denoise audio in a
latent space and integrates facial features to obtain an identity-
discriminative embedding for each speaking segment. DyViSE is
trained with a deep clustering loss along with an exemplary
loss. DyViSE demonstrates remarkable performance on both
real-world videos and artificially assembled videos. Our code is
available at https://github.com/urkax/DyViSE.

Index Terms—speaker diarization, audio-visual, speech over-
lap, deep clustering

I. INTRODUCTION

Speaker diarization is a challenging and fundamental task

in speech processing which aims to solve the problem of “who

spoke when” [1], [2]. It can be approached by segmenting a

multi-speaker video into speaking segments and then cluster-

ing such segments according to speaker identity. There have

been numerous works that address speaker diarization using

only the audio modality [3], [4]. However, the performance is

still far from satisfactory in the real world, due to background

noise and simultaneous speaking from multiple people [2].

Researchers have explored the possibility of utilizing the

visual modality for speaker diarization [5]–[9]. It has been

proven that using facial features improves the diarization per-

formance [10]. A prominent method for audio-visual speaker

diarization is a multi-stage system [10]. The system firstly
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Fig. 1. Key frames and audio waveform of a video segment with two persons
speaking back and forth with their voices overlapped. In the latter part of the
segment, the face of one speaker is on screen, while the other is off-screen.

detects speaking segments in the audio with Voice Activity De-

tection (VAD), then applies Active Speaker Detection (ASD)

to locate a speaking face for each speaking segment. The facial

features and acoustic features are then jointly used to cluster

the speaking segments into different speakers.

However, current audio-visual speaker diarization studies

have yet to plumb the depths of the audio overlapping issue.

Besides, in real-world applications, the face of a speaker is

often out of sight or not clearly seen. Figure 1 is an example.

Current audio-visual speaker diarization methods (e.g. [10])

cluster speaking segments according to the facial features of

the located face images, hence the diarization performance

may be limited in missing face scenarios. In the AVA-AVD

speaker diarization dataset [10], 60.7% of the speaking seg-

ments are from off-screen speakers by our experiments.

Inspired by lip-guided audio separation [11], we propose

a Dynamic Vision-Guided Speaker Embedding (DyViSE) to

handle the noisy audio and overlapping voice problems. Taking

an audio segment and its corresponding face frames as input,

our neural network leverages the lip movement information

to extract a “denoised” audio-visual embedding, reducing the

effect of noise and overlapped speech. The DyViSE embedding

network is trained with the deep clustering loss [12] to encour-

age more discriminative embeddings for speaking segments

from different speakers. We also propose an exemplary loss

where a pre-trained speaker recognition network serves as a

“teacher” network to guide the training of the DyViSE model

in order to make it converge faster.

We then propose a multi-stage system to tackle speaker
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diarization with DyViSE. Speaking segments and their cor-

responding face tracks are first detected with overlap-aware

VAD and ASD methods, then their DyViSE embeddings

are extracted. Finally, such embeddings are clustered using

agglomerative clustering to achieve speaker diarization. As it

is the vision-guided speaker embedding instead of the visual

feature that is used in the clustering process, the proposed

system is more robust to missing faces. Experiments on

real-world speaker diarization datasets demonstrate that our

proposed method outperforms a state-of-the-art method [10]

and our own designed baselines. To further examine the

effectiveness of DyViSE in overlapped speech cases, we

created synthetic audio-visual speaker diarization datasets by

artificially assembling individual speaking videos with a higher

overlapping rate. Our proposed system achieves a decrease in

Diarization Error Rate (DER) by a large margin compared to

the baseline method AVR-Net [10] on our synthesized datasets.

The contributions of this work are threefold. First, we

propose a novel dynamic vision-guided speaker embedding

extraction method for audio-visual speaker diarization, which

uses dynamic vision information to address the overlapped

speech problem. Second, we propose a multi-stage system

that uses this embedding in clustering speaking segments

and it relieves the missing face problem from which existing

audio-visual speaker diarization methods suffer. Third, we

are the first to systematically investigate the abovementioned

problems in audio-visual diarization through experiments.

II. RELATED WORK

A. Speaker Diarization

Speaker diarization can be categorized into audio-only

and audio-visual in terms of the input modality. Audio-only

speaker diarization has received extensive attention for many

years. The latest advancements in audio-only methods mostly

adopt a multi-stage framework [3], [4]. Several end-to-end

diarization systems have also been proposed to address the

speech overlapping issue [13], [14]. However, end-to-end

frameworks require a high computation complexity and the

length of segments that can be processed is limited.

Audio-visual speaker diarization utilizes additional infor-

mation provided by the visual modality. Speaker diarization

can benefit from visual signals, especially when audio is not

reliable. It is proved that diarization systems that associate fa-

cial and audio features outperform unimodal systems [8], [15],

[16]. Moreover, audio cues for each speaker are also present

in lip movements. Researchers leverage the synchronization

between lip movements and speech signals for active speaker

detection, a prior step for diarization [7], [17], [18]. However,

current speaker diarization methods disregard the ability of lip

movements to transcribe speech, which is useful for handling

overlapped speech as discussed in Section I.

B. Vision-Guided Speech Embedding

The concept of extracting audio cues from lip movements

has been applied in many research areas, among which lip

reading [19] and audio-visual speech recognition (AVSR) [20]

are two representative ones. They attempt to recognize or

separate speech in silent or audible videos using lip movement

features, which demonstrate the effectiveness of leveraging lip

movements for audio cues. Recent audio-visual speech sepa-

ration methods have tried a variety of deep learning networks

[11], [21], [22] to extract the target speech from a mixture

of voices. Some of them are audio-visual synchronization

networks fusing lip movements and audio features for the sep-

aration process [21], [22], while VisualVoice [11] introduces

face appearance as an additional signal and concatenates the

embeddings extracted from lip motion and face appearance to

explicitly guide speech separation. Benefiting from a variety of

complementary information, VisualVoice [11] yields remark-

able performance and generalization ability. Inspired by these

works, we incorporate lip movements to alleviate the issue of

speech overlapping in audio-visual speaker diarization. Instead

of adopting audio-visual speech separation as a preprocessing

step, we borrow its idea but train an embedding network

that extracts dynamic vision-guided speaker embedding from

speaking segments. This embedding can be viewed as an

implicitly “denoised” audio embedding plus visual features,

and is then used for speaker diarization. The rationale for

this design instead of the “separation-diarization” approach is

that reconstructing the separated speech is itself a challenging

problem and often introduces artifacts to the separated audio.

Nevertheless, we take the “separation-diarization” approach as

a baseline for comparison in our experiments in Section V-A.

III. METHOD

A. Overview

In this work, we utilize a multi-stage framework following

commonly used audio-visual speaker diarization systems [7],

[10] and propose a novel speaker embedding named DyViSE

to handle noisy audio and overlapped speech problems.

Prior to the proposed embedding network, our multi-stage

system adopts three pre-processing steps to obtain audio-visual

speaking segments for later stages to extract embeddings and

diarize speakers. The first step is to use a pre-trained U-

Net-based network [23] for overlap-aware VAD on the audio

modality, and to use a face detection method [24] to obtain

face tracks on the speaking segments. We assume that overlaps

only happen between two but not more speakers. As the second

step, TalkNet [25] is employed for ASD to iterate through

all the corresponding face tracks and discriminate whether

one is speaking for the active voice. Thus, we divide the

original video into a set of audio segments sn(t) and their

associated face tracks fn(t), where n ∈ {1, 2, · · · , N} denotes

the speech segment index and t denotes the frame index within

the segment. As the last step, we adopt a face alignment

network [26] and crop the mouth regions using detected facial

landmarks as in [11] to obtain the lip movement tracks ln(t).
We discuss prior steps in more detail in the supplementary

material.

The audio-visual segments are cut or padded into 2.55s

in duration. pn(t) = (sn(t), ln(t), fn(ti)) indicates an audio-

visual pack combining the audio segment, the lip movement
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Fig. 2. Architecture of the proposed DyViSE network.

track and a face image randomly selected from the face track,

where ti denotes one of the face frames. When the face of a

segment is off-screen, fn(ti) and ln(t) are padded with zero.

Our network takes each pn(t) as input to produce an identity-

discriminative embedding Dn. After embeddings are extracted

for all segments, the cosine similarity is calculated for all pairs

of segments. Finally, agglomerative clustering is used to obtain

speaker diarization results.

B. Network Architecture for DyViSE

The architecture of our network is shown in Figure 2.

Given an audio-visual pack, our network firstly encodes lip

movement features L̂n and audio features Sn respectively

and then combines them to extract cleaner audio embedding

Asl
n . Facial embedding F̂n is also extracted as complementary

information. We fuse the audio and facial embedding using

an MLP network and lastly acquire identity-discriminative

embedding Dn, named DyViSE.

Speaker diarization systems typically leverage a pre-trained

Speaker Recognition (SR) model to encode audio features.

As typical SR models are trained only on clean audio datasets

without overlapped speech, features extracted with these mod-

els may encounter problems in overlapped speech scenarios.

Recently, the pre-trained audio models based on Transformers

exhibit excellent performance on downstream tasks in the field

of speech processing. Among them, WavLM [27] performs

pre-training on simulated noisy and overlapped speech data.

Thus, we adopt and adapt the pre-trained SR model [27]

that uses WavLM as the frontend and the state-of-the-art

backend model ECAPA-TDNN. Specifically, we remove the

last temporal pooling layer of the SR model and add a trainable

1D convolutional layer on its top. We use it to extract a d-

dimensional audio feature vector Sn(t) for each frame t of

a 2.55s audio segment, resulting in an audio feature matrix

Sn ∈ R
T×d, where T denotes the number of frames.

The lip motion encoder aims to encode dynamic lip motion

features. We adopt the trained lip motion analysis network

[11], which consists of a 3D convolutional layer, ShuffleNet

V2 network, and a temporal convolutional network. We also

append a trainable linear layer to form the lip motion encoder.

The encoder takes lip movement track frames ln(t) as input

and outputs lip movement features Ln ∈ R
T×d, where a vector

with the same dimension as Sn(t) is extracted for each frame.

Considering the missing face problem, we employ learnable

masks M l = [M l
1
,M l

2
] inspired by [10] to distinguish between

face-visible and face-invisible scenarios, where M l
v ∈ R

d, v ∈
{1, 2}. For each of the two cases, we multiply the output of the

lip motion encoder by a mask vector: L̂n(k) = Ln(k)�M l
v ,

where k ∈ {1, 2, · · · , T} is the frame index, and v indicates

the visibility condition.

We integrate speech features Sn and lip movement features

L̂n with three attention modules, following the multi-modal

fusion method [25], [28]. The attention is calculated among

features of frames. Sn and L̂n firstly interact with each other

through two attention modules. One of them takes Sn to

generate key and value while takes L̂n to generate query, the

other performs vice versa. The outputs of the two modules

are concatenated along the temporal direction. Then a self-

attention module is applied and the output features of all

frames are averaged to get a “denoised” audio embedding

Asl
n ∈ R

2d.

The face encoder is a pre-trained face recognition

model [29]. We also use learnable mask vectors Mf to

distinguish face-visible and face-invisible scenarios. The facial

embedding F̂n and “denoised” audio embedding Asl
n are con-

catenated and passed through a multilayer perceptron (MLP),

and lastly merged into the final DyViSE embedding Dn.

C. Deep Clustering Loss and Exemplary Loss

Deep clustering loss is employed to train identity-

discriminative embeddings. For a sequence of audio-visual

segment embeddings Dn, n ∈ {1, 2, · · · , N}, from the

same video, we obtain a similarity matrix, donated as

[aij ]N×N
, aij = cos 〈Di, Dj〉 =

Di·Dj

‖Di‖‖Dj‖
. Then using

identity label tn, n ∈ {1, 2, · · · , N}, we generate ground-

truth matrix [rij ]N×N , where rij = �(ti = tj) and � is the

indicator function. Deep clustering loss is formulated as

Ld =
1

N ×N

N
∑

i=1

N
∑

j=1

(aij − rij)
2

√

didj
, (1)

where di = |{k : tk = ti}| denotes the number of segments

with the same label as ti [12],

For clustering problems, the embeddings of one speaker

might spread into a large area of the feature space, which may

lead to the instability of convergence, especially for small-

scale datasets. Thus we additionally propose an exemplary

loss to maximize the cosine similarity between our output

embedding with a large-scale pre-trained speaker embedding

Gn. The pre-trained SR network takes the non-overlap speech

of the corresponding speaker as input. The exemplary loss is

computed as

Le = −
1

N

N
∑

n=1

cos 〈Dn, Gn〉 . (2)

Finally, we minimize the weighted sum of the two losses

as the final loss: L = Ld + λLe.
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IV. EXPERIMENTAL SETUP

A. AVA-AVD Dataset

AVA-AVD [10] is annotated on 117 movies with diverse

outdoor scenarios. A 15-min long segment starting from the

15 minutes into the movie is selected and cut into three

5-minute clips. This results in 29 hours of clips in total.

Each clip has at least two speakers and 7.7 speakers on

average. Speaker identities of speaking activities are annotated.

Bounding boxes of all on-screen faces are also annotated,

regardless of speaking activity. Among all speaking segments,

60.7% of them do not show any face of speakers.

B. Synthesized Datasets with Higher Overlap Ratio

Current large-scale audio-visual speaker diarization datasets

contain overlapped speech cases [10], but the amount may

not be sufficient for reliable analyses. To demonstrate the

effectiveness of our proposed DyViSE on addressing the

overlapped speech problems, we synthesize speaker diariza-

tion datasets with higher overlap ratios using audio-visual

face tracks from the AVA-AVD dataset and the Voxceleb2

dataset [30]. Voxceleb2 contains over 1 million utterances

from 6,112 speakers, and it is originally designed for audio-

visual speaker recognition. To be more specific, we define

overlap ratio as the ratio between the length of a clip when

multiple speakers are speaking and the total length of speaking

segments [31], then average over all clips.

The dataset synthesis algorithm follows the diarization-style

audio-only mixture simulation in [31]. The extension to our

audio-visual scenario is straightforward. The algorithm details

are in the supplementary material. The algorithm takes a

parameter β to control the overlap ratio. With a smaller β,

the overlap ratio of the synthesized dataset is higher. We set

the upper limit of the number of simultaneous speakers to

two in this synthesis process. For dataset clips synthesis, face

tracks go with the corresponding speaking utterances and we

do not generate the whole scene.

We synthesize clips based on AVA-AVD with speakers of

the original AVA-AVD clips and their speaking segments as

utterances. Therefore the simulated clips contain the same

number of speakers and speaking segments as the AVA-AVD

clips but with different overlaps. As for Voxceleb2, we ran-

domly choose two speakers for each synthesized clip. For each

speaker, we sample a minimum of 20 and a maximum of all the

utterances. Besides, 50% of face tracks in Voxceleb2 synthesis

are discarded to simulate out of sight voices. By adjusting

β, we can synthesize clips with different overlap ratios. We

name them AVA-AVD synthesis (β = x) or Voxceleb2 synthesis

(β = x) where x is a constant. The statistics of AVA-

AVD and three synthesized datasets are listed in Table I. We

present a demo figure on AVA-AVD synthesis (β = 3) in the

supplementary material.

The training, validation and test set split of AVA-AVD

follows the protocol in the original publication [10], while

the Voxceleb2 synthesis dataset is split by 3:1:1.

TABLE I
STATISTICS OF AVA-AVD AND THE THREE SYNTHESIZED DATASETS,

INCLUDING THE AMOUNT OF CLIPS, TOTAL DURATION, THE

MINIMUM/AVERAGE/MAXIMUM NUMBER OF SPEAKERS AND THEIR

OVERLAP RATIO.

#Clips Duration #Speakers Overlap ratio
AVA-AVD 351 29 hours 2/7.7/24 4.28%

AVA-AVD synthesis (β=10) 351 52 hours 2/7.7/24 10.79%
AVA-AVD synthesis (β=3) 351 26 hours 2/7.7/24 20.60%
Voxceleb2 synthesis (β=3) 2000 1833 hours 2/2/2 20.10%

C. Implementation Details

All videos are converted to 25 Frames-Per-Second (FPS).

The number of frames T is 64 after conversion. The speaker

recognition (SR) model is pre-trained on Voxceleb1 and

Voxceleb2 datasets as in [27] and the face recognition (FR)

model from [29] is pre-trained on the MS1MV3 dataset. The

dimensionality d of frame-wise lip movement feature Lk
n and

audio feature Sk
n is set to 256. The MLP used to fuse the

audio embedding Asl
n and facial feature F̂n is two linear

layers connected by ReLU activation, and their hidden layer

dimension is 512. The loss weight λ is simply set to 1.

D. Evaluation Metric

We use diarization error rate (DER) to evaluate the perfor-

mance, defined as the fraction of speaking segments that is not

correctly attributed to speakers or to non-speech [32]. Over-

lapped speech is also taken into account. DER is composed

of three parts: Speaker error rate (SPKE) is the percentage of

speaking time where the wrong speaker identity is assigned;

False alarm rate (FA) is the percentage of non-speaking time

that is classified as speaking; Missing speech rate (MS) is the

percentage of speaking time that is not detected as speaking.

For all of these metrics, the lower the better. We adopt a 0.25s

collar as a tolerance around speaker boundaries.

E. Comparison Methods

Besides our proposed DyViSE, we design two baseline

methods that utilize the same pre-trained models, but without

dynamic vision guidance. The baseline method SR+FR refers

to the late fusion of the two modalities. The audio embeddings

and facial embeddings of two speaking segments are extracted

by these models, then the cosine similarities between two

speaking segments are calculated on the audio and facial

embeddings respectively before they are averaged to obtain the

overall similarity. AVSS+SR+FR refers to a serial system that

first explicitly separates overlapped audio with the audio-visual

speech separation (AVSS) model VisualVoice [11], and then

applies the SR+FR method on the separated audio. Some state-

of-the-art audio-visual speaker diarization [7], [10] and person

verification [33] methods are also included in the comparisons.

V. RESULTS AND DISCUSSIONS

A. Performance on Datasets with Overlap Speech

We first compare the diarization performance on the AVA-

AVD dataset. The results are shown in Table II. We include

two settings for our proposed multi-stage system as introduced
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TABLE II
PERFORMANCE COMPARISON ON THE AVA-AVD DATASET. FOR VAD

PRE-PROCESSING, GROUND-TRUTH ANNOTATIONS (GT) AND AN

OVERLAP-AWARE VAD APPROACH (V) ARE USED.

VAD Method MS FA SPKE DER

GT
SR+FR 2.14 0.0 21.68 23.82

AVSS+SR+FR 2.33 0.0 22.18 24.51
WST [7] 3.11 0.0 37.72 40.83

AVR-Net [10] 2.45 0.0 25.38 27.83
DyViSE 1.98 0.0 20.86 23.46

V
WST [7] 9.45 31.80 42.18 83.43

AVR-Net [10] 13.37 37.29 29.36 80.02
DyViSE 11.08 24.19 35.93 71.20

TABLE III
DER COMPARISON ON AVA-AVD DATASET AND THREE SYNTHESIZED

DATASETS. “-” INDICATES THAT THE TRAINING FAILS TO CONVERGE.

AVA-AVD
AVA-AVD AVA-AVD Voxceleb2

synthesis (β=10) synthesis (β=3) synthesis (β=3)
SR+FR 23.82 27.71 31.62 10.97

AVSS+SR+FR 24.51 26.80 30.02 9.88
GMU [33] 29.22 - - -

AVR-Net [10] 27.83 29.47 32.21 9.61
DyViSE 23.46 25.50 28.61 6.72

in Section III-A. One is using oracle VAD (GT) to assume

the speaking segments extraction is perfect, and the other

is detecting speaking segments with a trained overlap-aware

VAD network (V). DyViSE exceeds previous methods by far in

both settings. This suggests the effectiveness of our proposed

DyViSE and the superiority is robust to the performance of

speaking segments detection. It is undeniable that DyViSE

benefits from the pre-trained models through exemplary loss,

but DyViSE also outperforms SR+FR, a simple fusion of pre-

trained models. This shows the effectiveness of our proposed

dynamic vision guidance with deep clustering loss. Comparing

results in the GT and V setting, the DERs are much higher

when using VAD model to detect speaking segments. It

indicates the challenge of VAD on the AVA-AVD dataset.

Nevertheless, DyViSE also outperforms other methods in the

V setting, proving the validity of it in the scenario that the

VAD might not be perfect.

To focus on the evaluation of the identity discrimination

ability of our method, the following experiments are conducted

with oracle speaking segments and active speaker detection

annotation from the datasets. The DER results on AVA-AVD

and the three synthesized datasets are presented in Table III.

Each method are respectively trained and tested on each

dataset. With smaller β, the overlap ratio of a dataset is

higher, and the performances of the models degrade. The

superiority of DyViSE is more obvious on datasets with a

higher overlap ratio and a larger scale. For example, on the

Voxceleb2 synthesis dataset whose overlap ratio is 20.10%,

DyViSE outperforms previous SOTA methods by 30.0%. This

demonstrates the superiority of our proposed DyViSE on

audio-visual speaking clips with overlap.

To further understand the contribution of solving the over-

lapped speech problems, we perform speaker diarization on

overlap-only speaking segments in each video. As shown in

TABLE IV
DER COMPARISON ON OVERLAP-ONLY SEGMENTS.

AVA-AVD synthesis (β=3) Voxceleb2 synthesis (β=3)
overlap-only overlap-only

SR+FR 34.46 14.08
AVSS+SR+FR 33.20 12.72
AVR-Net [10] 36.82 13.58

DyViSE 30.21 7.97

TABLE V
AVERAGE PRECISION (AP) OF METHODS ON THE CLASSIFICATION OF

PAIRS OF SPEAKING SEGMENTS.

Both-faces-on-screen One-face-on-screen No-face-on-screen
SR+FR 85.48% 75.33% 69.31%

AVR-Net [10] 85.71% 74.95% 68.07%
DyViSE 87.35% 81.47% 71.28%

Table IV, the absolute DER value get reduced by 2.99%

and 4.75% compared to the best baseline system on the two

overlap-only datasets respectively. This suggests that DyViSE

has significantly better ability to handle overlapped speech and

hence improve the overall performance.

B. Overcoming Challenges of Missing Faces

Previous audio-visual methods use pairwise similarity be-

tween facial features of two speaking segments to assist

diarization of speaker identities [10]. Visual information is

not fully utilized and is only helpful when both faces are

on-screen to distinguish two segments’ identities. Different

from previous works, DyViSE implicitly “denoised” the audio

embedding in the latent space with dynamic visual features

so that visual information still takes effect when one face is

on-screen and the other is off-screen.
To prove this, we design a classification task where models

predict whether a pair of audio-visual speaking segments

belong to the same person. We randomly select 5000 pairs

of speaking segments from the test set clips of AVA-AVD

synthesis (β = 3). Half of the pairs are two segments of

the same speaker, while the other half are two segments of

different speakers but from the same clip. We experiment

with three settings: both face frames are on-screen, only one

of the face frames are on-screen, and both face frames are

off-screen. We take the cosine similarity of two segments’

embeddings and linearly map it to [0,1] as the same identity

prediction score. The average precision (AP) is taken as the

evaluation metric, which is the higher the better. As shown

in Table V, DyViSE outperforms the baseline methods in all

settings. And the superiority is more significant under the

one-face-on-screen setting, conforming to our design that the

visual information of the on-screen speaker can guide the

discrimination. In the no face scenario, DyViSE will purely

rely on the audio embedding. But it still surpasses other

methods, which may be due to the audio separation ability

it learns during training.

C. Ablation Study

DyViSE utilizes lip movement features and facial features.

We conduct an ablation study for these two modules. We also
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TABLE VI
ABLATION STUDY ON THE AVA-AVD SYNTHESIS (β=3) DATASET.

DER
DyViSE 28.61

w/o lip movement features 32.73
w/o facial features 31.54
w/o exemplary loss 29.82

study the role of exemplary loss for training. The results shown

in Table VI demonstrate the importance of these modules.

The overlap ratio of AVA-AVD synthesis (β=3) dataset is

high. DyViSE without lip movement features performs poorly

on this dataset, indicating the importance of dynamic visual

features for handling overlapped data. When DyViSE is trained

only with deep clustering loss without exemplary loss, it

achieves satisfactory performance, which demonstrates the

effectiveness of deep clustering loss, but the exemplary loss

also plays the role of guidance and boosts the performance.

VI. CONCLUSION

Overlapped and noisy audio has always been a problem

of speaker diarization both for audio-only and audio-visual

systems. In this work, we propose DyViSE which utilizes

dynamic visual information to improve the quality of audio

features in a latent space. Besides, previous audio-visual

speaker diarization models suffer from problems of faces

being out of sight. DyViSE alleviates the issue as it uses a

speaking segment’s visual information to “denoise” the audio

embedding instead of using the raw visual features in the

clustering process. To extensively evaluate the performance

of DyViSE, we not only conducted experiments on the AVA-

AVD dataset but also synthesized datasets with higher overlap

ratios. Experimental results showed that our proposed method

outperforms previous methods and baselines under multiple

settings. For future work, our method can be explored in

people diarization [34], which not only diarizes the identity

for speaking activities, but also for visual appearances.
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