


The comparison of their general structures is illustrated in

Fig. 1.

2.1. Multi-task learning-based methods

Li et al. [16] proposed a SASV system to perform a joint de-

cision by multi-task learning. The ASV task and CM task

share the same spectrum features and a few network layers.

A three-stage training paradigm with pre-training, re-training,

and speaker enrollment is proposed to extract a common em-

bedding and perform classification with separate classifiers for

the two sub-tasks. They further extended their work in [17] by

training the common embedding with triplet loss and then using

probabilistic linear discriminant analysis (PLDA) scoring for in-

ference. Zhao et al. [18] adapt the multi-task framework with

max-feature map activation and residual convolutional blocks

to extract discriminative embeddings.

The training of such multi-task neural networks requires

both the speaker label and the spoofing labels, so they are

trained on ASVspoof datasets which have a limited number of

speakers. This might lead the model to overfit the seen speakers

and limit their performance in real-world applications.

2.2. Fusion-based methods

As shown in Fig. 1(b), independent ASV and CM models ex-

tract separate embeddings to make a joint decision. The speaker

(SPK) embedding aims to encode the identity information. The

CM embedding is usually the output from the second last layer

in the anti-spoofing network.

Some methods perform fusion in the embedding space.

Sizov et al. [19] proposed a two-stage PLDA method for op-

timizing the joint system in the i-vector space. First, it trains a

simplified PLDA model using only the embeddings of the bona

fide speech. Then, it estimates a new mean vector, adds a spoof-

ing channel subspace, and trains it using only the embeddings

of the spoofed speech. Gomez et al. [20] proposed an integra-

tion framework with fully connected (FC) layers following the

concatenated speaker and CM embeddings.

Some methods perform fusion in the score level. The

ASV score is usually the cosine similarity between the speaker

embeddings of the enrollment utterances and test utterances.

The CM score is the final output of the anti-spoofing model.

Sahidullah et al. [12] first studied the cascade and parallel inte-

grations of ASV with CM to combine scores. Todisco et al. [21]

proposed a Gaussian back-end fusion method that fuses the

scores with log-likelihood ratio according to separately mod-

eled Gaussian mixtures. Kanervisto et al. [22] proposed a rein-

forcement learning paradigm to optimize tandem detection cost

function (t-DCF) by jointly training a tandem ASV and CM sys-

tem. Shim et al. [23] proposed a fusion-based approach that

takes the speaker embedding and CM prediction as input and

weighs the ASV score, CM score, and their multiplication to

make the final decision.

SASV Baseline methods. The SASV challenge [15] intro-

duces two baselines built upon pre-trained state-of-the-art ASV

and CM systems. The structure of the two methods is shown

in Fig. 2. Baseline1 is a score-level fusion method that sums

the scores produced by the separate systems. There is no train-

ing involved. Besides, Baseline2 is an embedding-level fusion

method that trains a deep neural network based on concatenated

embeddings. The pre-trained speaker and CM embeddings are

fixed during training the deep neural network. This is similar to

the method proposed in [20].

SPK Embedding (Enroll) SPK Embedding (Test) CM Embedding (Test)

Calculate Cosine Similarity FC Layer

S
ASV

S
CM

S
SASV = +

SPK Embedding (Enroll) SPK Embedding (Test) CM Embedding (Test)

Concatenate

Deep Neural Network

S
SASV

(a) Baseline1 (Score-level fusion) 

(b) Baseline2 (Embedding-level fusion) 

Figure 2: Model structure of the baseline methods from the

SASV challenge. Colored boxes denote the embeddings and

the bordered boxes represent the operations.

3. Method

3.1. Problem formulation

Given an enroll utterance ue and a test utterance ut, SASV sys-

tems need to classify ut into yt ∈ {0, 1}, where 1 represents

target and 0 includes both non±target and spoof. In this pa-

per, we focus on a fusion-based SASV system consisting of a

pre-trained ASV subsystem and a pre-trained CM subsystem.

In fusion-based SASV systems, The ASV subsystem computes

speaker embeddings xe

ASV for the enrollment utterance ue and

xt

ASV for the test utterance ut. The CM subsystem computes

the CM embedding xt

CM for ut. We use pre-trained embed-

ding methods for the ASV subsystem [24] and the CM sub-

system [25], as they both achieve state-of-the-art discrimination

abilities on their respective tasks.

As it is a binary classification problem, we use the posterior

probability that the test utterance belongs to the positive class

(i.e., the target class), conditioned on the speaker embeddings,

as the final decision score SSASV.

SSASV = P (yt = 1|xe

ASV, x
t

ASV, x
t

CM). (1)

For score-level fusion methods, the ASV and CM subsys-

tems each computes a decision score. Similar to Eq. (1), such

decision scores can be defined as the posterior probabilities, as

P (yt

ASV = 1|xe

ASV, x
t

ASV) and P (yt

CM = 1|xt

CM), respectively.

Here yt

ASV and yt

CM ∈ {0, 1} are the underlying ground-truth

labels along the ASV and CM aspects, respectively. In other

words, yt

ASV = 1 and yt

ASV = 0 indicate that the test utterance is

target and non-target, respectively. yt

CM = 1 and yt

CM = 0 indi-

cate that the test utterance is bona fide and spoof, respectively.

It is noted that these definitions of scores using posterior

probabilities are different from those in the baseline methods in

Figure 2. There SASV is defined as the cosine similarity between

the enrollment embedding and the test embedding, and SCM is

defined as the output of an FC layer. Both value ranges are not

between 0 and 1. In the following, we will propose ways to

revise the scores in Figure 2(a) to fit into the proposed proba-

bilistic framework.
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3.2. Probabilistic framework

We propose a probabilistic framework based on product rule

(PR) inspired by [26]. By definition, yt = 1, i.e., the test utter-

ance is target, if and only if yt

ASV = 1 and yt

CM = 1. Therefore,

assuming conditional independence between yt

ASV and yt

CM on

the speaker embeddings, we have

P (yt = 1|xe

ASV, x
t

ASV, x
t

CM)

=P (yt

ASV = 1, yt

CM = 1|xe

ASV, x
t

ASV, x
t

CM)

=P (yt

ASV = 1|xe

ASV, x
t

ASV, x
t

CM)P (yt

CM = 1|xe

ASV, x
t

ASV, x
t

CM)

=P (yt

ASV = 1|xe

ASV, x
t

ASV)P (yt

CM = 1|xt

CM).
(2)

The last equation follows from the fact that yt

ASV is indepen-

dent from xt

CM and that yt

CM is independent from xe

ASV and

xt

ASV , as we use pre-trained ASV and CM subsystems. If how-

ever, such subsystems are fine tuned during the SASV task, as

in Section 3.3.2, this independence will not be valid anymore.

3.3. Proposed strategies

3.3.1. Direct inference strategy

We adopt the same model structure as the base of the Baseline1

method, shown in Fig. 2 (a). The ASV subsystem outputs the

cosine similarity between the speaker embedding xe

ASV and xt

ASV.

The CM system outputs the CM score SCM from an FC layer. As

both the ASV and CM subsystems are pre-trained and there is

no fine tuning in any part of the entire system, this is a direct

inference strategy.

As mentioned above, both the ASV score and the CM score

do not fit to the proposed probabilistic framework. Therefore,

we propose ways to modify their value range to [0, 1]. The

CM subsystem was pre-trained with a softmax binary classifica-

tion loss, so the output score SCM after a sigmoid function σ(x)
would naturally fit to the range of [0, 1], therefore, we define

P (yt

CM = 1|xt

CM) = σ(SCM). (3)

For the ASV score, we need some function f to monotonically

map the cosine similarity score to a value between 0 and 1:

P (yt

ASV = 1|xe

ASV, x
t

ASV) = f(SASV), (4)

where f can be a hand-crafted function or some data-driven

mapping. Combining Eq.(1)-(4), the final decision score for

SASV is represented as:

SSASV = σ(SCM)× f(SASV). (5)

By varying the function f , we propose three systems us-

ing the direct inference strategy. A straightforward method is

through a linear mapping f(s) = (s + 1)/2. We refer to this

system as PR-L-I, where L stands for ªlinearº and I is short

for ªinferenceº. For non-linear mapping, we choose the sigmoid

function and denote the system as PR-S-I, where S means

ªsigmoidº. A potential advantage of a sigmoid function over

the linear mapping is that it expands the data range around 0,

the more ambiguous region for decisions. It is noted that nei-

ther the linear or sigmoid mapping can result in probabilities

that follow the true posterior distribution, therefore, we intro-

duce a third mapping that is trained on the bona fide trials of

the development set for SASV. To be specific, we sample tar-

get and non-target trials and train a calibration function with

logistic regression [27], where the target class is map to 1 and

the non-target class is mapped to 0. This can be viewed as a

data-driven score calibrator. This system using the data-driven

calibrated ASV score is represented as PR-C-I. It is expected

that when the test utterance is drawn from the same distribution

of the trials used to train the calibrator, the ASV subsystem per-

formance would be improved. This hypothesis is verified in our

experiments in Table 3.

3.3.2. Fine-tuning strategy

When the ASV and CM subsystems are fine tuned on the SASV

task, then the conditional independence assumption in the last

equality of Eq. (2) no longer holds. Instead, we can have an

alternative derivation of the posterior probability:

P (yt = 1|xe

ASV, x
t

ASV, x
t

CM)

=P (yt

ASV = 1, yt

CM = 1|xe

ASV, x
t

ASV, x
t

CM)

=P (yt

ASV = 1|xe

ASV, x
t

ASV, x
t

CM)P (yt

CM = 1|yt

ASV, x
e

ASV, x
t

ASV, x
t

CM)

=P (yt

ASV = 1|xe

ASV, x
t

ASV)P (yt

CM = 1|yt

ASV, x
t

CM).
(6)

The second equality is based on the chain rule and it treats yt

ASV

as a condition. It can be interpreted as that the prediction of

the CM subsystem depends on that of the ASV subsystem. This

dependency can be realized through fine-tuning the CM subsys-

tem conditioned on the ASV system’s output score. To do so,

we fine-tune the FC layer of the CM subsystem while keeping

the ASV score fixed in Figure 2(a). Instead of fitting SCM with

CM labels, our model directly optimizes the joint score. The

training is based on the ground-truth label of whether the test

utterance belongs to the target class. In other words, the spoof

and non-target utterances share the same negative labels. The

final decision score SSASV is calculated with Eq. (5).

We fine-tune the system with a prior-weighted binary cross-

entropy loss for SSASV. The ASV embedding network is pre-

trained and fixed, hence the ASV score SASV is fixed. Only the

FC Layer on top of the CM embedding network is trained and

the CM score SCM is adjusted. During back-propagation, thanks

to the multiplication, the gradient of the CM score with respect

to the parameters in the FC layer is weighted based on the scaled

ASV scores. The gradient receives a larger weight for larger

SASV, which corresponds to utterances that are more similar to

the target speaker. This helps the model to pay more attention

to such more difficult samples, manifesting an idea of speaker-

aware anti-spoofing.

In fine tuning strategy, we choose f as the linear or the sig-

moid function, denoted as PR-L-F and PR-S-F respectively.

L and S represent the two mapping functions as in Section 3.3.1,

while F is short for ªfine-tuningº. We discard the calibration

method to prevent over-fitting on the trials dataset.

4. Experimental setup

4.1. Dataset

ASVspoof 2019 LA [28] is a standard dataset designed for the

LA sub-challenge of ASVspoof 2019. It consists of bona fide

speech and a variety of TTS and VC spoofing attacks. The bona

fide speech is collected from the VCTK corpus [29], while the

speakers are separated into three subsets: training (Train), de-

velopment (Dev), and evaluation (Eval). The spoofed speech in

each subset is targeted to spoof the corresponding speakers. The

algorithms for spoofing attacks in the evaluation set are totally

different from those in the Train and Dev sets. The non-overlap

is designed to encourage the generalization ability to unseen at-

tacks for CM systems. Details are shown in Table 1.
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Table 1: Summary of the ASVspoof 2019 LA dataset.

Partition #speakers
Bona fide Spoofing attacks

#utterances #utterances Attacks type

Train 20 2,580 22,800 A01 - A06

Dev 20 2,548 22,296 A01 - A06

Eval 67 7,355 63,882 A07 - A19

For the SASV challenge, the organizers provided official

development and evaluation protocols listing the target, non-

target, and spoof trials based on the ASVspoof 2019 LA

dataset. For each test trial, there are multiple corresponding

enrollment utterances to register the target speaker.

4.2. Evaluation metrics

Equal error rate (EER) is widely used for binary classification

problems, especially in speaker verification and anti-spoofing.

It is calculated by setting a threshold such that the miss rate is

equal to the false alarm rate. The lower the EER is, the better

the discriminative ability has the binary classification system.

SASV-EER is used as the primary metric to evaluate the

SASV performance. The SV-EER and SPF-EER are auxiliary

metrics to assess the performance of ASV and CM sub-tasks,

respectively. Note that the SPF-EER is different from the com-

mon EER used in the anti-spoofing community. The difference

is that the non-target class is not taken into consideration here

but is regarded as the same positive class (bona fide) in the CM

community. The description of EERs can be found in Table 2.

The test utterance falls into either of the three classes. For all of

the EERs mentioned above, only the target class is considered

positive samples.

Table 2: Three kinds of EERs for evaluation (Adapted from

[15]). ª+º denotes the positive class and ª-º denotes the nega-

tive class. A blank entry denotes classes not used in the metric.

SASV-EER is the primary metric for the SASV challenge.

Evaluation metrics Target Non-target Spoof

SASV-EER + - -

SV-EER + -

SPF-EER + -

4.3. Implementation details

Our implementation is based on PyTorch 1. The pre-trained

embeddings are provided by the SASV organizers. They are

extracted with already-trained state-of-the-art ASV and CM

systems. The ASV system is an ECAPA-TDNN [24] model

trained on the VoxCeleb2 dataset [30]. The CM system is an

AASIST [25] model trained on ASVspoof 2019 LA training

set [28]. For a speech utterance, the speaker embedding has a

dimension of 192 and the CM embedding is a 160-dim vector.

For the Baseline2 model structure, the DNN is composed

of four FC layers, each with the number of output dimensions

as 256, 128, 64, 2, respectively. Each intermediate layer is fol-

lowed by a leaky ReLU activation function. For inference, we

use the official trials provided by the SASV challenge organiz-

1Our work is reproducible with code available at https://

github.com/yzyouzhang/SASV_PR.

ers as described in Section 4.1. The calibrator in PR-C-I is

trained on the bona fide utterances of the development trials.

During training PR-L-F and PR-S-F, we randomly select

pairs of utterances from the training set. For the binary cross-

entropy loss, we set the prior probability for a target trial as

0.1. We train our systems using Adam optimizer with an initial

learning rate of 0.0003. The batch size is set to 1024. We train

the model for 200 epochs and select the best epoch according to

the SASV-EER on the development set. The model in the best

epoch is used for final evaluation.

5. Results

5.1. Comparison with separate systems and baselines

To demonstrate the effectiveness of our proposed strategies, we

compare our methods with the individual systems and baseline

methods in the SASV challenge2. The performance comparison

is shown in Table 3.

The individual systems perform well on their own tasks but

have much worse performance on the other task. The ECAPA

model achieves the lowest SV-EER but a high value in SPF-

EER. This verifies that the state-of-the-art speaker verification

system is vulnerable to spoofing attacks. Quite a number of

spoofed trials can deceive the ASV system and degrade the

SASV performance. The AASIST system has the lowest SPF-

EER but close to 50% SV-EER. This is reasonable since all bona

fide speech, no matter target or non-target, are considered pos-

itive samples in training CM systems. The well-trained CM

system is not expected to have discrimination ability for ASV.

Both baseline methods surpass the separate systems in

terms of SASV-EER, showing the superiority of an ensemble

solution for the SASV problem. Baseline1, a score-level fusion-

based method, has the same SPF-EER performance as the sin-

gle CM system but degrades the ASV performance compared to

the ECAPA model. This suggests that the non-calibrated scores

might degrade the performance on sub-tasks. Baseline2, the

embedding level fusion-based model, has much better perfor-

mance on all three metrics overall with only the SPF-EER de-

graded a little on the evaluation set.

All of our proposed systems show a significant improve-

ment over the baseline methods in terms of SASV-EER. They

also achieve universally good performance over all three met-

rics. Both the SV-EER and SPF-EER are close to the perfor-

mance of the best separate model. This shows the effectiveness

of our product rule (PR)-based probabilistic framework with our

proposed direct inference strategy and fine-tuning method. Our

PR-S-F system achieves the best performance on the evalua-

tion trials.

5.2. Comparison among the proposed strategies

Comparing our proposed systems with direct inference strategy

(i.e., with -I) and systems with fine-tuning strategy (i.e., with

-F), the latter generally achieve better performance. This sug-

gests the effectiveness of the joint optimization by slacking the

conditional independence of ASV and CM subsystems.

Among all the systems with direct inference strategy, we

can compare the impact of different choices for the mapping

function f applied to the ASV cosine similarity score. The lin-

ear mapping achieves better SV-EER and SASV-EER compared

2Note that the baseline results we report have differences from those
reported in [15]. Based on our implementation, we achieved close re-
sults for ECAPA-TDNN and Baseline1, but better results for Baseline2.
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Table 3: Comparison of our proposed methods with separate systems and SASV challenge baselines.

Systems
SV-EER↓ SPF-EER↓ SASV-EER↓

Dev Eval Dev Eval Dev Eval

ECAPA-TDNN 1.86 1.64 20.28 30.75 17.31 23.84

AASIST 46.01 49.24 0.07 0.67 15.86 24.38

Baseline1 32.89 35.33 0.07 0.67 13.06 19.31

Baseline2 7.94 9.29 0.07 0.80 3.10 5.23

PR-L-I (Ours) 2.13 2.14 0.11 0.86 1.21 1.68

PR-S-I (Ours) 2.43 2.57 0.07 0.78 1.34 1.94

PR-C-I (Ours) 1.95 1.64 0.97 2.94 1.08 2.70

PR-L-F (Ours) 2.02 1.92 0.07 0.80 1.10 1.54

PR-S-F (Ours) 2.02 1.94 0.07 0.80 1.10 1.53

to the sigmoid mapping, this might be attributed to the non-

linearity of the sigmoid function that distorts the ASV score

distribution. The calibrated ASV score achieves the best perfor-

mance on the development trials in terms of SASV-EER, and

the SV-EER is the closest to ECAPA-TDNN, suggesting that the

calibration on ASV scores is effective for SASV. However, the

calibration degrades the SASV-EER performance and the SPF-

EER performance on the evaluation trials prominently. Note

that the spoof trials in the development and evaluation trials are

generated with different attack algorithms. The performance

degradation verifies our hypothesis that the calibration would

cause the joint system to overfit the distribution of the trials that

the calibrator is trained on hence cannot generalize well to un-

seen attacks.

Among the two systems with our fine-tuning strategy, both

of them achieve top similar performance in all three metrics.

This suggests that joint optimization is effective and robust to

both linear and sigmoid mapping functions. Although the score

mapping functions affect the performance in the direct inference

strategy, they do not make much difference in the fine-tuning

strategy, thanks to the FC layer re-trained on SASV labels.

5.3. Ablation study on Baseline1

Since our model structure is based on Baseline1, we perform

an ablation study to recover the components back to the coun-

terparts in Baseline1 and observe the performance degradation.

The results are shown in Table 4. The performance degrada-

tion from PR-S-F to PR-S-I verifies the effectiveness of our

proposed joint optimization by fine-tuning. Both PR-S-I and

Baseline1 are direct inference methods. Comparing Eq. (5) and

the formula in Fig. 2 (a), changes on the computation of the

SASV score in our proposed approach compared to Baseline1

are: 1) applying sigmoid score mapping on both ASV score and

CM score, 2) using multiplication rather than addition.

If we change the multiplication back to summation, i.e.,

SSASV = σ(SCM)+σ(SASV), the performance degrades to 2.45%

SASV-EER, which is still a relatively good performance. The

degradation indicates the superiority of our proposed proba-

bilistic fusion framework with the product rule.

If we only remove the score mapping but keep the multipli-

cation, i.e., SSASV = SCM × SASV, the performance degrades to

2.89% SASV-EER, which is also an acceptable performance.

When we restore both components back to the Baseline1

method, then the SASV-EER performance degrades signifi-

cantly. This suggests that both components in our proposed

Table 4: Results of ablation study from our proposed best per-

forming system PR-S-F to Baseline1.

Systems
SASV-EER

Dev Eval

PR-S-F (Ours) 1.10 1.53

PR-S-I (Ours) 1.34 1.94

Restore multiplication to sum

(Baseline1 + score mapping)
1.69 2.45

Remove score mapping

(Baseline1 + score multiplication)
2.16 2.89

Restore both

(Baseline1)
13.06 19.31

PR-S-I make an effective contribution. What exactly causes

the dramatic degradation from PR-S-I to Baseline1? Our hy-

pothesis is that the scores output from the ASV and CM subsys-

tems of Baseline1 are in different ranges, and the summation of

the scores makes one subsystem dominates the other. Looking

at the Table 3 again, it is the CM system that dominates. Ap-

plying score mapping, with multiplication or summation, also

addresses this issue. Replacing summation with multiplication,

with or without score mapping, addresses this issue, as the dif-

ference between the score ranges is just a constant scalar of the

final decision score. This explains why both revised methods in

Table 4 do not degrade too much from PR-S-I.

In the next section, we will verify this hypothesis by investi-

gating the scores output from the two subsystems of Baseline1,

as well as the revised scores after applying score mapping.

6. Score distribution analysis

Fig. 3 shows the score distribution of the systems we compared

in Table 3. We plot the histogram of score distributions on both

the official development and evaluation trials.

Fig. 3 (a) and (b) first plot score distributions of the ASV

subsystem (ECAPA-TDNN) and the CM subsystem (AASIST).

They demonstrate good discriminative abilities on their individ-

ual tasks, but fails to differentiate classes defined in the other

task. For example, ECAPA-TDNN well distinguishes target

and non-target, but the distribution of spoof expands a wide

range, overlapping with both the target and non-target classes.

This shows that the ASV system is vulnerable to spoofing at-

tacks. It is interesting to see that the scores of spoofing attacks
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