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Abstract

The performance of automatic speaker verification (ASV) sys-
tems could be degraded by voice spoofing attacks. Most ex-
isting works aimed to develop standalone spoofing countermea-
sure (CM) systems. Relatively little work targeted at developing
an integrated spoofing aware speaker verification (SASV) sys-
tem. In the recent SASV challenge, the organizers encourage
the development of such integration by releasing official proto-
cols and baselines. In this paper, we build a probabilistic frame-
work for fusing the ASV and CM subsystem scores. We further
propose fusion strategies for direct inference and fine-tuning to
predict the SASV score based on the framework. Surprisingly,
these strategies significantly improve the SASV equal error rate
(EER) from 19.31% of the baseline to 1.53% on the official
evaluation trials of the SASV challenge. We verify the effec-
tiveness of our proposed components through ablation studies
and provide insights with score distribution analysis.

1. Introduction

Automatic speaker verification (ASV) aims to verify the iden-
tity of the target speaker given a test speech utterance. A typ-
ical speaker verification process involves two stages: First, a
few utterances of the speaker are enrolled, then the identity in-
formation extracted from the test utterance is compared with
that of the enrolled utterances for verification [1]. ASV re-
searchers have been developing speaker embedding extraction
methods [2, 3, 4] to encode speaker identity information for ver-
ification. However, it is likely that the test utterance is not hu-
man natural speech but spoofing attacks that try to deceive the
ASV system. Spoofing attacks usually include impersonation,
replay, text-to-speech, voice conversion attacks. Studies have
shown that ASV systems are vulnerable to spoofing attacks [5].

In recent years, researchers have been developing spoofing
countermeasure (CM) and audio deepfake detection systems to
detect spoofing attacks. With the ASVspoof 2019 challenge
which provides a large-scale standard dataset and evaluation
metrics, the CM systems have been improved in various aspects,
especially on the generalization ability [6, 7, 8] and channel
robustness [9, 10, 11] for in-the-wild applications. However,
all of the above works focused on the evaluation of standalone
CM systems. Intuitively, an imperfect CM system would accept
spoofing attacks but reject bona fide speech from the target per-
son [12]. After all, the ultimate goal of developing a CM system
is to protect the ASV system from falsely accepting spoofing
attacks. However, how an improved CM system benefits the
ASV system is not clear. Although the minimum t-DCF [13]
used in the ASVspoof challenge [14] evaluates the reliability of
CM systems to ASV systems, it is calculated on a fixed ASV
system provided by the ASVspoof organizers instead of being
adapted to the ASV system at hand. For better protecting the
ASV system from being spoofed and maintaining its discrim-
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Figure 1: Tllustration of two categories of methods in the litera-
ture of SASV systems. The “layers” represent different machine
learning models aiming to extract embeddings such as i-vectors.
The “decision module” could be (i) a layer for computing the fi-
nal score on the SASV embedding, or (ii) a score fusion module
that fuses ASV and CM scores.

ination ability on speaker identity, the CM component should
be jointly optimized with the ASV system. As a result, an inte-
grated ASV and CM system is promising.

Relatively little attention is paid to improving the integra-
tion of ASV and CM systems. As reviewed in Section 2, some
work has proposed some frameworks to address such problem,
but due to the lack of standard metrics and datasets, it is hard
to benchmark the state-of-the-art spoofing aware speaker verifi-
cation (SASV) system. Recently, the SASV challenge [15] has
been held to further encourage the study of integrated systems
of ASV and CM. In this challenge, only cases of logical access
(LA) spoofing attacks, i.e., TTS and VC attacks, are taken into
consideration. The test utterances of the SASV system can be
categorized into three classes: target—bona fide speech belong-
ing to the target person, non-target—bona fide speech but not
belonging to the target speaker, and spoof—spoofing attacks.

In this work, we formulate a fusion-based SASV system
under the probabilistic framework on top of the ASV and CM
subsystems. We also propose a fine-tuning strategy on the in-
tegrated system for further improvement. With the proposed
fusion strategies, we outperform the SASV baseline systems by
a large margin. Our best performing system achieved 1.53%
SASV-EER on the official evaluation trials. We also provide an
ablation study and score distribution analysis for future study.

2. Literature review

In the literature, the SASV system is usually referred to as joint
ASV and CM systems. There are mainly two categories of
methods: (a) multi-task learning-based and (b) fusion-based.
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The comparison of their general structures is illustrated in
Fig. 1.

2.1. Multi-task learning-based methods

Li et al. [16] proposed a SASV system to perform a joint de-
cision by multi-task learning. The ASV task and CM task
share the same spectrum features and a few network layers.
A three-stage training paradigm with pre-training, re-training,
and speaker enrollment is proposed to extract a common em-
bedding and perform classification with separate classifiers for
the two sub-tasks. They further extended their work in [17] by
training the common embedding with triplet loss and then using
probabilistic linear discriminant analysis (PLDA) scoring for in-
ference. Zhao et al. [18] adapt the multi-task framework with
max-feature map activation and residual convolutional blocks
to extract discriminative embeddings.

The training of such multi-task neural networks requires
both the speaker label and the spoofing labels, so they are
trained on ASVspoof datasets which have a limited number of
speakers. This might lead the model to overfit the seen speakers
and limit their performance in real-world applications.

2.2. Fusion-based methods

As shown in Fig. 1(b), independent ASV and CM models ex-
tract separate embeddings to make a joint decision. The speaker
(SPK) embedding aims to encode the identity information. The
CM embedding is usually the output from the second last layer
in the anti-spoofing network.

Some methods perform fusion in the embedding space.
Sizov et al. [19] proposed a two-stage PLDA method for op-
timizing the joint system in the i-vector space. First, it trains a
simplified PLDA model using only the embeddings of the bona
fide speech. Then, it estimates a new mean vector, adds a spoof-
ing channel subspace, and trains it using only the embeddings
of the spoofed speech. Gomez et al. [20] proposed an integra-
tion framework with fully connected (FC) layers following the
concatenated speaker and CM embeddings.

Some methods perform fusion in the score level. The
ASV score is usually the cosine similarity between the speaker
embeddings of the enrollment utterances and test utterances.
The CM score is the final output of the anti-spoofing model.
Sahidullah et al. [12] first studied the cascade and parallel inte-
grations of ASV with CM to combine scores. Todisco et al. [21]
proposed a Gaussian back-end fusion method that fuses the
scores with log-likelihood ratio according to separately mod-
eled Gaussian mixtures. Kanervisto et al. [22] proposed a rein-
forcement learning paradigm to optimize tandem detection cost
function (t-DCF) by jointly training a tandem ASV and CM sys-
tem. Shim et al. [23] proposed a fusion-based approach that
takes the speaker embedding and CM prediction as input and
weighs the ASV score, CM score, and their multiplication to
make the final decision.

SASYV Baseline methods. The SASV challenge [15] intro-
duces two baselines built upon pre-trained state-of-the-art ASV
and CM systems. The structure of the two methods is shown
in Fig. 2. Baselinel is a score-level fusion method that sums
the scores produced by the separate systems. There is no train-
ing involved. Besides, Baseline2 is an embedding-level fusion
method that trains a deep neural network based on concatenated
embeddings. The pre-trained speaker and CM embeddings are
fixed during training the deep neural network. This is similar to
the method proposed in [20].
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Figure 2: Model structure of the baseline methods from the
SASV challenge. Colored boxes denote the embeddings and
the bordered boxes represent the operations.

3. Method

3.1. Problem formulation

Given an enroll utterance u® and a test utterance u’, SASV sys-
tems need to classify u’ into y* € {0,1}, where 1 represents
target and O includes both non—target and spoof. In this pa-
per, we focus on a fusion-based SASV system consisting of a
pre-trained ASV subsystem and a pre-trained CM subsystem.
In fusion-based SASV systems, The ASV subsystem computes
speaker embeddings x4y, for the enrollment utterance u® and
xhgy for the test utterance u’. The CM subsystem computes
the CM embedding x%,, for u’. We use pre-trained embed-
ding methods for the ASV subsystem [24] and the CM sub-
system [25], as they both achieve state-of-the-art discrimination
abilities on their respective tasks.

As it is a binary classification problem, we use the posterior
probability that the test utterance belongs to the positive class
(i.e., the target class), conditioned on the speaker embeddings,
as the final decision score Ssasy.

ey

For score-level fusion methods, the ASV and CM subsys-
tems each computes a decision score. Similar to Eq. (1), such
decision scores can be defined as the posterior probabilities, as
P(yisv = 1|zfsv, Thsy) and P(ycy = 1|acy), respectively.
Here yisy and y&y, € {0, 1} are the underlying ground-truth
labels along the ASV and CM aspects, respectively. In other
words, y/4sy = 1 and kg, = 0 indicate that the test utterance is
target and non-target, respectively. y&,, = 1 and y&,, = 0 indi-
cate that the test utterance is bona fide and spoof, respectively.

It is noted that these definitions of scores using posterior
probabilities are different from those in the baseline methods in
Figure 2. There Sagv is defined as the cosine similarity between
the enrollment embedding and the test embedding, and Scy is
defined as the output of an FC layer. Both value ranges are not
between 0 and 1. In the following, we will propose ways to
revise the scores in Figure 2(a) to fit into the proposed proba-
bilistic framework.

Ssasv = P(y" = 1|zisv, Thsv, Tem)-



3.2. Probabilistic framework

We propose a probabilistic framework based on product rule
(PR) inspired by [26]. By definition, y* = 1, i.e., the test utter-
ance is target, if and only if 3/}, = 1 and y&), = 1. Therefore,
assuming conditional independence between ', and yk,, on
the speaker embeddings, we have
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The last equation follows from the fact that % g, is indepen-
dent from z%,, and that y&,, is independent from z% g, and
x% gy, as we use pre-trained ASV and CM subsystems. If how-
ever, such subsystems are fine tuned during the SASV task, as
in Section 3.3.2, this independence will not be valid anymore.

3.3. Proposed strategies
3.3.1. Direct inference strategy

We adopt the same model structure as the base of the Baselinel
method, shown in Fig. 2 (a). The ASV subsystem outputs the
cosine similarity between the speaker embedding x5y and zf s, .
The CM system outputs the CM score Scy from an FC layer. As
both the ASV and CM subsystems are pre-trained and there is
no fine tuning in any part of the entire system, this is a direct
inference strategy.

As mentioned above, both the ASV score and the CM score
do not fit to the proposed probabilistic framework. Therefore,
we propose ways to modify their value range to [0,1]. The
CM subsystem was pre-trained with a softmax binary classifica-
tion loss, so the output score Scy after a sigmoid function o (x)
would naturally fit to the range of [0, 1], therefore, we define

P(yéy = zey) = o(Scem). 3)

For the ASV score, we need some function f to monotonically
map the cosine similarity score to a value between 0 and 1:

P(yfxsv = 1|55st7 wf\sv) = f(SAsv), “4)

where f can be a hand-crafted function or some data-driven
mapping. Combining Eq.(1)-(4), the final decision score for
SASV is represented as:

Ssasv = 0(Sem) X f(Sasv). ©)

By varying the function f, we propose three systems us-
ing the direct inference strategy. A straightforward method is
through a linear mapping f(s) = (s + 1)/2. We refer to this
system as PR-L-1I, where L stands for “linear” and I is short
for “inference”. For non-linear mapping, we choose the sigmoid
function and denote the system as PR-S—1I, where S means
“sigmoid”. A potential advantage of a sigmoid function over
the linear mapping is that it expands the data range around 0,
the more ambiguous region for decisions. It is noted that nei-
ther the linear or sigmoid mapping can result in probabilities
that follow the true posterior distribution, therefore, we intro-
duce a third mapping that is trained on the bona fide trials of
the development set for Sasy. To be specific, we sample tar-
get and non-target trials and train a calibration function with
logistic regression [27], where the target class is map to 1 and
the non-target class is mapped to 0. This can be viewed as a
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data-driven score calibrator. This system using the data-driven
calibrated ASV score is represented as PR-C-1I. It is expected
that when the test utterance is drawn from the same distribution
of the trials used to train the calibrator, the ASV subsystem per-
formance would be improved. This hypothesis is verified in our
experiments in Table 3.

3.3.2. Fine-tuning strategy

When the ASV and CM subsystems are fine tuned on the SASV
task, then the conditional independence assumption in the last
equality of Eq. (2) no longer holds. Instead, we can have an
alternative derivation of the posterior probability:

P(yt = 1‘1’5\5% xf\SVa JTftCM)
:P(yf\sv = 173/<th = 1|$st7 Ifxsw ﬁUtCM)
=P(yisv = 1|zisv, Thsv, Tem) P(yem = Lyasv, Thsv, Tasv, Tem)

:P(yzisv = 1|$§SV7 mfxsv)P(yéM = 1|yﬁsw iUtCM)

(0)
The second equality is based on the chain rule and it treats g}y
as a condition. It can be interpreted as that the prediction of
the CM subsystem depends on that of the ASV subsystem. This
dependency can be realized through fine-tuning the CM subsys-
tem conditioned on the ASV system’s output score. To do so,
we fine-tune the FC layer of the CM subsystem while keeping
the ASV score fixed in Figure 2(a). Instead of fitting Scy with
CM labels, our model directly optimizes the joint score. The
training is based on the ground-truth label of whether the test
utterance belongs to the farget class. In other words, the spoof
and non-target utterances share the same negative labels. The
final decision score Ssasy is calculated with Eq. (5).

We fine-tune the system with a prior-weighted binary cross-
entropy loss for Sgasy. The ASV embedding network is pre-
trained and fixed, hence the ASV score Sysy is fixed. Only the
FC Layer on top of the CM embedding network is trained and
the CM score Scy is adjusted. During back-propagation, thanks
to the multiplication, the gradient of the CM score with respect
to the parameters in the FC layer is weighted based on the scaled
ASV scores. The gradient receives a larger weight for larger
Sasv, which corresponds to utterances that are more similar to
the target speaker. This helps the model to pay more attention
to such more difficult samples, manifesting an idea of speaker-
aware anti-spoofing.

In fine tuning strategy, we choose f as the linear or the sig-
moid function, denoted as PR-L-F and PR-S—F respectively.
L and S represent the two mapping functions as in Section 3.3.1,
while F is short for “fine-tuning”. We discard the calibration
method to prevent over-fitting on the trials dataset.

4. Experimental setup
4.1. Dataset

ASVspoof 2019 LA [28] is a standard dataset designed for the
LA sub-challenge of ASVspoof 2019. It consists of bona fide
speech and a variety of TTS and VC spoofing attacks. The bona
fide speech is collected from the VCTK corpus [29], while the
speakers are separated into three subsets: training (Train), de-
velopment (Dev), and evaluation (Eval). The spoofed speech in
each subset is targeted to spoof the corresponding speakers. The
algorithms for spoofing attacks in the evaluation set are totally
different from those in the Train and Dev sets. The non-overlap
is designed to encourage the generalization ability to unseen at-
tacks for CM systems. Details are shown in Table 1.



Table 1: Summary of the ASVspoof 2019 LA dataset.

Partition | #speakers Bona fide Spoofing attacks
#utterances | #utterances | Attacks type
Train 20 2,580 22,800 AO01 - AO6
Dev 20 2,548 22,296 AO01 - AO6
Eval 67 7,355 63,882 AO07 - A19

For the SASV challenge, the organizers provided official
development and evaluation protocols listing the target, non-
target, and spoof trials based on the ASVspoof 2019 LA
dataset. For each test trial, there are multiple corresponding
enrollment utterances to register the target speaker.

4.2. Evaluation metrics

Equal error rate (EER) is widely used for binary classification
problems, especially in speaker verification and anti-spoofing.
It is calculated by setting a threshold such that the miss rate is
equal to the false alarm rate. The lower the EER is, the better
the discriminative ability has the binary classification system.

SASV-EER is used as the primary metric to evaluate the
SASV performance. The SV-EER and SPF-EER are auxiliary
metrics to assess the performance of ASV and CM sub-tasks,
respectively. Note that the SPF-EER is different from the com-
mon EER used in the anti-spoofing community. The difference
is that the non-target class is not taken into consideration here
but is regarded as the same positive class (bona fide) in the CM
community. The description of EERs can be found in Table 2.
The test utterance falls into either of the three classes. For all of
the EERs mentioned above, only the target class is considered
positive samples.

Table 2: Three kinds of EERs for evaluation (Adapted from
[15]). “+” denotes the positive class and “-” denotes the nega-
tive class. A blank entry denotes classes not used in the metric.
SASV-EER is the primary metric for the SASV challenge.

Evaluation metrics | Target Non-target Spoof
SASV-EER + - -
SV-EER + -
SPF-EER + -

4.3. Implementation details

Our implementation is based on PyTorch '. The pre-trained
embeddings are provided by the SASV organizers. They are
extracted with already-trained state-of-the-art ASV and CM
systems. The ASV system is an ECAPA-TDNN [24] model
trained on the VoxCeleb2 dataset [30]. The CM system is an
AASIST [25] model trained on ASVspoof 2019 LA training
set [28]. For a speech utterance, the speaker embedding has a
dimension of 192 and the CM embedding is a 160-dim vector.
For the Baseline2 model structure, the DNN is composed
of four FC layers, each with the number of output dimensions
as 256, 128, 64, 2, respectively. Each intermediate layer is fol-
lowed by a leaky ReLU activation function. For inference, we
use the official trials provided by the SASV challenge organiz-

'Our work is reproducible with code available at https://
github.com/yzyouzhang/SASV_PR.
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ers as described in Section 4.1. The calibrator in PR-C-1I is
trained on the bona fide utterances of the development trials.

During training PR-L-F and PR-S-F, we randomly select
pairs of utterances from the training set. For the binary cross-
entropy loss, we set the prior probability for a target trial as
0.1. We train our systems using Adam optimizer with an initial
learning rate of 0.0003. The batch size is set to 1024. We train
the model for 200 epochs and select the best epoch according to
the SASV-EER on the development set. The model in the best
epoch is used for final evaluation.

5. Results

5.1. Comparison with separate systems and baselines

To demonstrate the effectiveness of our proposed strategies, we
compare our methods with the individual systems and baseline
methods in the SASV challenge’. The performance comparison
is shown in Table 3.

The individual systems perform well on their own tasks but
have much worse performance on the other task. The ECAPA
model achieves the lowest SV-EER but a high value in SPF-
EER. This verifies that the state-of-the-art speaker verification
system is vulnerable to spoofing attacks. Quite a number of
spoofed trials can deceive the ASV system and degrade the
SASV performance. The AASIST system has the lowest SPF-
EER but close to 50% SV-EER. This is reasonable since all bona
fide speech, no matter target or non-target, are considered pos-
itive samples in training CM systems. The well-trained CM
system is not expected to have discrimination ability for ASV.

Both baseline methods surpass the separate systems in
terms of SASV-EER, showing the superiority of an ensemble
solution for the SASV problem. Baselinel, a score-level fusion-
based method, has the same SPF-EER performance as the sin-
gle CM system but degrades the ASV performance compared to
the ECAPA model. This suggests that the non-calibrated scores
might degrade the performance on sub-tasks. Baseline2, the
embedding level fusion-based model, has much better perfor-
mance on all three metrics overall with only the SPF-EER de-
graded a little on the evaluation set.

All of our proposed systems show a significant improve-
ment over the baseline methods in terms of SASV-EER. They
also achieve universally good performance over all three met-
rics. Both the SV-EER and SPF-EER are close to the perfor-
mance of the best separate model. This shows the effectiveness
of our product rule (PR)-based probabilistic framework with our
proposed direct inference strategy and fine-tuning method. Our
PR-S-F system achieves the best performance on the evalua-
tion trials.

5.2. Comparison among the proposed strategies

Comparing our proposed systems with direct inference strategy
(i.e., with —I) and systems with fine-tuning strategy (i.e., with
-F), the latter generally achieve better performance. This sug-
gests the effectiveness of the joint optimization by slacking the
conditional independence of ASV and CM subsystems.
Among all the systems with direct inference strategy, we
can compare the impact of different choices for the mapping
function f applied to the ASV cosine similarity score. The lin-
ear mapping achieves better SV-EER and SASV-EER compared

2Note that the baseline results we report have differences from those
reported in [15]. Based on our implementation, we achieved close re-
sults for ECAPA-TDNN and Baselinel, but better results for Baseline2.



Table 3: Comparison of our proposed methods with separate systems and SASV challenge baselines.

SV-EER| SPF-EER| SASV-EER|
Systems
Dev Eval Dev Eval Dev Eval

ECAPA-TDNN 1.86 1.64 20.28 30.75 17.31 23.84

AASIST 46.01 49.24 0.07 0.67 15.86 24.38

Baselinel 32.89 35.33 0.07 0.67 13.06 19.31

Baseline2 7.94 9.29 0.07 0.80 3.10 5.23
PR-L-I (Ours) 2.13 2.14 0.11 0.86 1.21 1.68
PR-S—1I (Ours) 2.43 2.57 0.07 0.78 1.34 1.94
PR-C-1I (Ours) 1.95 1.64 0.97 2.94 1.08 2.70
PR-L-F (Ours) 2.02 1.92 0.07 0.80 1.10 1.54
PR-S-F (Ours) 2.02 1.94 0.07 0.80 1.10 1.53

to the sigmoid mapping, this might be attributed to the non-
linearity of the sigmoid function that distorts the ASV score
distribution. The calibrated ASV score achieves the best perfor-
mance on the development trials in terms of SASV-EER, and
the SV-EER is the closest to ECAPA-TDNN, suggesting that the
calibration on ASV scores is effective for SASV. However, the
calibration degrades the SASV-EER performance and the SPF-
EER performance on the evaluation trials prominently. Note
that the spoof trials in the development and evaluation trials are
generated with different attack algorithms. The performance
degradation verifies our hypothesis that the calibration would
cause the joint system to overfit the distribution of the trials that
the calibrator is trained on hence cannot generalize well to un-
seen attacks.

Among the two systems with our fine-tuning strategy, both
of them achieve top similar performance in all three metrics.
This suggests that joint optimization is effective and robust to
both linear and sigmoid mapping functions. Although the score
mapping functions affect the performance in the direct inference
strategy, they do not make much difference in the fine-tuning
strategy, thanks to the FC layer re-trained on SASV labels.

5.3. Ablation study on Baselinel

Since our model structure is based on Baselinel, we perform
an ablation study to recover the components back to the coun-
terparts in Baselinel and observe the performance degradation.
The results are shown in Table 4. The performance degrada-
tion from PR-S-F to PR—S~-1I verifies the effectiveness of our
proposed joint optimization by fine-tuning. Both PR-S-I and
Baselinel are direct inference methods. Comparing Eq. (5) and
the formula in Fig. 2 (a), changes on the computation of the
SASV score in our proposed approach compared to Baselinel
are: 1) applying sigmoid score mapping on both ASV score and
CM score, 2) using multiplication rather than addition.

If we change the multiplication back to summation, i.e.,
Ssasv = 0(Scm) +0(Sasv), the performance degrades to 2.45%
SASV-EER, which is still a relatively good performance. The
degradation indicates the superiority of our proposed proba-
bilistic fusion framework with the product rule.

If we only remove the score mapping but keep the multipli-
cation, i.e., Ssasv = Sem X Sasv, the performance degrades to
2.89% SASV-EER, which is also an acceptable performance.

When we restore both components back to the Baselinel
method, then the SASV-EER performance degrades signifi-
cantly. This suggests that both components in our proposed
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Table 4: Results of ablation study from our proposed best per-
forming system PR—S~-F to Baselinel.

SASV-EER
Systems
Dev Eval

PR-S-F (Ours) 1.10 1.53

PR-S~-TI (Ours) 1.34 1.94
Restorfe multiplication to.sum 1.60 245
(Baselinel + score mapping)
RemoYe score mappmg. o 216 289
(Baselinel + score multiplication)
Restorfe both 13.06 1931
(Baselinel)

PR-S-I make an effective contribution. What exactly causes
the dramatic degradation from PR—-S-1I to Baselinel? Our hy-
pothesis is that the scores output from the ASV and CM subsys-
tems of Baselinel are in different ranges, and the summation of
the scores makes one subsystem dominates the other. Looking
at the Table 3 again, it is the CM system that dominates. Ap-
plying score mapping, with multiplication or summation, also
addresses this issue. Replacing summation with multiplication,
with or without score mapping, addresses this issue, as the dif-
ference between the score ranges is just a constant scalar of the
final decision score. This explains why both revised methods in
Table 4 do not degrade too much from PR-S-1I.

In the next section, we will verify this hypothesis by investi-
gating the scores output from the two subsystems of Baselinel,
as well as the revised scores after applying score mapping.

6. Score distribution analysis

Fig. 3 shows the score distribution of the systems we compared
in Table 3. We plot the histogram of score distributions on both
the official development and evaluation trials.

Fig. 3 (a) and (b) first plot score distributions of the ASV
subsystem (ECAPA-TDNN) and the CM subsystem (AASIST).
They demonstrate good discriminative abilities on their individ-
ual tasks, but fails to differentiate classes defined in the other
task. For example, ECAPA-TDNN well distinguishes target
and non-target, but the distribution of spoof expands a wide
range, overlapping with both the target and non-target classes.
This shows that the ASV system is vulnerable to spoofing at-
tacks. It is interesting to see that the scores of spoofing attacks
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Figure 3: Comparison among score distributions of (a) the ASV subsystem (ECAPA-TDNN), (b) the CM subsystem (AASIST),
(c) Baselinel, (d) Baseline2, and (e) our proposed best-performing method PR-S-F. The left column is the performance on the
development set and the right column is on the evaluation set. Different colors correspond to the three label classes: target, non-target,
and spoof.
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Figure 5: Score distributions of applying score multiplication on Baselinel system.

on the evaluation set (right column) are closer to those of the
target class. This might suggest that the spoofing attacks in the
evaluation set are more challenging to the whole system.

Similarly, for AASIST in Fig. 3 (b), the spoof class score is
well-separated from the target and non-target classes. However,
the target and the non-target classes are highly overlapped since
they are both bona fide speech. The CM system only has the
ability to discriminate spoofing attacks from bona fide speech.

For Baselinel in Fig. 3 (c), the distribution is similar to that
in (b), the difference is that the non-target cluster and the target
cluster are deviated by some distance. Recall that Baselinel
takes the sum of the independent scores output by ECAPA-
TDNN and AASIST. Comparing (a), (b), and (c), we can infer
that the CM system dominates the score. From the score ranges
shown in (a) and (b), the absolute values of the CM scores are
larger than those of the ASV scores. This verifies our reason-
ing for why Baselinel degrades from our proposed PR-S-1I so
much in the previous section.

For the Baseline2 system in Fig. 3 (d), the distribution
shows that the three classes are more separated than previous
systems. This suggests that the embedding-level fusion main-
tains a good discrimination ability for the target class.

From the ablation study in Section 5.3, we find that with
simple score mapping and score multiplication, the resulting
system is able to achieve a significant improvement over the
score-sum baselines. To better understand the mechanisms be-
hind each operation, we plot the histogram of the SASV score
distribution with Ssasv = O'(SCM) + U'(SASV) and Ssasy =
Scm X Sasy in Fig. 4 and Fig. 5 respectively. From Fig. 4, we
can observe that the scores are in the range of (0, 2) and the
three classes are well separated, indicating the effectiveness of
score scaling, where both individual scores are mapped to the
same range. Similarly, Fig. 5 shows scores from the distinct
three classes clearly, but not as well separated as the previous
scaling method.
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7. Conclusion

In this paper, we proposed effective fusion-based methods for
spoofing aware speaker verification (SASV). Specifically, we
introduced a probabilistic framework with the product rule and
a fine-tuning strategy to a score-sum fusion baseline structure.
We demonstrated promising performance with a SASV-EER
at 1.53%, a significant improvement from the previous EER
of 19.31%. Our ablation study verified the effectiveness of
our proposed strategies and we investigated the SASV decision
score distributions of various systems.

8. Acknowledgment

This work is supported by National Science Foundation grant
No. 1741472, New York State Center of Excellence in Data
Science award, and funding from Voice Biometrics Group. You
Zhang thanks the synergistic activities provided by the NRT
program on AR/VR funded by NSF grant DGE-1922591.

The authors would like to thank Xinhui Chen for deliver-
ing a literature review presentation on Joint Speaker Verifica-
tion and Spoofing Countermeasure Systems during her master’s
study at University of Rochester.

The authors would like to thank the organizers of the SASV
2022 challenge for providing the pre-trained embeddings.

9. References

[1] Asmaa El Hannani, Dijana Petrovska-Delacrétaz, Benoit
Fauve, Aurélien Mayoue, John Mason, Jean-Frangois
Bonastre, and Gérard Chollet, Text-independent Speaker
Verification, pp. 167-211, Springer, London, 2009.

[2] Youzhi Tu and Man-Wai Mak, “Mutual information en-
hanced training for speaker embedding,” in Proc. Inter-
speech, 2021, pp. 91-95.



(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

(12]

(13]

[14]

[15]

(16]

Ge Zhu, Fei Jiang, and Zhiyao Duan, “Y-vector: Multi-
scale waveform encoder for speaker embedding,” in Proc.
Interspeech, 2021, pp. 96-100.

Hongning Zhu, Kong Aik Lee, and Haizhou Li, “Seri-
alized multi-layer multi-head attention for neural speaker
embedding,” in Proc. Interspeech, 2021, pp. 106—110.

Zhizheng Wu, Nicholas Evans, Tomi Kinnunen, Junichi
Yamagishi, Federico Alegre, and Haizhou Li, “Spoofing
and countermeasures for speaker verification: A survey,”
Speech Communication, vol. 66, pp. 130-153, 2015.

Tianxiang Chen, Avrosh Kumar, Parav Nagarsheth,
Ganesh Sivaraman, and Elie Khoury, “Generalization of
audio deepfake detection,” in Proc. Odyssey, 2020, pp.
132-137.

You Zhang, Fei Jiang, and Zhiyao Duan, “One-class learn-
ing towards synthetic voice spoofing detection,” IEEE Sig-
nal Processing Letters, vol. 28, pp. 937-941, 2021.

Xingliang Cheng, Mingxing Xu, and Thomas Fang
Zheng, “Cross-database replay detection in terminal-
dependent speaker verification,” in Proc. Interspeech,
2021, pp. 4274-4278.

Xinhui Chen, You Zhang, Ge Zhu, and Zhiyao Duan,
“UR channel-robust synthetic speech detection system for
ASVspoof 2021,” in Proc. 2021 Edition of the Automatic
Speaker Verification and Spoofing Countermeasures Chal-
lenge, 2021, pp. 75-82.

Woo Hyun Kang, Jahangir Alam, and Abderrahim Fathan,
“CRIM’s system description for the ASVSpoof2021 chal-
lenge,” in Proc. 2021 Edition of the Automatic Speaker
Verification and Spoofing Countermeasures Challenge,
2021, pp. 100-106.

Hongji Wang, Heinrich Dinkel, Shuai Wang, Yanmin
Qian, and Kai Yu, “Cross-domain replay spoofing attack
detection using domain adversarial training.,” in Proc. In-
terspeech, 2019, pp. 2938-2942.

Md. Sahidullah, Héctor Delgado, Massimiliano Todisco,
Hong Yu, Tomi Kinnunen, Nicholas Evans, and Zheng-
Hua Tan, “Integrated spoofing countermeasures and au-
tomatic speaker verification: An evaluation on asvspoof
2015,” in Proc. Interspeech, 2016, pp. 1700-1704.

Tomi Kinnunen, Kong Aik Lee, and Héctor Delgado et al.,
“t-DCF: a detection cost function for the tandem assess-
ment of spoofing countermeasures and automatic speaker
verification,” in Proc. Odyssey, 2018, pp. 312-319.

Andreas Nautsch, Xin Wang, and Nicholas Evans et al.,
“ASVspoof 2019: spoofing countermeasures for the de-
tection of synthesized, converted and replayed speech,”
IEEE Transactions on Biometrics, Behavior, and Identity
Science, vol. 3, no. 2, pp. 252-265, 2021.

Jee-weon Jung, Hemlata Tak, Hye-jin Shim, Hee-
Soo Heo, Bong-Jin Lee, Soo-Whan Chung, Hong-Goo
Kang, Ha-Jin Yu, Nicholas Evans, and Tomi Kinnunen,
“SASV challenge 2022: A spoofing aware speaker ver-
ification challenge evaluation plan,”  arXiv preprint
arXiv:2201.10283, 2022.

Jiakang Li, Meng Sun, and Xiongwei Zhang, “Multi-
task learning of deep neural networks for joint automatic
speaker verification and spoofing detection,” in Proc.
Asia-Pacific Signal and Information Processing Associ-
ation Annual Summit and Conference, 2019, pp. 1517—
1522.

84

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

Jiakang Li, Meng Sun, Xiongwei Zhang, and Yimin
Wang, “Joint decision of anti-spoofing and automatic
speaker verification by multi-task learning with con-
trastive loss,” IEEE Access, vol. 8, pp. 7907-7915, 2020.

Yuanjun Zhao, Roberto Togneri, and Victor Sreeram,
“Multi-task learning-based spoofing-robust automatic
speaker verification system,” Circuits, Systems, and Sig-
nal Processing, pp. 1-22, 2022.

Aleksandr Sizov, Elie Khoury, Tomi Kinnunen, Zhizheng
Wu, and Sébastien Marcel, “Joint speaker verification and
antispoofing in the i-vector space,” IEEE Transactions on
Information Forensics and Security (TIFS), vol. 10, no. 4,
pp. 821-832, 2015.

Alejandro Gomez-Alanis, Jose A Gonzalez-Lopez,
S Pavankumar Dubagunta, Antonio M Peinado, and
Mathew Magimai Doss, “On joint optimization of auto-
matic speaker verification and anti-spoofing in the embed-
ding space,” IEEE Transactions on Information Forensics
and Security (TIFS), vol. 16, pp. 1579-1593, 2020.

Massimiliano Todisco, Héctor Delgado, Kong Aik Lee,
Md Sahidullah, Nicholas Evans, Tomi Kinnunen, and Ju-
nichi Yamagishi, “Integrated presentation attack detection
and automatic speaker verification: Common features and
gaussian back-end fusion,” in Proc. Interspeech, 2018.

Anssi Kanervisto, Ville Hautamiki, Tomi Kinnunen, and
Junichi Yamagishi, “Optimizing tandem speaker verifica-
tion and anti-spoofing systems,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing (TASLP),
vol. 30, pp. 477-488, 2021.

Hye-jin Shim, Jee-weon Jung, Ju-ho Kim, and Ha-jin
Yu, “Integrated replay spoofing-aware text-independent
speaker verification,” Applied Sciences, vol. 10, no. 18,
pp. 6292, 2020.

Brecht Desplanques, Jenthe Thienpondt, and Kris De-
muynck, “ECAPA-TDNN: Emphasized channel attention,
propagation and aggregation in tdnn based speaker verifi-
cation,” in Proc. Interspeech, 2020, pp. 3830-3834.

Jee-weon Jung, Hee-Soo Heo, and Hemlata Tak et al.,
“AASIST: Audio anti-spoofing using integrated spectro-
temporal graph attention networks,” in Proc. IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2022.

Josef Kittler, Mohamad Hatef, Robert PW Duin, and Jiri
Matas, “On combining classifiers,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), vol.
20, no. 3, pp. 226-239, 1998.

Niko Brummer, “Focal-ii: Toolkit for calibration of multi-
class recognition scores,” https://sites.google.
com/site/nikobrummer/focalmulticlass,
August, 2006.

Xin Wang, Junichi Yamagishi, and Massimiliano Todisco
et al., “ASVspoof 2019: A large-scale public database of
synthesized, converted and replayed speech,” Computer
Speech & Language, vol. 64, pp. 101114, 2020.

Junichi Yamagishi, Christophe Veaux, and Kirsten Mac-
Donald et al., “CSTR VCTK corpus: English multi-
speaker corpus for CSTR voice cloning toolkit (version
0.92),” 2019.

Joon Son Chung, Arsha Nagrani, and Andrew Zisserman,

“VoxCeleb2: Deep speaker recognition,” Proc. Inter-
speech, pp. 1086-1090, 2018.



