






Table 2: Details and results of our submitted UR-AIR systems for DF and LA tasks. Both systems are fused by several sub-systems.

Task Index Feature Backbone Loss Strategy
Augmentation Results

Codec Device EER min-tDCF

DF

1

LFCC

ECAPA-3

OC-Softmax

AUG 3 7

20.33 N/A

2 ECAPA-3 AUG 3 3

3 ECAPA-3 ADV-AUG 3 3

4 ECAPA-3 ADV-AUG 3 7

5 ResNet ADV-AUG 3 3

LA

1

LFCC

ECAPA-2 OC-Softmax AUG 3 7

5.46 0.3094

2 ECAPA-1 OC-Softmax AUG 3 7

3 ECAPA-1 P2SGrad AUG 3 7

4 ECAPA-3 OC-Softmax ADV-AUG 3 7

5 ECAPA-3 OC-Softmax AUG 3 7

6 ECAPA-3 OC-Softmax AUG 3 3

7 ECAPA-3 OC-Softmax ADV-AUG 3 3

and a batch size of 64. The learning rate is reduced by half

every 30 epochs. We set λ1 and λ2 in the ADV-AUG training

strategy as 0.05. Then we select the model with the lowest val-

idation loss for evaluation. The implementation is available at

github.com/yzyouzhang/ASVspoof2021 AIR.

3.4. Fused Systems

We perform the logistic regression with Bosaris [30] toolkit to

fuse several sub-systems. We choose several ECAPA-TDNN

based systems for the fusion stage. Besides the primary models

we described in Section 2.2, we also fuse a secondary ResNet

system shown in Table 2. In the LA task, we also include a

system with P2SGrad loss function proposed in [10], which

achieves 4.77% EER and min-tDCF 0.2545 in the progress

phase1, although it is not stable in other settings. The final fused

system is presented in Table 2.

3.5. Evaluation Metrics

The output score of the SSD system indicates the confidence of

the utterance belonging to the bona fide speech. Equal Error

Rate (EER) is calculated by setting a threshold on the output

score such that the miss probability is equal to the false alarm

probability. The lower EER denotes the better discrimination

ability of the SSD system. Tandem detection cost function (t-

DCF) [31] assesses the influence of anti-spoofing systems on

the reliability of an ASV system. To compare different anti-

spoofing systems, the ASV system is fixed in the challenge.

The lower t-DCF indicates the better reliability of the SSD sys-

tem on ASV. The t-DCF is slightly revised compared to the

ASVspoof 2019 challenge.

Based on the evaluation plan of the ASVspoof2021 chal-

lenge, the metric for the DF task is EER. For the LA task, the

main metric is t-DCF, but we also include EER in our analysis.

4. Results and Analysis

4.1. Performance Analysis of Our Submitted System

The overall performance in the evaluation phase is shown in

Table 2. The DF detailed results are reported in Figure 4 with

1In the progress phase, only part of the data is used to calculate the
metrics. The ground truth label is withheld in both the progress phase
and the evaluation phase.
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Figure 4: Detailed performance of DF submission on differ-

ent channels and attacks. The spoofing attacks are traditional

vocoder (A1), waveform concatenation (A2), autoregressive

neural vocoder (A3), non-autoregressive neural vocoder (A4),

unknown (A5). C1-C9 represents different compression codecs.

different channels and attacks. Among different channels, we

observe that DF-C2 (low-quality MP3) is the most difficult for

our system. While from the perspective of spoofing attacks,

non-autoregressive neural vocoder is the hardest one to detect.

In Softmax loss-based systems for verification tasks, it has

been found that the learned embeddings tend to correlate their

norms with the quality of input features [32]: the lower the input

quality is, the smaller its embedding norm is. In this paper, we

also observe the same problem in the DF task. Figure 5 shows

an example norm histogram of the feature vectors of the train-

ing set and evaluation set of speech utterances with different

compression codecs. We can observe a significant distribution

mismatch between the two datasets, which can possibly explain

this poor performance in the DF task.

As for LA, the detailed results are reported in Figure 6

based on different waveform generation methods: vocoder

(A07, A09, A14, A18), neural waveform (A08, A10, A12,

A15), waveform filtering (A13, A17), spectral filtering (A19)

and waveform concatenation (A13, A16) [33]. In accordance
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