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Approximate Message Passing (AMP) algorithms have seen widespread
use across a variety of applications. However, the precise forms for their On-
sager corrections and state evolutions depend on properties of the underlying
random matrix ensemble, limiting the extent to which AMP algorithms de-
rived for white noise may be applicable to data matrices that arise in practice.

In this work, we study more general AMP algorithms for random matrices
W that satisfy orthogonal rotational invariance in law, where W may have
a spectral distribution that is different from the semicircle and Marcenko—
Pastur laws characteristic of white noise. The Onsager corrections and state
evolutions in these algorithms are defined by the free cumulants or rectangu-
lar free cumulants of the spectral distribution of W. Their forms were derived
previously by Opper, Cakmak and Winther using nonrigorous dynamic func-
tional theory techniques, and we provide rigorous proofs.

Our motivating application is a Bayes-AMP algorithm for Principal Com-
ponents Analysis, when there is prior structure for the principal components
(PCs) and possibly nonwhite noise. For sufficiently large signal strengths and
any non-Gaussian prior distributions for the PCs, we show that this algorithm
provably achieves higher estimation accuracy than the sample PCs.

1. Introduction. Approximate Message Passing (AMP) algorithms are a general family
of iterative algorithms that have seen widespread use in a variety of applications. First devel-
oped for Bayesian linear regression and compressed sensing in [26-28, 35], they have since
been applied to many high-dimensional problems arising in statistics and machine learning,
including Lasso estimation and sparse linear regression [4, 39], generalized linear models and
phase retrieval [52, 56, 60], robust linear regression [24], sparse or structured principal com-
ponents analysis (PCA) [22, 23, 44, 53], group synchronization problems [51], deep learning
[12, 13, 40] and optimization in spin glass models [1, 32, 42]. We refer to [30] for a recent
review.

In their basic form as described in [3], given a data matrix W € R™*”" and an initialization
u; € R™, an AMP algorithm consists of the iterative updates

7 = WTuz —bivi_1,
Ve = (2y),

y: = Wy, —auy,

w1 =ur1(y).

Here, a;, b; € R are two sequences of debiasing coefficients, and v; : R — R and u;41 : R —
R are two sequences of functions applied entrywise to z, € R" and y; € R™. By appropriately
designing these functions v; and u;41, possibly to also depend on additional “side informa-
tion” such as response variables in regression problems, this basic iteration may be applied
to perform optimization or Bayes posterior-mean estimation in the above applications.
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A defining characteristic of the AMP algorithm is the subtraction of the two “memory”
terms b;v;_1 and a;u; in the definitions of z; and y;, known as the Onsager corrections. This
achieves the effect of removing a bias of W u,; and Wy, in the directions of the preceding
iterates, so that as m,n — oo, the empirical distributions of y; and z; converge to certain
Gaussian limits

(1.1) yi = N(0,6%) and z — N(0, ).

This was proven rigorously in the Sherrington—Kirkpatrick model by Bolthausen in [11] and
for general AMP algorithms of the above form by Bayati and Montanari in [3], and various
extensions have been established in [2, 10, 19, 25, 34]. The description of the variances atz
and a)tz across iterations is known as the algorithm’s state evolution. This ability to character-
ize the distributions of the iterates is a major appeal of the AMP approach, and has enabled
a more precise theoretical understanding of many high-dimensional statistical estimators and
the development of associated inference procedures that quantify statistical uncertainty [14,
45, 59-61].

A drawback of AMP algorithms, however, is that the correct forms of the debiasing coef-
ficients a;, by and resulting variances o*tz, a)t2 depend on the properties of the data matrix W.
When W has i.i.d. (0, 1/n) entries, these quantities are given explicitly by

ar = (U;(Zt)>, by = V(”;(Yt—l)), Uzz = <vt(z,)2>, 60;2 = )’(Mz()’t—l)2),

where y =m/n, u,(-), v,(-), u; ()%, v ()% denote the derivatives and squares of u;, v; applied
entrywise, and (-) denotes the empirical average of coordinates. It has been shown in [2, 19]
that these forms enjoy a certain amount of universality, being valid also for W having i.i.d.
non-Gaussian entries. Extensions to W having independent entries with several blocks of
differing variances were derived in [25, 34]. Unfortunately, these results do not apply to W
with more complex correlation structure, which is common in data applications. A sizeable
body of work has developed alternative algorithms or damping procedures to address this
shortcoming [17, 18, 31, 36, 37, 41, 48-50, 54, 55, 57, 62], and the connections between
several of these algorithms were discussed recently in [38]. However, many such algorithms
are no longer characterized by a rigorous state evolution, and some have been empirically
observed to exhibit slow convergence or divergent behavior.

1.1. Contributions. We develop a rigorous extension of general AMP procedures of the
above form to rotationally invariant matrices. We then apply these general algorithms to a pro-
totypical “structured PCA” problem of estimating a rank-one matrix in (possibly nonwhite)
noise. In this PCA application, we develop a Bayes-AMP algorithm that provably achieves
lower mean-squared-error than the rank-one estimate constructed from the sample principal
components (PCs), for any sufficiently large signal strength and any prior distributions of the
PCs that are not mean-zero Gaussian laws.

Let us first describe the general AMP algorithm in the simpler setting of symmetric square
matrices. We study matrices W € R"*" that satisfy the equality in law

wLOoTwo

for any deterministic orthogonal matrix O e R, Equivalently, such matrices admit the
eigendecomposition W = O AO where the eigenvectors O € R"*" are independent of the
eigenvalues A and are uniformly distributed on the orthogonal group. The AMP algorithm
will take the form

(1.2) z; = Wu; — bjuy — bppupy — - -+ — by,

(13) ut+1:ut+1(z1’Z29""z[)a



AMP FOR ROTATIONALLY INVARIANT MATRICES 199

where the coefficients b;; are defined so that each z; has an empirical Gaussian limit as in
(1.1). For greater generality and applicability, we will allow u; 4 : R" — R to be a function
of all previous iterates z1, ..., Z;, rather than only the preceding iterate z;. (Outside of the
i.i.d. Gaussian setting, the full debiasing of Wu; by uy, ..., u; is necessary even if u;1(-)
depends only on z;.) The correct forms for b;1, ..., b;; and the corresponding state evolution

(1.4) (z1,2,...,2;) > N(0, X))

were derived previously by Opper, Cakmak and Winther using nonrigorous dynamic func-
tional theory techniques [47]. These forms depend on the free cumulants of the eigenvalue
distribution of W, and we describe them in Section 4.1. Our work provides a rigorous proof
of the validity of this state evolution.

In the rectangular setting, we study birotationally invariant matrices W € R
the equality in law

mxn

satisfying

WZ0TWQ

for any deterministic orthogonal matrices O € R"*" and Q € R"*". Equivalently, such
matrices admit the singular value decomposition W = OAQ" where the singular vectors
O € R™ and Q € R™*" are independent of the singular values A and are both uniformly
distributed over the orthogonal groups. The analogous AMP algorithm takes the form

(1.5) 2, =W'u, — b vi —bpovy — - — bt i—1Vi—1,
(1.6) v =v(21,22,...,2;),

(1.7) Y =WV —aug —apy — -+ — dgy,

(1.8) W =ur41(Y1, 525 -0 Y1)

We describe in Section 5.1 the forms of the debiasing coefficients a;s, b;s and the correspond-
ing state evolutions

(Y1,---aYt)—>N(0a2t), (219"-le)_)~/\/‘(0’9!)’

which are related to the rectangular free cumulants of the singular value distribution of W as
introduced in [5, 6]. This algorithm has also been derived recently and independently in [16],
using a dynamic functional theory approach similar to [47].

These classes of rotationally invariant matrices include, but are not restricted to, W having
1.1.d. Gaussian entries. Importantly, the spectral distribution of W can be arbitrary, rather than
following the behavior prescribed by the semicircle or Marcenko—Pastur law. Our primary
motivation for studying such rotationally invariant models is that we expect the resulting
AMP algorithms to be valid under a much larger universality class of matrices W than AMP
algorithms derived in the i.i.d. Gaussian setting, and that this class may provide a more flexi-
ble model for data matrices arising in practice.

In the contexts of compressed sensing and generalized linear models, alternative “vector
AMP” or “orthogonal AMP” approaches for rotationally-invariant matrices have been devel-
oped in [37, 54, 57, 62], and rigorous state evolutions for these algorithms were also derived.
These derivations are based on analyses of denoising functions that satisfy the divergence-
free conditions

(1.9) (0sv:(z1,...,2)) =0, (Osur+1(y1,...,¥))=0 foralls <r.

A similar idea was used in [15] to develop an algorithm for solving the TAP equations
for Ising models with rotationally-invariant couplings. Analyses of certain “long-memory”
Convolutional AMP algorithms for compressed sensing, related to our work, were recently
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carried out in [63—65] by mapping these algorithms to a divergence-free form. Our proofs
build on the insight in [54, 62] that Bolthausen’s conditioning technique may be applied to
rotationally-invariant models. However, we derive directly the forms of the Onsager correc-
tions and state evolutions for AMP algorithms that do not restrict v;(-) and u;41(-) to be
divergence-free, in a general setting that extends beyond compressed sensing applications.
We clarify the relation between certain long-memory algorithms and the AMP algorithms of
[3] for Gaussian matrices, by relating their Onsager corrections and state evolutions to the
free cumulants of the spectral distribution of W.

1.2. Organization of paper. Section 2 establishes preliminary background and notation
on Wasserstein convergence of empirical measures and free cumulants. Section 3 first dis-
cusses the specific application of structured PCA and the Bayes-AMP algorithms for this
application that specialize the more general AMP algorithms to follow. Section 4 describes
the general AMP algorithm and state evolution for symmetric square matrices, and Section 5
describes the analogous general algorithm for rectangular matrices. Section 6 provides a high-
level overview of the proofs, which are contained in the supplementary Appendices [29].

2. Preliminaries on Wasserstein convergence and free probability.

2.1. Notation and conventions. For vectors v € R" and w € R™, we denote

1 & 1 Z
<V>:;Zl)i7 <W>=Z2wi.

For a matrix (vy,..., Vi) € R"*k and a function f: R¥ — R, we write f(vi,...,vx) e R"
as its rowwise evaluation.

For a weakly differentiable function u : R¥ — R, we denote by du (any version of) its
sth partial derivative. For a matrix (vi, ..., vx) € R"** we write My,,...v) € R for the
orthogonal projection onto the linear span of (vy, ..., vt), and My, vyl = Id — My, v
for the projection onto its orthogonal complement. Id is the identity matrix, and we write
Idi «« to specify the dimension k. We will use the convention

.....

M° =1d

for the zero-th power of any square matrix M, even if some eigenvalues of M may be 0.

Products over the empty set are equal to 1, and sums over the empty set are equal to O. || - ||
is the £, norm for vectors and ¢> — ¢, operator norm for matrices. ||V||co = max; |v;| is the
vector £o norm, and [M||F = (3_; j mlzj 1/2 {5 the matrix Frobenius norm.

2.2. Wasserstein convergence of empirical distributions.

DEFINITION 2.1. For p > 1, a matrix (vi,..., Vi) = (Vi,1,..., Vi k)i € R"*k and a
probability distribution £ over R* or a random vector (V1 ..., Vi) ~ L, we write
WP WP
Vi, ..., vi)) > L or (vi,...,vi)—> (Vi,..., V)
for the convergence of the empirical distribution of rows of (vy, ..., vg) to £ in the Wasser-

stein space of order p. This means, for any C > 0 and continuous function f : R¥ — R
satisfying

2.1) |f(v1,...,vk)|§C(1+||(v1,...,vk)||p),
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as n — 00,
1 n
(2.2) =2 fins v > E[f (Vi V)
i=1
Implicit in this notation is the finite moment condition E¢y,  _ v~cz[I[(V1, ..., Vi)IIP] < oco.
We write

(Vl,...,vk)zﬁ or (Vl,...,vk)K(Vl,...,Vk)

to mean that this convergence holds for every fixed p > 1, where £ has finite moments of all
orders.

We will use a certain calculus associated to these notation Kﬁ’ and lV>, which we review
in Appendix E. By [66], Definition 6.7, to show that (2.2) holds for all continuous functions
f satisfying (2.1), it suffices to check that it holds for all bounded Lipschitz functions f
together with the function f(vy, ..., vx) = ||(v1, ..., vr)||?. See Chapter 6 of [66] for further
background.

2.3. Free cumulants. We briefly review the notion of free cumulants, and refer readers to
[46] for a more thorough and motivated introduction.

Let X be a random variable with finite moments of all orders, and denote m; = E[X*].
In what follows, the law of X will be the empirical eigenvalue distribution of a symmetric
matrix W € R"*", Let NC(k) be the set of all noncrossing partitions of {1, ..., k}. The free
cumulants k1, k2, k3, ... of X are defined recursively by the moment-cumulant relations

(2.3) my = Z HK|S|,

weNC(k) Ser

where | S| is the cardinality of the set S € m. The first four free cumulants may be computed
to be

k1 =m =E[X],

Ky =myp — m% = Var[ X],

k3 =m3 — 3mom| + Zm?,

K4 =my4 — 4dmsm; — Zm% + IOmzm% — Smél‘,

where k4 is the first free cumulant that differs from the classical cumulants. The free cumu-
lants linearize free additive convolution, describing the eigenvalue distribution of sums of
freely independent symmetric square matrices. If X has the Wigner semicircle law supported
on [—2,2], then

k1 =0, ko =1, kj =0 forall j > 3.
Defining the formal generating functions

o0 o0
M@ =1+Y mz,  R@=) ",
k=1 k=1

the relations (2.3) are equivalent to an identity of formal series (see [46], Section 2.5)

M(z)=1+2zM(z) - R(zM(z)).
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Here, R(z) is the R-transform of X. Comparing the coefficients of z¥ on both sides, each free

cumulant xx may be computed from my, ..., my and k1, ..., Kkr—1 as
k—1 .
Kk =my — [Zk] ZK]'(Z —f—m1Z2 +m2Z3 +--- —i—mk_lzk)J,
j=1

where [zX](¢(z)) denotes the coefficient of z¥ in the polynomial ¢ (z).

2.4. Rectangular free cumulants. For rectangular matrices W € R”*" | we review the no-
tion of rectangular free cumulants developed in [5]. This is an example of the operator-valued
free cumulants described in [58], where freeness is with amalgamation over a 2-dimensional
subalgebra corresponding to the 2 x 2 block structure of R +m)x(m+n)

We fix an aspect ratio parameter

y=m/n>0.

Let X be a random variable with finite moments of all orders, and denote the even moments
by mox = E[X?¥]. The law of X? will be the empirical eigenvalue distribution of WW T e
R™>™ "so that myy is the kth moment of this distribution. Define also an auxiliary sequence
of even moments

1 if k=0,

2.4 Mo =
24) 2k y-my ifk>1.

Since the eigenvalues of WW T and WTW coincide up to the addition or removal of |m — n|
zeros, the value 7o is the kth moment of the empirical eigenvalue distribution of W' W e
Rl’l Xn .

Let NC'(2k) be the noncrossing partitions 7 of {1, ..., 2k} where each set S € 7 has even
cardinality. Then we may define two sequences of rectangular free cumulants k7, x4, kg, . . .
and k2, k4, K¢, . . . by the moment-cumulant relations

my = [T «s- I #s
7eNC'(2k) Sexw Sem
min S is odd min S is even
=3, Il & I w«s
7eNC'(2k)  Sem Sem
min S is odd min S is even

See [5], equations (8)—(9). These cumulants have a simple relation given by
2.5 Koy =1y -kpr forallk=>1,

so outside of the proofs, we will always refer to the first sequence {k2x}x>1 for simplicity.
Letting e(r) be the number of sets S € m where the smallest element of § is even, and
letting o(r) be the number where the smallest element is odd, applying (2.5) above implies

(2.6) Moy = Z Ve(ﬂ) H K|S| mo = Z Vo(n) 1_[ Kisi-

meNC' (2k) Sem meNC' (2k) Sen
See also [5], Proposition 3.1. The first four rectangular free cumulants may be computed as

Ky =my = IE[XZ],

Ky =my— (1 +y)m3,

ke =me— 3+ 3y)mamr + (2+3y + 2y2)m%,

Ky =mg — (44 4y)memy — (2 + 2y)m3 4 (10 + 16y + 10y ?)mym3
— (54 10y + 10y + 5y )m3.
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The rectangular free cumulants linearize rectangular free additive convolution, describing the
singular value distribution of sums of freely independent rectangular matrices. If X2 has the
Marcenko—Pastur law with aspect ratio y, then

ky=1, k2j =0 forall j>2.

The rectangular free cumulants may be computed from the following relation of generating
functions: Let

oo (o.¢]
M(z)=) " mxuzt, R(z) =) Kknz".
k=1 k=1

Here, R(z) is the rectangular R-transform of X. Then

.7 M(z)=R(z(yM(2) + 1)(M(2) + 1));
see [5], Lemma 3.4. Thus, comparing the coefficients of z¥ on both sides, each value ko may
be computed from mo, ..., mor and k2, ..., k2x—2 as

k-1 .
Kok = mog — [2¥] D k2j(z(yM @)+ 1)(M(2) + 1))2J’
=1

where [zk](q (z)) again denotes the coefficient of zF in the polynomial g(z).

REMARK 2.2. The reasons for the appearance of the square/rectangular free cumulants
in the forms of the Onsager corrections and state evolution for AMP are somewhat opaque in
our work, as they will arise from a certain combinatorial unfolding of the moment-cumulant
relations on the noncrossing partition lattice; we discuss this further in Section 6. Their emer-
gence is conceptually clearer in the (nonrigorous, but illuminating) analysis of the limit char-
acteristic function of the AMP iterates in [47], where they arise instead from the evaluation
of a low-rank HCIZ integral over the Haar-orthogonal randomness in W, and from the coeffi-
cients of the series expansion of the R-transform that describes this integral. See [20, 33] and
[7] for this connection in the square and rectangular settings, respectively.

3. Structured principal components analysis. We study the problem of estimating a
rank-one signal matrix in possibly nonwhite noise, where the singular vectors of the rank-
one signal have some “prior” structure. For sufficiently large signal strengths, we describe
a Bayes-AMP algorithm that provably achieves lower mean-squared-error than the rank-one
estimate constructed from the sample principal components. This extends the types of AMP
algorithms that were studied for i.i.d. Gaussian noise in [22, 23, 44, 53].

3.1. Symmetric square matrices. Suppose first that we observe a symmetric data matrix
o
X = —u,u, +WeR™"
n

and seek to estimate u, € R”. Writing the eigendecomposition W = OTAO where A =
diag(A), we assume that W is rotationally-invariant in law and that as n — o0, the empirical
distributions of A and u, satisfy

(3.1) A XA w2,

.. . .W .
for two limit laws A and U,. This notation — denotes Wasserstein convergence at all orders,
as discussed in Section 2.2. To fix the scaling, we take ||u, | = /%, so that

|
E[UF] = lim_ —fu.”=1.
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Here, the law of A is the limit spectral distribution of W. The law of U, represents a prior dis-
tribution for the entries of u,, which may reflect assumptions of sparsity [22], nonnegativity
[43], or a discrete support that encodes cluster or community membership [21].

We assume for simplicity that we have an initialization u; € R"” independent of W, satis-
fying the joint empirical convergence

(32) (W, u) > (UL U, E[UUL >0,
We then estimate u, by the iterates u; of an AMP algorithm

(3.3) f =Xu; — byjuy — - -+ — byuy,
(3.4) et = w1 (f).

It will be shown that each iterate f; behaves like u, corrupted by entrywise Gaussian noise,
so we take each function u;41(-) to be a scalar denoiser that estimates u, from f;.

To describe the forms of the debiasing coefficients b;1, ..., bs, let us write A1 (X) > --- >
An (X) as the eigenvalues of X. For each k > 1, let

1 n
(3.5) mic =~ gki(X)"

be the kth moment of the empirical eigenvalue distribution of X excluding its largest eigen-
value. Let {« }x>1 be the free cumulants corresponding to this sequence of moments {my }x>1,
as defined in Section 2.3. It is easy to check that under the assumption (3.1), as n — o0,

my — m° =E[A], Kk —> KZ°

for each fixed k > 1, where these limits are the moments and free cumulants of the limit
spectral distribution A of the noise W. The debiasing coefficients in (3.3) are set as

t

(3.6) bu=xi,  bau—j=rjp1 ] WiG-») forj=1,...1—1.
i=t—j+1

The state evolution that describes the AMP iterations (3.3)—(3.4) is expressed in terms of
a sequence of mean vectors u3° = (147°)1<;<7 and covariance matrices X7° = (0°) 1<s,1<T,
defined recursively as follows: For T =1, we set

n°=a-E[U U], oY =«PE[U7].
Having defined p.‘}o and X 3°, we denote
U =u;(F,_1) fort=2,...,T+1,
(3.7 (Fi,....,Fr)=pu% - Ui+ (Z1,...,Z7) and
(Z1,...,Zr) ~N(0,£%) independent of (U, Uy).
We then define pf;‘ﬂrl and Z‘%OH to have the entries, for 1 <s,r <T + 1,

w® = o E[UU,].

s—11t—1 s
=Xyt T sbien)

(3.8) i=0k=0 i=s—j+1

t
x( I E[u;(Fi_o])E[Us_jUt_k].

i=t—k+1
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In the limit n — oo, the iterates of (3.3) will satisfy the second-order Wasserstein conver-
gence

W
(fla""fTau*)_g(F1a~"’FT9U*)'

Thus, the rows of (fy, ..., fr) behave like Gaussian vectors with mean u° - Uy and covari-
ance X 7.

As one example of choosing the functions u;41(-), let us analyze this state evolution for
the following “single-iterate posterior mean” denoisers: In the scalar Gaussian observation
model,

(3.9) F=p-U+Z, Z~N(0, 02) independent of U,
we denote the Bayes posterior-mean estimate of U, as
E[Usexp(—(f — p - Us)*/20°)]

Elexp(—(f — p- Ux)?/202)]
We denote the Bayes-optimal mean-squared-error of this estimate as

(3.10) n(f | u,0?) =E[Us | F = fl=

(.11) mmse(u?/0?) = E[(Ux — n(F | 1, 02))7].
The single-iterate posterior mean denoiser is the choice
3.12) urr1(f) =n(fi | 7%, o),

where 1 and o;° are the above state evolution parameters that describe the univariate Gaus-
sian law of F;. These parameters may be replaced by consistent estimates in practice.

Let R(x) be the R-transform of the limit spectral distribution A, as discussed in Sec-
tion 2.3, and let R’(x) be its derivative. For small | x|, these may be defined by the convergent
series (see Proposition F.3)

(3.13) R(x) =) w®xk1
k=1

THEOREM 3.1.  Suppose W =0T AO € R"" where O is a Haar-uniform orthogonal
matrix. Let A = diag(A), where (A, uy, u,) are independent of O, ||u| = /n, and

AZ A @auE WLy

almost surely as n — 0o. Suppose ]E[Ulz] <1, E[UUs] =¢ >0, and ||M||oo < Co almost
surely for all large n and some constants Co, ¢ > 0.

(a) Let a > 0, and let each function us+1(-) be continuously differentiable and Lipschitz
on R. Then for each fixed T > 1, almost surely as n — o0,

W3
(u]a-'~auT+1af19--'7fTau*)_)(U1,~'-9UT+1’F17~~'9FT7U*)9

where the joint law of this limit is described by (3.7).

(b) Suppose each function u,+1(-) is the posterior-mean denoiser in (3.12), and suppose
this is Lipschitz on R. Then there exist constants C, oy > 0 depending only on Cy, € such that
forall a > ag, defining In =[1—C/a®, 1] and Iy = [«5°/2,3k5° /2], there is a unique fixed
point (A4, Xy) € Ipn X Ix to the equations

2 A2

A A(1—A
(3.14) 1— A, :mmse<a *>’ %, = A*R/<a «( *))

Yy >,

Furthermore,

1o RV TR
(3.15) lim <hm —uTu*> = lim (hm —|lar|| ):A*.
T—oo\n—>Xn

T—oo\n—>xXn
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The proof of this result is provided in Appendix C. As discussed in Section 2.2, the no-

. Wy . . . . .
tation — in part (a) guarantees that for any continuous function f : R27+2 — R satisfying
E[f(Ul’ ey UT—|—17 Zl5 ey ZT? U*)z] < OO’

<f(u17'~~auT+laZ15~~-7ZT’u*))_>E[f(U19"~a UT—l—l’Zla""ZT’U*)],

where the left-hand side is the empirical average of this function f evaluated across the n
rOws.

REMARK 3.2. Theorem 3.1(b) implies that the asymptotic matrix mean-squared-error
of the rank-one estimate uTu; for u*u*T, in the limit 7 — oo, is given by

1
MSE = lim <lim —

2
Jim ( Jim - Juraf —uul |} )

Lo 2 o Lo 2
= tim ( tim = ()’ = e+ o (e l?)) = 1- a2

Let us compare this with the matrix mean-squared-error of the best PCA estimate c -
ﬁPCAﬁ;T)C A optimized over ¢ > 0, where tipcy is the leading sample eigenvector of X. Nor-

malizing apca such that |[Gpcall = ||us|| = 4/, [8], Theorem 2.2(a), shows for sufficiently
large « that
(3.16) li (1 0 )2 A !
. im | —Upraly | = = ,
oo\ TCATH POAZ 2G/(G1(1/a))

where G(2) = E[(z — A)~'] is the Cauchy transform of A, and G~ 1(z) is the functional
inverse of G (which is well defined for small |z|). Then

) ) 1 PN 2
MSEpca = rcn>151< lim 2 e “PCA“fTCA - “*“*T ||F>

n—oo

=minc? — 2cApca +1=1— Adcy,
c>0

with the minimum attained at the rescaling ¢ = Apca < 1.
To see that 1 — Ai <1- AIZ,C A»> Observe that for any prior distribution U, satisfying our
normalization E[Uf] =1, we have

1
2,2

This is bgcause under the scalar observationAmodel (3.9), the right-hand side of (3.17) is the
risk E[(U — U,)?] of the linear estimator U = (n/ (02 + u?))F, which upper boupds the
Bayes risk on the left-hand side of (3.17). Equality holds in (3.17) if and only if U is the
Bayes estimator in this model, that is, if and only if the prior distribution is U, ~ N (0, 1).
Applying (3.17) to the first equation of (3.14) and rearranging, we obtain
aA(1=Ay) 1
- Y
Now applying this to the second equation of (3.14), and using that x5° = Var[A] > 0 so that

the function x R’ (x) = k$°x + 2x§°x? + 3k$°x> + - -+ is increasing in a neighborhood of 0,
we have for o > o sufficiently large that

1— A, = 1 ead- A*)R’<O‘A*(1 _ A*)> < iR’(l).
o . - a? o
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Symmetric PCA, eigenvector Rectangular PCA, left singular vector Rectangular PCA, right singular vector
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FI1G. 1. Simulations of the Bayes-AMP algorithms for PCA, with priors Uy, Vi ~ Uniform{+1, —1} and the
single-iterate posterior mean denoisers in (3.12) and (3.27). Shown are the mean and std. dev. of (u;uy) and
(v:vy) across 100 simulations in black, their state evolution predictions computed from (3.8), (3.24) and (3.26) in
red dots, and the fixed points Ay and Ty of (3.14) and (3.28) in dashed red. For comparison, Apca and I'pca
corresponding to the sample PCs are in dashed blue. Left: wy (initialization), uy, ..., a1 for symmetric square
W with n = 2000, o = 2.5, and eigenvalue distribution given by centering and scaling Beta(1, 2) to mean 0 and
variance 1. Middle and right: wy (initialization), uy, ..., ug and vy, ..., vs for rectangular W with m = 2000,
n =4000, y =0.5, « = 1.5, and singular value distribution given by rescaling Beta(1, 2) to second-moment 1.

Differentiating the R-transform identity R(x) = G~!(x) — 1/x, this is equivalently written
as

1 /1 ~1
A>1——R/<—): = A ,
=T o) T 26 G T ) A
so that
(3.18) MSE =1 — A2 <1 — Ajc, = MSEpca

as desired. Equality holds here if and only if equality holds in (3.17), that is, when U, ~
N (0, 1). Thus, for any signal strength a > « sufficiently large and any distribution of U,
other than A/ (0, 1), the above AMP algorithm achieves strictly better estimation accuracy
than PCA.

An illustration of the algorithm and state evolution is presented in the left panel of Fig-
ure 1, with noise eigenvalues drawn from a centered and rescaled Beta(1,2) distribution.
We observe a close agreement with the state evolution predictions at sample size n = 2000,
and a significant improvement in estimation accuracy over the naive principal components
for this prior distribution U, ~ Uniform{+1, —1}. Let us remark that although carrying out
many iterations of this AMP algorithm would require estimating successively higher-order
free cumulants of the spectral distribution of W, for large signal strengths « the algorithm
only needs a very small number of iterations to converge.

REMARK 3.3. In this algorithm, the Onsager corrections involving the free cumulants
may be understood as iteratively constructing the series (3.13) for R(a AL (1 — Ay)/X,),
whose derivative appears in the characterization of the fixed point in Theorem 3.1. This
is somewhat analogous to the single-step-memory algorithm in [47] for solving the TAP
equations in a related Ising model, which alternatively constructs a series for the inverse
R-transform.

The convergence condition and final mean-squared-error of this algorithm are likely not
Bayes-optimal. For example, we believe that the convergence of (3.3)—(3.4) requires conver-
gence of the series (3.13) at x = v A4(1 — Ay)/ X, which (depending on the spectral law
of W) may impose a stronger condition for the signal strength « than the spectral phase
transition. One natural way to improve upon the algorithm is to consider more generally

1 (fy, ... ) = U(Ctlfl + ek | C:—ll»?o, C;rzfocz)
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for a vector ¢; = (¢/1, ..., c) 1In each iteration, or specialize this to ¢; = ():‘tx’)_1 uX to
obtain the posterior mean estimate of U, given all previous observations (F1, ..., F;). Our
general results describe also the state evolution for these extensions, but analyses of their
fixed points are more involved, and we will not pursue this in the current work.

These procedures differ from the “Vector AMP” or “memory-free” algorithms of [15, 54],
whose forms may be derived from the Expectation Propagation framework of [41]. These
latter algorithms operate directly on a resolvent of W and use divergence-free nonlinearities,
corresponding to ®; = ¥, = 0 in our notation to follow. Thus their state evolutions have
simpler forms that depend on the first two moments of the resolvent but not (explicitly) on
the free cumulants of W. PCA differs from the applications in [15, 47, 54] in two important
ways: First, the log-likelihood of X given u is not quadratic in u under general spectral laws
of W. Second, the noise matrix W is not directly observed in PCA, and its resolvent cannot
be directly computed. Due to these differences, we believe that extending the algorithmic
ideas of [15, 54] to PCA may be an interesting open question to study in future work.

3.2. Rectangular matrices. Consider now a rectangular data matrix
o
X= —u*vI + W e R™*",
m

and the task of estimating u, € R™ and v, € R". Writing the singular value decomposition
W = O"AQ where A = diag(A) and A € R™""") e assume that W is birotationally in-
variant in law and that

min=y, ASA  wlU, v.Zv,

as m,n — oo, for some constant y € (0, 0c0) and some limit laws A, U,, V.. We fix the
scalings ||uy|| = «/m and ||v4| = /i, so that
E[UZ] =E[V}]=1.

*

Note that the rank-one signal component (o/m)u,v, has singular value o/ N2
We again assume that we have an initialization u; € R” independent of W, for which

w

We then estimate u, and v, by the iterates u; and v, of an AMP algorithm

(3.19) g =X"u —bvi— - — b1V,
(3.20) Vi = (g,

(3.21) f; =Xv, —aqu) — - — auy,
(3.22) w =u(f),

where u;41(-) and v;(-) are scalar denoisers that estimate u, and v, from f; and g;.

To describe the forms of the debiasing coefficients a;; and by, let us define A, € R™ to
be A if m <n or A extended by m — n additional 0’s if m > n. We will work instead with the
limit

A A,

which is a mixture of A and a point mass at 0 if y =m/n > 1. Denoting the singular values
of X by A1(X) > -+ > Amin(m,n)(X), for each k > 1 we set

min(m,n)

my=— Y. aX*
mois
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We then define {k2x}r>1 as the rectangular free cumulants associated to these even moments
{max}k>1 and aspect ratio y, as defined in Section 2.4. It is easily checked that as m, n — oo,
2k
mor — m3; = E[A})], Kok —> K5k s

where these limits are the even moments and rectangular free cumulants of A,,. Then the
debiasing coefficients in (3.19)—(3.22) are set as

t

ari—j =k2j+n(v, @) [ (wiE-D)vi_(g-1) forj=0,....1—1,
i=t—j+1

r—1

bii—j=vyiailu;—) [] (i@)Nuj®i-) forj=1,....1—1
i=t—j+1

We use the convention that empty products equal 1, so the first coefficients here are simply
arr = K2(U;(gt)), bii—1= )”Q(M;(fz—l))-

The state evolution for this algorithm may be expressed in terms of two sequences of
mean vectors 3 = (u;°)1<,<7 and vy = (V°)1<;<7 and covariance matrices X7 =
(0 1<s.i<r and RF = (w3)1<s.t <7, defined as follows: For T = 1, we set

v° =a-E[U U], o = yis© - E[U?].

Having defined u3° , £3°_;, v$’, and 7, we denote

Ui =u;(F;—1) fort=2,...,T,

(Fi,....Fr—)=p%_ - U+ (Y1,..., Y7_1),

(Y1,...,Yr—1) ~N(0, £7°_) independent of (Uj, U,),

Vi=vw(Gy) forr=1,...,T,

(Gi,....,Gr)=v}F - Vo +(Zi1,.... Z7),

(Z1,...,Zr) ~ N (0, 2%) independent of V.

(3.23)

We then define u7° and X7° with the entries, for 1 <s,¢ < T,

pi = (a/y) - E[V; Vi,

oy = f i( H E[v£<Gf>]E[u§(Fi_1>])

j=0k=0 \i=s—j+1
t
(3.24) X ( [ E[v;(Gi)]E[u;(F,-_l)]>
i=t—k+1
X (5C k) BLVs— j Vi k) 4 K50 1 a ) Blv5— (G5 )]
X E[v,_4(G—p) |E[Us—;U;—i]).
Now having defined 7" and X7, we extend (3.23) to
Ui=u;(F;—y) fort=2,...,T+1,
(3.25) (Fi,....,Fr)=p3 - U+ (Y1,..., Y1),
(Y1,...,Yr) ~N(0, £3°) independent of (U, Uy)
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and define v%oH and SZ%OH with the entries, for 1 <s,t <7 +1,

v° =a - E[UU,],

s—1r—1 Ky
ws,°=yzz( 1l E[uxn_om[v;l(a_ln)

j=0k=0 \i=s—j+1
(3.26) !
x( I E[u:m_o]E[v;_l(Gi—o])
i=t—k+1

X (Kg?j+k+1)]E[US—j Ur—k] + K%+k+2)E[”;—j(Fs—j—l)]
X Elu;_i (Fi—k—1) |E[Vs—j—1 Vi—k—1]).
We use the convention V = 0, so that the second term of (3.26)isOfor j =s—lork=¢—1.
In the limit m, n — o0, the iterates of (3.19)—(3.22) will satisfy
1% W,
(flv--'1fT9u*)_§ (F17---7FT7U*)a (gl’ng9V*)_% (Gli""GT7 V*)

As an example of choices for v;(-) and u;4+1(-), let us again analyze the single-iterate
posterior mean denoisers given by

(3.27) v (gr) =n(gr | ve, W), urp1(fe) =n(fe | e, 011)s

where 7(-) is as defined in (3.10), and (v;, wy) and (i, 07¢) are the state evolution parameters
describing the univariate Gaussian laws of G; and F;. We denote by mmse(-) the scalar
mean-squared-error function from (3.11), and by R(x) the rectangular R-transform of A,,
with aspect ratio y, as discussed in Section 2.4. This may be defined for small |x| by the
convergent series (see Proposition F.3)

0
R(x) = Zlcf,?xk,
k=1

where k57 are the rectangular free cumulants of A, above. We denote R’(x) as its derivative,
and

S(r) = (R)(Cx)>/ _ xR (x) — R(x)'

x2

THEOREM 3.4. Suppose W = OTAQ € R™*" where Q and O are Haar-uniform
orthogonal matrices. Let A = diag(A), where (A,uy,uy, V) are independent of (O, Q),

lusll =/, |Vill = /m, and

as m,n — 00. Suppose E[Ulz] <1,E[U,Us] =€ >0, and |Al|ooc < Co, almost surely for all
large n and some constants Cgp, ¢ > 0.

(1) Let o > 0, and let each function v:(-) and u;1(-) be continuously differentiable and
Lipschitz on R. Then for each fixed T > 1, almost surely as m,n — oo,

w
(ul"~~’uT+1’f17--"fTau*)_>(U1a~--9UT+19F1,~~-9FT9U*)7

w
(Vla"'aVTag1’~'-9gTaV>k)_> (Vla-"aVTaGla-'-’GT’ V*)a
where these limits are as defined in (3.23) and (3.25).
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(i1) Suppose v;(-),u;+1(-) are the posterior-mean denoisers in (3.27) and are Lipschitz
on R. There exist constants C, ag > 0 depending only on Cy, e,y such that for all @ > o,
setting

In=Ir=[1-C/a* 1], Is = [K5°/2,3k5° /2], Io=y-Is,

there is a unique fixed point (A, 2y, s, Qy, Xx) € Ipn X Iy X It X Ig X R to the equations

2 212
AJ (1 —AHA =T r
X*:a e ) ( *)’ 1—A*:mmse<a2 >x<>’
Y 282 Y Yy
a2 A2
I—F*:mmse< *)
%
(3.28)
) a?A3(1 —Ty)?
2 =TWR(Xy) + S(Xx),
Q
213 2
T2 —
Q, =y AR (X,) + L1 5 D 5(x..
Y X
Furthermore,

. . 1 . . 1
lim ( lim —u;u*> = lim ( lim —||uT||2> = Ay,
T—o0 \In,n—>00 m T—oo0 \In,n—>00 m

. . 1 + . . 1 >
lim lim —-vypvy )= lim lim —|vr||”) =T.
T m,n—0o00 p

T—o0 \In,n—>X0 n —00

The proof of this result is provided in Appendix C.

REMARK 3.5. As in the symmetric square setting of Remark 3.2, the above fixed points
imply that the asymptotic matrix mean-squared error is given by

. . 1 T T2

MSE= lim | lim —|urvy —uv, ||z ) =1— AT,
T—oo\Mm,n—>00 mn

We may compare this with the asymptotic error of the PCA estimate: Assume without loss

of generality that y = m/n < 1. Let tipca and Vpca be the leading left and right singular

vectors of X, with the scalings |[Gpca || = |||l = +/m and ||[Vpca || = ||V« || = +/n. Recall that

the singular value of the rank-one signal («/ m)u*v*T isa/,/y,and set

X = y/ocz.
Then [9], Theorem 2.9, shows
. 1.+ 2 _ —2xp(D™'(x))
(3.29) m}}goo(auPCAu*) = Apca = DD )
, 1.+ 2 2D (x)
(3.30) mylﬂlg@(;VpCAW) =I'pca = DD )

where

1_
63D v@=E5 | s@=re@+ DO =@,
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and D~ (z) is the functional inverse of D for small |z|. Then the matrix mean-squared error
for the best rescaling of the PCA estimate is

) ) 1 A
MSEpca = Icn>1(f)1< lim —/c- “PCAVET’CA - “*V*T H%)

m,n—o0 mn

= Icn>ig(02 —2¢/ApcaTpca + 1) =1 — Apcal'pca

with the minimum attained at ¢ = /Apcal'pca. We verify in Appendix C.3 that for all o« >
«g sufficiently large, the fixed points of Theorem 3.4(b) satisfy
(3.32) MSE=1—-A,T'y <1 — Apcal'pcA = MSEpca,

and that equality holds if and only if both U, ~ N(0, 1) and V, ~ N(0, 1). Thus, for suffi-
ciently large signal strength and any non-Gaussian prior for either U, or V,, the above AMP
algorithm achieves strictly better estimation accuracy than PCA.

An illustration of this AMP algorithm and its state evolution is presented in the middle
and right panels of Figure 1, with noise singular values drawn from a rescaled Beta(l, 2)
distribution. Again, close agreement with the state evolution predictions is observed at these
sample sizes (m, n) = (2000, 4000) and y = 1/2.

4. General AMP algorithm for symmetric square matrices. We now describe the
general AMP algorithm for symmetric square matrices
4.1) W=0TAOcR"™, A= diag(A)
and we state a formal theorem for its state evolution.
We consider an initialization u; € R”, and also a possible matrix of side information
Ec R” xk

for a fixed dimension k£ > 0, both independent of W. (We may take k = 0 if there is no such
side information.) Starting from this initialization u;, the AMP algorithm takes the form

4.2) z; = Wu, — bjyuy — bpuy — -+ — by,

(4'3) ul+1 :ul‘-f—l(zl""vzl’E)'

Each function u,4; : R“* — R is applied rowwise to (z1, ..., %, E) € R**U+K The debi-
asing coefficients b;1, ..., b;; € R are defined to ensure the empirical convergence

(Zlv""zl)ﬂl)'/\/'(o’z?o)

as n — 00. The forms of b1, ..., b;; and X7° were first described in [47], and we review this
in the next section.

4.1. Debiasing coefficients and limit covariance. Define the ¢ x ¢t matrices

@) (wuw) - (wu)

A, — (llz‘lll) (ll%) (llz.llz) ’
(wup) (wu) - (u?)

(4.4)

0 0o .. 0 0
Bua) 0 .. 0 0

o, = | (d1m3) (dou3) - 0 0],
Gru) (B - (Bow) 0
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where usuy € R”, u? € R” and d;u; € R" denote the entrywise product, square and partial
derivative with respect to zy. For each j > 0, define

. Jo .
(4.5) 0 =Y aiA(@/7)".
i=0
For example,
0" =A., 0" =®,A + A9, O =®A+0AS +A,(9).

Let {«x}x>1 be the free cumulants of the empirical eigenvalue distribution of W. These are
the free cumulants as defined in Section 2.3 corresponding to the empirical moments

n
k
(4.6) mi = izzlx,. ,
where (A1, ..., A,) = A are the eigenvalues of W. Then define two matrices B; and X; by
o0 T o0
7 B, = (ij+1<1>{ ) L =) k20,
j=0 j=0

Here, B; may be interpreted as the R-transform applied to <I>IT. Note that we write these as
infinite series for convenience, but in fact the series are finite because <I>{ =0forall j >1,
and hence also ®§J ) = 0 for all j > 2¢ — 1. So, for example,

B =«1ldi«1, By = «1ldpya + k@, ,

poR| =K2®(O), )P =K2@;0) +K3@§1) +K4®§2).
Each matrix B; is upper triangular, which we may write entrywise as

by by -+ bu

by -+ bp
Bz: .

b1
The debiasing coefficients in (4.2) are defined to be the last column of B;. Note that the
diagonal entries b11, b2, ..., by are all equal to «1, corresponding to the subtraction of k1u;
in (4.2) when the eigenvalue distribution of W has mean k. If k; = 0, then the debiasing for
Wau, depends only on the previous iterates uy, ..., u;_j.

Under the conditions to be imposed in Assumption 4.2, all of the matrices A;, ®;, B; and
¥, will converge to deterministic # X ¢ matrices in the n — oo limit, which we denote as

(Alc‘)oa q);)o’Blc‘)oa Zl‘oo) :nll)ngo(At’ q)l’Bl5 E[)

This matrix X7° is the covariance defining the state evolution of the iterates (zi, ..., z;). All
of our results will hold equally if the debiasing coefficients in (4.2) are replaced by their
limits b7y, or by any consistent estimates of these limits.

We make two observations regarding this construction:

1. From the lqwer—triangular form of ®;, one may check that the upper left (r — 1) x (¢t — 1)
submatrix of (<I>tj )T s (<I>i_1)T, and similarly the upper left (t — 1) x (¢t — 1) submatrix of
G,U ) is ®§j_) |- Thus, the upper left submatrices of B, and X; coincide with B; _; and X;_i.

2. For each iteration ¢ > 1, B; depends on A only via its first ¢ free cumulants k1, ..., k¢,
and X; depends on A only via its first 2¢ free cumulants 1, .. ., k2.
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REMARK 4.1. In the Gaussian setting of W ~ GOE(n), where W has independent
N (0, 1/n) entries above the diagonal and N (0, 2/n) entries on the diagonal, the limit spec-
tral distribution of W is the Wigner semicircle law. The limits of the free cumulants 1, k2, . ..
in this case are

k=0, k3° =1, K]C-x’:O for all j > 2.
This yields simply
B =(eF)'. EZF=A

If we further specialize to an algorithm where each u; depends only on the previous iterate
Z;—1, then (d5u;) =0 for s # ¢ — 1, and this yields the Gaussian AMP algorithm

z; = Wu; — (0, —1u)u,_q,
) =ur11(2, E)

as studied in [11] and [3], Section 4. Furthermore, the state evolution is such that each iterate
z; has the empirical limit N'(0, 0.3°), where 6,3° = lim,,_, o (u?).

Note that outside of this Gaussian setting, we do not in general have the identity X° =
A, that is, the empirical second moments of zi,...,z; do not coincide with those of
ug, ..., U in the large-n limit, even if W is scaled so that k; = 1.

4.2. Main result. We impose the following assumptions on the model (4.1) and the AMP
iterates (4.2)—(4.3). Note that here, we do not require the functions u;1(-) to be Lipschitz,
but instead impose only the assumption (2.1) of polynomial growth.

ASSUMPTION 4.2.

(a) O € R™" is arandom and Haar-uniform orthogonal matrix.

(b) A € R" is independent of O and satisfies A WA almost surely as n — oo, for arandom
variable A having finite moments of all orders.

(c) u; € R” and E € R"*¥ are independent of O and satisfy (uy, E) L4 (Uy, E) almost
surely as n — o0, for a random vector (U, E) = (Uy, Ey, ..., Ex) having finite moments of
all orders.

(d) Each function u;41 : R!*T* — R satisfies (2.1) for some C > 0 and p > 1. Writing its
argument as (z, ¢) where z € R and e € R¥, u,, is weakly differentiable in z and contin-
uous in e. Foreach s =1, ..., ¢, dsu;41 also satisfies (2.1) for some C > 0 and p > 1, and
ds1;41(z, €) is continuous at Lebesgue-a.e. z € R! for every e € R¥,

(e) Var[A] > 0 and E[Ulz] > 0. Letting (Z1,...,Z;) ~ N (0, %) be independent of
(Uy, E), each function u;4 is such that there do not exist constants «q, ..., o, B1,..., B
for which

t t
ur1(Z1, .. Ze EY=)Y_asZg+ BiUr + Y BsUg(Z1. ... Zs_1, E)
s=1 s=2

with probability 1 over (Uy, E, Z1, ..., Z;).

We clarify that Theorem 4.3 below establishes the existence of the limit X provided that
condition (e) holds for the functions u», ..., u,, and this limit X then defines condition (e)
for the next function u,1. This condition (e) is a nondegeneracy assumption that holds if
each function u,1 has a nonlinear dependence on the preceding iterate z;.
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THEOREM 4.3. Under Assumption 4.2, for each fixed t > 1, almost surely as n — oo:
X, — X° for a deterministic nonsingular matrix £°, and

w
(u19--~7ut+]aZ]a"-’Zl7E)_> (Ulv-'~’Ut-l—]le’"-’ZhE)’
where (Z1,...,Z;) ~ N (0, ), this vector (Z1,...,Z;) is independent of (Uy, E), and
Us=us(Zy,...,Zs_1,E) foreachs=2,...,t +1.

The proof of this result is provided in Appendix A. The limit X{° is given by replacing
(usuy ), (dgug), and ky in the definitions (4.4) and (4.7) with E[U;Uy ], E[dyus(Z1, ...,
Z_1, E)], and the free cumulants «° of the limit spectral distribution A.

4.3. Removing the nondegeneracy assumption. The following corollary provides a ver-
sion of Theorem 4.3 without the nondegeneracy condition of Assumption 4.2(e), under the
stronger condition that each function u, is continuously-differentiable and Lipschitz. Note
that the convergence established is only in W», rather than in W), for every order p > 1 as in
Theorem 4.3.

The proof follows the idea of [10] by studying a perturbed AMP sequence and then taking
the limit of this perturbation to 0. We provide this proof in Appendix D.

COROLLARY 4.4.  Suppose Assumption 4.2(a)—(c) holds, limsup,_, o [|A]lco < 00, each
function u; 41 : R'ME — R is continuously-differentiable, and

uir1(z, ) —ui1(z,e)| < Clz = 7/|

for a constant C > 0 and all z,7' € R' and e € R¥. Then for each fixed t > 1, almost surely
as n — 00: X; — X7° for a deterministic (possibly singular) matrix £°, and

Wa
(u],...,u;+1,ZI,...,Zt,E)_> (Ulv-'-vUt-i—leli""Zl‘sE)’

where (U, ..., Uit+1, 21, ..., Zs, E) is as defined in Theorem 4.3.

5. AMP algorithm for rectangular matrices. In this section, we describe the form of
the general AMP algorithm for a rectangular matrix
(5.1) W=0"AQeR™", A =diag()
and state a formal theorem for its state evolution. We denote
(5.2) A=A, Amingn,ny) € RTICED)

as the diagonal entries of A, which are the singular values of W.
We consider an initialization u; € R, and two matrices of side information

EcR"k and FeR"™¢

for fixed dimensions k, £ > 0, all independent of W. (We may take k, £ = 0 if there is no such
side information.) Starting from this initialization, the AMP algorithm takes the form

(5.3) 7 = WTut — by vi —bppvy — -+ — bz,t—lvz—h
(5.4) Vi =v(21,...,2%,F),
(5.5) Ve =WV —a;uq —apuy — -+ - — ag\y,

(56) ul+1:ul+l(y1""ayl‘vE)’
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for functions v, : R“t* — R and u,, : R“tK — R. In the first iteration ¢ = 1, (5.3) is simply
z; = W'uy. The debiasing coefficients a;1, . .

that

., Ayt and bl‘l’ ..

., by 1—1 are defined to ensure

V1o V) S N(0,2%) and  (z1,....27) - N(0, 2)

as m, n — 00. We describe these debiasing coefficients and state evolution in the next section,
in terms of the rectangular free cumulants of W—these were also derived recently in [16].

5.1. Debiasing coefficients and limit covariance.

Define the ¢ x t matrices

W} (aup) (wjuy)
N (u3) (upu,)
= . . 9
57) (wup)  (uup) (u7)
' 0 0 0 0
(01up) 0 0 0
o, = | (d1u3)  (dm3) 0 0],
(d1uy)  (duy) (Or—1u;) O
(V%) (viva) (V1vy)
o | ) V) o (vavy)
r — . . . )
(5.8) (Vivi)  (Veva) e <V12>
' vi) 0O -~ 0
v (01v2) (dav2) --- 0
t — . . .
(01vs)  (02vy) -+ (0rVy)
For each j > 0, define
G ; S ; 1
(5.9 0= (W) A(¥ @)+ (@ ¥) ®,T, @ (¥ @),
i=0 i=0
Gl , ol | -
(5.100  E=>"(0,@)'T, (/W)™ + > (¥, @) WA (W) T
i=0 i=0

The second summations of (5.9) and (5.10) are not present for j = 0. So, for example,
0 = A,
0’ =&, A, +&T,® +AY &
0 =&, W, &, WA, + &V, &,T,® +& WAV &
+o,r,® V' +AY & ¥ D

O_r,

[1]

r—
=
(=1

(
t
D=y, &, T, +¥,AY +T,0 ¥
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27 =W, ¥, @, + ¥, & WA W +¥ oI, ¥
+WAY O T 0 v e W

Let {kor}k>1 be the rectangular free cumulants with aspect ratio y = m/n corresponding
to the sequence of even moments

1 min(m,n)

2k
(511) myi = % Z )\’i s

i=1
as defined in Section 2.4. Note that we always use the normalization 1/m, so these are the

moments of A padded by m — n additional 0’s if m > n.
Define the # x ¢ matrices

00 T 00 T
(5.12) At=<zxz<j+n\ln(<1>»ln)f) : Bt=<y ZKZ(,-H)dn(\ImIn)J) :

o . o0 .
5.13) =Y kaenE’. =y k410"
j=0 j=0
These are in fact finite series, as it may be verified that
U, (®,W,)/ =0 forj>r+1,
(¥, ®,)) =0 forj>1,
29 =0 forj > 21,
O =0 forj>2t—1.
So, for example,
A=V, A=V, +k4(¥202¥)",

B =0, B, =VK2<I>2T, B3 =)/K2<I’3T+VK4(<I>3‘I’3<I’3)T,

= (0 ~ (1 ~ (0 (1 -2 -~
X :KQ.:g ) +K4.:‘§ ), Yo :ch.g ) +K4:.é ) +K6:.§ ) +Kg=.§ ),
0 0 1 2
Q) =10, 92=VK2®§)+VK4®§)+VK6®§),
The matrices A; and B; are upper triangular, with the forms
0 b b - b
ay ax - (2)1 bz; bg
ayp -+ dp
At = . . ) Bl = . .
- 0 b1
gt 0

The debiasing coefficients a;1, ..., ai, bs1, ..., by 1—1 1n (5.3) and (5.5) are defined as the last
columns of A; and B;. Under the conditions to be imposed in Assumption 5.2, these matrices
all have deterministic ¢ X ¢ limits

(A;‘)oa rl?o’ ¢Z(‘>ov \I’?O’ A;)O’ B;‘)os 2?07 Szl(‘)o) == llmOO(At’ rl? ¢[5 ‘I’l‘a Ata Bl‘a Z[’ SZ[)

m,n—
The matrices X7° and £2;° are the covariances in the state evolutions for (yi,...,y;) and
(z1,...,2:). As in the symmetric square setting, the debiasing coefficients in (5.3) and (5.5)

may be replaced by their limits a;y and b7y, or by any consistent estimates of these limits.
We make the following observations about the above definitions:
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1. The upper left ( — 1) x (¢ — 1) submatrices of A;, B;, X;, §; coincide with the matrices
A1, B, X, 2.

2. Foreacht > 1, A;, B;, ¥, &; depend respectively only on the rectangular free cumu-
lants of A up to the orders k2, k2r—2, Kar, Kar—2.

3. The matrices A;, ¥; dependonuy, ..., u;, vy, ..., v; and their derivatives. The matrices
B;, ; depend onuy, ..., us, vy, ..., v;— and their derivatives, but they do not depend on v,
or its derivatives. (Thus the debiasing coefficients and state evolution for z; in (5.3) are well
defined before defining v; in (5.4).)

The first two statements are analogous to our observations in the symmetric square setting.
The third statement holds from the definitions of B; and £, in (5.12)—(5.13), because the last
column of ®, is 0, so ®,W¥; does not depend on the last row of ¥;, and <I>tl“,<I>tT does not
depend on the last row or column of T';.

REMARK 5.1. In the Gaussian setting where W has i.i.d. N'(0, 1/n) entries, the limit
spectral distribution of WW T is the Marcenko—Pastur law, with limiting rectangular free
cumulants

k5® =1, k33 =0 forall j>2.
This yields simply
T T
AP =(W7) " BE=y(®7) .,  EF=I7 &i=yAX

If we further specialize to an algorithm where v, depends only on z; and u;1 depends only
on y;, then (dsu;) =0 for all s #¢ — 1 and (d5z;) = O for all s # ¢. This yields the Gaussian
AMP algorithm

2, =Wy, — Y0 —10s) Vi1,
Vi = v (%, F),
y: = Wv; — (0 vi)uy,

U1 =ur1(yr, E),

as studied in [3], Section 3. Furthermore, the state evolution is such that z; has the empirical
limit AV'(0, w2°) where ©%° = lim,, 00 ¥ - (U2), and y, has the empirical limit A'(0, o.5°)
where 0,3° = lim,, 0 (Vtz).

Note that outside of this Gaussian setting, in general we do not have the identities X; = I';
and ; = y A; even when W is normalized such that k5 = 1.

5.2. Main result. We impose the following assumptions on the model (5.1)—(5.2) and the
AMP iterates (5.3)—(5.6). Again, we do not require here v;(-) and u;41(-) to be Lipschitz.

ASSUMPTION 5.2.

(@) m,n — oo such thatm/n =y € (0, 0co0) is a fixed constant.
(b) O e R"™™ and Q € R™*" are independent random and Haar-uniform orthogonal ma-
trices.

(c) A e RminGm.n) jq independent of O, Q and satisfies A K A almost surely as m, n — oo,
for a random variable A having finite moments of all orders.
(d) u; € R, E € R"*k and F € R"*¢ are independent of O, Q and satisfy (up, E) e

(U1, E) and F K F almost surely as m,n — oo, where (Uj, E) = (Uy, Eq, ..., Ex) and
F = (Fy,..., Fy) are random vectors having finite moments of all orders.
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(e) Each function v; : R“*¢ — R and u;41 : R“K — R satisfies (2.1) for some C > 0 and
p > 1. Writing their arguments as (z, f) and (y, ¢) where z, y € RY, f € R® and e € R, v,
is weakly differentiable in z and continuous in f, and u;1 is weakly differentiable in y and
continuous in e. For each s =1, ...,¢, d;v; and dsu,41 also satisfy (2.1) for some C > 0
and p > 1, where d,v;(z, f) is continuous at Lebesgue-a.e. z € R’ for every f € Rf, and
dsu141(y, ) is continuous at Lebesgue-a.e. y € R for every e € R¥,

(f) Var[A] > 0 and IE[UIZ] > 0. Letting (Z1, ..., Z;) ~ N (0, 2°) be independent of F,
there do not exist constants oy, ..., o, B, ..., Bi—1 for which

t t—1
v (Zi, . Zi, F) =) agZe+ Y Bovs(Zi, ..., Zy, F)
s=1 s=1

with probability 1 over (F, Z, ..., Z;). Letting (Y1, ..., Y;) ~ N (0, X2°) be independent of
(Uy, E), there do not exist constants «1, ..., o, B1, ..., B; for which

t t
w1 (Y, ., Y, E) =) Yo + fiUr+ ) Baus (Y1, ..., Ys1, E)

s=1 s=2

with probability 1 over (Uy, E, Y1, ..., Y:).

As in the symmetric square setting, we clarify that Theorem 5.3 below establishes the
existence of °° when condition (f) holds for uy, ..., u; and vy, ..., v,—_1, and this limit £°
then defines condition (f) for v,. Similarly, the theorem establishes the existence of X;° when
condition (f) holds for uy, ..., u; and vy, ..., v;, and this limit X;° then defines the condition
for u;41. This condition (f) is a nondegeneracy assumption that will hold as long as u;41(-)
and v;(-) depend nonlinearly on y; and z;, respectively.

THEOREM 5.3. Under Assumption 5.2, for each fixed t > 1, almost surely as n — oo:
Y, — XX and Q; — Q° for some deterministic nonsingular matrices X° and Q7°. Also,

w
(u19---’u[—i-l’yl’--'ayl‘?E)_)(Uls---vU[—{—laYl’-"th’E)’
w
(Vl,-..,V[,Zl,.--,Z[,F)_)(Vl,.--,V[,Zl,--.,Z[,F),

where (Y1,...,Y:) ~ N(0,X°) is independent of (Ui, E); (Zi,...,Z;) ~ N(0, )
is independent of F; Uy = us(Zy,...,2Zs—1, E) for each s =2,...,t + 1; and Vy =
vs(Z1,...,2Zs, F) foreachs =1, ...,t.

The limits X7° and R7° are given by replacing (usuy), (Vsvy), (dyuy), (dyVs), and kog
in the definitions (5.8)—(5.9) and (5.13) with E[U;Uy ], E[V,Vy], E[oyus(Y1, ..., Ys—1, E)],
E[oyvs(Z1, ..., Zs, F)], and k3¢

The proof of this result is provided in Appendix B. As in Corollary 4.4, we may remove the
nondegeneracy condition in Assumption 5.2(f) if v; and u;4 are continuously-differentiable
and Lipschitz. This is stated in the following corollary. The proof follows the same argument
as that of Corollary 4.4, and we omit this for brevity.

COROLLARY 5.4.  Suppose Assumption 5.2(a)—(d) holds, limsup,,_, o [|A|lcc < 00, each
function v, : R — R and u; 41 : RIK — R is continuously-differentiable, and

vz, ) =i (2, f)| =Clz =2, urs1(y,e) —urp1(y'se)| < Cly =)
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for a constant C > 0 and all z,7',y,y' € R!, e € R*, and f € RE. Then for each fixed t >
1, almost surely as n — oo: X, — X7° and ; — ° for some deterministic (possibly
singular) matrices T° and R7°, and

1%
(ul’---au[—i—l’yl’--"yl"E)_g(Uls---7U[+1,Yl’-"’Yl‘sE)’
1%
(Vl,...,V[,Zl,...,Z[,F)_g(Vl,...,Vt,Zl,...,Z[,F),

where these limits are as defined in Theorem 5.3.

6. Proof ideas. We describe here the main ideas of the proofs. In the setting of a sym-
metric square matrix W € R"*", the basic strategy is to write W = 0" AO, and to express
the AMP iterations (1.2)—(1.3) in an expanded form as

(6.1) r; = Ou,,

(6.2) st =0'Ary,

(6.3) Z; =S; — bpuy — - — by,
(6.4) Wy =ur+1(Z1, ..., Z).

All analyses are performed conditional on u; and A, so that the only randomness is in the
Haar-orthogonal matrix Q. We apply Bolthausen’s conditioning technique [11], analyzing se-
quentially each iterate ry, s1, Z1, Uy, Iy, . .. conditional on all preceding iterates. This requires
understanding the law of O conditional on events of the form

0ox =Y,
which was shown in [54, 62] to be
(6.5) Olox=y ZX(X"X) 'Y + Iy, 0117, .

Here, I1x1 and Ily. are matrices with orthonormal columns spanning the orthogonal com-
plements of the column spans of X and Y, and O is an independent Haar-orthogonal matrix.
Applying (6.5) to the appearances of O in (6.1)—(6.2), we will exhibit decompositions

ry=r|+ry, St =8| +SL.

The vectors r] and s arise from the second term of (6.5) and have empirical distributions
that are approximately Gaussian conditional on the preceding iterates. The vectors r| and
S| arise from the first term of (6.5), are deterministic conditional on the preceding iterates

and represent biases, respectively, in the directions of (ry,...,r;—1, Ar;_1,...,Ar;_1) and
(uy,...,u,21,...,2,—1). The Onsager correction by b;ju; + - - - + bsru; in (6.3) is defined
to exactly cancel the component of this bias s in (uy,...,w), so that (z,...,z;) has an

approximate joint Gaussian law. When the spectrum of W converges to Wigner’s semicircle
law, the forms of r| and s; and variances of r | and s are more straightforward to track
across iterations, and this produces a slightly different proof of the AMP analyses in [3, 11].

When the spectrum of W does not converge to the semicircle law, two difficulties arise
in carrying out this conditional analysis. First, the forms of r,r ,s), s in iteration 7" will
depend on

n_lu;eru, = n_lr;rAkr, fork=1,2ands,t <T.
These values will in turn depend on

n~lu) Wre, =n~ e Afr, fork=1,....4ands,t <T —1,



AMP FOR ROTATIONALLY INVARIANT MATRICES 221

which will in turn depend on
n_lusTWku, En_lr;rAkr, fork=1,...,6ands,t <T —2,

and so forth. The final dependence is on n_lulTWkul fork=1,...,2T, whose large-n limits
are given by the first 27 moments of the limit spectral distribution of W, because the initial-
ization u; is independent of W which is rotationally invariant in law. The free cumulants of
W that appear in the final forms of the Onsager correction and state evolution emerge by
tracking these dependences. To provide an inductive argument that can describe these depen-
dences for arbitrary iterations, our proof establishes a precise form of

lim n_lu;eru,

n—oo
for every fixed moment k > 0 and all fixed iterates s, ¢ > 1. These forms depend on com-
binatorial coefficients that we call “partial moment coefficients,” defined by summing over
certain subsets of the noncrossing partition lattice, and which interpolate between the mo-
ments and free cumulants of the spectral distribution of W. We define these coefficients in
Appendix A.1.

A second technical difficulty which arises is that for the resulting conditioning events
OX =Y, the form of the matrix X' X in (6.5) becomes complicated, depending on series
of matrices with these partial moment coefficients, and (XTX)_1 does not admit a tractable
description. Instead, we handle matrix-vector products (X " X)~!v arising in the computation
by “guessing” the form w for this product, and then verifying that (X" X)w = v. This type
of verification is contained in Lemma A.3, and relies on combinatorial identities for these
partial moment coefficients.

The proof ideas in the rectangular setting are similar: We write W = O " AQ and express
(1.5)—(1.8) in an expanded form analogous to (6.1)—(6.4) above. A key component of the
proof is then to identify the large-(m, n) limits of the four quantities

m~al (WWH,  m VW (WW 1k,
n~la] WWTW)Ey, v (WTW)hy,

for all fixed moments k£ > 0 and iterates s, ¢ > 1. These will depend on certain partial mo-
ment coefficients that interpolate between the moments and rectangular free cumulants of
the limit singular value distribution of W, and which are defined by summing over subsets
of the lattice of noncrossing partitions of sets with even cardinality. These coefficients are
defined in Appendix B.1, and the corresponding identities involving (X' X)~! are contained
in Lemma B.3.

For the analyses of the Bayes-AMP algorithms for PCA in Section 3, part (a) of Theo-
rems 3.1 and 3.4 are straightforward consequences of the results for the general AMP algo-
rithms. Part (b) of these theorems require an analysis of the state evolutions for the single-
iterate posterior mean denoisers, which we carry out in Appendix C.2. This analysis applies
a contractive mapping argument to show that for sufficiently large signal strengths, the matri-
ces A;, X;, T'; and €2, all converge as t — o0 in a space of “infinite matrices” equipped with
a weighted ¢, metric.
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SUPPLEMENTARY MATERIAL

Supplementary appendices (DOI: 10.1214/21-AOS2101SUPP; .pdf). The supplemen-
tary appendices contain the proofs of the theoretical results.
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