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We study the sample covariance matrix for real-valued data with general
population covariance, as well as MANOVA-type covariance estimators in
variance components models under null hypotheses of global sphericity. In
the limit as matrix dimensions increase proportionally, the asymptotic spec-
tra of such estimators may have multiple disjoint intervals of support, pos-
sibly intersecting the negative half line. We show that the distribution of the
extremal eigenvalue at each regular edge of the support has a GOE Tracy–
Widom limit. Our proof extends a comparison argument of Ji Oon Lee and
Kevin Schnelli, replacing a continuous Green function flow by a discrete Lin-
deberg swapping scheme.

1. Introduction. Consider a matrix �̂ = X′T X, where X ∈ RM×N has random indepen-
dent entries, and T ∈ RM×M is deterministic. We study eigenvalue fluctuations at the edges
of the spectrum of �̂, when M � N are both large.

At the largest edge and for T � 0, a substantial literature, reviewed below, shows that
the fluctuations of the largest eigenvalue of �̂ follow the Tracy–Widom distribution. In this
paper, we extend the validity of this Tracy–Widom limit to matrices T with both positive
and negative eigenvalues, and to all “regular” edges of the spectrum of �̂. Our main result is
stated informally as follows:

THEOREM (Informal). Let �̂ = X′T X, where
√

NX ∈ RM×N has independent entries
with mean 0, variance 1, and bounded higher moments, and T ∈ RM×M is diagonal with
bounded entries. Let µ0 be the deterministic approximation for the spectrum of �̂ and let E∗
be any regular edge of the support of µ0. Then for λ(�̂) the extremal eigenvalue of �̂ near
E∗, and for a scale constant γ > 0,

±(γN)2/3(
λ(�̂) − E∗

) L→ µT W .

Here,
L→ µT W denotes weak convergence to the GOE Tracy–Widom law [30], and the sign

± is chosen according to whether E∗ is a left or right edge. A formal statement is provided
in Theorem 2.9, and we comment on the assumption of diagonal T in Remark 1.1 below.

Our study of this model is motivated by two applications in statistics and genetics. In the
first well-studied setting, y1, . . . ,yn ∈ Rp are observations of p variables, or “traits”, in n

independent samples. When the traits are distributed with mean 0 and covariance � ∈Rp×p ,
the sample covariance matrix �̃ = n−1Y ′Y provides an unbiased estimate of �, where Y ∈
Rn×p is a row-wise stacking of y1, . . . ,yn. Assuming a representation Y = n1/2X′�1/2, this
takes the form

(1) �̃ = �1/2XX′�1/2.
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The nonzero eigenvalues of �̃ are the same as those of its “companion” matrix �̂ = X′�X.
Here T = � is positive definite, and since y1, . . . ,yn are independent and identically dis-
tributed, there is a single level of variation.

In the second setting, we consider models with multiple levels of variation which induce
dependence among the observations. For example, suppose the samples are divided into I

groups of size J = n/I , and modeled by a random effects linear model where the traits for
sample j of group i are given by

yi,j = αi + εi,j ∈ Rp.

Here, αi , εi,j are independent vectors capturing variation at the group and individual lev-
els, with mean 0 and respective covariances �1,�2 ∈ Rp×p . The traditional (MANOVA)
estimate of the variance component �1 is

(2) �̂ = Y ′BY,

where again Y ∈ Rn×p is a row-wise stacking of the observations yi,j . The matrix B is not
positive definite, having n− I negative eigenvalues: Loosely speaking, one subtracts a scaled
estimate of the second-level noise �2 to estimate �1. Under a null hypothesis of “global
sphericity” where �1,�2 ∝ Id, and introducing a representation Y = UX detailed in Sec-
tion 2.4, we obtain �̂ = X′T X with T = U ′BU having positive and negative eigenvalues in
nonvanishing proportions. [6], Boxes 1 and 2, has an example from quantitative genetics, and
our main result resolves an open question stated there about Tracy–Widom limits and scaling
constants in this model.

Returning to the general discussion, when M,N → ∞ proportionally, the empirical spec-
trum of �̂ is well approximated by a deterministic law µ0 [21, 26, 27, 31]. Under a “spheric-
ity” null hypothesis that T = Id, the law µ0 is the Marcenko–Pastur distribution, and the
largest and smallest eigenvalues of �̂ converge to the edges of the support of µ0 [3, 13,
32] and have asymptotic GUE/GOE Tracy–Widom fluctuations [12, 15, 16, 24, 25, 29]. In
statistics and genetics, these results have enabled the application of Roy’s largest root test in
high-dimensional principal components analysis [16, 23].

In this paper, we study �̂ in the setting T �= Id. For T � 0, [1] showed that all eigenvalues
of �̂ converge to the support of µ0, and [2, 17] proved exact separation of eigenvalues and
eigenvalue rigidity. For complex Gaussian X and T � 0, [7, 22] established GUE Tracy–
Widom fluctuations of the largest eigenvalue, under an edge regularity condition introduced
in [7]. For complex Gaussian X, this was extended to each regular edge of the support in
[14]. For real X and diagonal T � 0, [19] established GOE Tracy–Widom fluctuations of the
largest eigenvalue, using different techniques based on earlier work for the deformed Wigner
model in [18]. Universality results of [5, 17] lift these assumptions that X is Gaussian and/or
T is diagonal.

We build on the proof in [19] to extend the above picture in two directions: First, we
establish a GOE Tracy–Widom limit at each regular edge of the support for real X, including
the interior edges. This extension is new even in the Gaussian setting. Second, we extend
the notion of edge regularity and associated analysis to T having both positive and negative
eigenvalues. This is important for our study of random effects models with multiple levels of
variation, whose edge behavior is obtained here for the first time.

REMARK 1.1. We restrict attention as in [19] to diagonal T . By rotational invariance,
this encompasses the case of nondiagonal T and real Gaussian X. Existing universality results
of [5, 17] imply that our conclusions hold also for nondiagonal T � 0. We believe that, with
minor modifications to the proof, the results of [17] may be further extended to T having
negative eigenvalues, but we will not pursue this extension here.
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1.1. Strategy of proof. Our proof generalizes the resolvent comparison argument of [19]
for the largest eigenvalue. Let E∗ denote an edge of the deterministic spectral support of �̂.
(We define this formally in Section 2.) We will consider

�̂(L) = X′T (L)X

for a different matrix T (L), and compare the eigenvalue behavior of �̂ near E∗ with that of
�̂(L) near an edge E

(L)
∗ .

In [19], E∗ is the rightmost edge of support. The comparison between T and T (L) is
achieved by a continuous interpolation over l ∈ [0,L], where T (0) = T and each T (l) has
diagonal entries {t (l)α : α = 1, . . . ,M} given by

(3)
(
t (l)α

)−1 = e−l(t (0)
α

)−1 + (
1 − e−l).

(See [19], equation (6.1).) Taking L = ∞, T (∞) is a multiple of the identity, and Tracy–
Widom fluctuations are known for �̂(∞). Along this interpolation, the edge E

(l)
∗ evolves

continuously. Defining a smooth resolvent approximation

(4) P
[
�̂(l) has no eigenvalues in E(l)

∗ + [s1, s2]
] ≈ E

[
K

(
X(l)(s1, s2)

)]
,

[19] establishes the bound

(5)
∣∣∣∣
d

dl
E

[
K

(
X(l)(s1, s2)

)]∣∣∣∣ ≤ N−1/3+ε

for a small constant ε > 0 and s1, s2 on the N−2/3 scale. This is applied to compare the
probability in (4) for l = 0 and l = ∞.

We extend this argument by showing that the continuous interpolation in (3) may be re-
placed by a discrete Lindeberg sequence T (0), T (1), . . . , T (L) for an integer L ≤ O(N), swap-
ping one diagonal entry of T at a time. Letting E∗ be any regular edge of �̂, each matrix
�̂(l) ≡ X′T (l)X will have a corresponding edge E

(l)
∗ such that

(6)
∣∣E(l+1)

∗ − E(l)
∗

∣∣ ≤ O(1/N).

Each of these L discrete steps may be thought of as corresponding to a time interval �l =
O(N−1) in the continuous interpolation (3). We show that the above conditions are sufficient
to establish a discrete analogue of (5),

(7)
∣∣E

[
K

(
X(l+1)(s1, s2)

)] −E
[
K

(
X(l)(s1, s2)

)]∣∣ ≤ N−4/3+ε.

As L ≤ O(N), summing over l = 0, . . . ,L − 1 establishes the desired comparison between
T (0) and T (L).

In contrast to the continuous flow (3), our swapping sequence is well-defined even for
negative t

(0)
α . Furthermore, by swapping the diagonal entries of T from one support interval

to another without continuously evolving them between such intervals, we may preserve an
interior edge E∗ even as the other intervals of support disappear.

Section 3 reviews prerequisite proof ingredients. Section 4 constructs the interpolating
sequence. Finally, Section 5 establishes (7). The main step of Section 5 is to generalize the
“decoupling lemma” of [19], Lemma 6.2, to a setting involving two different resolvents G

and Ǧ corresponding to T ≡ T (l) and Ť ≡ T (l+1).
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2. Model and results.

2.1. Deterministic spectral law. Let T = diag(t1, . . . , tM) ∈ RM×M be a deterministic
diagonal matrix, whose diagonal values t1, . . . , tM may be positive, negative, or zero. Let
X ∈ RM×N be a random matrix with independent entries of mean 0 and variance 1/N . We
study the matrix

�̂ = X′T X

in the limit as N,M → ∞ proportionally. In this limit, the empirical spectrum of �̂ is well-
approximated by a deterministic law µ0.1 We review in this section the definition of µ0 and
its relevant properties.

When T = Id, µ0 is the Marcenko–Pastur law [21]. More generally, the law µ0 may be
defined by a fixed-point equation in its Stieltjes transform: For each z ∈ C+, there is a unique
value m0(z) ∈ C+ which satisfies

(8) z = − 1

m0(z)
+ 1

N

M∑

α=1

tα

1 + tαm0(z)
.

This is oftentimes called the Marcenko–Pastur equation, and it defines implicitly the Stieltjes
transform m0 : C+ → C+ of a law µ0 on R [21, 26, 27]. This law µ0 admits a continuous
density f0 at each x ∈ R∗, given by

(9) f0(x) = lim
z∈C+→x

1

π
Imm0(z),

where

(10) R∗ =
{
R if rank(T ) > N,

R \ {0} if rank(T ) ≤ N.

For x �= 0, this is shown in [28]; we extend this to x = 0 when rank(T ) > N in Appendix A
[10].

This law µ0 may have multiple disjoint intervals of support, and two such cases are de-
picted in Figures 1 and 2 of Appendix A. We denote the support of µ0 by supp(µ0), and we
call E∗ ∈ R a right (or left) edge if it is a right (or left) endpoint of one of the disjoint intervals
constituting supp(µ0). When 0 is a point mass of µ0, we do not consider it an edge.

The support intervals and edge locations of µ0 are described in a simple way by (8), as
explained in [17, 28]: Define P = {0}∪{−t−1

α : tα �= 0}, and consider R̄= R∪{∞}. Consider
the formal inverse of m0(z),

(11) z0(m) = − 1

m
+ 1

N

M∑

α=1

tα

1 + tαm
,

as a real-valued function on R̄ \ P with the convention z0(∞) = 0. Two examples are also
plotted in Figures 1 and 2 of Appendix A. Then the local extrema of z0 are in 1-to-1 cor-
respondence with edges of µ0, with the scale of square-root decay at each edge inversely
related to the curvature of z0.

1We define µ0 as an N -dependent law depending directly on M/N and T , rather than assuming that M/N and
the spectrum of T converge to certain limiting quantities.
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PROPOSITION 2.1. Let m1, . . . ,mn ∈ R̄ \P denote the local minima and local maxima2

of z0, ordered such that 0 > m1 > · · · > mk > −∞ and ∞ ≥ mk+1 > · · · > mn > 0. Let
Ej = z0(mj ) for each j = 1, . . . , n. Then:

(a) µ0 has exactly n/2 support intervals and n edges, which are given by E1, . . . ,En.
(b) Ej is a right edge if mj is a local minimum, and a left edge if mj is a local maximum.
(c) The edges are ordered as E1 > · · · > Ek > Ek+1 > · · · > En.
(d) For each Ej where mj �= ∞, we have Ej ∈ R∗ and z′′

0(mj ) �= 0. Defining γj =√
2/|z′′

0(mj )|, the density of µ0 satisfies f0(x) ∼ (γj /π)
√|Ej − x| as x → Ej with x ∈

supp(µ0).

DEFINITION 2.2. For an edge E∗ of µ0, the local minimum/maximum m∗ of z0 such
that z0(m∗) = E∗ is its mmm-value. The edge is soft if m∗ �= ∞ and hard if m∗ = ∞. For a soft

edge, γ =
√

2/|z′′
0(m∗)| is its associated scale.

The statements of Proposition 2.1 are known for T � 0, and we describe the extension
to general T in Appendix A. When T � 0, an edge at 0 is usually called hard and all other
edges soft. Definition 2.2 extends this to general T : A hard edge is always 0 and can occur
when rank(T ) = N . If T has negative eigenvalues, then a soft edge may also be 0 when
rank(T ) > N . We thus distinguish hard edges by the m-value rather than the edge location.

2.2. Edge regularity and extremal eigenvalues. We state our assumptions on T and X.
We also introduce the notion of a regular edge, which is similar to the definitions of [7, 14,
17] for T � 0.

ASSUMPTION 2.3. T = diag(t1, . . . , tM) ∈ RM×M , where |tα| < C for some constant
C > 0 and each α = 1, . . . ,M .

ASSUMPTION 2.4. X ∈ RM×N is random with independent entries. For all indices
(α, i), all � ≥ 1, and some constants C,C1,C2, . . . > 0,

C−1 < M/N < C, E[Xαi] = 0, E
[
X2

αi

] = 1/N, E
[|
√

NXαi |�
] ≤ C�.

DEFINITION 2.5. Let E∗ ∈ R be a soft edge of µ0 with m-value m∗ and scale γ . Then
E∗ is regular if there is a constant τ > 0 such that |m∗| < τ−1, γ < τ−1, and |m∗ + t−1

α | > τ

for all α ∈ {1, . . . ,M} such that tα �= 0.

A smaller constant τ indicates a weaker assumption. We will say E∗ is τ -regular if we
wish to emphasize the role of τ . All subsequent constants may implicitly depend on τ .

The existence of any regular edge will imply that the average value of |tα| is of constant
order; see Proposition 3.1. An interpretation of regularity is the following, whose proof we
defer to Appendix B.

PROPOSITION 2.6. Suppose Assumption 2.3 holds and the edge E∗ is regular. Then there
exist constants C,c, δ > 0 (independent of N ) such that:

(a) (Separation) The interval (E∗ − δ,E∗ + δ) belongs to R∗ and contains no edge other
than E∗.

2m∗ ∈ R̄ \ P is a local minimum of z0 if z0(m) ≥ z0(m∗) for all m in a sufficiently small neighborhood of m∗,
with the convention that m∗ = ∞ is a local minimum if z0 is positive over (C,∞) ∪ (−∞,−C) for some C > 0.
Local maxima are defined similarly.
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(b) (Square-root decay) For all x ∈ supp(µ0) ∩ (E∗ − δ,E∗ + δ), the density f0 of µ0

satisfies c
√|E∗ − x| ≤ f0(x) ≤ C

√|E∗ − x|.

We will study the extremal eigenvalue of �̂ at each regular edge. This is well-defined
by the following results establishing closeness of eigenvalues of �̂ to the support of µ0.
Such results were shown in [1, 17] for T � 0, and we discuss the extension to general T in
Appendix C.

THEOREM 2.7 (No eigenvalues outside support). Suppose Assumptions 2.3 and 2.4 hold.
Fix any constants δ,D > 0. There exists a constant N0 ≡ N0(δ,D) such that for all N ≥ N0,
with probability at least 1 − N−D , all eigenvalues of �̂ are within distance δ of supp(µ0).

THEOREM 2.8 (N−2/3 concentration). Suppose Assumptions 2.3 and 2.4 hold, and E∗
is a regular right edge. Then there exists a constant δ > 0 such that for any ε,D > 0, some
N0 ≡ N0(ε,D), and all N ≥ N0,

P
[
no eigenvalue of �̂ belongs to

[
E∗ + N−2/3+ε,E∗ + δ

]]
> 1 − N−D.

The analogous statement holds if E∗ is a regular left edge, with no eigenvalue of �̂ belonging
to [E∗ − δ,E∗ − N−2/3+ε].

2.3. Tracy–Widom fluctuations. The following is our main result.

THEOREM 2.9. Let �̂ = X′T X. Suppose that Assumptions 2.3 and 2.4 hold for T and X,
and that E∗ is a τ -regular edge of the law µ0. Let E∗ have scale γ as defined in Definition 2.2.
Then there exists a τ -dependent constant δ > 0 such that as N,M → ∞:

(a) For E∗ a right edge and λmax the largest eigenvalue of �̂ in E∗ + [−δ, δ],

(γN)2/3(λmax − E∗)
L→ µT W .

(b) For E∗ a left edge and λmin the smallest eigenvalue of �̂ in E∗ + [−δ, δ],

(γN)2/3(E∗ − λmin)
L→ µT W .

Here, µT W is the GOE Tracy–Widom law. The notation
L→ indicates convergence in law.

As E∗ is N -dependent, let us clarify that this means
∣∣P

[
(γN)2/3(λmax − E∗) ≤ x

] − µT W((−∞, x])∣∣ ≤ o(1)

for any fixed x ∈ R, where E∗ is any (deterministic) choice of τ -regular edge, and o(1)

denotes a term vanishing as N,M → ∞ and depending only on x, τ , and the constants in
Assumptions 2.3 and 2.4. Note that Assumption 2.4 requires M/N to be bounded, and one
may accordingly consider M ≡ M(N) where N is the fundamental large parameter.

When T � 0, the above result holds also for the sample covariance matrix with the same
values of E∗ and γ , since this has the same eigenvalues as �̂ except for a set of |N − M|
zeros.

COROLLARY 2.10. Under the conditions of Theorem 2.9, suppose T � 0, and let �̃ =
T 1/2XX′T 1/2. Then Theorem 2.9 holds also for �̃.
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When T = Id, the equation 0 = z′
0(m∗) may be solved explicitly to yield

m∗ = −
√

N/(
√

N ±
√

M), E∗ = (
√

N ±
√

M)2/N,

(γN)−2/3 = |
√

N ±
√

M|
N

∣∣∣∣
1√
M

± 1√
N

∣∣∣∣
1/3

for the upper and lower edges. These centering and scaling constants are the same as those of
[12, 24, 29] and differ from those of [16, 20] in small O(1) adjustments to N and M . These
adjustments do not affect the validity of Theorem 2.9, although the proper adjustments are
shown in [20] to lead to an improved second-order rate of convergence.

2.4. Application to linear mixed models. Consider Y ∈ Rn×p representing p traits in n

samples, modeled by a Gaussian random effects linear model

(12) Y = U1α1 + · · · + Ukαk.

Each random effect matrix αr ∈ Rmr×p has independent rows with distribution N (0,�r).
The deterministic incidence matrix Ur ∈ Rn×mr determines how the random effect con-
tributes to the observations Y . For simplicity, we omit here possible additional fixed effects,
and we present an example with a fixed mean effect in Example E.3 of Appendix E.

In many examples, a canonical unbiased MANOVA estimator exists for each covari-
ance �r and takes the form (2), where B ≡ Br ∈ Rn×n is a symmetric matrix that is con-
structed based on U1, . . . ,Uk . Spectral properties of MANOVA estimators in the regime
n,p,m1, . . . ,mk → ∞ were studied in [9, 11], which contain additional discussion and ex-
amples.

Theorem 2.9 provides the basis for an asymptotic test of the global sphericity null hypoth-
esis

(13) H0 : �r = σ 2
r Id for every r = 1, . . . , k

in this model, based on outlier eigenvalues of �̂. While this test may be performed using any
matrix B in (2), to yield power against nonisotropic alternatives for a particular covariance
�r , we suggest choosing B ≡ Br such that �̂ is the MANOVA estimator for �r . Under H0,
let us set N = p and write αr =

√
NσrXr where Xr ∈ Rmr×N has independent N (0,1/N)

entries. Defining M = m1 + · · · + mk , Frs = NσrσsU
′
rBUs ∈ Rmr×ms , and

(14) X =





X1
...

Xk



 ∈RM×N, F =





F11 · · · F1k

...
. . .

...

Fk1 · · · Fkk



 ∈ RM×M,

the MANOVA estimator (2) takes the form

�̂ = Y ′BY =
k∑

r,s=1

α′
rU

′
rBUsαs = X′FX.

Rotational invariance of X implies �̂
L= X′T X where T = diag(t1, . . . , tM) is the diagonal

matrix of eigenvalues of F . Under mild conditions for the model, as discussed in [9, 11],
Assumptions 2.3 and 2.4 hold for �̂.

In general, depending on the model design, the bulk eigenvalue distribution of �̂ may have
multiple disjoint intervals of support. [11] studies the spectral behavior in spiked alternatives
to the null hypothesis (13), showing that outlier eigenvalues may appear in any interval in the
complement of this support. By Theorem 2.9, the deviation of such an outlier to the closest
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bulk edge may be compared to the Tracy–Widom null distribution as an assessment of its
statistical significance against the null hypothesis (13).

We focus on the case of the largest eigenvalue of �̂, that is, testing the significance of an
outlier above the largest bulk edge. In detail, such a test may be performed as follows:

1. Construct the above matrix F . Let t1, . . . , tM be its eigenvalues.
2. Plot the function z0(m) from (11) over m ∈ R, and locate the value m∗ closest to 0 such

that z′
0(m∗) = 0 and m∗ < 0.

3. Compute the center and scale E∗ = z0(m∗) and γ =
√

2/z′′
0(m∗).

4. Compare (γN)2/3(λmax − E∗) to the GOE Tracy–Widom law µT W .

Asymptotic validity of this test requires regularity of the rightmost edge of µ0. We provide
a sufficient condition for this in Proposition E.1, which encompasses many balanced classi-
fication designs. More generally, edge regularity is quantified by the separation between m∗
and the poles of z0(m), and by the curvature of z0(m) at m∗. One may visually inspect the
plot of z0(m) for a qualitative diagnostic check of this assumption.

Constructing F and computing z0(m) requires knowledge of σ 2
1 , . . . , σ 2

k . If any σ 2
r is un-

known, it may be replaced by the 1/n-consistent estimate

σ̂ 2
r = p−1 Tr �̂r ,

where �̂r is an unbiased MANOVA estimator for �r . We verify this in Appendix E, where
we also discuss the concrete example of the balanced one-way design, and provide numerical
simulation results to assess approximation accuracy in finite samples.

3. Preliminaries and tools. The remainder of this paper is devoted to the proof of The-
orem 2.9. The proof can be separated conceptually into a “deterministic component”, which
constructs the interpolation from T (0) = T to T (L) to satisfy certain deterministic properties,
and a “stochastic component”, which then uses resolvent-based techniques to obtain the de-
sired estimates for this interpolation. The former component is more model-specific, but the
latter can potentially be applied to other models where interior edges arise.

We collect in this section some tools for the proof. The deterministic interpolation argu-
ments are then presented in Section 4, and the stochastic estimates in Section 5.

3.1. Notation. We denote IM = {1, . . . ,M}, IN = {1, . . . ,N}, and I ≡ IN � IM con-
sidering IN and IM as disjoint. We index rows and columns of C(N+M)×(N+M) by I and
consistently use lower-case Roman letters i, j , etc. for indices in IN , Greek letters α, β , etc.
for indices in IM , and upper-case Roman letters A, B , etc. for general indices in I .

We typically write z = E + iη where E = Re z and η = Im z. C+ and C+ denote the open
and closed upper-half complex planes. X′ denotes the transpose of a matrix X. ‖v‖ denotes
the Euclidean norm for vectors, and ‖X‖ = supv:‖v‖=1 ‖Xv‖ the operator norm for matrices.
C,c > 0 denote constants changing from instance to instance and may depend on τ in the
context of a regular edge. aN � bN means cbN ≤ aN ≤ CaN .

3.2. Edge regularity. The following are consequences of edge regularity. Similar proper-
ties were established for T � 0 in [4, 17], and we defer proofs for general T to Appendix B.

PROPOSITION 3.1. Suppose Assumption 2.3 holds, and E∗ is a regular edge with m-
value m∗ and scale γ . Then there exist constants C,c > 0 such that for all α = 1, . . . ,M ,

c < |m∗| < C, c < γ < C, |E∗| < C, |1 + tαm∗| > c.
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Furthermore, if any regular edge E∗ exists, then T satisfies

(15)
∣∣{α ∈ {1, . . . ,M} : |tα| > c

}∣∣ > cM

for a constant c > 0, and if T � 0, then also E∗ > c > 0.

PROPOSITION 3.2. Suppose Assumption 2.3 holds and E∗ is a regular edge with m-
value m∗. Then there exist constants c, δ > 0 such that for all m ∈ (m∗ − δ,m∗ + δ), if E∗ is
a right edge then z′′

0(m) > c, and if E∗ is a left edge then z′′
0(m) < −c.

PROPOSITION 3.3. Suppose Assumption 2.3 holds and E∗ is a regular edge. Then there
exist constants C,c, δ > 0 such that the following hold: Define

D0 = {
z ∈ C+ : Re z ∈ (E∗ − δ,E∗ + δ), Im z ∈ (0,1]}.

Then for all z ∈ D0 and α ∈ {1, . . . ,M},
c <

∣∣m0(z)
∣∣ < C, c <

∣∣1 + tαm0(z)
∣∣ < C.

Furthermore, for all z ∈ D0, denoting z = E + iη and κ = |E − E∗|,
c
√

κ + η ≤ ∣∣m0(z) − m∗
∣∣ ≤ C

√
κ + η, cf (z) ≤ Imm0(z) ≤ Cf (z)

where

f (z) =





√
κ + η if E ∈ supp(µ0),
η√

κ + η
if E /∈ supp(µ0).

3.3. Resolvent bounds and identities. For z ∈ C+, denote the resolvent and Stieltjes
transform of �̂ by

(16) GN(z) = (�̂ − z Id)−1 ∈ CN×N, mN(z) = N−1 TrGN(z).

These satisfy the basic properties
∣∣mN(z)

∣∣ ≤ 1/η,
∣∣Gij (z)

∣∣ ≤ 1/η,(17)
∣∣mN(z) − mN

(
z′)∣∣ ≤ ∣∣z − z′∣∣/η2,

∣∣Gij (z) − Gij

(
z′)∣∣ ≤ ∣∣z − z′∣∣/η2.(18)

As in [17, 19], define the linearized resolvent G(z) by

H(z) =
(
−z Id X′

X −T −1

)

∈ C(N+M)×(N+M), G(z) = H(z)−1.

The Schur-complement formula yields the alternative form

(19) G(z) =
(

GN(z) GN(z)X′T
T XGN(z) T XGN(z)X′T − T

)
,

which is understood as the definition of G(z) when T is not invertible. We will omit the
argument z in m0, mN , GN , G when the meaning is clear.

For any A ∈ I , define H(A) as the submatrix of H with row and column A removed, and
define G(A) = (H (A))−1. When T is not invertible, G(A) is defined by the alternative form
analogous to (19). We index G(A) by I \ {A}.

Note that G and G(A) are symmetric, in the sense G′ = G and (G(A))′ = G(A) with-
out complex conjugation. The entries of G and G(A) are related by the following Schur-
complement identities from [17], Lemma 4.4.
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LEMMA 3.4 (Resolvent identities). Fix z ∈ C+.

(a) For any i ∈ IN and α ∈ IM ,

Gii = − 1

z + ∑
α,β∈IM

G
(i)
αβXαiXβi

, Gαα = − tα

1 + tα
∑

i,j∈IN
G

(α)
ij XαiXαj

.

(b) For any i �= j ∈ IN and α �= β ∈ IM ,

Gij = −Gii

∑

β∈IM

G
(i)
βj Xβi, Gαβ = −Gαα

∑

j∈IN

G
(α)
jβ Xαj .

For any α ∈ IM and i ∈ IN ,

Giα = −Gii

∑

β∈IM

G
(i)
βαXβi = −Gαα

∑

j∈IN

G
(α)
ij Xαj .

(c) For any A,B,C ∈ I with A �= C and B �= C,

G
(C)
AB = GAB − GACGCB

GCC

.

3.4. Stochastic domination. For a nonnegative scalar � (either random or deterministic),
we write

ξ ≺ � and ξ = O≺(�)

if, for any constants ε,D > 0 and all N ≥ N0(ε,D),

(20) P
[|ξ | > Nε�

]
< N−D.

Here, N0(ε,D) may depend on ε, D, and quantities which are explicitly constant in the
context of the statement.

Several known elementary properties of stochastic domination pertaining to union bounds
and expectations are reviewed in Appendix D.

3.5. Local law. We will require a local law for entries of G(z), when z ∈ C+ close to
a regular edge E∗. This was established in [17] for T � 0, and we discuss the extension to
general T in Appendix C.

THEOREM 3.5 (Entrywise local law at regular edges). Suppose Assumptions 2.3 and 2.4
hold, and E∗ is a τ -regular edge. Then for a τ -dependent constant δ > 0, the following holds:
Fix any constant a > 0 and define

(21) D = {
z ∈ C+ : Re z ∈ (E∗ − δ,E∗ + δ), Im z ∈ [

N−1+a,1
]}

.

For A ∈ I , denote tA = 1 if A ∈ IN and tA = tα if A = α ∈ IM . Set

(22) �(z) =
(
m0(z) Id 0

0 −T
(
Id+m0(z)T

)−1

)

∈ C(N+M)×(N+M).

Then for all z ≡ E + iη ∈ D and A,B ∈ I ,

(23)
(
GAB(z) − �AB(z)

)
/(tAtB) ≺

√(
Imm0(z)

)
/(Nη) + 1/(Nη),

and also

mN(z) − m0(z) ≺ 1/(Nη).
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COROLLARY 3.6. Under the assumptions of Theorem 3.5, for any ε,D > 0 and all N ≥
N0(ε,D), with probability at least 1 − N−D ,

∣∣GAB(z) − �AB(z)
∣∣/|tAtB | ≤ Nε(

√
Imm0(z)/(Nη) + 1/(Nη)

)

holds simultaneously for every z ∈ D and A,B ∈ I .

Here, N0(ε,D) may depend on the constant a defining D. It is verified from (19) that the
quantity on the left of (23) is alternatively written as

(24)
GAB − �AB

tAtB
=

(
GN − m0 Id GNX′

XGN XGNX′ − m0(Id+m0T )−1

)

AB

.

This is understood as its definition when either tA and/or tB is 0.

3.6. Resolvent approximation. Fix a regular edge E∗. For s1, s2 ∈ R and η > 0, define

(25) X(s1, s2, η) = N

∫ E∗+s2

E∗+s1

ImmN(y + iη) dy.

For η much smaller than N−2/3 and s1, s2 on the N−2/3 scale, we expect

#(E∗ + s1,E∗ + s2) ≈ π−1X(s1, s2, η),

where the left side denotes the number of eigenvalues of �̂ in this interval. The following
is a version of this approximation, similar to [8], Corollary 6.2. We provide a self-contained
proof in Appendix D.

LEMMA 3.7. Suppose Assumptions 2.3 and 2.4 hold, and E∗ is a regular right edge. Let
K : R → [0,1] be such that K(x) = 1 for all x ≤ 1/3 and K(x) = 0 for all x ≥ 2/3. Then
for sufficiently small constants δ, ε > 0:

Let λmax be the maximum eigenvalue of �̂ in (E∗ − δ,E∗ + δ). Set s+ = N−2/3+ε , l =
N−2/3−ε , and η = N−2/3−9ε . For any D > 0, all N ≥ N0(ε,D), and all s ∈ [−s+, s+],

E
[
K

(
π−1X(s − l, s+, η)

)] − N−D ≤ P[λmax ≤ E∗ + s]
≤ E

[
K

(
π−1X(s + l, s+, η)

)] + N−D.

4. The interpolating sequence. In this section, we construct the interpolating sequence
T (0), . . . , T (L) described in the Introduction. We consider only the case of a right edge; this
is without loss of generality, as the edge can have arbitrary sign and we may take the reflec-
tion T �→ −T . For each pair T ≡ T (l) and Ť ≡ T (l+1), the following definition captures the
relevant property that will be needed in the subsequent computation.

DEFINITION 4.1. Let T , Ť ∈ RM×M be two diagonal matrices satisfying Assump-
tion 2.3. Let E∗ be a right edge of the law µ0 defined by T , and let Ě∗ be a right edge
of µ̌0 defined by Ť . (T ,E∗) and (Ť , Ě∗) are swappable if, for a constant φ > 0, both of the
following hold.

• Letting tα , ťα be the diagonal entries of T , Ť , we have
∑

α |tα − ťα| < φ.
• The m-values m, m̌∗ of E∗, Ě∗ satisfy |m∗ − m̌∗| < φ/N .
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We say that (T ,E∗) and (Ť , Ě∗) are φ-swappable if we wish to emphasize the role of φ.
All subsequent constants may implicitly depend on φ.

One method to construct a swappable pair T , Ť is to ensure |tα − ťα| ≤ φ/M for every
α = 1, . . . ,M , and such a condition would hold for each pair T (l), T (l+1) of a suitable dis-
cretization of the continuous flow in [19]. However, to study interior edges of the spectrum,
we will instead consider swappable pairs of a “Lindeberg” form where there is an O(1) dif-
ference between tα and ťα for a single index α.

We first establish some basic deterministic properties of a swappable pair, including close-
ness of the edges E∗, Ě∗ as claimed in (6).

LEMMA 4.2. Suppose T , Ť are diagonal matrices satisfying Assumption 2.3, E∗, Ě∗
are regular right edges, and (T ,E∗) and (Ť , Ě∗) are swappable. Let m∗, γ and m̌∗, γ̌ be
the m-values and scales of E∗, Ě∗. Denote sα = (1 + tαm∗)−1 and šα = (1 + ťαm̌∗)−1. Then
there exists a constant C > 0 such that all of the following hold:

(a) For all integers i, j ≥ 0 satisfying i + j ≤ 4,
∣∣∣∣∣

1

N

M∑

α=1

t iαsi
αť jα šj

α − 1

N

M∑

α=1

t i+j
α si+j

α

∣∣∣∣∣ ≤ C/N.

(b) (Closeness of edge location) |E∗ − Ě∗| ≤ C/N and

(26)

∣∣∣∣∣(E∗ − Ě∗) − 1

N

M∑

α=1

(tα − ťα)sαšα

∣∣∣∣∣ ≤ C/N2.

(c) (Closeness of scale) |γ − γ̌ | ≤ C/N .

PROOF. By Proposition 3.1, |tα|, |sα|, γ < C, c < |m∗| < C and similarly for ťα , šα , m̌∗,
γ̌ . From the definitions of sα and šα , we verify

(27) tαsα − ťα šα = (tα − ťα)sαšα + (m̌∗ − m∗)tαsαťαšα.

Then, denoting Ai,j = N−1 ∑
α t iαsi

α ť
j
α š

j
α , swappability implies

|Ai,j − Ai+1,j−1| ≤
1

N

M∑

α=1

∣∣t iαsi
αť j−1

α šj−1
α

∣∣|ťα šα − tαsα| ≤ C/N.

Iteratively applying this yields (a). For (b), note by (27) that

E∗ − Ě∗ = − 1

m∗
+ 1

m̌∗
+ 1

N

M∑

α=1

(tαsα − ťα šα)

= (m∗ − m̌∗)
(

1

m∗m̌∗
− A1,1

)
+ 1

N

M∑

α=1

(tα − ťα)sαšα.

Recall 0 = z′
0(m∗) = m−2

∗ − A2,0. Then part (b) follows from the definition of swappability,
together with |A1,1 − m−2

∗ | = |A1,1 − A2,0| ≤ C/N and |m−2
∗ − m−1

∗ m̌−1
∗ | ≤ C/N . For (c),

we have γ −2 = z′′
0(m∗)/2 = −m−3

∗ + A3,0. Then (c) follows from |γ −2 − γ̌ −2| ≤ |m−3
∗ −

m̌−3
∗ | + |A3,0 − A0,3| ≤ C/N . �

We now prove the existence of an interpolating sequence. Note that to ensure the final edge
E

(L)
∗ is not a hard edge at 0, we allow the final matrix T (L) to have two distinct values {0, t}.
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LEMMA 4.3. Suppose T is diagonal and satisfies Assumption 2.3, and E∗ is a τ -regular
right edge with scale γ = 1. Then there exist τ -dependent constants C′, τ ′, φ > 0, a sequence
of diagonal matrices T (0), T (1), . . . , T (L) in RM×M for L ≤ 2M , and a sequence of right
edges E

(0)
∗ ,E

(1)
∗ , . . . ,E

(L)
∗ of the corresponding laws µ

(l)
0 defined by T (l), such that:

1. T (0) = T and E
(0)
∗ = E∗.

2. T (L) has at most two distinct diagonal entries 0 and t , for some t ∈ R.
3. Each T (l) satisfies Assumption 2.3 with constant C′.
4. Each E

(l)
∗ is τ ′-regular.

5. (T (l),E
(l)
∗ ) and (T (l+1),E

(l+1)
∗ ) are φ-swappable for each l = 0, . . . ,L − 1.

6. (Scaling) Each E
(l)
∗ has associated scale γ (l) = 1.

We first ignore the scaling property 6, and construct T (0), . . . , T (L) and E
(0)
∗ , . . . ,E

(L)
∗

satisfying properties 1–5. We will use a Lindeberg swapping construction, where each T (l+1)

differs from T (l) in only one diagonal entry. It is useful to write z′
0 and z′′

0 as

z′
0(m) = 1

m2 − 1

N

∑

α:tα �=0

1

(m + t−1
α )2

, z′′
0(m) = − 2

m3 + 2

N

∑

α:tα �=0

1

(m + t−1
α )3

,

and to think about swapping entries of T as swapping or removing poles of z′
0 and z′′

0. In
particular, for each fixed m ∈ R, we can easily deduce from the above whether a given swap
increases or decreases z′

0(m) and z′′
0(m).

Upon defining a swap T → Ť , the identification of the new right edge Ě∗ for Ť uses the
following continuity lemma.

LEMMA 4.4. Suppose T is a diagonal matrix satisfying Assumption 2.3, and E∗ is a τ -
regular right edge with m-value m∗. Let Ť be a matrix that replaces a single diagonal entry
tα of T by a value ťα , such that |ťα| ≤ ‖T ‖ and either ťα = 0 or |m∗ + ť−1

α | > τ . Let z0, ž0

denote the function (11) defined by T , Ť . Then there exist τ -dependent constants N0, φ > 0
such that whenever N ≥ N0:

• Ť has a right edge Ě∗ with m-value m̌∗ satisfying |m∗ − m̌∗| < φ/N .
• The interval between m∗ and m̌∗ does not contain any pole of z0 or ž0.
• sign(m∗ − m̌∗) = sign(ž′

0(m∗)).

(We define sign(x) = 1 if x > 0, −1 if x < 0, and 0 if x = 0.)

PROOF. By Proposition 3.1, |m∗| > ν for a constant ν. Take δ < min(τ/2, ν/2). Then
the given conditions for ťα imply that (m∗ − δ,m∗ + δ) does not contain any pole of z0 or ž0,
and

∣∣z′
0(m) − ž′

0(m)
∣∣ < C/N

for some C > 0 and all m ∈ (m∗ − δ,m∗ + δ). For sufficiently small δ, Proposition 3.2 also
ensures z′′

0(m) > c for all m ∈ (m∗ − δ,m∗ + δ). If ž′
0(m∗) < 0 = z′

0(m∗), this implies ž0 must
have a local minimum in (m∗,m∗ +C/N), for a constant C > 0 and all N ≥ N0. Similarly, if
ž′

0(m∗) > 0, then ž0 has a local minimum in (m∗ −C/N,m∗), and if ž′
0(m∗) = 0, then ž0 has

a local minimum at m∗. The result follows from Proposition 2.1 upon setting Ě∗ = ž0(m̌∗).
�

The basic idea for proving Lemma 4.3 is to take a Lindeberg sequence T (0), . . . , T (L) and
apply the above lemma for each swap. We cannot do this naively for any Lindeberg sequence,
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because in general if E
(l)
∗ is τl-regular, then the above lemma only guarantees that E

(l+1)
∗ is

τl+1-regular for τl+1 = τl − C/N and a τl-dependent constant C > 0. Thus edge regularity,
as well as the edge itself, may vanish after O(N) swaps.

To circumvent this, we consider a specific construction of the Lindeberg sequence, apply
Lemma 4.4 along this sequence to identify an edge Ě∗ for each successive Ť , and use a
separate argument to show that Ě∗ must be τ ′-regular for a fixed constant τ ′ > 0. Hence we
may continue to apply Lemma 4.4 along the whole sequence.

We consider separately the cases m∗ < 0 and m∗ > 0.

LEMMA 4.5. Suppose (the right edge) E∗ has m-value m∗ < 0. Then for some τ -
dependent constant N0, whenever N ≥ N0, Lemma 4.3 holds without the scaling condition,
property 6.

PROOF. We construct a Lindeberg sequence that first reflects about m∗ each pole of z0
to the right of m∗, and then replaces each pole by the one closest to m∗.

Suppose, first, that there are K1 nonzero diagonal entries tα of T (positive or negative)
where −t−1

α > m∗. Consider a sequence of matrices T (0), T (1), . . ., T (K1) where T (0) = T ,
and each T (k+1) replaces one such diagonal entry tα of T (k) by the value ťα such that −ť−1

α <

m∗ and |m∗ + ť−1
α | = |m∗ + t−1

α |. For each such swap T → Ť , we verify |ťα| ≤ |tα| ≤ ‖T ‖,
ž′

0(m∗) = z′
0(m∗) = 0, and ž′′

0(m∗) > z′′
0(m∗) > 0. Thus we may take m̌∗ = m∗ in Lemma 4.4,

and the new edge Ě∗ = ž0(m∗) remains τ -regular for the same constant τ .
All diagonal entries of T (K1) are now nonnegative. Let t = ‖T (K1)‖ be the maximal such

entry. By the above construction, −t−1 < m∗ < 0. Since E
(K1)∗ is τ -regular, (15) implies

t > c for a constant c > 0. Let K2 be the number of positive diagonal entries of T (K1) strictly
less than t , and consider a sequence T (K1+1), . . . , T (K1+K2) where each T (k+1) replaces one
such diagonal entry in T (k) by t . Applying Lemma 4.4 to each such swap T → Ť , we verify
ž′

0(m∗) < z0(m∗) = 0, so m∗ < m̌∗ < 0. Then |m̌∗| < |m∗| and minα |m̌∗+ ť−1
α | > minα |m∗+

t−1
α |. Also m̌∗ + ť−1

α > 0 for all ťα �= 0, so ž′′
0(m̌∗) > −2/m̌3

∗ > 2t3. This verifies Ě∗ = ž0(m̌∗)
is τ ′-regular for a fixed constant τ ′ > 0. (We may take any τ ′ < min(τ, t3/2).)

The total number of swaps L = K1 + K2 is at most 2M , and all diagonal entries of T (L)

belong to {0, t}. This concludes the proof, with property 5 verified by Lemma 4.4. �

LEMMA 4.6. Lemma 4.5 holds also when E∗ has m-value m∗ > 0.

PROOF. Proposition 2.1 implies m∗ is a local minimum of z0. The interval (0,m∗) must
contain a pole of z0—otherwise, by the boundary condition of z0 at 0, there would exist a
local maximum m of z0 in (0,m∗) satisfying z0(m) > z0(m∗), which would contradict the
edge ordering in Proposition 2.1(c). Let −t−1 be the pole in (0,m∗) closest to m∗. Note that
t < 0 and |t | > |m∗|−1 > τ . We construct a Lindeberg sequence that first replaces a small
but constant fraction of entries of T by t , then replaces all nonzero tα > t by 0, and finally
replaces all tα < t by 0.

First, fix a small constant c0 > 0, let K1 = �c0M�, and consider a sequence of matrices
T (0), T (1), . . . , T (K1) where T (0) = T and each T (k+1) replaces a different (arbitrary) diag-
onal entry of T (k) by t . For c0 sufficiently small, we claim that we may apply Lemma 4.4
to identify an edge E

(k)
∗ for each k = 1, . . . ,K1, such that each E

(k)
∗ is τ/2-regular. Indeed,

let k ∈ {0, . . . ,K1 − 1} and suppose inductively that we have identified this edge E
(j)
∗ for

j = 0, . . . , k. Let mj , γj be the m-value and scale for E
(j)
∗ . Then Lemmas 4.4 and 4.2 ensure

|mj − mj−1| < C/N and |γj − γj−1| < C/N for a τ -dependent constant C > 0. This yields

|mk − m0| < c0(M/N)C and |γk − γ0| < c0(M/N)C. As the original edge E
(0)
∗ is τ -regular,
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for sufficiently small c0 this implies E
(k)
∗ is in fact 3τ/4-regular. Applying Lemma 4.4, we

may identify an edge E
(k+1)
∗ for T (k+1) with m-value mk+1 satisfying |mk+1 − mk| < φ/N

when N ≥ N0. Thus E
(k+1)
∗ is τ/2-regular, completing the induction.

T (K1) now has at least c0M diagonal entries equal to t . By the condition in Lemma 4.4
that the swap m∗ → m̌∗ does not cross any pole of z0 or ž0, we have that −t−1 is still the
pole in (0,m

(K1)∗ ) closest to m
(K1)∗ . Let K2 be the number of nonzero diagonal entries tα of

T (K1) (positive or negative) such that tα > t . Consider a sequence T (K1+1), . . . , T (K1+K2)

where each T (k+1) replaces one such entry in T (k) by 0. Note that each swap T → Ť of this
sequence satisfies ž′

0(m) > z′
0(m) at every value m. Then in particular, ž′

0(m∗) > z′
0(m∗) = 0,

so Lemma 4.4 yields a new edge Ě∗ for which −t−1 < m̌∗ < m∗. For every α such that
−ť−1

α > −t−1, we have −ť−1
α > m∗ because −t−1 is the closest pole to the left of m∗. Then,

since m̌∗ < m∗, this shows min
α:−ť−1

α >−t−1 |m̌∗ + ť−1
α | > min

α:−t−1
α >−t−1 |m∗ + t−1

α | > τ/2.

The conditions m̌∗ > |t |−1 > c and

0 = ž′
0(m̌∗) ≤ 1

m̌2∗
− c0M

N

1

(m̌∗ + t−1)2

ensure that m̌∗ + t−1 > ν for a constant ν > 0, and hence minα |m̌∗ + ť−1
α | > min(ν, τ/2) for

the minimum over all α. To bound ž′′
0(m̌∗), let us introduce the function

f (m) = − 2

N

M∑

α=1

t2
αm3

(1 + tαm)3

and define analogously f̌ (m) for Ť . We have f ′(m) < 0 for all m, so f (m̌∗) > f (m∗). Fur-
thermore, if tα was the value which was replaced by 0, then 1+ tαm̌∗ > 0. (This is obvious for
positive tα ; for negative tα , it follows from −t−1 < m̌∗ < m∗ < −t−1

α , as −t−1 is the closest
pole to the left of m̌∗.) Then f̌ (m̌∗) > f (m̌∗) > f (m∗). Applying the condition 0 = z′

0(m∗),
we verify f (m∗) = m4

∗z
′′
0(m∗). Then

ž′′
0(m̌∗) >

m4
∗

m̌4∗
z′′

0(m∗) > z′′
0(m∗).

This shows that Ě∗ = ž0(m̌∗) is τ ′-regular for a fixed constant τ ′ > 0. (We may take τ ′ =
min(ν, τ/2) as above.)

Finally, T (K1+K2) now has at least c0M diagonal entries equal to t , and all nonzero diago-
nal entries tα satisfy tα < t < 0. Let K3 be the number of such entries and consider a sequence
T (K1+K2+1), . . . , T (K1+K2+K3) where each T (k+1) replaces one such entry of T (k) by 0.
Again, each such swap satisfies ž′

0(m∗) > z′
0(m∗) = 0, so by Lemma 4.4, −t−1 < m̌∗ < m∗.

As in the K2 swaps above, this implies minα |m̌∗ + ť−1
α | > c for a constant c > 0. The condi-

tion ťα < t for all nonzero ťα implies that 1 + ťαm̌∗ < 0 for all nonzero ťα , so we have

f̌ (m̌∗) ≥ −2c0M

N

t2m̌3
∗

(1 + tm̌∗)3 > c

for a constant c > 0, by Proposition 3.1. Applying again f̌ (m̌∗) = m̌4
∗ž

′′
0(m̌∗), this yields

ž′′
0(m̌∗) > c′ > 0, so Ě∗ is τ ′-regular for a constant τ ′ > 0.

The total number of swaps L = K1 +K2 +K3 is at most 2M . All diagonal entries of T (L)

belong to {0, t}, so this concludes the proof. �

We now establish Lemma 4.3 for all properties 1–6 by rescaling.
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PROOF OF LEMMA 4.3. By Lemmas 4.5 and 4.6, there exist sequences T (0), . . . , T (L)

and E
(0)
∗ , . . . ,E

(L)
∗ satisfying conditions 1–5. By Lemma 4.2, the associated scales γ0, . . . , γL

satisfy |γl+1 − γl| ≤ C/N for a φ, τ ′-dependent constant C > 0 and each l = 0, . . . ,L − 1.
We verify from the definitions of E∗, m∗, γ that under the rescaling T �→ cT for any c > 0,

we have

E∗ �→ cE∗, m∗ �→ c−1m∗, γ �→ c−3/2γ.

Consider then the matrices T̃ (l) = γ
2/3
l T (l) and edges Ẽ

(l)
∗ = γ

2/3
l E

(l)
∗ . We check properties

1–6 for T̃ (l) and Ẽ
(l)
∗ : Properties 1, 2, and 6 are obvious. Since T (0), . . . , T (L) are all τ ′-

regular, Proposition 3.1 implies c < γl < C for constants C,c > 0 and every l. Then it is easy
to check that properties 3, 4, and 5 also hold with adjusted constants. �

Finally, we record here a deterministic estimate for any swappable pair (T ,E∗) and
(Ť , Ě∗) that satisfies also the scaling condition γ = γ̌ = 1. In the proof of [19] for a contin-
uous interpolation T (l), denoting ṫα and ṁ∗ the derivatives with respect to l, the differential
analogue of the following lemma is the pair of identities

∑

α

ṫαtαs3
α = Nṁ∗,

∑

α

ṫαt2
αs4

α = Nṁ∗
(
A4 − m−4

∗
)

where A4 ≡ A4,0 = N−1 ∑
α t4

αs4
α .

LEMMA 4.7. Suppose T , Ť satisfy Assumption 2.3, E∗, Ě∗ are associated regular right
edges with scales γ = γ̌ = 1, and (T ,E∗) and (Ť , Ě∗) are swappable. Define sα = (1 +
tαm∗)−1, šα = (1 + ťαm̌∗)−1, A4 = N−1 ∑

α t4
αs4

α ,

(28) Pα = sαšα(tαsα + ťα šα), Qα = sαšα
(
t2
αs2

α + tαsαťαšα + ť2
αš2

α

)
.

Then for some constant C > 0, both of the following hold:
∣∣∣∣∣2N(m∗ − m̌∗) −

M∑

α=1

(tα − ťα)Pα

∣∣∣∣∣ ≤ C/N,(29)

∣∣∣∣∣3N(m∗ − m̌∗)
(
A4 − m−4

∗
) −

M∑

α=1

(tα − ťα)Qα

∣∣∣∣∣ ≤ C/N.(30)

PROOF. For (29), we have from 0 = z′
0(m∗) applied to T and Ť

(31) m−2
∗ − m̌−2

∗ = 1

N

∑

α

t2
αs2

α − ť2
αš2

α.

The left side may be written as

(32) m−2
∗ − m̌−2

∗ = (m̌∗ − m∗)(m̌∗ + m∗)m−2
∗ m̌−2

∗ = 2(m̌∗ − m∗)m−3
∗ + O

(
N−2)

,

where the second equality applies |m∗|, |m̌∗| � 1 and |m̌∗ − m∗| ≤ C/N . The right side may
be written as

1

N

∑

α

t2
αs2

α − ť2
αš2

α = 1

N

∑

α

(tα − ťα)tαs2
α + (

s2
α − š2

α

)
tα ťα + (tα − ťα)ťαš2

α.
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Including the identities (1 + tαm∗)sα = 1 and (1 + ťαm̌∗)šα = 1,

1

N

∑

α

t2
αs2

α − ť2
αš2

α

= 1

N

∑

α

(tα − ťα)
(
tαs2

α(1 + ťαm̌∗)šα + ťα š2
α(1 + tαm∗)sα

) + (
s2
α − š2

α

)
tα ťα

= 1

N

∑

α

(tα − ťα)sαšα(tαsα + ťα šα + tαsαťαm̌∗ + ťα šαtαm∗) + (
s2
α − š2

α

)
tα ťα

≡ 1

N

∑

α

(tα − ťα)sαšα(tαsα + ťα šα) + Rα,

(33)

where we define Rα as the remainder term. Noting that

s2
α − š2

α = (sα − šα)(sα + šα) = (ťαm̌∗ − tαm∗)sαšα(sα + šα),

we have

Rα = tα ťαsαšα(tαsαm̌∗ + tαšαm∗ − ťαsαm̌∗ − ťα šαm∗

+ ťαsαm̌∗ + ťα šαm̌∗ − tαsαm∗ − tαšαm∗)

= tαsαťαšα(m̌∗ − m∗)(tαsα + ťα šα).

Then, denoting Ai,j = N−1 ∑
α t iαsi

α ť
j
α š

j
α and applying Lemma 4.2(a),

1

N

∑

α

Rα = (m̌∗ − m∗)(A2,1 + A1,2) = 2(m̌∗ − m∗)A3,0 + O
(
N−2)

.

By the scaling γ = 1, we have A3,0 = 1 + m−3
∗ . Combining this with (31), (32), and (33) and

multiplying by N yields (29).
The identity (30) follows similarly: The condition γ = γ̌ implies

m−3
∗ − m̌−3

∗ = 1

N

∑

α

t3
αs3

α − ť3
αš3

α.

The left side is

(m̌∗ − m∗)
(
m2

∗ + m∗m̌∗ + m̌2
∗
)
m−3

∗ m̌−3
∗ = 3(m̌∗ − m∗)m−4

∗ + O
(
N−2)

.

Applying (1 + tαm∗)sα = 1 and (1 + ťαm̌∗)šα = 1, the right side is

1

N

∑

α

t3
αs3

α − ť3
αš3

α = 1

N

∑

α

(tαsα − ťα šα)
(
t2
αs2

α + tαsαťαšα + ť2
αš2

α

)

= 1

N

∑

α

(tα − ťα)sαšα
(
t2
αs2

α + tαsαťαšα + ť2
αš2

α

)

+ tαsαťαšα(m̌∗ − m∗)
(
t2
αs2

α + tαsαťαšα + ť2
αš2

α

)

=
(

1

N

∑

α

(tα − ťα)Qα

)
+ 3(m̌∗ − m∗)A4 + O

(
N−2)

.

Combining the above and multiplying by N yields (30). �
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5. Resolvent comparison and proof of Theorem 2.9. We will conclude the proof of
Theorem 2.9 by establishing the following estimate.

THEOREM 5.1 (Resolvent comparison). Fix ε > 0 a sufficiently small constant, and let
s1, s2, η ∈ R be such that |s1|, |s2| < N−2/3+ε and η ∈ [N−2/3−ε,N−2/3]. Let T , Ť ∈RM×M

be two diagonal matrices and E∗, Ě∗ two corresponding regular right edges, such that
(T ,E∗) and (Ť , Ě∗) are swappable and their scales satisfy γ = γ̌ = 1. Suppose Assump-
tions 2.3 and 2.4 hold.

Let mN , m̌N be the Stieltjes transforms as in (16) corresponding to T , Ť , and define

X= N

∫ E∗+s2

E∗+s1

ImmN(y + iη) dy, X̌ = N

∫ Ě∗+s2

Ě∗+s1

Im m̌N(y + iη) dy.

Let K : R → R be any function such that K and its first four derivatives are uniformly
bounded by a constant. Then

(34) E
[
K(X) − K(X̌)

] ≺ N−4/3+16ε.

PROOF OF THEOREM 2.9. By symmetry under T �→ −T , it suffices to consider a right
edge. By rescaling T �→ γ 2/3T , it suffices to consider γ = 1.

Let T (0), . . . , T (L),E
(0)
∗ , . . . ,E

(L)
∗ satisfy Lemma 4.3. Define X(k)(s1, s2, η) as in (25) for

each (T (k),E
(k)
∗ ). For a small constant ε > 0, let η, s+, l and K : [0,∞) → [0,1] be as in

Lemma 3.7, where K has bounded derivatives of all orders. Fix x ∈ R and let s = xN−2/3.
Applying Lemma 3.7,

P
[
λmax(�̂) ≤ E∗ + s

] ≤ E
[
K(π−1X(0)(s + l, s+, η)

] + N−1.

Setting ε′ = 9ε and applying Theorem 5.1,

E
[
K(π−1X(k)(s + l, s+, η)

] ≤ E
[
K(π−1X(k+1)(s + l, s+, η)

] + N−4/3+17ε′

for each k = 0, . . . ,L − 1. Finally, defining �̂(L) = X′T (L)X and λmax(�̂
(L)) as its largest

eigenvalue in (E
(L)
∗ − δ′,E(L)

∗ + δ′) for some δ′ > 0, applying Lemma 3.7 again yields

E
[
K(π−1X(L)(s + l, s+, η)

] ≤ P
[
λmax

(
�̂(L)) ≤ E(L)

∗ + s + 2l
] + N−1.

Recalling L ≤ 2M and combining the above bounds,

P
[
N2/3(

λmax(�̂) − E∗
) ≤ x

] ≤ P
[
N2/3(

λmax
(
�̂(L)) − E(L)

∗
) ≤ x + 2N−ε] + o(1).

The matrix T (L) has all diagonal entries 0 or t , so �̂(L) = tX̃′X̃ for X̃ ∈ RM̃×N having
independent entries satisfying the moment conditions of Assumption 2.4. The corresponding
law µ

(L)
0 has a single support interval and a unique right edge, so E

(L)
∗ must be this edge.

Regularity of E
(L)
∗ and (15) imply |t | � 1 and M̃/N � 1. If E

(L)
∗ > 0, then t > 0. If E

(L)
∗ < 0,

then t < 0, and edge regularity implies M̃/N is bounded away from 1. Then we obtain

(35) P
[
N2/3(

λmax
(
�̂(L)) − E(L)

∗
) ≤ x + 2N−ε] = F1(x) + o(1),

where F1 is the distribution function of µT W , by applying the results of [12, 17] to either
the largest eigenvalue of �̂(L) or the smallest positive eigenvalue of −�̂(L). Combining the
above, we obtain

P
[
N2/3(

λmax(�̂) − E∗
) ≤ x

] ≤ F1(x) + o(1).

The reverse bound is analogous, concluding the proof. �

In the remainder of this section, we prove Theorem 5.1.
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5.1. Individual resolvent bounds. For diagonal T and for z = y + iη as appearing in
Theorem 5.1, we record here simple resolvent bounds that follow from the local law. Similar
bounds were used in [8, 19]. We also introduce the shorthand notation that will be used in the
computation.

Let E∗ be a regular right edge. Fix a small constant ε > 0, and fix s1, s2, η such that
|s1|, |s2| ≤ N−2/3+ε and η ∈ [N−2/3−ε,N−2/3]. Changing variables, we write

X ≡X(s1, s2, η) = N

∫ s2

s1

ImmN(y + E∗ + iη) dy.

For y ∈ [s1, s2], we write as shorthand

z ≡ z(y) = y + E∗ + iη, G ≡ G
(
z(y)

)
,

mN ≡ mN

(
z(y)

)
, G(α) ≡ G(α)(z(y)

)
,

m
(α)
N ≡ 1

N

∑

i∈IN

G
(α)
ii

(
z(y)

)
, X(α) ≡ N

∫ s2

s1

Imm
(α)
N (ỹ + E∗ + iη) dỹ.

We use the simplified summation notation
∑

i,j

≡
∑

i,j∈IN

,
∑

α,β

≡
∑

α,β∈IM

where sums over lower-case Roman indices are over IN and sums over Greek indices are
over IM . We use also the simplified integral notation

∫
G̃AB ≡

∫ s2

s1

G
(
z(ỹ)

)
AB dỹ,

∫
m̃N ≡

∫ s2

s1

mN

(
z(ỹ)

)
dỹ,

so that integrals are implicitly over [s1, s2], and we denote by F̃ the function F evaluated at
F(z(ỹ)) for ỹ the variable of integration. In this notation, X and X(α) are simply

X =
∑

i

Im
∫

G̃ii, X(α) =
∑

i

Im
∫

G̃
(α)
ii .

We introduce the fundamental small parameter

(36) � = N−1/3+3ε.

We will eventually bound all quantities in the computation by powers of � . In fact, as shown
in Lemmas 5.2 and 5.3 below, nonintegrated resolvent entries are controlled by powers of the
smaller quantity N−1/3+ε . However, integrated quantities will require the additional slack of
N2ε . We will pass to using � for all bounds after this distinction is no longer needed.

We have the following corollaries of Proposition 3.3 and Theorem 3.5:

LEMMA 5.2. Under the assumptions of Theorem 5.1, for all y ∈ [s1, s2], i �= j ∈ IN ,
and α �= β ∈ IM ,

Gii ≺ 1,
1

Gii

≺ 1,
Gαα

tα
≺ 1,

tα

Gαα

≺ 1, Gij ≺ N−1/3+ε,

Giα

tα
≺ N−1/3+ε,

Gαβ

tαtβ
≺ N−1/3+ε, mN − m∗ ≺ N−1/3+ε.

If T is singular, these are defined by continuity and the form (19) for G.
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PROOF. Proposition 3.3 implies Imm0(z(y)) ≤ C
√

κ + η ≤ CN−1/3+ε/2, while η ≥
N−2/3−ε by assumption. Then Theorem 3.5 yields (tAtB)−1(G − �)AB ≺ N−1/3+ε for all
A,B ∈ I . Proposition 3.3 also implies |m0(z)| � 1 and |1 + tαm0(z)| � 1, from which all of
the entrywise bounds on G follow. The bound on mN follows from |m0 −m∗| ≤ C

√
κ + η ≤

CN−1/3+ε/2 and |mN − m0| ≺ N−1/3+ε . �

LEMMA 5.3. Under the assumptions of Theorem 5.1, for all i ∈ IN and α ∈ IM ,
∑

k

G
(α)
ik Xαk ≺ N−1/3+ε,

∑

p,q

G(α)
pq XαpXαq − m∗ ≺ N−1/3+ε.

PROOF. Applying Lemmas 3.4(b) and 5.2,
∑

k

G
(α)
ik Xαk = −Giα/Gαα ≺ N−1/3+ε.

Similarly, applying Lemma 3.4(a) and Theorem 3.5,

∑

p,q

G(α)
pq XαpXαq − m∗ = − 1

Gαα

− 1

tα
− m∗ = 1

�αα

− 1

Gαα

+ (m0 − m∗) ≺ N−1/3+ε.
�

REMARK 5.4. All probabilistic bounds such as the above are derived from Theorem 3.5.
Thus they in fact hold in the uniform sense of Corollary 3.6. We continue to use the notation
≺ for convenience, with the understanding that we may take union bounds and integrals over
y ∈ [s1, s2].

We record one trivial bound for an integral that will be repeatedly used, and which explains
the appearance of � .

LEMMA 5.5. Suppose the assumptions of Theorem 5.1 hold, F(z(y)) ≺ Na(−1/3+ε) for
some a ≥ 2, and we may take a union bound of this statement over y ∈ [s1, s2] (in the sense
of Lemma D.3). Then, with � = N−1/3+3ε ,

N

∫
F̃ ≺ �a−1.

PROOF. We have N(s2 − s1)N
a(−1/3+ε) ≤ 2N1/3+εNa(−1/3+ε) ≤ 2�a−1. �

The next lemma allows us to “remove the superscript” in the computation.

LEMMA 5.6. Under the assumptions of Theorem 5.1, for any y ∈ [s1, s2], i, j ∈ IN (pos-
sibly equal), and α ∈ IM ,

Gij − G
(α)
ij ≺ N2(−1/3+ε), mN − m

(α)
N ≺ N2(−1/3+ε), X−X(α) ≺ �.

PROOF. Applying the last resolvent identity from Lemma 3.4,

Gij − G
(α)
ij = GiαGjα

Gαα

= Giα

Gjα

tα

tα

Gαα

,

so the first statement follows from Lemma 5.2. Taking i = j and averaging over IN yields the
second statement. The third statement follows from Lemma 5.5 and X−X(α) = ImN

∫
(m̃N −

m̃
(α)
N ). �
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5.2. Resolvent bounds for a swappable pair. We now record bounds for a swappable pair
(T ,E∗) and (Ť , Ě∗), where E∗, Ě∗ are both regular. We denote by m̌N , Ǧ, X̌ the analogues
of mN , G, X for Ť . For ε, s1, s2, η and y ∈ [s1, s2] as in Section 5.1, we write as shorthand

ž ≡ ž(y) = y + Ě∗ + iη, Ǧ ≡ Ǧ
(
ž(y)

)
, m̌N ≡ m̌N

(
ž(y)

)
.

The results of the preceding section hold equally for Ǧ, m̌N , and X̌.
The desired bound (34) arises from the following identity: Suppose first that T and Ť are

invertible. Applying A−1 − B−1 = A−1(B − A)B−1,

G − Ǧ = G

(
(−ž + z) Id 0

0 −Ť −1 + T −1

)

Ǧ.

Hence, as z − ž = E∗ − Ě∗,

(37) Gij − Ǧij =
∑

k

GikǦjk(E∗ − Ě∗) −
∑

α

Giα

tα

Ǧjα

ťα
(tα − ťα).

This holds by continuity when T is singular, using the form (19).
The following lemma allows us to “remove the check” in the computation.

LEMMA 5.7. Suppose the assumptions of Theorem 5.1 hold. Let � = N−1/3+3ε . Then
for any y ∈ [s1, s2] and i, j ∈ IN (possibly equal),

Gij − Ǧij ≺ N2(−1/3+ε), mN − m̌N ≺ N2(−1/3+ε), X− X̌ ≺ �.

PROOF. Applying Lemma 5.2 for both G and Ǧ, and also the definition of swappability
and Lemma 4.2, we have from (37)

Gij − Ǧij ≺ |E∗ − Ě∗| · N · N2(−1/3+ε) +
∑

α

|tα − ťα|N2(−1/3+ε) ≺ N2(−1/3+ε).

(The contribution from k = i or k = j in the first sum of (37) is of lower order.) Taking
i = j and averaging over IN yields the second statement, and integrating over y ∈ [s1, s2]
and applying Lemma 5.5 yields the third. �

In many cases, we may strengthen the above lemma by an additional factor of � if we
take an expectation. (This may be seen by taking Y = Y (α) = 1 and a = 0 in Lemma 5.9
below.) To take expectations of remainder terms, we will invoke Lemma D.2 combined with
the following basic bound:

LEMMA 5.8. Under the assumptions of Theorem 5.1, let P ≡ P(z(y)) be any polynomial
in the entries of X and G with bounded degree, bounded (possibly random) coefficients, and
at most NC terms for a constant C > 0. Then for a constant C′ > 0 and all y ∈ [s1, s2], we
have E[|P |] ≤ NC′

.

PROOF. By the triangle inequality and Holder’s inequality, it suffices to consider a
bounded power of a single entry of G or X. Then the result follows from (17) and the form
(19) for G. �

LEMMA 5.9. Under the assumptions of Theorem 5.1, let Y be any quantity such that
Y ≺ �a for some constant a ≥ 0. Suppose that for each α ∈ IM , there exists a quantity Y (α)

such that Y −Y (α) ≺ �a+1, and Y (α) is independent of row α of X. Suppose furthermore that
E[|Y |�] ≤ NC� for each integer � > 0 and some constants C1,C2, . . . > 0.
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Then, for all i, j ∈ IN (possibly equal) and y ∈ [s1, s2],
E

[
(Gij − Ǧij )Y

] ≺ N2(−1/3+ε)�a+1 ≺ �a+3,

E
[
(mN − m̌N)Y

] ≺ N2(−1/3+ε)�a+1 ≺ �a+3.

E
[
(X− X̌)Y

] ≺ �a+2.

PROOF. Applying (26), the bound N−1 ≺ �3, and Lemma 5.2 to (37),

(Gij − Ǧij )Y =
∑

k

GikǦjk(E∗ − Ě∗)Y −
∑

α

Giα

tα

Ǧjα

ťα
(tα − ťα)Y

=
∑

α

(tα − ťα)

(
sαšα

1

N

∑

k

GikǦjk − Giα

tα

Ǧjα

ťα

)
Y + O≺

(
�a+5)

.

By swappability and Lemma 5.2, the explicit term on the right is of size O≺(N2(−1/3+ε)�a).
(The contributions from k = i and k = j in the summation are of lower order.) Applying the
assumption Y − Y (α) ≺ �a+1 as well as Lemma 5.6, we may replace Y with Y (α), Gik with
G

(α)
ik , and Ǧjk with Ǧ

(α)
jk above while introducing an O≺(N2(−1/3+ε)�a+1) error. Hence,

(Gij − Ǧij )Y =
∑

α

(tα − ťα)

(
sαšα

1

N

∑

k

G
(α)
ik Ǧ

(α)
jk − Giα

tα

Ǧjα

ťα

)
Y (α)

+ O≺
(
N2(−1/3+ε)�a+1)

.

(38)

Applying the resolvent identities from Lemma 3.4,
Giα

tα
= Gαα

tα

∑

k

G
(α)
ik Xαk = − 1

1 + tα
∑

p,q G
(α)
pq XαpXαq

∑

k

G
(α)
ik Xαk.

Recalling sα = (1+ tαm∗)−1, and applying Lemma 5.3 and a Taylor expansion of (1+ tαx)−1

around x = m∗,
Giα

tα
= −sα

∑

k

G
(α)
ik Xαk + O≺

(
N2(−1/3+ε)),

where the explicit term on the right is of size O≺(N−1/3+ε) ≺ � . A similar expansion holds
for Ǧjα/ťα . Substituting into (38),

(Gij − Ǧij )Y =
∑

α

(tα − ťα)sαšα

(
1

N

∑

k

G
(α)
ik Ǧ

(α)
jk −

∑

k,l

G
(α)
ik XαkǦ

(α)
j l Xαl

)
Y (α)

+ O≺
(
N2(−1/3+ε)�a+1)

.

Denoting by Eα the partial expectation over only row α of X (i.e., conditional on Xβj for all
β �= α), we have

Eα

[
1

N

∑

k

G
(α)
ik Ǧ

(α)
jk −

∑

k,l

G
(α)
ik XαkǦ

(α)
j l Xαl

]
= 0,

while the remainder term remains O≺(N2(−1/3+ε)�a+1) by Lemma D.2, where the mo-
ment condition of Lemma D.2 is verified by Lemma 5.8, the moment assumption on Y ,
and Cauchy–Schwarz. Then the first statement follows. The second statement follows from
applying this with i = j and averaging over i ∈ IN . The third statement follows from in-
tegrating over y ∈ [s1, s2] and noting N1/3+εN2(−1/3+ε) = � as in Lemma 5.5. (If Y also
depends on the spectral parameter z(y), we evaluate mN and m̌N at a different parameter ỹ

and integrate over ỹ.) �
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5.3. Proof of resolvent comparison. We use the notation of Sections 5.1 and 5.2.
The proof of Theorem 5.1 is a lengthy computation using the preceding lemmas. To help

organize the various terms which appear in this computation, we denote them as Xk,∗ for k =
3,4 and ∗ a label describing the form of this term. The meaning of the index k ∈ {3,4} is to
denote that the typical size of this term Xk,∗ is at most O≺(�k)—this is verified from Lemmas
5.2 and 5.5. We choose the label ∗ to indicate the form of this term: Roughly speaking, 1
indicates a term mN − m∗, 2, 3, or 4 indicate a product of 2, 3, or 4 resolvent entries Gij ,
the mark ′ indicates that a resolvent entry is squared, and the superscript ∼ denotes that this
quantity is contained inside Im

∫
. (A small exception is made for the notation X4,22′ , which

has the term (mN − m∗)2.) All of these terms depend implicitly on a fixed index i ∈ IN and
y ∈ [s1, s2], which we omit for notational brevity.

X3,12′ = K ′(X)(mN − m∗)
1

N

∑

k

G2
ik,

X3,3 = K ′(X)
1

N2

∑

k,l

GikGklGil,

X3,2̃2 = K ′′(X)
1

N2

∑

j,k,l

GikGil Im
∫

G̃jkG̃jl,

X3,2′2̃′ = K ′′(X)
1

N2

∑

j,k,l

G2
ik Im

∫
G̃2

j l,

X4,22′ = K ′(X)(mN − m∗)2 1

N

∑

k

G2
ik,

X4,13 = K ′(X)(mN − m∗)
1

N2

∑

k,l

GikGklGil,

X4,4 = K ′(X)
1

N3

∑

j,k,l

GijGjkGklGil,

X4,4′ = K ′(X)
1

N3

∑

j,k,l

G2
ikG

2
j l,

X4,12̃2 = K ′′(X)(mN − m∗)
1

N2

∑

j,k,l

GikGil Im
∫

G̃jkG̃jl,

X4,12′2̃′ = K ′′(X)(mN − m∗)
1

N2

∑

j,k,l

G2
ik Im

∫
G̃2

j l,

X4,3̃2 = K ′′(X)
1

N3

∑

j,p,q,r

GipGiqGpr Im
∫

G̃jqG̃jr ,

X4,3′2̃ = K ′′(X)
1

N3

∑

j,p,q,r

G2
irGpq Im

∫
G̃jpG̃jq,

X4,3̃2′ = K ′′(X)
1

N3

∑

j,p,q,r

GiqGirGqr Im
∫

G̃2
jp,
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X4,21̃2 = K ′′(X)
1

N2

∑

j,k,l

GikGil Im
∫

(m̃N − m∗)G̃jkG̃jl,

X4,2′1̃2′ = K ′′(X)
1

N2

∑

j,k,l

G2
il Im

∫
(m̃N − m∗)G̃2

jk,

X4,2̃3 = K ′′(X)
1

N3

∑

j,p,q,r

GipGiq Im
∫

G̃jpG̃jrG̃qr ,

X4,2̃3′ = K ′′(X)
1

N3

∑

j,p,q,r

GipGiq Im
∫

G̃2
jrG̃pq,

X4,2′3̃ = K ′′(X)
1

N3

∑

j,p,q,r

G2
ip Im

∫
G̃jqG̃jrG̃qr ,

X4,2̃2̃2 = K ′′′(X)
1

N3

∑

j,k,p,q,r

GipGiq

(
Im

∫
G̃jpG̃jr

)(
Im

∫
G̃kqG̃kr

)
,

X4,2′ 2̃̃2 = K ′′′(X)
1

N3

∑

j,k,p,q,r

G2
ip

(
Im

∫
G̃jqG̃jr

)(
Im

∫
G̃kqG̃kr

)
,

X4,2̃2̃2′ = K ′′′(X)
1

N3

∑

j,k,p,q,r

GipGiq

(
Im

∫
G̃jpG̃jq

)(
Im

∫
G̃2

kr

)
,

X4,2′2̃′2̃′ = K ′′′(X)
1

N3

∑

j,k,p,q,r

G2
ip

(
Im

∫
G̃2

jq

)(
Im

∫
G̃2

kr

)
.

We define the aggregate quantities

X3 =X3,12′ +X3,3 +X3,2̃2,

X4 = 3X4,22′ + 6X4,13 + 12X4,4 + 3X4,4′ + 4X4,12̃2 + 8X4,3̃2 + 4X4,3′2̃

+ 2X4,21̃2 + 2X4,2̃3′ + 4X4,2̃3 + 4X4,2̃2̃2,

X−
4 =X4,21̃2 +X4,2̃3′ + 2X4,2̃3 −X4,12̃2 −X4,3′2̃ − 2X4,3̃2.

Theorem 5.1 is a consequence of the following two technical lemmas. (There are several
terms X3,∗ and X4,∗ above which do not appear in the aggregate quantities X3, X4, X−

4 or in
the statements of these lemmas. They appear in the intermediate calculations in the proofs,
and for convenience we have collected all required definitions above.)

LEMMA 5.10 (Decoupling). Under the assumptions of Theorem 5.1, denote Xλ = λX+
(1 − λ)X̌ for λ ∈ [0,1]. For fixed i ∈ IN and y ∈ [s1, s2], define X3, X4, and X−

4 as above.
For fixed α ∈ IM , let sα = (1 + tαm∗)−1 and šα = (1 + ťαm̌∗)−1, define Pα and Qα as in
(28), and

Rα = sαšα(tαsα − ťα šα)2.

Then
∫ 1

0
E

[
K ′(Xλ)

Giα

tα

Ǧiα

ťα

]
dλ

= sαšα

∫ 1

0
E

[
K ′(Xλ)

1

N

∑

k

GikǦik

]
dλ
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−PαE[X3] + 1

3
QαE[X4] + 1

3
RαE

[
X−

4

] + O≺
(
�5)

.

LEMMA 5.11 (Optical theorems). Under the assumptions of Theorem 5.1, for fixed i ∈
IN and y ∈ [s1, s2], define X3 and X4 as above. Let A4 = N−1 ∑

α t4
αs4

α . Then

2 ImE[X3] = (
A4 − m−4

∗
)

ImE[X4] + O≺
(
�5)

.

Lemma 5.10 generalizes [19], Lemma 6.2, to a swappable pair. We will present its proof
in Section 5.4. We introduce the interpolation Xλ = λX + (1 − λ)X̌ as a device to bound
K(X) − K(X̌). (This is different from a continuous interpolation between the entries of T

and Ť .) Let us make several additional remarks:

1. The proof in [19] requires this lemma in “differential form”, where T = Ť . In this case,
we have G = Ǧ, Xλ = X for every λ ∈ [0,1], sα = šα , and tα = ťα . Then the integral over λ

is irrelevant, and Lemma 5.10 reduces to the full version of [19], Lemma 6.2.
2. The term X−

4 does not appear in [19] and is not canceled by the optical theorems of
Lemma 5.11. (When T = Ť , we have Rα = 0 so this term is not present.) The cancellation
instead occurs by symmetry of its definition, upon integrating over y: Momentarily writing
Xk,∗ as Xk,∗(y), and noting that K(X) is real-valued, we obtain

(39) Im
∫

X4,21̃2(ỹ) dỹ = Im
∫

X4,12̃2(ỹ) dỹ

from the symmetric definition of these two terms. A similar cancellation occurs for the pairs
(X4,2̃3′,X4,3′2̃) and (X4,2̃3,X4,3̃2) which comprise X−

4 .
3. An important simplification in the proof is that we may use Lemmas 5.7 and 5.9 to

convert O≺(�3) and O≺(�4) terms to involve only G and not Ǧ—hence X3, X4, X−
4 are

defined only by T and not Ť .

The other technical ingredient, Lemma 5.11, is identical to the full version of [19], Lemma
B.1, as the terms X3 and X4 depend only on the single matrix T . We briefly discuss the
breakdown of its proof in Section 5.5.

In [19], for expositional clarity, these lemmas were stated and proven only in the special
case K ′ ≡ 1. Full proofs were presented for an analogous deformed Wigner model in [18].
Although more cumbersome, we will demonstrate the full proof of Lemma 5.10 for general K

in Section 5.4, as much of the additional complexity in our calculation due to two resolvents
G and Ǧ arises from the interpolation Xλ and the Taylor expansion of K ′.

We establish Theorem 5.1 using the above two results:

PROOF OF THEOREM 5.1. We write

(40) K(X) − K(X̌) =
∫ 1

0

d

dλ
K(Xλ) dλ =

∫ 1

0
K ′(Xλ)(X− X̌) dλ.

Recalling X = ∑
i Im

∫
G̃ii and applying (37),

X− X̌ =
∑

i

Im
∫ (∑

k

G̃ik
˜̌
Gik(E∗ − Ě∗) −

∑

α

G̃iα

tα

˜̌
Giα

ťα
(tα − ťα)

)
.

(G̃ and ˜̌
G denote G and Ǧ evaluated at the variable of integration ỹ.) Further applying (26),

Lemma 5.2, and the trivial bound N−2/3+ε ≺ �2,

X− X̌=
∑

i

Im
∫ ∑

α

(tα − ťα)

(
sαšα

1

N

∑

k

G̃ik
˜̌
Gik − G̃iα

tα

˜̌
Giα

ťα

)
+ O≺

(
�4)

.
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Applying this to (40), taking the expectation, exchanging orders of summation and integra-
tion, and noting that K ′(Xλ) is real,

E
[
K(X) − K(X̌)

]

=
∑

i

∑

α

(tα − ťα) Im
∫ ∫ 1

0
E

[
K ′(Xλ)

(
sαšα

1

N

∑

k

G̃ik
˜̌
Gik − G̃iα

tα

˜̌
Giα

ťα

)]
dλdỹ

+ O≺
(
�4)

,

where the expectation of the remainder term is still O≺(�4) by Lemmas D.2 and 5.8. De-
noting by X̃3(i), X̃4(i), and X̃−

4 (i) the quantities X3, X4, and X−
4 defined by ỹ and the outer

index of summation i, Lemma 5.10 implies

E
[
K(X) − K(X̌)

]

=
∑

i

∑

α

(tα − ťα) Im
∫ (

PαE
[
X̃3(i)

] − 1

3
QαE

[
X̃4(i)

] − 1

3
RαE

[
X̌−

4 (i)
])

dỹ

+ O≺
(
N1/3+ε�5)

,

where the error is N1/3+ε�5 because
∑

α |tα − ťα| ≤ C and the range of integration is con-
tained in [−N−2/3+ε,N−2/3+ε]. We note, from the identity (39) and the analogous cancel-
lation for the other two pairs of terms, that Im

∫
X̃−

4 (i) dỹ = 0, so this term vanishes. Then,
applying Lemma 5.11,

E
[
K(X) − K(X̌)

]

=
∑

i

∑

α

(tα − ťα)

(
Pα

A4 − m−4
∗

2
− Qα

3

)
Im

∫
E

[
X̃4(i)

]
dỹ + O≺

(
N1/3+ε�5)

.
(41)

Finally, applying Lemma 4.7, we have

(42)
∑

α

(tα − ťα)

(
Pα

A4 − m−4
∗

2
− Qα

3

)
≤ C/N.

Thus the first term of (41) is of size O≺(N · 1/N · N−2/3+ε · �4), which is of smaller order
than the remainder N1/3+ε�5. (In [19] for the differential version of Lemma 5.10, this first
term is zero due to the exact cancellation of the analogue of (42).) Hence E[K(X)−K(X̌)] ≺
N1/3+ε�5 = N−4/3+16ε . �

5.4. Proof of decoupling lemma. In this section, we prove Lemma 5.10. We will implic-
itly use the resolvent bounds of Lemma 5.2 throughout.

Step 1: Consider first a fixed value λ ∈ [0,1]. Let Eα denote the partial expectation over
row α of X (i.e., conditional on all Xβj for β �= α). In anticipation of computing Eα for the
quantity on the left, we expand

K ′(Xλ)
Giα

tα

Ǧiα

ťα

as a polynomial of entries of row α of X, with coefficients independent of all entries in this
row.

Applying the resolvent identities,

Giα

tα
= Gαα

tα

∑

k

G
(α)
ik Xαk = − 1

1 + tα
∑

p,q G
(α)
pq XαpXαq

∑

k

G
(α)
ik Xαk.
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Applying Lemma 5.3 and a Taylor expansion of the function (1 + tαx)−1 around x = m∗,

Giα

tα
= −sα

∑

k

G
(α)
ik Xαk + tαs2

α

(∑

p,q

G(α)
pq XαpXαq − m∗

)∑

k

G
(α)
ik Xαk

− t2
αs3

α

(∑

p,q

G(α)
pq XαpXαq − m∗

)2 ∑

k

G
(α)
ik Xαk + O≺

(
�4)

(43)

≡ U1 + U2 + U3 + O≺
(
�4)

,

where we defined the three explicit terms of sizes O≺(�), O≺(�2), O≺(�3) as U1, U2, U3.
Similarly

Ǧiα

ťα
= Ǔ1 + Ǔ2 + Ǔ3 + O≺

(
�4)

,(44)

where Ǔi are defined analogously with šα , ťα , m̌∗, Ǧ in place of sα , tα , m∗, G.
For K ′(Xλ), define X(α)

λ = λX(α)+(1−λ)X̌(α) and note from Lemma 5.6 that Xλ−X
(α)
λ ≺

� . Taylor expanding K ′(x) around x = X
(α)
λ ,

(45) K ′(Xλ) = K ′(X(α)
λ

) + K ′′(X(α)
λ

)(
Xλ −X

(α)
λ

) + K ′′′(X(α)
λ )

2

(
Xλ −X

(α)
λ

)2 + O≺
(
�3)

.

Applying the definition of X, X(α) and the resolvent identities,

X−X(α) = Im
∫ ∑

j

(
G̃jj − G̃

(α)
jj

) = Im
∫ ∑

j

G̃2
jα

G̃αα

= Im
∫

G̃αα

∑

j,p,q

G̃
(α)
jp XαpG̃

(α)
jq Xαq.

Further applying the resolvent identity for G̃αα , a Taylor expansion as above, and Lemma 5.5,

X−X(α) = −tαsα Im
∫ ∑

j,p,q

G̃
(α)
jp XαpG̃

(α)
jq Xαq

+ t2
αs2

α Im
∫ ∑

r,s

(
G̃(α)

rs XαrXαs − m∗
) ∑

j,p,q

G̃
(α)
jp XαpG̃

(α)
jq Xαq + O≺

(
�3)

(46)

≡ V1 + V2 + O≺
(
�3)

,

where V1 ≺ � and V2 ≺ �2. Analogously we may write

(47) X̌− X̌(α) = V̌1 + V̌2 + O≺
(
�3)

,

where V̌1, V̌2 are defined with šα , ťα , m̌∗, Ǧ in place of sα , tα , m∗, G. Substituting (46) and
(47) into (45), and combining with (43) and (44), we obtain

(48) K ′(Xλ)
Giα

tα

Ǧiα

ťα
= W2 + W3 + W4 + O≺

(
�5)

,

where the O≺(�2), O≺(�3), O≺(�4) terms are respectively

W2 = K ′(X(α)
λ

)
U1Ǔ1,

W3 = K ′(X(α)
λ

)
(U2Ǔ1 + U1Ǔ2) + K ′′(X(α)

λ

)(
λV1 + (1 − λ)V̌1

)
U1Ǔ1,

W4 = K ′(X(α)
λ

)
(U3Ǔ1 + U2Ǔ2 + U1Ǔ3) + K ′′(X(α)

λ

)(
λV1 + (1 − λ)V̌1

)
(U2Ǔ1 + U1Ǔ2)

+
[
K ′′(X(α)

λ

)(
λV2 + (1 − λ)V̌2

) + K ′′′(X(α)
λ )

2

(
λV1 + (1 − λ)V̌1

)2
]
U1Ǔ1.
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Step 2: We compute Eα of W2, W3, W4 above. Note that X(α), X̌(α), G(α), Ǧ(α) are inde-
pendent of row α of X. Then for W2, we have

Eα[W2] = sαšαK ′(X(α)
λ

)∑

k,l

G
(α)
ik Ǧ

(α)
il Eα[XαkXαl]

= sαšαK ′(X(α)
λ

) 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

(49)

where we have used E[XαkXαl] = 1/N if k = l and 0 otherwise.
For W3, let us introduce

Y
(α)
3,12′ = K ′(X(α)

λ

)(
m

(α)
N − m∗

) 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

Z(α)
3,12′ = K ′(X(α)

λ

)(
m̌

(α)
N − m̌∗

) 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

Y
(α)
3,3 = K ′(X(α)

λ

) 1

N2

∑

k,l

G
(α)
ik G

(α)
kl Ǧ

(α)
il ,

Z(α)
3,3 = K ′(X(α)

λ

) 1

N2

∑

k,l

G
(α)
ik Ǧ

(α)
kl Ǧ

(α)
il ,

Y
(α)

3,2′2̃′ = K ′′(X(α)
λ

) 1

N2

∑

j,k,l

G
(α)
ik Ǧ

(α)
ik Im

∫ (
G̃

(α)
j l

)2
,

Z(α)

3,2′2̃′ = K ′′(X(α)
λ

) 1

N2

∑

j,k,l

G
(α)
ik Ǧ

(α)
ik Im

∫ ( ˜̌
G

(α)
jl

)2
,

Y
(α)

3,2̃2
= K ′′(X(α)

λ

) 1

N2

∑

j,k,l

G
(α)
ik Ǧ

(α)
il Im

∫
G̃

(α)
jk G̃

(α)
j l ,

Z(α)

3,2̃2
= K ′′(X(α)

λ

) 1

N2

∑

j,k,l

G
(α)
ik Ǧ

(α)
il Im

∫ ˜̌
G

(α)
jk

˜̌
G

(α)
jl ,

which are versions of X3,∗ that don’t depend on row α of X and with various instances of
mN , m∗, G, X replaced by m̌N , m̌∗, Ǧ, Xλ. Consider the first term of W3 and write

Eα

[
K ′(X(α)

λ

)
U2Ǔ1

]

= Eα

[
−tαs2

αšαK ′(X(α)
λ

)(∑

p,q

G(α)
pq XαpXαq − m∗

)∑

k,l

G
(α)
ik XαkǦ

(α)
il Xαl

]

= −tαs2
αšαK ′(X(α)

λ

) ∑

k,l,p,q

(
G(α)

pq Eα[XαpXαqXαkXαl]

− 1

N
m∗1{p = q}Eα[XαkXαl]

)
G

(α)
ik Ǧ

(α)
il .

The summand corresponding to (k, l,p, q) is 0 unless each distinct index appears at least
twice in (k, l,p, q). Furthermore, the case where all four indices are equal is negligible:

∑

k

(
G

(α)
kk Eα

[
X4

αk

] − 1

N
m∗Eα

[
X2

αk

])
G

(α)
ik Ǧ

(α)
ik ≺ N · N−2 · �2 ≺ �5.
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(The k = i case of the sum may be bounded separately as O≺(N−2).) Thus up to O≺(�5), we
need only consider summands where each distinct index appears exactly twice. Considering
the one case where k = l and the two cases where k = p and k = q ,

Eα

[
K ′(X(α)

λ

)
U2Ǔ1

]

= −tαs2
αšαK ′(X(α)

λ

)
(

1

N2

∑

k

(k)∑

p

(
G(α)

pp − m∗
)
G

(α)
ik Ǧ

(α)
ik + 2

N2

∑

k

(k)∑

l

G
(α)
ik Ǧ

(α)
il G

(α)
kl

)

+ O≺
(
�5)

.

Re-including p = k and l = k into the double summations introduces an additional O≺(�5)

error; hence we obtain for the first term of W3

Eα

[
K ′(X(α)

λ

)
U2Ǔ1

] = −tαs2
αšα

(
Y

(α)
3,12′ + 2Y(α)

3,3

) + O≺
(
�5)

.(50)

Similar arguments apply for the remaining three terms of W3. For the terms involving an
integral, we may apply Lemma 5.5 and also move Xαk outside of the integral and imaginary
part because X is real and does not depend on the variable of integration ỹ. We obtain

Eα

[
K ′(X(α)

λ

)
U1Ǔ2

] = −ťα š2
αsα

(
Z(α)

3,12′ + 2Z(α)
3,3

) + O≺
(
�5)

,(51)

Eα

[
λK ′′(X(α)

λ

)
V1U1Ǔ1

] = −λtαs2
αšα

(
Y

(α)

3,2′2̃′ + 2Y(α)

3,2̃2

) + O≺
(
�5)

,(52)

Eα

[
(1 − λ)K ′′(X(α)

λ

)
V̌1U1Ǔ1

] = −(1 − λ)ťαš2
αsα

(
Z(α)

3,2′2̃′ + 2Z(α)

3,2̃2

) + O≺
(
�5)

,(53)

and Eα[W3] is the sum of (50–53).
For W4, consider the first term and write

Eα

[
K ′(X(α)

λ

)
U3Ǔ1

]

= Eα

[
t2
αs3

αšαK ′(X(α)
λ

)(∑

p,q

G(α)
pq XαpXαq − m∗

)2 ∑

k,l

G
(α)
ik XαkǦ

(α)
il Xαl

]

= t2
αs3

αšαK ′(X(α)
λ

) ∑

p,q,r,s,k,l

(
G(α)

pq G(α)
rs Eα[XαpXαqXαrXαsXαkXαl]

− 1

N
m∗1{p = q}G(α)

rs Eα[XαrXαsXαkXαl] − 1

N
m∗1{r = s}G(α)

pq Eα[XαpXαqXαkXαl]

+ 1

N2 m2
∗1{p = q}1{r = s}E[XαkXαl]

)
G

(α)
ik Ǧ

(α)
il .

A summand corresponding to (k, l,p, q, r, s) is 0 unless each distinct index in (k, l,p, q, r, s)

appears at least twice. Furthermore, as in the computations for W3 above, all summands for
which (k, l,p, q, r, s) do not form three distinct pairs may be omitted and reincluded after
taking Eα , introducing an O≺(�5) error. Considering all pairings of these indices,

Eα

[
K ′(X(α)

λ

)
U3Ǔ1

]

= t2
αs3

αšαK ′(X(α)
λ

)((
m

(α)
N − m∗

)2 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik + 4

(
m

(α)
N − m∗

) 1

N2

∑

k,l

G
(α)
ik G

(α)
kl Ǧ

(α)
il

+ 8
1

N3

∑

j,k,l

G
(α)
ik G

(α)
jk G

(α)
j l Ǧ

(α)
il + 2

1

N3

∑

j,k,l

G
(α)
ik Ǧ

(α)
ik

(
G

(α)
jl

)2
)

+ O≺
(
�5)

.
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At this point, let us apply Lemmas 5.6 and 5.7 to remove each superscript (α) above and
to convert each Ǧ to G, introducing an O≺(�5) error. We may also remove the superscript
(α) and convert Xλ to X in K ′(X(α)

λ ), via the second-derivative bounds

K ′(X(α)
λ

) − K ′(Xλ) ≤ ∥∥K ′′∥∥∞
∣∣X(α)

λ −Xλ

∣∣ ≺ �.

K ′(Xλ) − K ′(X) ≤ ∥∥K ′′∥∥∞|Xλ −X| ≺ �.

We thus obtain

Eα

[
K ′(X(α)

λ

)
U3Ǔ1

] = t2
αs3

αšα(X4,22′ + 4X4,13 + 8X4,4 + 2X4,4′) + O≺
(
�5)

.

Applying a similar computation to each term of W4, we obtain

Eα

[
K ′(X(α)

λ

)
(U3Ǔ1 + U2Ǔ2 + U1Ǔ3)

]

= sαšα
(
t2
αs2

α + tαsαťαšα + ť2
αš2

α

)
(X4,22′ + 4X4,13 + 8X4,4 + 2X4,4′) + O≺

(
�5)

,
(54)

Eα

[
K ′′(X(α)

λ

)(
λV1 + (1 − λ)V̌1

)
(U2Ǔ1 + U1Ǔ2)

]

= sαšα
(
λtαsα + (1 − λ)ťαšα

)
(tαsα + ťα šα)

· (X4,12′2̃′ + 2X4,12̃2 + 2X4,3̃2′ + 2X4,3′2̃ + 8X4,3̃2) + O≺
(
�5)

,

(55)

Eα

[
K ′′(X(α)

λ

)(
λV2 + (1 − λ)V̌2

)
U1Ǔ1

]

= sαšα
(
λt2

αs2
α + (1 − λ)ť2

αš2
α

)

· (X4,2′1̃2′ + 2X4,21̃2 + 2X4,2′3̃ + 2X4,2̃3′ + 8X4,2̃3) + O≺
(
�5)

,

(56)

Eα

[
K ′′′(X(α)

λ )

2

(
λV1 + (1 − λ)V̌1

)2
U1Ǔ1

]

= sαšα

2

(
λtαsα + (1 − λ)ťαšα

)2

· (X4,2′2̃′2̃′ + 2X4,2′ 2̃̃2 + 4X4,2̃2̃2′ + 8X4,2̃2̃2) + O≺
(
�5)

,

(57)

and Eα[W4] is the sum of (54–57).
The O≺(�5) remainder in (48) is given by the difference of the left side with W2, W3, W4.

As this is an integral over a polynomial of entries of G(α) and X, its partial expectation is still
O≺(�5) by Lemmas D.2 and 5.8.

Summarizing the results of Steps 1 and 2, we collect (48), (49), (50–53), and (54–57):

Eα

[
K ′(Xλ)

Giα

tα

Ǧiα

ťα

]

= sαšαK ′(X(α)
λ

) 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik − tαs2

αšα
(
Y

(α)
3,12′ + 2Y(α)

3,3

) − ťα š2
αsα

(
Z(α)

3,12′ + 2Z(α)
3,3

)

− λtαs2
αšα

(
Y

(α)

3,2′2̃′ + 2Y(α)

3,2̃2

) − (1 − λ)ťαš2
αsα

(
Z(α)

3,2′2̃′ + 2Z(α)

3,2̃2

)

+ sαšα
(
t2
αs2

α + tαsαťαšα + ť2
αš2

α

)
(X4,22′ + 4X4,13 + 8X4,4 + 2X4,4′)

(58)
+ sαšα

(
λtαsα + (1 − λ)ťαšα

)
(tαsα + ťα šα)

× (X4,12′2̃′ + 2X4,12̃2 + 2X4,3̃2′ + 2X4,3′2̃ + 8X4,3̃2)

+ sαšα
(
λt2

αs2
α + (1 − λ)ť2

αš2
α

)
(X4,2′1̃2′ + 2X4,21̃2 + 2X4,2′3̃ + 2X4,2̃3′ + 8X4,2̃3)
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+ sαšα

2

(
λtαsα + (1 − λ)ťαšα

)2
(X4,2′2̃′2̃′ + 2X4,2′ 2̃̃2 + 4X4,2̃2̃2′ + 8X4,2̃2̃2) + O≺

(
�5)

.

Step 3: In (58), we consider the first term on the right (of size O≺(�2)) and remove the
superscripts (α), keeping track of the O≺(�3) and O≺(�4) terms that arise.

Applying the resolvent identities and a Taylor expansion for Gαα , we write

G
(α)
ik = Gik − GiαGkα

Gαα

= Gik − Gαα

∑

r,s

G
(α)
ir XαrG

(α)
ks Xαs

= Gik + tαsα
∑

r,s

G
(α)
ir XαrG

(α)
ks Xαs

− t2
αs2

α

(∑

p,q

G(α)
pq XαpXαq − m∗

)∑

r,s

G
(α)
ir XαrG

(α)
ks Xαs + O≺

(
�4)

≡ Gik + R2k + R3k + O≺
(
�4)

,

(59)

where we defined the two remainder terms of sizes O≺(�2), O≺(�3) as R2k , R3k . Similarly
we write

Ǧ
(α)
ik = Ǧik + Ř2k + Ř3k + O≺

(
�4)

.(60)

For K ′(X(α)
λ ), we apply the Taylor expansion (45) and recall V1, V̌1, V2, V̌2 from (46, 47) to

obtain

K ′(X(α)
λ

) = K ′(Xλ) − K ′′(X(α)
λ

)(
Xλ −X

(α)
λ

) − K ′′′(X(α)
λ )

2

(
Xλ −X

(α)
λ

)2 + O≺
(
�3)

= K ′(Xλ) − K ′′(X(α)
λ

)(
λV1 + (1 − λ)V̌1

) − K ′′(X(α)
λ

)(
λV2 + (1 − λ)V̌2

)

− K ′′′(X(α)
λ )

2

(
λV1 + (1 − λ)V̌1

)2 + O≺
(
�3)

.

(61)

Taking the product of (59), (60), and (61), applying the identity

xyz = (x − δx)(y − δy)(z − δz) + xyδz + xδyz + δxyz − xδyδz − δxyδz − δxδyz + δxδyδz

(with x = G
(α)
ik , x − δx = Gik , and δx = R2k + R3k , etc.), and averaging over k ∈ IN , we

obtain

K ′(X(α)
λ

) 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ≡ S2 + S3,1 + S3,2 +

5∑

j=1

S4,j + O≺
(
�5)

,(62)

where

S2 = K ′(Xλ)
1

N

∑

k

GikǦik,

S3,1 = K ′(X(α)
λ

) 1

N

∑

k

G
(α)
ik Ř2k + K ′(X(α)

λ

) 1

N

∑

k

R2kǦ
(α)
ik ,

S3,2 = −K ′′(X(α)
λ

)(
λV1 + (1 − λ)V̌1

) 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,
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S4,1 = K ′(X(α)
λ

) 1

N

∑

k

G
(α)
ik Ř3k + K ′(X(α)

λ

) 1

N

∑

k

R3kǦ
(α)
ik ,

S4,2 = −K ′′(X(α)
λ

)(
λV2 + (1 − λ)V̌2

) 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

S4,3 = −K ′′′(X(α)
λ )

2

(
λV1 + (1 − λ)V̌1

)2 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

S4,4 = −K ′(X(α)
λ

) 1

N

∑

k

R2kŘ2k,

S4,5 = K ′′(X(α)
λ

)(
λV1 + (1 − λ)V̌1

) 1

N

∑

k

G
(α)
ik Ř2k

+ K ′′(X(α)
λ

)(
λV1 + (1 − λ)V̌1

) 1

N

∑

k

R2kǦ
(α)
ik .

Recalling the definition of R2k and applying Eα to the O≺(�3) terms,

Eα[S3,1] = tαsαY
(α)
3,3 + ťα šαZ(α)

3,3 ,

Eα[S3,2] = λtαsαY
(α)

3,2′2̃′ + (1 − λ)ťαšαZ(α)

3,2′2̃′ .

Similarly, we apply Eα to each of the O≺(�4) terms, considering all pairings of the four
summation indices as in Step 2. Then applying Lemmas 5.6 and 5.7 to remove superscripts
and convert Ǧ to G, we obtain

Eα[S4,1] = −(
t2
αs2

α + ť2
αš2

α

)
(X4,13 + 2X4,4) + O≺

(
�5)

,

Eα[S4,2] = −(
λt2

αs2
α + (1 − λ)ť2

αš2
α

)
(X4,2′1̃2′ + 2X4,2′3̃) + O≺

(
�5)

,

Eα[S4,3] = −1

2

(
λtαsα + (1 − λ)ťαšα

)2
(X4,2′2̃′2̃′ + 2X4,2′ 2̃̃2) + O≺

(
�5)

,

Eα[S4,4] = −tαsαťαšα(X4,4′ + 2X4,4) + O≺
(
�5)

,

Eα[S4,5] = −(
λtαsα + (1 − λ)ťαšα

)
(tαsα + ťα šα)(X4,3̃2′ + 2X4,3̃2) + O≺

(
�5)

.

Then applying Eα to (62), noting that the remainder is again O≺(�5) by Lemmas D.2 and
5.8, and substituting into (58),

Eα

[
K ′(Xλ)

Giα

tα

Ǧiα

ťα

]

= sαšαEα

[
K ′(Xλ)

1

N

∑

k

GikǦik

]
− tαs2

αšα
(
Y

(α)
3,12′ +Y

(α)
3,3

)

− ťα š2
αsα

(
Z(α)

3,12′ +Z(α)
3,3

) − 2λtαs2
αšαY

(α)

3,2̃2
− 2(1 − λ)ťαš2

αsαZ(α)

3,2̃2

+ sαšα
(
t2
αs2

α + ť2
αš2

α

)
(X4,22′ + 3X4,13 + 6X4,4 + 2X4,4′)

+ sαšα(tαsαťαšα)(X4,22′ + 4X4,13 + 6X4,4 +X4,4′)(63)

+ sαšα
(
λtαsα + (1 − λ)ťαšα

)
(tαsα + ťα šα)

× (X4,12′2̃′ + 2X4,12̃2 +X4,3̃2′ + 2X4,3′2̃ + 6X4,3̃2)
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+ sαšα
(
λt2

αs2
α + (1 − λ)ť2

αš2
α

)
(2X4,21̃2 + 2X4,2̃3′ + 8X4,2̃3)

+ sαšα

2

(
λtαsα + (1 − λ)ťαšα

)2
(4X4,2̃2̃2′ + 8X4,2̃2̃2) + O≺

(
�5)

.

Step 4: In (63), we remove the superscript (α) from Y3,∗ and Z3,∗, keeping track of the
O≺(�4) errors that arise. For each quantity Y

(α)
3,∗ or Z(α)

3,∗ , let Y3,∗ or Z3,∗ be the analogous

quantity with each instance of m
(α)
N , G(α), G̃(α), X(α)

λ replaced by mN , G, G̃, Xλ.

For Y(α)
3,12′ , recall from (59) and (61) that

G
(α)
ik = Gik + R2k + O≺

(
�3)

,

K ′(X(α)
λ

) = K ′(Xλ) − K ′′(X(α)
λ

)(
λV1 + (1 − λ)V̌1

) + O≺
(
�2)

.

For m
(α)
N − m∗, we apply the resolvent identities and write

m
(α)
N − m∗ = mN − m∗ − 1

N

∑

j

G2
jα

Gαα

= mN − m∗ − Gαα

1

N

∑

j,k,l

G
(α)
jk XαkG

(α)
j l Xαl

= mN − m∗ + tαsα
1

N

∑

j,k,l

G
(α)
jk XαkG

(α)
j l Xαl + O≺

(
�3)

≡ mN − m∗ + Q + O≺
(
�3)

,

where Q is the O≺(�2) term. Multiplying the above and averaging over k,

Y
(α)
3,12′ = Y3,12′ + K ′(X(α)

λ

)(
m

(α)
N − m∗

) 1

N

∑

k

G
(α)
ik Ř2k

+ K ′(X(α)
λ

)(
m

(α)
N − m∗

) 1

N

∑

k

Ǧ
(α)
ik R2k + K ′(X(α)

λ

)
Q

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik

− K ′′(X(α)
λ

)(
λV1 + (1 − λ)V̌1

)(
m

(α)
N − m∗

) 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik + O≺

(
�5)

,

where each term except Y3,12′ on the right is of size O≺(�4). Taking Eα and applying Lem-
mas 5.6 and 5.7 to remove superscripts and checks,

Y
(α)
3,12′ = Eα[Y3,12′ ] + (tαsα + ťα šα)X4,13 + tαsαX4,4′

+ (
λtαsα + (1 − λ)ťαšα

)
X4,12′2̃′ + O≺

(
�5)

.
(64)

Similar arguments yield

Z(α)
3,12′ = Eα[Z3,12′ ] + (tαsα + ťα šα)X4,13 + ťα šαX4,4′

+ (
λtαsα + (1 − λ)ťαšα

)
X4,12′2̃′ + O≺

(
�5)

,

Y
(α)
3,3 = Eα[Y3,3] + (2tαsα + ťα šα)X4,4

+ (
λtαsα + (1 − λ)ťαšα

)
X4,3̃2′ + O≺

(
�5)

,

Z(α)
3,3 = Eα[Z3,3] + (tαsα + 2ťα šα)X4,4
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+ (
λtαsα + (1 − λ)ťαšα

)
X4,3̃2′ + O≺

(
�5)

,

Y
(α)

3,2̃2
= Eα[Y3,2̃2] + (tαsα + ťα šα)X4,3̃2 + 2tαsαX4,2̃3

+ (
λtαsα + (1 − λ)ťαšα

)
X4,2̃2̃2′ + O≺

(
�5)

,

Z(α)

3,2̃2
= Eα[Z3,2̃2] + (tαsα + ťα šα)X4,3̃2 + 2ťα šαX4,2̃3

+ (
λtαsα + (1 − λ)ťαšα

)
X4,2̃2̃2′ + O≺

(
�5)

.

Substituting into (63),

Eα

[
K ′(Xλ)

Giα

tα

Ǧiα

ťα

]

= sαšαEα

[
K ′(Xλ)

1

N

∑

k

GikǦik

]
− tαs2

αšαEα[Y3,12′ +Y3,3]

− ťα š2
αsαEα[Z3,12′ +Z3,3] − 2λtαs2

αšαEα[Y3,2̃2] − 2(1 − λ)ťαš2
αsαEα[Z3,2̃2]

+ sαšα
(
t2
αs2

α + tαsαťαšα + ť2
αš2

α

)
(X4,22′ + 2X4,13 + 4X4,4 +X4,4′)

+ sαšα
(
λtαsα + (1 − λ)ťαšα

)
(tαsα + ťα šα)(2X4,12̃2 + 2X4,3′2̃ + 4X4,3̃2)

+ sαšα
(
λt2

αs2
α + (1 − λ)ť2

αš2
α

)
(2X4,21̃2 + 2X4,2̃3′ + 4X4,2̃3)

+ 4sαšα
(
λtαsα + (1 − λ)ťαšα

)2X4,2̃2̃2 + O≺
(
�5)

.

(65)

Step 5: We take the full expectation of both sides of (65), applying Lemma 5.9 to convert
Y3,∗ and Z3,∗ into X3,∗. We illustrate the argument for Z3,12′ : For k �= i, denote

Y = K ′(Xλ)(m̌N − m̌∗)Gik, Y (α) = K ′(X(α)
λ

)(
m̌

(α)
N − m̌∗

)
G

(α)
ik .

Then Y ≺ �2, and Y −Y (α) ≺ �3 for all α ∈ IM , the latter from Lemma 5.6 and the second-
derivative bound for K . Then applying Lemma 5.9, E[YǦik] = E[YGik] + O≺(�5). Hence

E
[
K ′(Xλ)(m̌N − m̌∗)

1

N

∑

k

Gik(Ǧik − Gik)

]
= O≺

(
�5)

,(66)

where the k = i term is controlled directly by Lemma 5.7. Applying this argument again with
Y = K ′(Xλ)G

2
ik , together with the bound m̌∗ − m∗ ≤ C/N ≺ �3, we may convert the term

m̌N − m̌∗:

E
[
K ′(Xλ)(m̌N − m̌∗ − mN + m∗)

1

N

∑

k

G2
ik

]
= O≺

(
�5)

.(67)

Finally, a Taylor expansion of K ′(x) around X yields

K ′(Xλ) = K ′(X) + (1 − λ)K ′′(X)(X̌−X) + O≺
(
�2)

,(68)

where we have used X̌−X≺ � by Lemma 5.7. Applying the third implication of Lemma 5.9
with Y = K ′′(X)(mN − m∗)G2

ik ≺ �3 for k �= i, we obtain

E
[
K ′′(X)(X̌−X)(mN − m∗)

1

N

∑

k

G2
ik

]
= O≺

(
�5)

.(69)

Then combining (66–69), we obtain E[Z3,12′ ] = E[X3,12′ ] + O≺(�5).
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The same argument holds for the other terms Y3,∗ and Z3,∗. Then taking the full expecta-
tion of (65),

E
[
K ′(Xλ)

Giα

tα

Ǧiα

ťα

]

= sαšαE
[
K ′(Xλ)

1

N

∑

k

GikǦik

]
− (

tαs2
αšα + ťα š2

αsα
)
E[X3,12′ +X3,3]

− 2
(
λtαs2

αšα + (1 − λ)ťαš2
αsα

)
E[X3,2̃2]

+ sαšα
(
t2
αs2

α + tαsαťαšα + ť2
αš2

α

)
E[X4,22′ + 2X4,13 + 4X4,4 +X4,4′ ]

+ sαšα
(
λtαsα + (1 − λ)ťαšα

)
(tαsα + ťα šα)E[2X4,12̃2 + 2X4,3′2̃ + 4X4,3̃2]

+ sαšα
(
λt2

αs2
α + (1 − λ)ť2

αš2
α

)
E[2X4,21̃2 + 2X4,2̃3′ + 4X4,2̃3]

+ 4sαšα
(
λtαsα + (1 − λ)ťαšα

)2E[X4,2̃2̃2] + O≺
(
�5)

.

(70)

Finally, we integrate (70) over λ ∈ [0,1], applying
∫

λ = ∫
(1 − λ) = 1/2 and

∫
λ2 =∫

2λ(1 − λ) = ∫
(1 − λ)2 = 1/3. Simplifying and identifying the terms X3, X4, X−

4 , Pα ,
Qα , and Rα concludes the proof of the lemma.

5.5. Proof of optical theorems. We discuss briefly the proof of Lemma 5.11. In the setting
K ′ ≡ 1, Lemma 5.11 corresponds to [19], Lemma B.1, upon taking the imaginary part.

The proof for general K is the same as that of [19], Lemma B.1, with additional terms
arising from the Taylor expansion of K ′ as in the proof of Lemma 5.10. The computation
may be broken down into the identities

N−1(
E

[
K ′(X)

] + 2m−1
∗ E

[
K ′(X)(mN − m∗)

])

= 2E[X3] − 2m−1
∗ (z − E∗)E[X2] − (

A4 − 2m−1
∗ − m−4

∗
)
E[X4] + O≺

(
�5)

,

N−1E
[
K ′(X)(mN − m∗)

] − 2E[X4,22′ +X4,13 +X4,4 +X4,12̃2] = O≺
(
�5)

,

E[2X4,13 + 3X4,4 +X4,4′ + 2X4,3̃2] = O≺
(
�5)

,

(z − E∗)E[X2] −E[X4,22′ + 4X4,4 +X4,4′ + 2X4,3′2̃] = O≺
(
�5)

,

E[X4,12̃2 + 2X4,3̃2 +X4,3′2̃ +X4,21̃2 + 2X4,2̃3 +X4,2̃3′ + 2X4,2̃2̃2] = O≺
(
�5)

,

where X2 = K ′(X)N−1 ∑
k G2

ik . For K ′ ≡ 1, the first four identities above reduce to [19],
eqs. (B.29), (B.33), (B.38), (B.51). The fifth identity is trivial for K ′ ≡ 1, as the left side is
0. It is analogous to [18], eq. (C.42), in the full computation for the deformed Wigner model,
and may be derived as an “optical theorem” from X3,2̃2.

Lemma 5.11 follows from substituting the second and fourth identities into the first, adding
4m−1

∗ times the third and fifth, and taking the imaginary part (noting K ′ is real-valued). This
concludes the proof of Theorem 5.1, and hence of Theorem 2.9.
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