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We study the sample covariance matrix for real-valued data with general
population covariance, as well as MANOVA-type covariance estimators in
variance components models under null hypotheses of global sphericity. In
the limit as matrix dimensions increase proportionally, the asymptotic spec-
tra of such estimators may have multiple disjoint intervals of support, pos-
sibly intersecting the negative half line. We show that the distribution of the
extremal eigenvalue at each regular edge of the support has a GOE Tracy—
Widom limit. Our proof extends a comparison argument of Ji Oon Lee and
Kevin Schnelli, replacing a continuous Green function flow by a discrete Lin-
deberg swapping scheme.

1. Introduction. Consider a matrix 3 = X'T X , where X € RM*N has random indepen-
dent entries, and 7 € R¥*M s deterministic. We study eigenvalue fluctuations at the edges
of the spectrum of i, when M =< N are both large.

At the largest edge and for 7 > 0, a substantial literature, reviewed below, shows that
the fluctuations of the largest eigenvalue of $ follow the Tracy—Widom distribution. In this
paper, we extend the validity of this Tracy—Widom limit to matrices 7" with both positive
and negative eigenvalues, and to all “regular” edges of the spectrum of . Our main result is
stated informally as follows:

THEOREM (Informal). Let Y = X'TX, where VNX € RM*N pgs independent entries
with mean 0, variance 1, and bounded higher moments, and T € RMxM ¢ diagonal with
bounded entries. Let 1 be the deterministic approximation for the spectrum of S and let E,
be any regular edge of the support of juo. Then for A(Z) the extremal eigenvalue of S near
E., and for a scale constant y > 0,

+(yNBAE) — E) 5 prw.

Here, L wrw denotes weak convergence to the GOE Tracy—Widom law [30], and the sign
=+ is chosen according to whether E is a left or right edge. A formal statement is provided
in Theorem 2.9, and we comment on the assumption of diagonal 7" in Remark 1.1 below.

Our study of this model is motivated by two applications in statistics and genetics. In the
first well-studied setting, yi,...,y, € R? are observations of p variables, or “traits”, in n
independent samples. When the traits are distributed with mean 0 and covariance ¥ € RP*P,
the sample covariance matrix ¥ = n~!'Y’Y provides an unbiased estimate of X, where ¥ €
R™*P is a row-wise stacking of yy, ..., y,. Assuming a representation ¥ = n'/2X’'%1/2  this
takes the form

(1) »=x2xx'vl/2

Received June 2020; revised June 2021.
MSC2020 subject classifications. 60B20.
Key words and phrases. Random matrix theory, linear mixed models, Tracy—Widom hypothesis tests.

2967



2968 Z.FAN AND I. M. JOHNSTONE

The nonzero eigenvalues of ¥ are the same as those of its “companion” matrix T=XTX.
Here T = ¥ is positive definite, and since yi,...,Yy, are independent and identically dis-
tributed, there is a single level of variation.

In the second setting, we consider models with multiple levels of variation which induce
dependence among the observations. For example, suppose the samples are divided into /
groups of size J =n/I, and modeled by a random effects linear model where the traits for
sample j of group i are given by

yi,j=0(,'—|-€i,j€]Rp.

Here, o;, €; ; are independent vectors capturing variation at the group and individual lev-
els, with mean O and respective covariances X1, Xo € RP*P. The traditional (MANOVA)
estimate of the variance component X is

(2) S =Y'BY,

where again ¥ € R"*? is a row-wise stacking of the observations y; ;. The matrix B is not
positive definite, having n — I negative eigenvalues: Loosely speaking, one subtracts a scaled
estimate of the second-level noise X, to estimate X1. Under a null hypothesis of “global
sphericity” where X1, ¥, o Id, and introducing a representation ¥ = U X detailed in Sec-
tion 2.4, we obtain £ = X'T X with T = U'BU having positive and negative eigenvalues in
nonvanishing proportions. [6], Boxes 1 and 2, has an example from quantitative genetics, and
our main result resolves an open question stated there about Tracy—Widom limits and scaling
constants in this model.

Returning to the general discussion, when M, N — oo proportionally, the empirical spec-
trum of 3, is well approximated by a deterministic law o [21, 26, 27, 31]. Under a “spheric-
ity” null hypothesis that 7 = Id, the law g is the Marcenko—Pastur distribution, and the
largest and smallest eigenvalues of by converge to the edges of the support of o [3, 13,
32] and have asymptotic GUE/GOE Tracy—Widom fluctuations [12, 15, 16, 24, 25, 29]. In
statistics and genetics, these results have enabled the application of Roy’s largest root test in
high-dimensional principal components analysis [16, 23].

In this paper, we study ¥ in the setting T # 1d. For T > 0, [1] showed that all eigenvalues
of & converge to the support of 1g, and [2, 17] proved exact separation of eigenvalues and
eigenvalue rigidity. For complex Gaussian X and 7 > 0, [7, 22] established GUE Tracy—
Widom fluctuations of the largest eigenvalue, under an edge regularity condition introduced
in [7]. For complex Gaussian X, this was extended to each regular edge of the support in
[14]. For real X and diagonal 7" > 0, [19] established GOE Tracy—Widom fluctuations of the
largest eigenvalue, using different techniques based on earlier work for the deformed Wigner
model in [18]. Universality results of [5, 17] lift these assumptions that X is Gaussian and/or
T is diagonal.

We build on the proof in [19] to extend the above picture in two directions: First, we
establish a GOE Tracy—Widom limit at each regular edge of the support for real X, including
the interior edges. This extension is new even in the Gaussian setting. Second, we extend
the notion of edge regularity and associated analysis to 7 having both positive and negative
eigenvalues. This is important for our study of random effects models with multiple levels of
variation, whose edge behavior is obtained here for the first time.

REMARK 1.1. We restrict attention as in [19] to diagonal 7. By rotational invariance,
this encompasses the case of nondiagonal 7 and real Gaussian X . Existing universality results
of [5, 17] imply that our conclusions hold also for nondiagonal 7" > 0. We believe that, with
minor modifications to the proof, the results of [17] may be further extended to T having
negative eigenvalues, but we will not pursue this extension here.
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1.1. Strategy of proof. Our proof generalizes the resolvent comparison argument of [19]
for the largest eigenvalue. Let E, denote an edge of the deterministic spectral support of X.
(We define this formally in Section 2.) We will consider

Z(L) x'7Lx

for a different matrix 72, and compare the eigenvalue behavior of 3 near E. with that of
$ @) pear an edge EiL).

In [19], E, is the rightmost edge of support. The comparison between 7 and T is
achieved by a continuous interpolation over [ € [0, L], where TO =T and each T® has
diagonal entries {1y : o = i

gonal entries {t,” :a =1, ..., M} given by

3) () = @)+ (1=,

(See [19], equation (6.1).) Taking L = oo, T is a multiple of the identity, and Tracy—
Widom fluctuations are known for . Along this interpolation, the edge Eil) evolves
continuously. Defining a smooth resolvent approximation

4) P[f(l) has no eigenvalues in Eil) + [s1, s21] & E[K(%(l) (s1,52))],

[19] establishes the bound

(5) le[ (XD (s1,52))]| < NTV/3FE

for a small constant ¢ > 0 and s, s» on the N—2/3

probability in (4) for/ =0 and [ = co

We extend this argument by showing that the continuous interpolation in (3) may be re-
placed by a discrete Lindeberg sequence 7@, 7D T for an integer L < O(N), swap-
ping one diagonal entry of T at a time. Letting E, be any regular edge of ., each matrix
2O = x’TOX will have a corresponding edge E such that

scale. This is applied to compare the

(6) |[ECTD — ED| < 01/N).

Each of these L discrete steps may be thought of as corresponding to a time interval Al =
O(N~!) in the continuous interpolation (3). We show that the above conditions are sufficient
to establish a discrete analogue of (5),

@ E[K (0D (s1.52)] — E[K (X (s1. 52))]| < N7+,

As L < O(N), summing over [ =0, ..., L — 1 establishes the desired comparison between
TO and 7).

In contrast to the continuous flow (3), our swapping sequence is well-defined even for
negative ta 0 . Furthermore, by swapping the diagonal entries of T from one support interval
to another without continuously evolving them between such intervals, we may preserve an
interior edge E even as the other intervals of support disappear.

Section 3 reviews prerequisite proof ingredients. Section 4 constructs the interpolating
sequence. Finally, Section 5 establishes (7). The main step of Section 5 is to generalize the
“decouphng lemma” of [19], Lemma 6.2, to a setting involving two different resolvents G
and G corresponding to 7 = T® and T=T10+D,
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2. Model and results.

2.1. Deterministic spectral law. Let T = diag(t1,...,ty) € RMXM pe g deterministic
diagonal matrix, whose diagonal values 71, ..., )y may be positive, negative, or zero. Let
X € RM*N be a random matrix with independent entries of mean 0 and variance 1/N. We
study the matrix

S=XTX

in the limit as N, M — oo proportionally. In this limit, the empirical spectrum of T is well-
approximated by a deterministic law j9. We review in this section the definition of uo and
its relevant properties.

When T =1d, po is the Marcenko—Pastur law [21]. More generally, the law o may be
defined by a fixed-point equation in its Stieltjes transform: For each z € C™, there is a unique
value m(z) € CT which satisfies

M
®) T mo(z) XZ: 1+tamo(z)

This is oftentimes called the Marcenko—Pastur equation, and it defines implicitly the Stieltjes
transform mg : C™ — CT of a law po on R [21, 26, 27]. This law o admits a continuous
density fy at each x € R, given by

©) fo) = lim —Tmmo(o),

where

(10) *:{R %hmmd)>N,
R\ {0} if rank(T) < N.

For x # 0, this is shown in [28]; we extend this to x = 0 when rank(7') > N in Appendix A
[10].

This law po may have multiple disjoint intervals of support, and two such cases are de-
picted in Figures 1 and 2 of Appendix A. We denote the support of wg by supp(up), and we
call E, € R aright (or left) edge if it is a right (or left) endpoint of one of the disjoint intervals
constituting supp(up). When 0 is a point mass of 1o, we do not consider it an edge.

The support intervals and edge locations of g are described in a simple way by (8), as
explained in [17, 28]: Define P = {0} U {—toj1 : tq # 0}, and consider R = RU{oo}. Consider
the formal inverse of mq(z),

1
(11) 20(m) =——+ Z

l—i—ta

as a real-valued function on R \ P with the convention zg(oc0) = 0. Two examples are also
plotted in Figures 1 and 2 of Appendix A. Then the local extrema of zg are in 1-to-1 cor-
respondence with edges of g, with the scale of square-root decay at each edge inversely
related to the curvature of z.

IWe define o as an N-dependent law depending directly on M /N and T, rather than assuming that M /N and
the spectrum of 7' converge to certain limiting quantities.
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PROPOSITION 2.1. Letmy,...,m, € R\ P denote the local minima and local maxima®

of zo, ordered such that 0 > m|; > --- > my > —00 and 00 > My > -+ > my > 0. Let
Ej=zo(mj) foreach j=1,...,n. Then:

(a) o has exactly n/2 support intervals and n edges, which are given by E1, ..., E,.

(b) E; isaright edgeif m; is a local minimum, and a left edge if m j is a local maximum.
(c) The edges are ordered as E1 > --- > Ey > Ey41 > --- > E,,.

(d) For each Ej where m; # oo, we have E; € R, and zj(m;) # 0. Defining y; =

V2/1zg(m )|, the density of no satisfies fo(x) ~ (y;j/7)\/IE; — x| as x — E; with x €
supp(Lo).

DEFINITION 2.2. For an edge E, of ug, the local minimum/maximum m, of zo such
that zo(my) = Ex is its m-value. The edge is soft if m,. # oo and hard if m, = oo. For a soft

edge, y = /2/|zg(my)| is its associated scale.

The statements of Proposition 2.1 are known for 7 > 0, and we describe the extension
to general 7' in Appendix A. When 7" > 0, an edge at 0 is usually called hard and all other
edges soft. Definition 2.2 extends this to general 7: A hard edge is always 0 and can occur
when rank(7) = N. If T has negative eigenvalues, then a soft edge may also be 0 when
rank(7) > N. We thus distinguish hard edges by the m-value rather than the edge location.

2.2. Edge regularity and extremal eigenvalues. We state our assumptions on 7 and X.
We also introduce the notion of a regular edge, which is similar to the definitions of [7, 14,
17] for T = 0.

ASSUMPTION 2.3. T =diag(ty,...,ty) € RM*M where |t,| < C for some constant
C>0andeacha=1,..., M.

ASSUMPTION 2.4. X € RM*N js random with independent entries. For all indices
(a,7),all £ > 1, and some constants C, C{, Ca, ... >0,

C'<M/N<C, E[X4,]=0, E[X2]=1/N, E[|vVNXul‘]<Ce.

DEFINITION 2.5. Let E, € R be a soft edge of o with m-value m, and scale y. Then
E, is regular if there is a constant T > 0 such that |m,| < 1 y <t~ ! and |m, + t(;1| > T
forall @ € {1, ..., M} such that 7, # 0.

A smaller constant 7 indicates a weaker assumption. We will say E, is t-regular if we
wish to emphasize the role of . All subsequent constants may implicitly depend on .

The existence of any regular edge will imply that the average value of |z,]| is of constant
order; see Proposition 3.1. An interpretation of regularity is the following, whose proof we
defer to Appendix B.

PROPOSITION 2.6.  Suppose Assumption 2.3 holds and the edge E. is regular. Then there
exist constants C, ¢, § > 0 (independent of N) such that:

(a) (Separation) The interval (E, — 8, E« + 8) belongs to R, and contains no edge other
than E...

ZmeeR \ P is alocal minimum of zg if zg(m) > zg(my) for all m in a sufficiently small neighborhood of m.,

with the convention that m 4 = 0o is a local minimum if zq is positive over (C, o) U (—oo, —C) for some C > 0.
Local maxima are defined similarly.
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(b) (Square-root decay) For all x € supp(uo) N (Ex — 8, Ex 4 8), the density fo of o
satisfies c/|Ex — x| < fo(x) < CJ/|E« — x]|.

We will study the extremal eigenvalue of T at each regular edge. This is well-defined
by the following results establishing closeness of eigenvalues of T to the support of ug.
Such results were shown in [1, 17] for T > 0, and we discuss the extension to general 7 in
Appendix C.

THEOREM 2.7 (No eigenvalues outside support). Suppose Assumptions 2.3 and 2.4 hold.
Fix any constants 5, D > 0. There exists a constant No = No(8, D) such that for all N > Ny,
with probability at least 1 — NP all eigenvalues of 3 are within distance 8 of supp(io).

THEOREM 2.8 (N ~2/3 concentration). Suppose Assumptions 2.3 and 2.4 hold, and E,
is a regular right edge. Then there exists a constant § > 0 such that for any ¢, D > 0, some
No = No(e, D), and all N > Ny,

P[no eigenvalue of T belongs to [E«+ N~23te p o4 8]]>1- NP,
The analogous statement holds if E is a regular left edge, with no eigenvalue of by belonging
to [Ex — 8, Ex — N72/3%¢],

2.3. Tracy—Widom fluctuations. The following is our main result.

THEOREM2.9. Let S =X'TX. Suppose that Assumptions 2.3 and 2.4 hold for T and X,
and that E is a T-regular edge of the law [wg. Let E, have scale y as defined in Definition 2.2.
Then there exists a T-dependent constant 6 > 0 such that as N, M — oo:

(a) For E, aright edge and Anax the largest eigenvalue of Y in E.+[-6,4],

L
(¥ N)* (Amax — Ex) = urw.

(b) For E, a left edge and Apin the smallest eigenvalue ofi in E,+[-6,6],

L
(Y N)*3(Ey — hmin) = trw.

Here, urw is the GOE Tracy—Widom law. The notation X indicates convergence in law.
As E, is N-dependent, let us clarify that this means

IP[(y N)*3 Oemax — Ex) < x] — urw((—00, x])| < o(1)

for any fixed x € R, where E, is any (deterministic) choice of t-regular edge, and o(1)
denotes a term vanishing as N, M — oo and depending only on x, 7, and the constants in
Assumptions 2.3 and 2.4. Note that Assumption 2.4 requires M /N to be bounded, and one
may accordingly consider M = M (N) where N is the fundamental large parameter.

When T > 0, the above result holds also for the sample covariance matrix with the same
values of E, and y, since this has the same eigenvalues as )y except for a set of [N — M|
Zer0S.

COROLLARY 2.10. Under the conditions 0f~The0rem 2.9, suppose T > 0, and let > =
T'2XX'T/2. Then Theorem 2.9 holds also for X.
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When T =1d, the equation 0 = z;,(im,) may be solved explicitly to yield

my=—vN/(WNEvVM), E.,=K/'N+tvM)?/N,

1/3

_2/3:|\/N:|I«/M|| 1 n 1
v N TN

for the upper and lower edges. These centering and scaling constants are the same as those of
[12, 24, 29] and differ from those of [16, 20] in small O (1) adjustments to N and M. These
adjustments do not affect the validity of Theorem 2.9, although the proper adjustments are
shown in [20] to lead to an improved second-order rate of convergence.

2.4. Application to linear mixed models. Consider Y € R"*? representing p traits in n
samples, modeled by a Gaussian random effects linear model

(12) Y=Uia;+ -+ Ugok.

Each random effect matrix , € R™"*P has independent rows with distribution A/ (0, X,).
The deterministic incidence matrix U, € R"*™r determines how the random effect con-
tributes to the observations Y. For simplicity, we omit here possible additional fixed effects,
and we present an example with a fixed mean effect in Example E.3 of Appendix E.

In many examples, a canonical unbiased MANOVA estimator exists for each covari-
ance ¥, and takes the form (2), where B = B, € R"*" is a symmetric matrix that is con-

structed based on Uy, ..., Ug. Spectral properties of MANOVA estimators in the regime
n,p,mi,...,mp — oo were studied in [9, 11], which contain additional discussion and ex-
amples.

Theorem 2.9 provides the basis for an asymptotic test of the global sphericity null hypoth-
esis

(13) HO:Z,:orzld foreveryr=1,...,k

in this model, based on outlier eigenvalues of $. While this test may be performed using any
matrix B in (2), to yield power against nonisotropic alternatives for a particular covariance
X, we suggest choosing B = B, such that ¥ is the MANOVA estimator for Y. Under Hy,
let us set N = p and write o = VNo, X, where X, € R™ >N hag independent A/ (0, 1/N)
entries. Defining M =m | + - -+ +my, Frs = No,o, U/ BUg € R™ s and

X1 Fip - Fik
(14) X=|: | eRM*VN, F=|: .. : |eRMM
Xk Frioo - Frk
the MANOVA estimator (2) takes the form
k

S=Y'BY= ) «UBUgq=XFX.

r,s=1

Rotational invariance of X implies S L X'TX where T = diag(t, ..., ty) is the diagonal
matrix of eigenvalues of F. Under mild conditions for the model, as discussed in [9, 11],
Assumptions 2.3 and 2.4 hold for s

In general, depending on the model design, the bulk eigenvalue distribution of £ may have
multiple disjoint intervals of support. [11] studies the spectral behavior in spiked alternatives
to the null hypothesis (13), showing that outlier eigenvalues may appear in any interval in the
complement of this support. By Theorem 2.9, the deviation of such an outlier to the closest
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bulk edge may be compared to the Tracy—Widom null distribution as an assessment of its
statistical significance against the null hypothesis (13).

We focus on the case of the largest eigenvalue of i, that is, testing the significance of an
outlier above the largest bulk edge. In detail, such a test may be performed as follows:

1. Construct the above matrix F. Let t1, ..., t) be its eigenvalues.
2. Plot the function zg(m) from (11) over m € R, and locate the value m, closest to O such
that z;(m) = 0 and m,, < 0.

3. Compute the center and scale E, = zo(my) and y = 2/zg(m*).
4. Compare (y N )23 (Amax — Ex) to the GOE Tracy—Widom law prw.

Asymptotic validity of this test requires regularity of the rightmost edge of 1o. We provide
a sufficient condition for this in Proposition E.1, which encompasses many balanced classi-
fication designs. More generally, edge regularity is quantified by the separation between m .,
and the poles of zo(m), and by the curvature of zo(m) at m,. One may visually inspect the
plot of zo(m) for a qualitative diagnostic check of this assumption.

Constructing F' and computing zo(m) requires knowledge of 012, e akz . If any 0,2 is un-
known, it may be replaced by the 1/n-consistent estimate

~2 —1 S
or=p Trk,,

where 3, is an unbiased MANOVA estimator for %,. We verify this in Appendix E, where
we also discuss the concrete example of the balanced one-way design, and provide numerical
simulation results to assess approximation accuracy in finite samples.

3. Preliminaries and tools. The remainder of this paper is devoted to the proof of The-
orem 2.9. The proof can be separated conceptually into a “deterministic component”, which
constructs the interpolation from 7@ = T to TV to satisfy certain deterministic properties,
and a “stochastic component”, which then uses resolvent-based techniques to obtain the de-
sired estimates for this interpolation. The former component is more model-specific, but the
latter can potentially be applied to other models where interior edges arise.

We collect in this section some tools for the proof. The deterministic interpolation argu-
ments are then presented in Section 4, and the stochastic estimates in Section 5.

3.1. Notation. We denote Zyy ={1,..., M}, Iy ={1,...,N}, and Z =2y UZy con-
sidering Zy and Zy; as disjoint. We index rows and columns of CN+M)*x(N+M) tyy 7 and
consistently use lower-case Roman letters i, j, etc. for indices in Zy, Greek letters «, 8, etc.
for indices in Z);, and upper-case Roman letters A, B, etc. for general indices in Z.

We typically write z = E + in where E = Rez and n = Imz. CT and C+ denote the open
and closed upper-half complex planes. X’ denotes the transpose of a matrix X. ||v| denotes
the Euclidean norm for vectors, and || X || = supy.y;=; | X V|| the operator norm for matrices.
C, ¢ > 0 denote constants changing from instance to instance and may depend on 7 in the
context of a regular edge. ay < by means cby <ay < Cay.

3.2. Edge regularity. The following are consequences of edge regularity. Similar proper-
ties were established for 7 > 0 in [4, 17], and we defer proofs for general 7T to Appendix B.

PROPOSITION 3.1. Suppose Assumption 2.3 holds, and E is a regular edge with m-
value m,. and scale y. Then there exist constants C, ¢ > 0 such that forallao =1,..., M,

c<|my| <C, c<y<C, |E| < C, |1+ tymy| > c.
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Furthermore, if any regular edge E exists, then T satisfies
(15) Hae{l,....M}: |ty] > c}| >cM

for a constant ¢ > 0, and if T > 0, then also E, > ¢ > 0.

PROPOSITION 3.2. Suppose Assumption 2.3 holds and E. is a regular edge with m-
value m,. Then there exist constants c, 8 > 0 such that for allm € (m, — §, m, +6), if E. is
a right edge then z;(m) > ¢, and if Ey is a left edge then z;(m) < —c.

PROPOSITION 3.3.  Suppose Assumption 2.3 holds and E is a regular edge. Then there
exist constants C, ¢, § > 0 such that the following hold: Define
Dyp={zeC":Reze (Es—3,Es+3), Imze (0,1]}.

Then forall zeDyand o € {1, ..., M},

c<‘m0(z)]<C, c<]l+tam0(z)]<C.
Furthermore, for all 7 € Dy, denoting z=FE +inand k = |E — E,|,

ek + 1= |mo(2) —my| < Ck+n,  cf(z) <Immo(z) < Cf(2)

where

VK +mn if E €supp(io),

fl)= KLH if E ¢ supp(i0).

3.3. ResolvAent bounds and identities. For z € CT, denote the resolvent and Stieltjes
transform of X by

(16) Gy(@) =(2 —zId)~ L e CN*N, my(z)=N"'TrGy(2).

These satisfy the basic properties

(I7) imn(2)| < 1/n, 1Gij ()| < 1/n,
(18) my @) —my (@) <z =2/ |Gy @ = Gy <[z = 2|/,
As in [17, 19], define the linearized resolvent G(z) by
/
H() = ( X _)T(—l) e CNHMXHD Gy =H@) ™.

The Schur-complement formula yields the alternative form

_( Gn(2) GN@X'T
(9) G@) = (TXGN(Z) TXGn@)X'T — T) ’

which is understood as the definition of G(z) when T is not invertible. We will omit the
argument z in mg, my, G, G when the meaning is clear.

For any A € Z, define H (4) as the submatrix of H with row and column A removed, and
define G = (H®)~!, When T is not invertible, G4 is defined by the alternative form
analogous to (19). We index G by 7 \ {A}.

Note that G and G are symmetric, in the sense G’ = G and (GW) = GY with-
out complex conjugation. The entries of G and G4 are related by the following Schur-
complement identities from [17], Lemma 4.4.
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LEMMA 3.4 (Resolvent identities). Fix z € CT.

(a) Foranyi € Iy and a € Ty,

1 t
Gij=— @ : Goo == —® '
zZ+ Za,ﬁeIM Gaﬁxaixﬂi 1 + 1ty Zi,jeIN Gij X(xiXocj
(b) Foranyi # jelIyando # B €Ly,
Gij =—Gj; Z G/(gi}Xﬂi» Gop=—Guqu Z G%)Xaj-
BeTy JEIN

Foranya e Ty andi € Iy,
Gio =—Gj; Z Gg;Xﬁi =—Guqy GE?)XOU.'
BTy JEIN
(c) Forany A,B,CeZ with A% C and B #C,

_ GacGces

Cc
Gl =Gan Goc

3.4. Stochastic domination. For a nonnegative scalar W (either random or deterministic),
we write

E<V¥ and £=04(¥)
if, for any constants ¢, D > 0 and all N > Ny(e, D),
(20) P[lE] > N*W] < NP,

Here, No(e, D) may depend on ¢, D, and quantities which are explicitly constant in the
context of the statement.

Several known elementary properties of stochastic domination pertaining to union bounds
and expectations are reviewed in Appendix D.

3.5. Local law. We will require a local law for entries of G(z), when z € C* close to
a regular edge E. This was established in [17] for T > 0, and we discuss the extension to
general T in Appendix C.

THEOREM 3.5 (Entrywise local law at regular edges). Suppose Assumptions 2.3 and 2.4
hold, and E is a t-regular edge. Then for a T-dependent constant § > 0, the following holds:
Fix any constant a > 0 and define

(21) D={zecC":Reze(E.—3, E,+8),Imze [N 1]}.
For AeZ,denotetps=1ifAc€lyandty =ty if A=a €Ly Set

mo(z)1d 0
22 I — B C(N+M)><(N+M)'
(22) 2) ( 0 _Tdsmo@T) 1> c
Then forall z=E +ineDand A, B €Z,
(23) (Gap(z) —ap(2))/(tatp) < \/(Immo(Z))/(Nn) + 1/(Nn),
and also

mp (z) —mo(z) <1/(Nn).
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COROLLARY 3.6. Under the assumptions of Theorem 3.5, for any ¢, D > 0 and all N >
No(e, D), with probability at least | — N~P,

|G ap(z) — Map(2)|/|tatg] < Ng(\/lmmo(Z)/(Nﬁ) +1/(Nn))

holds simultaneously for every z e Dand A, B € 1.

Here, No(e, D) may depend on the constant a defining D. It is verified from (19) that the
quantity on the left of (23) is alternatively written as

GAB—HAB_<GN—mOId GyX' )
B

(24) XGy XGyX' —mo(dd+moT) ™!

IAlB

This is understood as its definition when either 4 and/or 7 is O.

3.6. Resolvent approximation. Fix a regular edge E,. For 51,52 € R and n > 0, define

Ex+s2
(25) X(s1,82,m) =N Immy(y +in)dy.
Ey+s1

For n much smaller than N ~2/3 and sy, 5o on the N—2/3 scale, we expect
#(E* +Sl, E* + SZ) ~ n_lx(sla 52, 77),

where the left side denotes the number of eigenvalues of 3 in this interval. The following
is a version of this approximation, similar to [8], Corollary 6.2. We provide a self-contained
proof in Appendix D.

LEMMA 3.7. Suppose Assumptions 2.3 and 2.4 hold, and E is a regular right edge. Let
K : R — [0, 1] be such that K (x) =1 for all x < 1/3 and K (x) =0 for all x > 2/3. Then
for sufficiently small constants §, & > 0:

Let Amax be the maximum eigenvalue of S in (Ex — 68, Ex+6). Set s = N—2/3+e | =
N~=2/3¢ and n= N—2/3-% For any D > 0, all N > Ny(e, D), and all s € [—s4, s+],

E[K(x ' %(s — 1,50, m)] = N2 < Plhmax < Eyx + 5]

< ]E[K(n_l.’{(s +1,54,m)]+ NP,

4. The interpolating sequence. In this section, we construct the interpolating sequence
TO ..., T described in the Introduction. We consider only the case of a right edge; this
is without loss of generality, as the edge can have arbitrary sign and we may take the reflec-
tion T + —T. For each pair T = T® and T=TU*D the following definition captures the
relevant property that will be needed in the subsequent computation.

DEFINITION 4.1. Let T,T € RM*M be two diagonal matrices satisfying Assump-
tion 2.3. Let E, be a right edge of the law wo defined by 7', and let E, be a right edge
of f1g defined by T. (T, Ey) and (T E*) are swappable if, for a constant ¢ > 0, both of the
following hold.

e Letting ,, 7, be the diagonal entries of T, T, we have Y, |fq — iy| < .
e The m-values m, m, of E,, E, satisfy |m, —my| < ¢/N.



2978 Z.FAN AND I. M. JOHNSTONE

We say that (T, E,) and (T, E,) are ¢-swappable if we wish to emphasize the role of ¢.
All subsequent constants may implicitly depend on ¢.

One method to construct a swappable pair T, T is to ensure |ty — 14| < ¢/ M for every
a=1,..., M, and such a condition would hold for each pair 7O, 7U+D of a suitable dis-
cretization of the continuous flow in [19]. However, to study interior edges of the spectrum,
we will instead consider swappable pairs of a “Lindeberg” form where there is an O(1) dif-
ference between f,, and #, for a single index «.

We first establish some basic deterministic properties of a swappable pair, including close-
ness of the edges E, E* as claimed in (6).

LEMMA 4.2. Suppose T, T are diagonal matrices satisfying Assumption 2.3, Ex, E,
are regular right edges, and (T, E.) and (T E*) are swappable Let my, y and m*, y be
the m-values and scales of E, E* Denote sq = (1 + tymy) ™ and 54 = (1 + iynit)~ ). Then
there exists a constant C > 0 such that all of the following hold:

(a) Forall integers i, j > 0 satisfying i + j <4,

i i dyYjvi a i+j i+j| <
‘N;—:tasata 5 Nogta sit/l < C/N.
(b) (Closeness of edge location) |E, — E*l <C/N and
y 1 4 .
(26) (E* - E*) - N Zl(ta - ta)sa:g/oz S C/N2
o=

(¢c) (Closeness of scale) |y —y| <C/N.

PROOF. By Proposition 3.1, |ty], S|, ¥ < C, ¢ < |my| < C and similarly for #, 54, 114,
y. From the definitions of s, and S, we verify

(27) TaSo — tvozgot = (ly — tva)sa:g'a + (my — m*)tasoe;aga-
Then, denoting A; j = N -y, tlsL 45y, swappability implies

B L Piyj—lyj—1(y ¥ _ -
o =
|Alj Al+1 Jj— 1] < Z|t Sola  Su ||[0ls()l ToSal C/N

oz 1

Iteratively applying this yields (a). For (b), note by (27) that

v 1 1
Ei—Ey=——+——+— Z(tasa_tasa)
MM M a 1
1 ¥ .
= (my — nv’l*)<m*m* - Al,l) + N X::(ta - ta)saga-
Recall 0 = zo (my) = — A2 . Then part (b) follows from the definition of swappability,
together with |A] | — m* | =|A11 — A20| <C/N and |m* —my m_]l < C/N. For (c),
we have y =2 = z[{(m,)/2 = —m;> + A3z. Then (c) follows from ly~ -2 _ Y <|m:3 -

M3 + Az — Aps| <C/N. O

We now prove the existence of an interpolating sequence. Note that to ensure the final edge

,‘EL) is not a hard edge at 0, we allow the final matrix T D) to have two distinct values {0, ¢}.
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LEMMA 4.3.  Suppose T is diagonal and satisfies Assumption 2.3, and E is a t-regular
right edge with scale y = 1. Then there exist T-dependent constants C', t’, ¢ > 0, a sequence
of diagonal matrices TO, TV .. TW® j RM*M for L <2M, and a sequence of right
edges E (0) (1) cee >,(<L) of the correspondlng laws v @ defined by TV, such that:

TO =T and EY = E,.

T has at most two distinct diagonal entries 0 and t, for some t € R.

Each T satisfies Assumption 2.3 with constant C'.

Each E{ is v/ -regular.

(T(l), Eil)) and (T(H'l), E,(le)) are ¢-swappable for eachl =0, ..., L — 1.
(Scaling) Each Eil) has associated scale y® = 1.

A N

We first ignore the scaling property 6, and construct 7O ... TW® and E,(ko), e iL)
satisfying properties 1-5. We will use a Lindeberg swapping construction, where each 7 ¢+D
differs from 7 in only one dlagonal entry. It is useful to write z;, and z{j as

2 2

1
/ 1
Zo(m)____ z: Zo(m):__+_ § —— >
a,¢0(m+z (m + 1 H2 md N = (m+1 ')

and to think about swapping entries of 7' as swapping or removing poles of z;, and z;. In
particular, for each fixed m € R, we can easily deduce from the above whether a given swap
increases or decreases 26 (m) and zg (m).

Upon defining a swap T — T, the identification of the new right edge E, for T uses the
following continuity lemma.

LEMMA 4.4. Suppose T is a diagonal matrix satisfying Assumption 2.3, and E, is a t-
regular right edge with m-value m,. Let T be a matrix that replaces a single diagonal entry
ty of T by a value t,, such that |iy| < ||T| and either t, =0 or |my + tva_ll > 1. Let zg, 2o
denote the function (11) defined by T, T. Then there exist T-dependent constants Ng, ¢ > 0
such that whenever N > Ny:

e T has a right edge E, with m-value iy satisfying |m, — nis| < ¢/N.
o The interval between m, and m, does not contain any pole of zq or 2.
o sign(m, — ) = sign(Zy(my)).

(We define sign(x) =1ifx >0, —1ifx <0,and 0 if x =0.)

PROOF. By Proposition 3.1, |m| > v for a constant v. Take § < min(t/2, v/2). Then
the given conditions for 7, imply that (m, — 8, m, + &) does not contain any pole of zq or Z,
and

|zo(m) — Zy(m)| < C/N

for some C > 0 and all m € (my — §, m, + §). For sufficiently small §, Proposition 3.2 also
ensures z(m) > ¢ forall m € (my — 8, my +8). If Z;(my) < 0 = z;,(m), this implies Zo must
have a local minimum in (m,, m, + C/N), for a constant C > 0 and all N > Ny. Similarly, if
Z(my) > 0, then Zo has a local minimum in (m, — C/N, my), and if Z,(m,) =0, then Z has
a local minimum at m.. The result follows from Proposition 2.1 upon setting E. = Zo(iy).

]

The basic idea for proving Lemma 4.3 is to take a Lindeberg sequence 7@, ..., T") and
apply the above lemma for each swap. We cannot do this naively for any Lindeberg sequence,
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because in general if Ei is 7;-regular, then the above lemma only guarantees that E D
7/4+1-regular for 7,41 = 1y — C/N and a 1;-dependent constant C > 0. Thus edge regularlty,
as well as the edge itself, may vanish after O (N) swaps.

To circumvent this, we consider a specific construction of the Lindeberg sequence, apply
Lemma 4.4 along this sequence to identify an edge E, for each successwe T, and use a
separate argument to show that E, must be '-regular for a fixed constant 7/ > 0. Hence we
may continue to apply Lemma 4.4 along the whole sequence.

We consider separately the cases m, < 0 and m, > 0.

LEMMA 4.5. Suppose (the right edge) E. has m-value m, < 0. Then for some t-
dependent constant Ny, whenever N > Ny, Lemma 4.3 holds without the scaling condition,

property 6.

PROOF. We construct a Lindeberg sequence that first reflects about m, each pole of zg
to the right of m., and then replaces each pole by the one closest to m,.

Suppose, first, that there are K| nonzero diagonal entries f, of 7" (positive or negative)
where —ta_l > m,. Consider a sequence of matrices 7O 7O TED where TO =T,
and each T+ replaces one such diagonal entry , of T®) by the value 7, such that —i; !
my and |my 4 L, '| = |my +1;'|. For each such swap T — T, we verify |iy| < |ta]| < | T,
Zo(my) = zo5(my) =0, and Zj(my) > z;(my) > 0. Thus we may take 7, = m, in Lemma 4.4,
and the new edge E* = Zo(m,) remains t-regular for the same constant t.

All diagonal entries of T are now nonnegative. Let 1 = || 7KV be the maximal such
entry. By the above construction, —t~!' < m, < 0. Since E, (KD g t-regular, (15) implies
t > ¢ for a constant ¢ > 0. Let K, be the number of positive diagonal entries of 7 K1) strictly
less than 7, and consider a sequence 71D 7K1+K2) where each T**V replaces one
such diagonal entry in T® by 7. Applying Lemma 4.4 to each such swap T — T, we verify
zo(m*) < zo(my) =0,80my < my < 0. Then |my| < |my| and ming |m + t ~1 > ming, |my+
ta_] |. Also m, —|—tva_1 > 0 for all 7, # 0, so Zo(my) > 2/m > 2¢3. This verifies E, = 30(iy)
is 7/-regular for a fixed constant 7’ > 0. (We may take any t’ < min(z, 3/%))

The total number of swaps L = K1 + K> is at most 2M, and all diagonal entries of 7@
belong to {0, #}. This concludes the proof, with property 5 verified by Lemma 4.4. [

LEMMA 4.6. Lemma 4.5 holds also when E, has m-value m, > 0.

PROOF. Proposition 2.1 implies m, is a local minimum of z¢p. The interval (0, m,) must
contain a pole of zp—otherwise, by the boundary condition of zq at 0, there would exist a
local maximum m of zg in (0, m,) satisfying zo(m) > zo(m,), which would contradict the
edge ordering in Proposition 2.1(c). Let —¢~! be the pole in (0, m) closest to m. Note that
t <0 and |t| > |m«|”' > v. We construct a Lindeberg sequence that first replaces a small
but constant fraction of entries of 7' by ¢, then replaces all nonzero ¢, > ¢ by 0, and finally
replaces all 7, <t by 0.

First, fix a small constant ¢y > 0, let K1 = [coM |, and consider a sequence of matrices
TO 7O TED where T© = T and each T*+D replaces a different (arbitrary) diag-
onal entry of T™® by ¢. For cq sufficiently small, we claim that we may apply Lemma 4.4
to identify an edge E,,Ek) for each k =1, ..., K1, such that each Eik) is t/2-regular. Indeed,
let k € {0, ..., K1 — 1} and suppose inductively that we have identified this edge Eij ) for

Jj=0,...,k.Letmj, y; be the m-value and scale for Eij). Then Lemmas 4.4 and 4.2 ensure
Imj —mj;_1| <C/N and |y; — yj—1| < C/N for a T-dependent constant C > 0. This yields

Imy — mo| < co(M/N)C and |yx — yo| < co(M/N)C. As the original edge E is 7-regular,
Vk — ¥ g g g
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for sufficiently small cg this implies Efkk) is in fact 3t /4-regular. Applying Lemma 4.4, we
may identify an edge EikH) for T*+D with m-value my| satisfying |mg41 — my| < ¢/N
when N > Ng. Thus Eikﬂ) is 7/2-regular, completing the induction.

T XD now has at least coM diagonal entries equal to ¢. By the condition in Lemma 4.4
that the swap m, — m, does not cross any pole of zg or Zg, we have that —t~1 is still the

pole in (O, mka‘)) closest to miK'). Let K> be the number of nonzero diagonal entries 7, of
T KV (positive or negative) such that #, > r. Consider a sequence 7Ki+D 7K +K2)

where each T*+1 replaces one such entry in T®) by 0. Note that each swap T — T of this
sequence satisfies Z,(m) > z((m) at every value m. Then in particular, Z((my) > z;(my) =0,
so Lemma 4.4 yields a new edge E* for which —~! < m, < m,. For every o such that
—tva_l > —t~1, we have —tva_l > m, because —¢ ! is the closest pole to the left of m,. Then,
since My < my, this shows mina:_;;1>_t,1 |y + fa—l| > mina:_ta_1>_t,1 |my + ta—l| > /2.
The conditions 1, > |t|~! > ¢ and

0% iy < L _ oM 1
= m - —
OV =52 TN (i +11)2

ensure that n1, + ¢~ > v for a constant v > 0, and hence min,, [y + tva_ll > min(v, t/2) for
the minimum over all «. To bound Zj(#2,), let us introduce the function

P t2m?
T == 2 T

and define analogously f(m) for T. We have f'(m) <0 for all m, so f(my) > f(my). Fur-
thermore, if ¢, was the value which was replaced by 0, then 1 +t,m, > 0. (This is obvious for
positive #,; for negative #, it follows from —t <m, <my < —ta_l, as —t 1 is the closest
pole to the left of m,.) Then f(rh*) > f(my) > f(my). Applying the condition 0 = z;,(m.),
we verify f(m,) =m?z{(m.). Then

4

o o m

20 (i) > Fh—ZZS(m*) > 70 (my).
*

This shows that E, = Zo(i,) is ©/ -regular for a fixed constant 7’ > 0. (We may take 7/ =
min(v, t/2) as above.)

Finally, 7§17X2) now has at least coM diagonal entries equal to ¢, and all nonzero diago-
nal entries #,, satisfy 7, <t < 0. Let K3 be the number of such entries and consider a sequence
TKitkath) 7 (Ki+KatKs) where each T*+D replaces one such entry of T® by 0.
Again, each such swap satisfies Z(,(m) > z(m,) =0, so by Lemma 4.4, —t71 < iy < my.
As in the K, swaps above, this implies ming, |7, + tva_ 1| > ¢ for a constant ¢ > 0. The condi-
tion 7, < t for all nonzero 7, implies that 1 + 7,71, < O for all nonzero 7, so we have

. 2c0M  t?m3
fmy) > — ~— >
N (14,3

Y4y

for a constant ¢ > 0, by Proposition 3.1. Applying again f (my) = myZy(my), this yields
Zo(my) >’ >0, 50 E, is t’-regular for a constant t/ > 0.

The total number of swaps L = K| + K, + K3 is at most 2M . All diagonal entries of 7@
belong to {0, ¢}, so this concludes the proof. []

We now establish Lemma 4.3 for all properties 1-6 by rescaling.



2982 Z.FAN AND I. M. JOHNSTONE

PROOF OF LEMMA 4.3. By Lemmas 4.5 and 4.6, there exist sequences TO . 7L
and E io), e iL) satisfying conditions 1-5. By Lemma 4.2, the associated scales yy, ..., yL
satisfy |yy+1 — y1| < C/N for a ¢, t/-dependent constant C > 0 and each/ =0, ..., L — 1.

We verify from the definitions of E, m,, y that under the rescaling T + ¢T for any ¢ > 0,
we have

E.— cE,, My — c_lm*, Yy = c_3/2y.

Consider then the matrices 7! = ylz/ 370 and edges E~ff) E; D We check properties

1-6 for T® and Eil): Properties 1, 2, and 6 are obvious. Slnce TO ... TW are all 7/-
regular, Proposition 3.1 implies ¢ < y; < C for constants C, ¢ > 0 and every /. Then it is easy
to check that properties 3, 4, and 5 also hold with adjusted constants. [

2/3

Finally, we record here a deterministic estimate for any swappable pair (7, E,) and
(T, E*) that satisfies also the scaling condition y = y = 1. In the proof of [19] for a contin-
uous interpolation T, denoting 7, and 1, the derivatives with respect to [, the differential
analogue of the following lemma is the pair of identities

o o
where Ay = A0 = N1 Yo t;'si.

LEMMA 4.7. Suppose T, T satisfy Assumption 2.3, E,, E, are associated regular right
edges with scales y =y = 1, and (T, Ey) and (T, E) are swappable. Define s4 = (1 +
tam) ! S = (14 i)™, As =N~V T, 1dsd,

(28) Po = Sozgot (ta S + i/Ol'S:O{)a Q= Saga (l‘(fsg + tasa;aga + Eoegozz)

Then for some constant C > 0, both of the following hold:

M

(29) ‘ZN(m* — My) — Z(toz - tvoz)Poz <C/N,
a=1

(30) ‘3N(m* - m*)(A4 - Z(toe ;(X)Q(X = C/N

PROOF. For (29), we have from 0 = z6(m*) applied to T and T

_ . 1
(€29) m*z_m*zzﬁztgsg_ig
o
The left side may be written as
(32)  m;? =i = (M — my) (M + my)m, 2, 2 =20 —my)m;> + O(N72),

where the second equality applies |m./|, |m| < 1 and |m, — m,| < C/N. The right side may
be written as

1 vy oy
_Zt 52— 1252 NZ(ta T2 + (52 = 52) 1ty + (tg — 1) 1y52

o
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Including the identities (1 + tom4)sq = 1 and (1 4 fy714)5, = 1,

1
2.2 ¥2¥2
Nztasoc — IySy

1 . v
N Z(toz - tot)(tas (I+ tam*)sa + tozs (1 + fam*)soz) ( 3 Si)tata
(33) ’
1 - o v o v o v o 2 v2 v
N Z(ta — lo)SaSa (taSa + taSq + laSalaMs + laSqlaMy) + (Sa - sa)tata
a
1 v . vy
= N Z(tot — lo)SaSa (taSe + 1aSq) + Ra,
a

where we define R, as the remainder term. Noting that
S(% - 52 = (Sa — Sa) (Sa + 5a) = (fa”h* — taMy)SaSa (Sa + Sa),
we have
Ry = tafasaga(tasa"h* + to Sy — ;asan\;l* - ;agam*
+ Z\:ous'oﬂ”v%k + faia’h* — laSaMy — toSqMy)

= toSalaSa (M — My) (toaSa + laSa).

Then, denoting A; j = N -y, tésétvo{ §é and applying Lemma 4.2(a),
1 . . _
5 2 Ra = 0l = m) (Ag1 + A12) =207, = m) Az 0+ O(N 7).
o

By the scaling y =1, we have A3 g =1+ m;3. Combining this with (31), (32), and (33) and
multiplying by N yields (29).
The identity (30) follows similarly: The condition y = y implies

m;3—m3 Zts — 135,

The left side is
(M — m*)(mi + M, 4+ m2 my 3m_3 =3y — m*)m;4 + O(N_z).

Applying (1 + tomy)sq = 1 and (1 + f,m14)S, = 1, the right side is
1 Zf 3 B8 = Z(tasa fo5a) (1252 + taSatuba +1252)
- Z(ta o) oS (1252 + LSt + 1252)
+ taSalaSa (1 — M) (1355 + taSalaSa +15;)
_ (% Y- fa)Qa> + 30t — ma) As+ O(N2),

Combining the above and multiplying by N yields (30). U
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5. Resolvent comparison and proof of Theorem 2.9. We will conclude the proof of
Theorem 2.9 by establishing the following estimate.

THEOREM 5.1 (Resolvent comparison). Fix ¢ > 0 a sufficiently small constant, and let
s1, 52, 0 € R be such that |s1|, |s2] < N~/3%¢ and n e [N~2/37¢, N~2/3]. Let T, T e RMxM
be two diagonal matrices and E., E. two corresponding regular right edges, such that
(T, Ey) and (T, E,) are swappable and their scales satisfy y =y = 1. Suppose Assump-
tions 2.3 and 2.4 hold.

Let my, my be the Stieltjes transforms as in (16) corresponding to T , T, and define

Eyx+s2 o é*—l—Sz
X=N Immy(y+in)dy, X=N|, Immy(y +in)dy.
E*+Sl E*+Sl

Let K : R — R be any function such that K and its first four derivatives are uniformly
bounded by a constant. Then

(34) E[K (X) — K (X)] < N~43+16¢,

PROOF OF THEOREM 2.9. By symmetry under 7 +— —T, it suffices to consider a right
edge. By rescaling T — y2/3T, it suffices to consider y = 1.

Let 7O, . .. 7@, E,‘EO), e iL) satisfy Lemma 4.3. Define x® (s1, $2, 1) as in (25) for
each (T(k), Eik)). For a small constant ¢ > 0, let , s4, [ and K : [0, c0) — [0, 1] be as in
Lemma 3.7, where K has bounded derivatives of all orders. Fix x € R and let s = x N —2/3.
Applying Lemma 3.7,

P[Amax () < Ex 4+ 5] <E[K (' X O(s + 1,54, )]+ N 7L
Setting ¢’ = 9¢ and applying Theorem 5.1,
E[K(n_lf(k)(s +1,54,m)] < ]E[K(N_I%(kJ“l)(s +1, 54, )]+ N3
for each k =0, ..., L — 1. Finally, defining >@) = x'TDX and Amax(f@)) as its largest
eigenvalue in (ES — ', EX) + §') for some 8’ > 0, applying Lemma 3.7 again yields
E[K(@ ' 2D (s 41,50, )] <Pmax(EP) < EL +5 4201+ N1
Recalling L <2M and combining the above bounds,

The matrix 7% has all diagonal entries O or 7, so SO —tX'X for X € RMxN having
independent entries satisfying the moment conditions of Assumption 2.4. The corresponding

law M(()L) has a single support interval and a unique right edge, so EiL) must be this edge.

Regularity of E{") and (15) imply |¢| < 1 and M/N < 1.1f E") > 0, then r > 0.1f E{" <0,
then ¢ < 0, and edge regularity implies M /N is bounded away from 1. Then we obtain

(35) P[N? (rmax (D) = EP) < x + 2N ] = F1(x) + o(1),

where Fj is the distribution function of urw, by applying the results of [12, 17] to either
the largest eigenvalue of ¥ () or the smallest positive eigenvalue of —% %), Combining the
above, we obtain

P[N?3 (Amax () — Ex) < x] < F1(x) + o(1).

The reverse bound is analogous, concluding the proof. [J

In the remainder of this section, we prove Theorem 5.1.
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5.1. Individual resolvent bounds. For diagonal T and for z = y 4 in as appearing in
Theorem 5.1, we record here simple resolvent bounds that follow from the local law. Similar
bounds were used in [8, 19]. We also introduce the shorthand notation that will be used in the
computation.

Let E, be a regular right edge. Fix a small constant ¢ > 0, and fix s1, s2, 1 such that
Is1], |s2] < N=2/3t€ and n e [N~2/3—¢, N=2/3). Changing variables, we write

52
X=X(s1,82,n) = N/ Immy(y+ Es+in)dy.
51

For y € [s1, 52], we write as shorthand
z=z2(y)=y+ E«+in, G =G(z(y),
my=my(z(y),  G*=G“(),
=5 Y 60ew).  x@=N | tmm 5 + Ex +in) d5.
i€y

We use the simplified summation notation

ZZ ZZ

i,jeIn o,BETy

where sums over lower-case Roman indices are over Zy and sums over Greek indices are
over Zys. We use also the simplified integral notation

- 52 5 ~ - 52 - ~
/ Gap = / G(2(5)) 45 d5. iy = / my (2(5)) d5,
S1 51

so that integrals are implicitly over [s1, s2], and we denote by F the function F evaluated at
F(z(3)) for 7 the variable of integration. In this notation, X and X are simply

%:ZIm/Gii, %(a):ZImfGE?).
i i
We introduce the fundamental small parameter

(36) W= N1/

We will eventually bound all quantities in the computation by powers of W. In fact, as shown
in Lemmas 5.2 and 5.3 below, nonintegrated resolvent entries are controlled by powers of the
smaller quantity N ~!/37¢_ However, integrated quantities will require the additional slack of
N?¢. We will pass to using W for all bounds after this distinction is no longer needed.

We have the following corollaries of Proposition 3.3 and Theorem 3.5:

LEMMA 5.2. Under the assumptions of Theorem 5.1, for all y € [s1,s2], 1 # j € Iy,
and o # B € Ty,

1 G t

Gii <1, <1, * <1, 2 <, G,-j<N_1/3+‘9,
ii I oo

Gia _ N3+ Gap _ N3+ my — m, < N—1/3+¢.

ty Ialp
If T is singular, these are defined by continuity and the form (19) for G.
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PROOF. Proposition 3.3 implies Immg(z(y)) < C/k + 17 < CN~V/3%/2 while n >
N~2/37¢ by assumption. Then Theorem 3.5 yields (tazz)~'(G — IT)4p < N~'/3%¢ for all
A, B € Z. Proposition 3.3 also implies |m(z)| < 1 and |1 4 t4mo(z)| < 1, from which all of
the entrywise bounds on G follow. The bound on m y follows from |mo —m,| < C/k + 1 <
CN~'3+/2 and |my — mo| < N~13+e. O

LEMMA 5.3. Under the assumptions of Theorem 5.1, for alli € Iy and o € Ly,

Y G Xak <NV S GO X Xag —my < N7
k pP.q

PROOF. Applying Lemmas 3.4(b) and 5.2,
Z Gz(z)XOlk =—Gio/Gaa < N_1/3+8-
k
Similarly, applying Lemma 3.4(a) and Theorem 3.5,
1 1 1

+ (mo — my) < N~1/3%,

G OXypXeg — My = — my =
,,2;' PATPTE T Gaw ta 0 Taa Gaa 0

REMARK 5.4. All probabilistic bounds such as the above are derived from Theorem 3.5.
Thus they in fact hold in the uniform sense of Corollary 3.6. We continue to use the notation
< for convenience, with the understanding that we may take union bounds and integrals over
y € [s1, 82].

We record one trivial bound for an integral that will be repeatedly used, and which explains
the appearance of W.

LEMMA 5.5.  Suppose the assumptions of Theorem 5.1 hold, F(z(y)) < N* 1378 for

some a > 2, and we may take a union bound of this statement over y € [s1, s3] (in the sense
of Lemma D.3). Then, with W = N ~1/3+3¢,

N/ﬁ<¢“?
PROOF. We have N (sp — s1)N@(=1/3+8) < g N1/3+e ya(=1/3+e) < pya—1 O

The next lemma allows us to “remove the superscript” in the computation.

LEMMA 5.6. Under the assumptions of Theorem 5.1, for any y € [s1, 21,1, j € Zy (pos-
sibly equal), and o € Ty,

Gij— G < N* V30 oy —mfy) < N2 x o x@) <y,

PROOF. Applying the last resolvent identity from Lemma 3.4,
_ GiaG jo G ja Iy

T Gaa e Gua
so the first statement follows from Lemma 5.2. Taking i = j and averaging over Zy yields the
second statement. The third statement follows from Lemma 5.5 and X — X® =Im N [(ity —

m?). O
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5.2. Resolvent bounds for a swappable pair. 'We now record bounds for a swappable pair

(T, Ey) and (T E*) where E,, E* are both regular. We denote by m y, G X the analogues
of my, G, X for T. For €, 81,52, nand y € [s1, s2] as in Section 5.1, we write as shorthand

i=i)=y+E+in,  G=G(E),  mn=nmn(ED).

The results of the preceding section hold equally for G, iy, and X. 5
The desired bound (34) arises from the following identity: Suppose first that 7 and T are
invertible. Applying A~ — B~ =A"1(B— A)B~!

x L ((=i+2)Id 0 v
G G_G( 0 141G
Hence,as z — 7= E, — E*,
4 ht . Gia éjot v
(37) Gij—Gij=> GuGjr(Ex— Ey) = Y —=—L2(ta — 1)
k o o o

This holds by continuity when 7' is singular, using the form (19).
The following lemma allows us to “remove the check™ in the computation.

LEMMA 5.7. Suppose the assumptions of Theorem 5.1 hold. Let W = N~1V/313¢_ Then
forany y € [s1,s2] and i, j € Iy (possibly equal),

Gij—éij<N2(_l/3+8), mN—nﬁN<Nz(_1/3+8), 3€—§€<l11.

PROOF. Applying Lemma 5.2 for both G and G, and also the definition of swappability
and Lemma 4.2, we have from (37)

Gij _ élj ~< |E>|< _ Evv*| i N i NZ(—I/?H—S) +Z |to{ _ l‘,’a|N2(—1/3+8) < N2<_l/3+8).
o

(The contribution from k =i or k = j in the first sum of (37) is of lower order.) Taking
i = j and averaging over Zy yields the second statement, and integrating over y € [s1, 53]
and applying Lemma 5.5 yields the third. [

In many cases, we may strengthen the above lemma by an additional factor of W if we
take an expectation. (This may be seen by taking ¥ = Y@ =1 and @ = 0 in Lemma 5.9
below.) To take expectations of remainder terms, we will invoke Lemma D.2 combined with
the following basic bound:

LEMMA 5.8. Under the assumptions of Theorem 5.1, let P = P (z(y)) be any polynomial
in the entries of X and G with bounded degree, bounded (possibly random) coefficients, and
at most N€ terms for a constant C > 0. Then for a constant C' > 0 and all y € [s1, s3], we
have E[|P|] < N€.

PROOF. By the triangle inequality and Holder’s inequality, it suffices to consider a
bounded power of a single entry of G or X. Then the result follows from (17) and the form
(19)for G. O

LEMMA 5.9. Under the assumptions of Theorem 5.1, let Y be any quantity such that
Y < W for some constant a > 0. Suppose that for each o € Ly, there exists a quantity Y@
such that Y — Y@ < Wt and Y@ is independent of row « of X . Suppose furthermore that
E[|Y|£] < N€ for each integer £ > 0 and some constants C1, Ca, ... > 0.
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Then, for all i, j € Zn (possibly equal) and y € [s1, s2],
]E[(Gl] _ él])Y] ~< NZ(_1/3+8)\DQ+1 ~< \Ija+3’

E[(mN . nv’lN)Y] ~< NZ(—1/3+5)\Da+1 ~ \Ila+3.
E[(X — X)Y] < vt

PROOF. Applying (26), the bound N~! < W3, and Lemma 5.2 to (37),

(Gij_Gij)YIZGiijk(E*—E*)Y—Z tm tvja (ty — )Y
k o o o

é.
v]0l>Y + 0. (\Da—o—S)'

lo

= Z(tot toz)<sotsa Zsz j

By swappability and Lemma 5.2, the explicit term on the right is of size O (N2(71/3+&)ya),
(The contributions from k =i and k = j in the summation are of lower order.) Applying the
assumption Y — Y@ < Wt 35 well as Lemma 5.6, we may replace ¥ with Y@, G;; with

Gl k , and G jk with (\/}ﬁ) above while introducing an O (N 2(=1/3+e)yatly error, Hence,

Gia G,
Y = § : t —f G(a) (a) i V_]O{>Y(Ol)
(38) ( ij — lj) (a a)<SaSa E y —ta

+ 0. (NZ(_1/3+8)\IJ“+1),
Applying the resolvent identities from Lemma 3.4,

G; Gao 1
= Y G Kok = @ > Gi Xak.
Iy la A 1+ ¢, Zp,q qu Xaanq k

Recalling s¢ = (1 +1,m4)~", and applying Lemma 5.3 and a Taylor expansion of (1 +z5x) ™!
around x = my,

Gioe
Iy

= —5q Z GZ(Z)XOlk + 0<(N2(—l/3+8))’

where the explicit term on the right is of size O<(N™ 1/3+e) < W A similar expansion holds
for G ; ja/ f,. Substituting into (38),

. A .
(Gij — Gij)Y = Z(z‘a td)sdsa(ﬁZG(a)G%c)—ZGEz)XakG%)Xal)Y(O‘)

k k.l
+ 0. (N2<_1/3+8)\II“+]).

Denoting by K, the partial expectation over only row « of X (i.e., conditional on Xg; for all
B # a), we have

1 v
EO(|:N ZG(O!)G(O() ZG,(z)Xang(;)Xal] :0’
k k,l

while the remainder term remains O (N2(~1/3+e)ga+ly by Lemma D.2, where the mo-
ment condition of Lemma D.2 is verified by Lemma 5.8, the moment assumption on Y,
and Cauchy—Schwarz. Then the first statement follows. The second statement follows from
applying this with i = j and averaging over i € Zy. The third statement follows from in-
tegrating over y € [s1, s2] and noting N /3¢ N2(=1/3+¢) — ¥ as in Lemma 5.5. (If Y also
depends on the spectral parameter z(y), we evaluate my and my at a different parameter y
and integrate over y.) [J
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5.3. Proof of resolvent comparison. We use the notation of Sections 5.1 and 5.2.

The proof of Theorem 5.1 1s a lengthy computation using the preceding lemmas. To help
organize the various terms which appear in this computation, we denote them as Xy  for k =
3,4 and * a label describing the form of this term. The meaning of the index k € {3, 4} is to
denote that the typical size of this term Xy 4 is at most O« (W*)—this is verified from Lemmas
5.2 and 5.5. We choose the label * to indicate the form of this term: Roughly speaking, 1
memsamnnmN—ﬁm“23ﬁn4hMEMeammmaofl3,m4r%dwmnmﬁmsGm
the mark ’ indicates that a resolvent entry is squared, and the superscript ~ denotes that this
quantity is contained inside Im /. (A small exception is made for the notation X4 25/, which
has the term (my — my)2.) All of these terms depend implicitly on a fixed index i € Zy and
y € [s1, s2], which we omit for notational brevity.

X312 =K'(X)(my — m*)—Zle,

X33= K/(%)m Y GikGuGir,
Kl

1 .
X305 = KU(%)W > GikGilImf GiGji,
kil

X3, = K" () e Y GiIm f G
J.k,1

X400 = K'(X)(my — m*) Zsz’

X413=K'X)(my — m*)m Y GikGuGir,
k.l

%44 =K' (.’{)N Z Gz]G]kalGllv
J.k,1

X440 =K' (35) Z G# Jl,
J.k,1

X415 =K"(X)(my — m*)N2 > szGzllm/G,kGﬂ,
J.k,l

X4 105 =K"(X)(my — m*) 5> Gh Im/Gﬂ,
J.k,l

X5 = K”(3€)N > G,pG,qurIm/quG,,,
Jp.q.r

5 L.
36473@*:[(”(36)@ Z Gi,quIm/Gijjq,
J.p.q.r

X, = K"(3€)— > GiyGirGorlm [ G3,.
J>Dsq.r
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Xyoiz = K”(f)N > szGlzlm/(mN m)G kG i,
J.k,l

%01 = K013 ZG,,Im/(mN m) G
J.k,l

X405 _K”(3€)N— > G,pG,qu/G,pG,qu,,
Jsp.a.r

36423,_K”(3E)N— > G,pG,qu/G G g
Jspsa.r

3642/3_K”(3E)— > G} Im/GJqGJqur,
Jsp.a.r

X, 222—KW(3E)N > G,pG,q<Im/G,,,G,,> (Im/quGk,>,

Jk.p.q.r

%4 2/22 - K///(ff) Z G <Im/éjqéjr) (Im/ékqékr>,

Jkpqr

%, 5 _K///(:{) > G,pG,q<Im/G qu>(1m/c;k,),

Jkpqr
~2 ~2
%4,2/5/2/ = KU/(%)_ Z G <Im/GJq)(Im/Gkr>
Jk.p.q.r
We define the aggregate quantities
X3=%X312 + X33+ X353,
%4 = 3%4722/ + 6%4,13 + 12%4,4 + 3%474/ + 4%4’125 + 8%4’35 + 4%4’3/5
+2X4003 12X, 03 + 4%y 03 + 4%, 553,

Xy =Xyom + Xy 03 +2X4 03 — Xy 105 — Xy 35 — 2X4 35
Theorem 5.1 is a consequence of the following two technical lemmas. (There are several
terms X3, and X4 4 above which do not appear in the aggregate quantities X3, X4, X, orin
the statements of these lemmas. They appear in the intermediate calculations in the proofs,
and for convenience we have collected all required definitions above.)

LEMMA 5.10 (Decoupling). Under the assumptions of Theorem 5.1, denote X, = AX +
(I =X for A €[0,1]. For fixedi € Iy and y € [s1, 52], define X3, X4, and X, as above.
For fixed o € Ty, let sq = (1 + tgmy) ™" and 54 = (1 + tuiiy) ", define Py and Qg as in
(28), and
Ro = SaSa (taSa — foeg'oz)z-

Then

1 G G
/ ]E[K/(%k) « "‘} da
0 1, t

o o

1 1 .
= sa§a/ E[K/(am— ZGikGik} d
0 N <
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1 1
— PoBlX3] + 3 QuE[X4] + RoE[X;] + 0 (V).

LEMMA 5.11 (Optical theorems). Under the assumpttons of Theorem 5.1, for fixed i €
Iy and y € [s1, 521, define X3 and X4 as above. Let Ay = N~ Za t4 4 . Then

2ImE[X3] = (Ag — m; ) ImE[X4] + O (¥°).

Lemma 5.10 generalizes [19], Lemma 6.2, to a swappable pair. We will present its proof
in Section 5.4. We introduce the interpolation X, = AX 4+ (1 — A)X as a device to bound

K(X)—-K (i). (This is different from a continuous interpolation between the entries of T
and T.) Let us make several additional remarks:

1. The proof in [19] requires this lemma in “differential form”, where 7' = T'. In this case,
we have G = G X; = X for every A € [0, 1], 54 = 54, and #, = £,. Then the integral over A
is irrelevant, and Lemma 5.10 reduces to the full version of [19], Lemma 6.2.

2. The term X, does not appear in [19] and is not canceled by the optical theorems of

Lemma 5.11. (When T = YV" we have Ry = 0 so this term is not present.) The cancellation
instead occurs by symmetry of its definition, upon integrating over y: Momentarily writing
Xk « as Xk «(y), and noting that K (X) is real-valued, we obtain

from the symmetric definition of these two terms. A similar cancellation occurs for the pairs
(X403, X4 33) and (X 53, X4 35) which comprise X .

3. An important simplification in the proof is that we may use Lemmas 5.7 and 5.9 to
convert O~ (¥3) and O~ (¥*) terms to involve only G and not G—hence X3, X4, X are

defined only by 7" and not T.

The other technical ingredient, Lemma 5.11, is identical to the full version of [19], Lemma
B.1, as the terms X3 and X4 depend only on the single matrix 7. We briefly discuss the
breakdown of its proof in Section 5.5.

In [19], for expositional clarity, these lemmas were stated and proven only in the special
case K’ = 1. Full proofs were presented for an analogous deformed Wigner model in [18].
Although more cumbersome, we will demonstrate the full proof of Lemma 5.10 for general K
in Section 5.4, as much of the additional complexity in our calculation due to two resolvents
G and G arises from the interpolation X, and the Taylor expansion of K.

We establish Theorem 5.1 using the above two results:

PROOF OF THEOREM 5.1. We write
. L d 1 .
(40) K(X) — K& :/ KX dx :/ K'(X) (% — ) do.,
0 0

Recalling ¥ = Y, Im [ G;; and applying (37),

x-%= Zlm/<2 Gikéik(E* —Ey-
i k o

(G and G denote G and G evaluated at the variable of integration y.) Further applying (26),
Lemma 5.2, and the trivial bound N ~2/3t¢ < @2

Gia

X-X= Zlm/Z(ta ta)<sasa Zszsz——

)+04wy

o
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Applying this to (40), taking the expectation, exchanging orders of summation and integra-
tion, and noting that K’ (X)) is real,

E[K (%) — K(X)]

~ v

—ZZ(ra—raﬂm// B[ K/ (s ZG,{, (j )] anas

lo

+ 0 (W),

where the expectation of the remainder term is still O~ (¥*) by Lemmas D.2 and 5.8. De-
noting by X3(i), X4(i), and X (i) the quantities X3, X4, and X, defined by y and the outer
index of summation i, Lemma 5.10 implies

E[K (%) — K(X)]
. - s T
=S (e — ta)lm/(PaE[aeg(i)] - S QB[R] - gRO,E[%Z(i)D d

+ 0. (N1/3+8\115)’

where the error is N!'/3+2W> because Y, |to — | < C and the range of integration is con-
tained in [—N—2/3+¢ N—2/3+¢]. We note, from the identity (39) and the analogous cancel-
lation for the other two pairs of terms, that Im [ X, (i)dy =0, so this term vanishes. Then,
applying Lemma 5.11,

E[K (X) — K(X)]
—4

41 .
o =22 (- ;Of)<7)a A 2m* Qa) Im/E X4()]d5 + O<(N'3Hewd),

Finally, applying Lemma 4.7, we have

. As—mI*  Q,
42 ty — lg)| Po———— — )< C/N.
(42) Ea (fa a)( O 3 /

Thus the first term of (41) is of size O<(N - 1/N - N —2/3+¢ . @), which is of smaller order
than the remainder N'/3+¢W>_ (In [19] for the differential version of Lemma 5.10, this first

term is zero due to the exact cancellation of the analogue of (42).) Hence E[K (X) — K (i)] <
N1/3+8‘~IJ5 :N_4/3+168. O

5.4. Proof of decoupling lemma. In this section, we prove Lemma 5.10. We will implic-
itly use the resolvent bounds of Lemma 5.2 throughout.

Step 1: Consider first a fixed value A € [0, 1]. Let E, denote the partial expectation over
row « of X (i.e., conditional on all Xg; for B # «). In anticipation of computing [, for the
quantity on the left, we expand

v

G

o o
as a polynomial of entries of row « of X, with coefficients independent of all entries in this
TOW.
Applying the resolvent identities,

Gi G
v _ Guo s gy, o
k

I
> G Xat.

I Iy 141, Zp,q G(pOZI)Xaanq k
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Applying Lemma 5.3 and a Taylor expansion of the function (1 + t,x)~! around x = m,,

G
thl — —Sa Z GI(Z)XOtk _|_ tas§ <Z G(paq)Xaanq - m*) Z Gl(g)Xak
o X k

(43) (ZG XapXagq — ) Z Gyl Xak + 0<(¥)

=U; + Uy + Uz + O~ (¥%),

where we defined the three explicit terms of sizes O<(¥), O« (V2), 0~ (¥3) as Uy, Uy, Us.
Similarly

(44) - = Uy +Up + Us + 0<(W?),

Iy
where U; are defined analogously with Sy, fy, My, G in place of sy, ty, My, G.
For K'(X;), define %(a) AX@ 4 (1=2)X@ and note from Lemma 5.6 that X; — %(a)
W. Taylor expanding K'(x) around x = %(a)
K"
2
Applying the definition of X, X and the resolvent identities,

—x@ ZIm/Z(ij —G'Y) _Im/Z ja —Im/Gaa Y G XepG Xy
j

Jspsq

45) K'(X) =K'(XY)+ K" (x*) (%), - x@) + (X — X ) + 0. (¥3).

Further applying the resolvent identity for G, a Taylor expansion as above, and Lemma 5.5,

XX = 1454 Im/ > G XapGl) Xag
J:p-q

(46) + 1252 Im/Z (G Xar Xy —ms) Y G2 Xp G2 X g + O (WP)
]

=Vi+ Va4 0 (V),
where Vi < W and V> < W2, Analogously we may write
(47) T-X9 =V +V, + 0-(¥3),

where Vi, V, are defined with Sos Loy M, G in place of sy, ty, m4, G. Substituting (46) and
(47) into (45), and combining with (43) and (44), we obtain

GlC{ GlOl
o o

where the O~ (¥2), O~ (¥?3), O~ (¥?) terms are respectively
W, = K'(x*) U, 0,

(48) K'(%,) = Wa + W3+ Wy + O (%),

W3 = K'(X) (U201 4+ U Ua2) + K"(X®) (V1 + (1 = 1) V) UL Uy,
Wy = (%(a

N30, + UaUy + U U3) + K" (XY AV 4+ (1= WV (U0 + U Uy)

KW(%(“))

F K" X0V 4+ 1 =)W + (AVi+ (1 — A)\Vfl)z}Ul Uy.
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Step 2: We compute E, of W5, W3, W4 above. Note that x@, i(“), G, G@ are inde-
pendent of row « of X. Then for W5, we have

Eo[Wal = saSa K'(X7) D" G G\ Bal Xak Xai]
k,l

(52) 1 .
= safaK'(X)") 1 2 GG,

where we have used E[ Xy Xo1] = 1/N if k =1 and 0 otherwise.
For W3, let us introduce

@g?ll)z/ —K (%(a))( (o) —m* ZG(&) l(z)

237y = K/ (7)) — ZG“” Gy
=K% ZGEZ”G@GS?%
23(“3) _ (oe) Z G(“)G(“)Gf“),

() K" (06) () A (Ol) (Ol)
V)5 = K" (X N2 S G696 Im/ (G°

J.k,l
205 = K@) 1 Y 66 I /«;g»z
J.k,l
1
@ =K@ Y 696 m / G9G,
' N? ]kl
1
2% =K"(%") 15 2 GG Im / GG,
J.k,l

which are versions of X3 . that don’t depend on row « of X and with various instances of
mpy, my, G, X replaced by my, ny, G, X,. Consider the first term of W3 and write

Eo[K'(2,”)U2U1]

=, [—taszfaK’(%ga)) (Z Gqu)Xaanq - m*) Z GEZ)Xakél(;x)Xal}
p-q k,l

= 125K (X)) T (GW Eoo Xap Xg Xak Xo]
k,,p,q

1
— —m(p = q)Eq [Xakxaz])c“’” G,

The summand corresponding to (k, [, p,q) is O unless each distinct index appears at least
twice in (k, [, p, q). Furthermore, the case where all four indices are equal is negligible:

1
Z(Gl(ci)Ea[Xik]_ﬁm*E [ ])G("‘>G( <N-N2.92-ys
k



TRACY-WIDOM FOR COVARIANCE MATRICES 2995

(The k =i case of the sum may be bounded separately as O~ (N =2).) Thus up to O (¥9), we
need only consider summands where each distinct index appears exactly twice. Considering
the one case where k = [ and the two cases where k = p and k = ¢,

Eu[K' (%) U2U1]
®)
I
= o33 K (X" (m > DG —m)GRPGR + Z Z @G (“)G,‘j;’)
kP
+ 0~ (W).

Re-including p = k and / = k into the double summations introduces an additional 0~ (V)
error; hence we obtain for the first term of W3

(50) Eo[K'(X,7)U201] = —tasgia (D, +2D57) + 0 (¥°).

Similar arguments apply for the remaining three terms of W3. For the terms involving an
integral, we may apply Lemma 5.5 and also move X, outside of the integral and imaginary
part because X is real and does not depend on the variable of integration y. We obtain

(51) Eo[K'(X2)U1U2] = ~a525a(251y +2253) + 0 (¥7),
(52) Eo[AK" (X)) ViUIUN] = —Masga (D5 + 205 55) + O<(97),

(53) Eo[(1 = MK "(E)\VIUIT1] = —(1 = Diadgsa(2y95 +2257%) + 0 (¥°),

and E, [Ws3] is the sum of (50-53).
For W4, consider the first term and write

Eo[K' (%) U301

2
_E |: 2 3v (a) (Z G(a)Xaanq _m*) ZGEZ)XakGE?)Xal}
k.l

= 2535 K (x) Y <G§,‘QG§§>EQ[Xapxaqxwxasxakxal]
P,q.1,8,k,l

1 1
- Nm*ﬂ{p q}G(a)E [Xor Xas Xak Xai] — ﬁm*ﬂ{r = S}Ggi])Ea[Xaanaranl]

1
+ 2 m?1{p = q}ﬂ{r—s}E[Xaanz])G(“) G\,

A summand corresponding to (k, [, p, g, r, s) is O unless each distinct index in (k, I, p, q, 1, s)
appears at least twice. Furthermore, as in the computations for W3 above, all summands for
which (k, 1, p, q,r,s) do not form three distinct pairs may be omitted and reincluded after
taking [, introducing an O (W) error. Considering all pairings of these indices,

Eo[K'(X5)U5U1]

1 1 v
= 2535 K () (0 = ma)’; GG + 4y - m) 1y GGG
k k,l

+8—ZG(°‘) (a) (a) (a)+2 3ZG(°‘) (a) (a))2)+0<(q,5)_
Jikl jok,l
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At this point, let us apply Lemmas 5.6 and 5.7 to remove each superscript (o) above and
to convert each G to G, introducing an O (¥?) error. We may also remove the superscript

(o) and convert X to X in K/ (%& )), via the second-derivative bounds
K'(%) = K'() < | K| o[ %57 = %] < w.
K'(X3) — K'(%) < |K"|| 1% — X[ < 0.
We thus obtain
Eo[K' (X)) UsU1 | = 125356 (X400 +4%4. 13 + 8%44 +2%4.4) + O (V).
Applying a similar computation to each term of W4, we obtain

54) Eo[K' (X)) (U301 + U Uy + U1 U3)]
= SaSa(taa + taSalada + Ia50) (X420 +4X4,13 + 8X 44 +2X4 4) + O (¥°),
Eo[K"(X) (V1 + (1 = MWV (U0 + Ui U)]
(55)  =saSa(Masa + (1 — MigSe) (taSe + faSe)
S (Xg 125 + 2%y 105 + 2%y 33 + 2%, 35+ 8%, 33) + 0 (V)
Eo[K" (X)) (A V2 + (1 — ) V) U U]
(56) = suSq(Als2 + (1 —1)i252)
(R, 573 2%y 073 + 2%y 25 + 2%, 03 + 8%, 53) + 0<(¥),

K/// x(a) . .
EQ[M(A% + (1 — )»)V])ZU1 U1i|

57 s s
O “za(ktasa+(1—k)tasa)

5
(Xy 055 +2Xy 055 + 4%y 555 + 8%, 535) + 0<(¥°),

and E, [ W4] is the sum of (54-57).

The O~ (¥?) remainder in (48) is given by the difference of the left side with W», W3, Wy.
As this is an integral over a polynomial of entries of G®) and X, its partial expectation is still
0~ (W3 by Lemmas D.2 and 5.8.

Summarizing the results of Steps 1 and 2, we collect (48), (49), (50-53), and (54-57):

Giq Gi
| K0 2 2 |
o o
5 1 .
= sasaK’(%ia))N Y GRGR — tasiia(WF]y +2957) — fafisa (27, +2249)
k
— MaszFa( Dy +20555) — (1= Miadisa(2y5 +221%)

58) + sasa( Sy -I- tasatasoz + l‘asa)(:ﬂ; 20 +4X413 +8X4,4 +2Xs 4)
+ saga ()&t(xsa +1 - )\);aga)(tasa + ;agoz)

X (Xy 103 + 2% 105 +2X4 33 + 2%, 35 + 8%y 33)
+ SaSa (Masy + (1= Wg53) (R 55 + 2%, 073 + 2% 05+ 2%, 23 + 8%, 23)
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vy )2
= (Masa + (1= Wia¥a) (X 155 + 2%y 255 + 4%, 255 + 8%y 553) + 0<(¥).

Step 3: In (58), we consider the first term on the right (of size O« (¥2)) and remove the
superscripts (o), keeping track of the O« (U3) and O~ (W?) terms that arise.

Applying the resolvent identities and a Taylor expansion for G4, we write
GiOl Gkoz

GO{O{
=Gk — Gau G(a)XoerG(a)Xas

)

(59) = Gik +taSa Z G(a)Xar G](C(;[)Xus

G =Gy —

5a (Z G XapXaq — m) > G Xar Gl Xas + 0<(¥)
p-q

r,s
= Gir + Rax + Ry + O~ (¥%),

where we defined the two remainder terms of sizes O~ (1112), O« (lIJ3) as Rok, Raj. Similarly
we write

(60) G =Gt + R + R + O (9*).

For K’ (%ga)), we apply the Taylor expansion (45) and recall Vi, \71, Va, \72 from (46, 47) to
obtain

e N 1 (el (@) K"(x) (@N2 3
K'(X57) = K'(X) = K7(X57) (X6 = X57) = ——— (X = X7)" + 0«(V7)
(61) =K'(X) — K"E) Vi + A =) V)) — K" (X)W Va + (1 — 1))

K///(%gd))
2
Taking the product of (59), (60), and (61), applying the identity

(AV1+ (1= 2)V1)? + 0 (W3).

xyz=(x —8)(y —y)(z —8;) + xy8; + x8yz + 8xyz — x8y8; — 8xy8; — 6x8yz + 8x 3y 0,
(with x = Gl(g), x — 8y = Gjx, and 8y = Ryx + R3i, etc.), and averaging over k € Ly, we
obtain

1 5
(62) K’(aeg‘”)ﬁ S GG =S+ 831+ S50+ D Saj + 0<(9),
k j=1

where

1 v
S = K/(:{A)N > GG,
k

1
S3.1=K'(X) 5 3 Gi Row + K/ () - ZRZkGf?,
k

S32=—K"(X) (V1 + 1 — Vi)~ ZG(O‘) G,
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Sa1= (a) ZG(a)Rg, + K’ :{(a) ZR%GSZ),

o1
Ss2=—K"@)xV2+ 1= 0Va)+ 2 GRG.

k
K///(:{(Ol))
Sa3= T(Avl + (1 =)W)? ZG(“) G,
Spq=—K'(X) Z Roy Rox.

k

o1
Sas=K"(X) Vi + (1 —2) M) 2 G Ry
k

K"(@Z) (Vi + (1= 2)Vr) Z RuGy.

Recalling the definition of Ry and applying E, to the O (¥?) terms,
EalS3,11 = tusaD53 + fafa 255,
EalS3.0] = Masa®y 35 + (1 = Miada 2155,

Similarly, we apply E, to each of the O_(¥*) terms, considering all pairings of the four
summation indices as in Step 2. Then applying Lemmas 5.6 and 5.7 to remove superscripts
and convert G to G, we obtain

Eol[S41]1= —(t252 4+ 252) (X413 + 2%4.4) + O (¥),

Eo[Sa2] = —(hgss + (1= WIZ53) (X, y 55 + 2%, 27) + 0 (¥),

Ey[S43] = —%(Masa +(1— A)fa§a)2(%4’2/§/§/ +2X, ,33) + O<(¥°),
Eo[S44] = —tySalaSe(Xsa +2%4.4) + O (¥7),

EalS4,5] = —(Masa + (1 — VigSe) (tasa + faa) (X4 55 +2X4 33) + O<(V7).

Then applying [, to (62), noting that the remainder is again O~ (¥°) by Lemmas D.2 and
5.8, and substituting into (58),

Giy G
]Eoz [K/(%A) 101 vlozj|
(07 o

= sefa K00 3 GuGik | ~ tusZ5aD]y + D)
— tas So (23( 1o + Zéog)) — 2Mas§§a@§a2)»2~ —2(1 — M)y s SaZ3( 2)2
+ 5080 (1252 + 1252) (X400 +3%4.13 + 6X4.4 +2%4 4)
(63) + SaSa (taSaleSe) (X400 +4Xa.13 + 6Xa.4 + X4 0)
+ SaSa (Mase + (1 — V)igSa) (taSa + laSa)
X (Xq125 +2Xy 103 + Xy 35 + 2%y 35 + 6%y 33)
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< (5422 2.0 _ _ -
+ SaSa (Mg + (1= M1g55) 2%, 575 + 2% 53 + 8%, 53)

SoS vy
+ %(Masa (1= Wiada) (4%, 255 + 8%, 253) + O<(9°).

Step 4: In (63), we remove the superscript («) from Q)3 , and Z3 4, keeping track of the
O~ (W) errors that arise. For each quantity @gai or 23(0‘*) , let 2)3 4 or Z3 4 be the analogous

quantity with each instance of mg\?), G®,G®), %ia) replaced by my, G, G, X;.
For 2)3 12> recall from (59) and (61) that

G = Git + Ru + 0 (¥3),
K'(X)=K'(x)) — K"(X) 0V + (1 = 0)V) + 0~ (W2).

For mg\‘;‘) — my, we apply the resolvent identities and write
2
N ] Gaa
1
=myN — My — G‘mﬁ ;l G%)Xak(}(cx)X
J:

1
=my =My +laSa s Xk:l Gﬁ)XakG(“)Xal + 0. (¥3)
Js

=my—my+ Q0+ 0<(1D3),

where Q is the O~ (W?) term. Multiplying the above and averaging over k,

K'(X@) (' — Z D Ry + K'(X2) 0 ZG(a) &)
k

17 (A (0r) RS, () _ () 4 (Ol) 5

K" (X)W + =0V (my —my)— ZG 0~ (¥°),

where each term except 2)3 12/ on the right is of size O (W4, Taking E, and applying Lem-
mas 5.6 and 5.7 to remove superscripts and checks,

mgﬁ?? =Eo[Y3,127] + (tasa + Za§a)%4,l3 + t4Sa X4 4
+ (MaSq + (1 — Migda) Xy 105 + O<(¥°).

(64)

Similar arguments yield
23(??2, =EolZ3,10] + (S + luSe) X413 + laSaXsw
+ (Masa + (1 = Migda) Xy 15 + O<(¥°),
V) = EalD3.3] + Qlase + iafa) Xaa
+ (Masa + (1 = Diada) Xy 55 + O<(¥°),

21 = ol 2331+ (aSa + 2ade) Xa 4
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+ (Maso + (1 = Migda) Xy 55 + O« (V),
9320‘2)5 =Eu[D3 23] + (taSa + laSa) X4 35 + 21a5a Xy 23
+ (Masa + (1 = Miada) Xy 55 + 0<(¥°),
2% = Eal 23 551+ (tase + fada) Xy 55 + 2afaXy 53
+ (Masa + (1 = Diada) Xy 55 + O<(¥°).

Substituting into (63),

Giy Gi
Ea[Km) Z ]
I 1y

. | - .
= SoSaEq [K/(%A)N Z GikGik] — 15250 Ba (D312 + V3 3]
X

65) — 103254 Bal 23,12 + 23.3] — 2o 5Bl 03] — 2(1 — MigSzsaEBal 25 53]
+ SarSa (1252 4 toSalySy + 1252) (X400 +2X413 +4Xa4 + X40)

+ S S (MaSe + (1 — MigSa ) (taSa + 1aSa) (2Xy 15 + 2%, 35 + 4%, 33)
+ Safa (Mgse + (1= DIG5E) 2%y 573 + 2% o3 + 4% 53)

+ dsaSa (Masa + (1 = MiySa) Xy 55 + 0<(¥7).

Step 5: We take the full expectation of both sides of (65), applying Lemma 5.9 to convert
3« and Z3 4 into X3 .. We illustrate the argument for Z3 1o: For k # i, denote

Y =K' (&) 0y — )Gk, Y@ =K' (X)) (m) — )Gy

Then Y < W2, and Y — Y@ < W3 forall o € Zy, the lattgr from Lemma 5.6 and the second-
derivative bound for K. Then applying Lemma 5.9, E[Y G;x] = E[Y Gix] + O<(¥?). Hence

. o] .

(66) B[ /()00 i) 2 Gin(Git — G | = 0<(¥9),
k

where the k =i term is controlled directly by Lemma 5.7. Applying this argument again with
Y = K/(%)L)Gizk, together with the bound m, —m, < C/N < U3 we may convert the term

. " 1

k

Finally, a Taylor expansion of K’(x) around X yields
(68) K'(%) = K'(X) + (1= K" (X)(& - ) + 0-(¥?),

where we have used X — X < W by Lemma 5.7. Applying the third implication of Lemma 5.9
with Y = K" (X)(my — m,)G7, < W3 for k # i, we obtain

(69) E[K”(aexa% — X)(my — m*)% > G%k] = 0. (¥°).
k

Then combining (66-69), we obtain E[Z3 1o/ ] = E[X3,12/] + O« (W),
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The same argument holds for the other terms )3 . and 23 .. Then taking the full expecta-
tion of (65),

Gla GlO(
[K (%) }

o o

v 1 X v Y v
- sasaE[K’omN ZGikGik} — (1525 + Fai250) ELX3, 1 + X3 5]
k

70 — 2(Masafa + (1 — Miadase) E[X3 53]

+ 5050 (1252 + tuSalaSy + 1252 E[ X400 4+ 2X413 + 4% 4.4 + X4

+ SaSa (MaSa + (1 — M igSa) (g Se + fa§a)E[2%4 123 +2X, 35 +4X, 53]
+ 5080 (M252 + (1 — M)i2 )E[23€4 213 + 2%y 3 + 14Xy 53]

+ 45y S (M sy + (1 — A)ta§a) E[X, »5] + O< (\IJ ).

Finally, we integrate (70) over A € [0, 1], applying [A = [(1 — 1) =1/2 and [A? =
[2x(1 = A) = [(1 — A)? = 1/3. Simplifying and identifying the terms X3, ¥4, Xy Pa,
Qq, and R, concludes the proof of the lemma.

5.5. Proof of optical theorems. We discuss briefly the proof of Lemma 5.11. In the setting
K’ =1, Lemma 5.11 corresponds to [19], Lemma B.1, upon taking the imaginary part.

The proof for general K is the same as that of [19], Lemma B.1, with additional terms
arising from the Taylor expansion of K’ as in the proof of Lemma 5.10. The computation
may be broken down into the identities

N Y E[K'(X)] +2m 'E[K(X)(my — my)])
= 2E[X;3] — 2m} 1 (z — E)E[X2] — (Ag — 2m ' — mME[X4] + O (¥5),
NT'E[K'(X)(my — my)] — 2E[X4 00 + X413 + Xaa + X4 151 = O

(¥)
(¥°)
E[2X4,13 +3X4.4+ Xa 4 +2X, 3551 = O« (¥ %),
(¥)
(v)

’

(z — EE[X2] — E[X4 20 +4Xg4+ Xy g +2X, 35] = O W),
5
E[Xy 105 +2X4 355 + X4 35 + Xy 013 +2X4 03 + Xy 07 + 2%, o351 = O<(V7),

where Xo = K/(X)N~1Y, Gl.zk. For K’ = 1, the first four identities above reduce to [19],
egs. (B.29), (B.33), (B.38), (B.51). The fifth identity is trivial for K’ = 1, as the left side is
0. It is analogous to [18], eq. (C.42), in the full computation for the deformed Wigner model,
and may be derived as an “optical theorem” from X5 ,5.

Lemma 5.11 follows from substituting the second and fourth identities into the first, adding
4m ! times the third and fifth, and taking the imaginary part (noting K’ is real-valued). This
concludes the proof of Theorem 5.1, and hence of Theorem 2.9.
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