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1. Introduction

Spatially distributed networks (SDNs) consist of a large amount
of agents, and each agent is equipped with subsystems for limited
data processing and direct communication link to its “neighbor-
ing” agents within communication range. SDNs appear in (wire-
less) sensor networks, smart grids, social network and many real
world applications [1-9]. In this paper, we describe the topologi-
cal structure of an SDN by a finite graph G := (V, E) with a vertex
in V representing an agent, an edge in E between vertices indi-
cating that the corresponding agents are within some range in the
spatial space, and the communication range L being the maximal
geodesic distance such that direct communication link between
agents i, j € V exists whenever p(i, j) < L, where the geodesic dis-
tance p(i, j) is the number of edges in a shortest path connecting
i, j € V. As SDNs may not have a central server, data processing on
SDNs should be designed at the agent/vertex level with direct data
exchanging between neighboring vertices within the communica-
tion range L.

Matrices on SDNs appear as filters in graph signal process-
ing, transition matrices in Markov chains, state matrices of dy-
namic systems in control theory, sensing matrices in sampling
theory, and in many more applications [6,9-16]. In this paper,
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we consider complex-valued graph filters represented by matri-
ces A = (A(i, j)); jev on the graph G = (V, E) with limited geodesic-
width w(A), which is the smallest nonnegative integer such that
A(i, j) =0 for all i, j e V satisfying p(i, j) > w(A) [9,16-19]. Our il-
lustrative examples of graph filters with small geodesic-width are
the graph Laplacian matrix with geodesic-width one and polyno-
mial graph filters with geodesic-width no more than the degree of
the polynomial [15]. The concept of geodesic-width for graph fil-
ters can be considered as the correspondence of the duration for
finite impulse response filters in the graph setting.

Eigenspaces of matrices with limited geodesic-width have been
used to understand the communicability between vertices, spectral
clustering for the network, and influence of a vertex on the net-
work, see [3,6,20-32] and references therein. Most of distributed
algorithms proposed in the literature, such as the conventional
power method and gradient descent method, are based on the
consensus approach and required to have some prior global pa-
rameters other than the eigenvalue, such as the largest eigenvalue
or its estimation, for the normalization, see Remarks 2.4 and 3.3.
Based on the preconditioned gradient descent approach in [16] for
inverse filtering, in Section 2 we propose a preconditioned gradi-
ent descent algorithm (PGDA) to determine eigenvectors associated
with an eigenvalue A of a given matrix A with limited geodesic-
width w(A), which is proved to converge exponentially to the de-
sired eigenvector without any global assumptions on spectrum of
the matrix and the magnitudes of its entries, see Theorem 2.1 and
Remark 2.3. More importantly, the proposed algorithm can be im-
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Algorithm 1 Realization of the PGDA at a vertex i e V.

Inputs: The totaliteration number M, the geodesic-width w(H)
of the matrix H= (H(i, j)); jev.the set B(i, w(H)) of w(H)-hop
neighbors of the vertex i,the eigenvalue A of the matrix H,entries
H(i, j) and H(j, i), j € B(i, o(H)) in the ith row and column of
the matrix H,and the ith diagonal entry Q(i, i) of the matrix Q.
Pre-iteration: Compute A(i, j) = H(i, j) — A8, j)and A(j,i) =
Q. 1)"2(H(j.i) - A8, i)) for jeB(i,w(H)),where § is the
Kronecker delta.

Initial:Select the ith component x( (i) € [0, 1] of the initial vector
Xg randomly, and set n = 0.

Iteration:

1. Send x;, (i) to all neighbors k € B(i, w(H))\{i} andreceive x, (k)
from neighbors k € B(i, o (H))\{i}.

2. Evaluate )’Zn (l) = ZjeB(i,w(H))A(i’ j)Xn (])

3. Send &, (i) to all neighbors k € B(i, w(H))\{i} andreceive %, (k)
from neighbors k € B(i, w(H))\{i}.

4. Evaluate x, (i) = > ieBii.omy) AU DX ().

5. Set xp,1(i) = X, (i) — X (i) and n =n+ 1.

6. Return to Step 1 if n < M, go to Output otherwise.

Output: u(i) ~ xp (i), where u = (u(i));cy is the eigenvector.

plemented distributively and synchronously at the vertex level, see
Algorithm 2.1, and the preconditioning matrix could be explicitly
constructed at the vertex level (and hence on SDNs with commu-
nication range L > w(A)). For the implementation of Algorithm 1
on the network, every vertex i is only required to have the infor-
mation of its w(A)-hop neighbors, it is equipped direct commu-
nication links with its w(H)-hop neighbors, and it needs memory
to store the eigenvalue A, the iteration number M, the ith diago-
nal entry of the preconditioning matrix and entries in the ith row
and column of the matrix A. Therefore the memory, computational
cost and communication expense at each vertex to implement the
preconditioned gradient descent algorithm are independent on the
order of the graph G, while they depend on the order of the graph
in the distributed algorithms based on the consensus approach al-
most linearly [3,22] and quadratically [29,33,34]. We believe that
the proposed PGDA and its symmetric version in Section 3 are im-
portant for the scenario that each agent of the network has lim-
ited memory, computing power and communication bandwidth,
and also limited access to the whole matrix due to various reasons
(such as privacy and limitation of storage), and the only global in-
formation available is the eigenvalue.

In Sections 3, we propose the symmetric preconditioned gradi-
ent descent algorithm (SPGDA), a symmetric version of the PGDA
in Section 2, to find principal eigenvectors of a Hermitian matrix.
Similar to the PGDA, it can be implemented distributively and syn-
chronously at the vertex level, see Algorithm 3.1. Moreover, com-
paring with Algorithm 1 to find eigenvectors of an arbitrary ma-
trix, the Algorithm 3.1 has less computational cost and commu-
nication expense in each iteration and our numerical simulations
also indicate that it may converge faster. In Section 4, we mod-
ify the PGDA and SPGDA to find eigenvectors of a polynomial fil-
ter of graph shifts, which can be implemented at the vertex level
with each agents being required to exchange data between adja-
cent vertices only. In Section 5, we demonstrate the performance
of the proposed algorithms on finding eigenvectors associated with
the (second) largest eigenvalue of lowpass-spline-like filters and
compare their performance with the gradient descent method with
optimal step size and the conventional power method without nor-
malization.

Notation: Set [x||> = (3 j.y [x(j)[*)!/? for graph signals x =
(Xj)jev, denote the set of all s-hop neighbors of a vertex ieV
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by B(i,s) = {j eV, p(j,i) <s},s >0, denote the identity matrix by
I and Hermitian transpose of a complex-valued matrix A by A*,
and let Amax(A), Amax2(A), Amin (A) and Apin o(A) be the maxi-
mal eigenvalue, second largest eigenvalue, minimal eigenvalue and
minimal nonzero eigenvalue of a positive semidefinite matrix A re-
spectively.

2. A distributed iterative algorithm for determining
eigenvectors

Let G = (V,E) be an undirected and unweighted graph of order
N. For a graph matrix A = (A(i, j)); jey With geodesic-width w(A),
we define the diagonal matrix P4 with diagonal elements

keB(f.w(A)){max( >, AGRIL > \A(’tj)\)},iev

Py(i,i) ;== max
jeB(k.w(A)) JjeB(k.w(A))

(2.1)

Cheng et al. [16]. Denote the standard inner product on CN by (., -).
In this section, we consider the problem of finding eigenvectors of
a complex-valued matrix associated with any of its eigenvalues.

Theorem 2.1. Let A be a complex-valued matrix on the graph G of
order N, Py be the diagonal matrix in (2.1), and Q be a nonsingular
diagonal matrix such that

(Q —P,) is positive semidefinite. (2.2)
Then for Xo € CN, the sequence x,, defined inductively by
Xni1 = (I- Q ’A*A)X,, n >0, (23)

converges exponentially to some vector u being either the zero vector
or an eigenvector associated with the zero eigenvalue of the matrix A,

1Q(xn — w2 < [|Qxo 27",

where A;(B),1 <i <N, are eigenvalues of the Hermitian matrix B =
I1-Q 'A*AQ !, u;, 1 <i < N are orthonormal eigenvectors associated
with eigenvalues A;(B),

n>0, (2.4)

Bu; = )»i(B)ui, 1<i<N, (25)

the convergence rate r is given by

r:= max X;(B 0,1), 2.6
onax i(B) €[0,1) (2.6)

and the limit vector u is defined by

u= > (Qx.u)Q 'u;. 2.7)

Ai(B)=1

Proof. Following the argument in [16, Theorem IL.1] and applying
(2.2), we obtain that Q% — A*A is positive semidefinite,

A*A <P} < Q°, (2.8)

where the first inequality in the real setting is established in [16,
Theorem I1.1] and the second inequality follows from (2.2). This to-
gether with nonsingularity of the matrix Q implies that eigenval-
ues A;(B),1 <i <N, of the matrix B are contained in the interval
[0, 1]. Therefore the convergence rate r in (2.6) satisfies

= A;(B) €[0,1).
r xf}};a)i‘l i(B) €[0,1)

Write Qxg = Z?’:] (Qxg. u;)u;. By (2.3), we have that
Q= (Q-Q 'A*A)X, 1 = 1-Q 'A"AQ )Qx,_1 =BQX;1, N> 1,

where the first equality follows from (2.3). This together with
(2.5) implies that

N
Qx, =B"Qxo = ) _(%:(B))"(Qxo, wj)u;, n>0.

i=1

(2.9)
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Combining (2.7), (2.9) and the orthonormality of u;, 1 <i <N, we
obtain

Qe -wla = | ¥ (B (o,

0<);(B)<1

(X 1o w) Py

0<h(B)<1
< [|Qxo — Qu|2r" < ||QXo]l2r", n > 0.

This proves (2.4) and the desired exponential convergence of the
sequence X,,n > 0.

Taking the limit in (2.3) and applying the convergence in
(2.4) yields Q-2A*Au = 0. This proves the desired conclusion that u
in (2.7) is either the zero vector or an eigenvector associated with
eigenvalue zero. O

Take a positive constant ¢ > 0 and define the diagonal matrix
Qc = diag(Qc (i, i))jev by
Qc(i, i) = max (Pa(i, i), ), ieV. (2.10)
Then Q. is a nonsingular diagonal matrix satisfying (2.2), it has
condition number
maX;y Qc(i,i)  max (c. maxicy Pa(i, i))
miniey Qc(i, 1) max (c, mingey Pa(i, i)

K (Qe) i= (2.11)

and it can be constructed at the vertex level (and hence on
SDNs with communication range L > w(A)), since diagonal entries
Pp(i,i),i eV, of the preconditioning matrix P4 can, cf. [16, Algo-
rithm IL1]. Let e;,i €V, be the standard unit vector taking value
zero except value one at ith component. Under the assumption that
A = (A(i, j))i jev is nonsingular, one may verify that

. . 1 Ae; |7 _ _
PaGi) = Y IAGD] = lAel = A7 e s ((sup A M)
jeB(i.w(A)) ill2 112 [lufl=1

and hence for all 0 < ¢ < (Supjy|,—1 |A-1u||,)~1, the precondition-
ing matrices Q. in (2.10) are the same. We remark that the pre-
conditioning matrix Q. with ¢ =0 is used in [16] to solve the lin-
ear system Ax =y in a distributed manner, where A is assumed to
be nonsingular, see [16,34| and references therein for distributed
algorithms to solving a linear system on graphs.

Remark 2.2. In Theorem 2.1, we do not assume that zero is the
eigenvalue of the matrix A with multiplicity one. For the case that
the eigenspace associated with the zero eigenvalue of the matrix A
is a one-dimensional space spanned by a unit vector w, the eigen-
vector u; in (2.5) associated with the eigenvalue 1 of the matrix
B is given by u; = Qw/||Qwl||,. Hence it follows from (2.7) and
Qxg = Zf’ﬂ (Qxg, u;)u; that the limit of the sequence x,,n >0, is
given by u = (Qx,. Qw)w/ || Qw|3.

Remark 2.3. Let H = (H(i, j)); jev be a matrix with geodesic-width
w(H) and XA € C be its eigenvalue. By selecting a random initial
Xo with entries ii.d. on [0, 1], and applying the iterative algo-
rithm (2.3) to the matrix A=H— Al or AI - H, we obtain from
Theorem 2.1 that the limit of the sequence x,, n > 0, is the nonzero
vector u in (2.7) (and hence an eigenvector associated with the
given eigenvalue A) with probability one, where u is not a zero
vector with probability one because for the selection of the ran-
dom initial Xy, the event (Qxg,u;) = (Xo, Qu;) = 0 happens with
probability zero. Following the terminology in [16] where Q = Py,
we call the above algorithm (2.3) to find eigenvectors associated
with a given eigenvalue as a preconditioned gradient descent algo-
rithm, PGDA for abbreviation. By Theorem 2.1, the proposed PGDA
converges exponentially with the convergence rate

'pgpa = Max )\.1‘, (212)
0<A;<1

i
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where A;,1 <i<N, are eigenvalues of the Hermitian matrix I—
Q(AI— H)*(AI — H)Q~!. Moreover, the proposed PGDA can be im-
plemented distributively and synchronously at the vertex level,
see Algorithm 1. For the implementation of Algorithm 1, every
vertex i ¢ V is required to have the information of its w(H)-hop
neighbors, equipped direct communication links with its @ (H)-hop
neighbors, and needs memory to store the eigenvalue A, the itera-
tion number M, the ith diagonal entry of the matrix Q, and entries
H(i, j) and H(j, i), j € B(i, w(H)) in the ith row and column of the
matrix H. Moreover, it is observed that the computational cost and
communication expense for each vertex are independent on the or-
der N of the graph g, cf. [15] for the detailed explanation.

Remark 2.4. The preconditioning matrix Q in (2.3) is closely
related to the conventional gradient descent algorithm
[10,13,15,16,37]. Replacing the preconditioning matrix Q in (2.3) by
y~1/2] with step size y > 0, the corresponding PGDA becomes the
conventional gradient descent algorithm, GDA for abbreviation,
Xpi1 = (I— yA*A)X,, n >0, (2.13)
which has been widely used for inverse filtering [10,13,15,16,30,37].
Applying the similar argument used to prove Theorem 2.1, one
may show that the sequence x,,n>0, in (2.13) with step
size y € (0,2/Amax(A*A)) converges exponentially to some vec-
tor u satisfying Au =0, and the convergence rate is max(|1 —
¥ Amin.o (A*A)[, |1 — ¥ Amax (A*A)|). Therefore the optimal step size
in the GDA (2.13) is
. 2

YORDA = im0 (AR)  Ampax (AA)

= argminmax(|1 — ¥ Amino (A"A)].

Y

1 — ¥ Amax (A*A)])

and the corresponding convergence rate is
TonCDA = )Lmax(A*A) - )Vmin,O(A*A)

PR Amin 0 (A*A) + Aomax (A*A)
Shi et al. [48]. We call the above GDA with optimal step size
Yopcpa Dy the optimal gradient descent algorithm and use the no-

tion OpGDA for abbreviation, see Section 5 for numerical demon-
strations.

(2.14)

2.1. Principal eigenvectors of the hyperlink matrix

Principal eigenvectors of a left stochastic matrix on a network
have been used to measure the influence of a vertex on the whole
network, and a node with the larger entry value has a greater
influence on the network which has been used in Google's page
ranking algorithm and some other applications, see [1,6,35,36] and
references therein. The left stochastic matrix has 1 as the leading
eigenvalue and the principal eigenvector associated with the eigen-
value 1 has positive entries by Perron-Frobenius theorem. The con-
ventional approach to find principal eigenvectors of a left stochas-
tic matrix A is the power iteration method, Power for abbreviation,

Xp =AX,_1,n>1, (2.15)

with the initial xo has positive entries, c.f. Remark 3.3 for power
iteration method for positive definite matrices. One may verify that
the convergence rate rpyyer Of the power iteration method is the
largest magnitude of non-one eigenvalues A; of the matrix A,

Tpower = MaXx |)"l|
Li#l

Let H=WD-! be the hyperlink matrix on a network described
by a weighted (un)directed graph ¢ = (V,E,W), where W =
(W(i, j))i jev is the weight and D = diag(d;);cy is the in-degree ma-
trix given by d; = 3~y w(j, i), i € V. The matrix H is a left stochas-
tic matrix with 1 being the leading eigenvalue and hence the prin-
cipal eigenvectors associated with the eigenvalue 1 have positive
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Fig. 1. Plotted from the left to the right on the top row are principal eigenvectors of the hyperlink matrix Hy ,, for & = —1,0, 1 respectively, where the principal eigenvectors
are normalized so that the maximal entry takes value 1. Plotted from the left to the right on the bottom row are entries of the principal eigenvectors in a neighborhood

around downtown Rochester at position (0.6212, 0.0923).

entries. For the case that the graph G is connected and undirected,
one may verify that the principal eigenvectors associated with the
eigenvalue 1 are proportional to D1, where 1 is the vector with all
entries taking value 1. The distributed PGDA proposed in this sec-
tion is an applicable distributed algorithm to evaluate the princi-
pal eigenvectors of the hyperlink matrix H and hence identify the
global influence of a vertex in the whole network and also local
influence of a vertex on its neighborhood.

Take 6 € [-2,2] and zg € [0,1]%. Let My, = (V.E,Wy,,) be
the Minnesota traffic graph of order N = 2642 with vertices i € V
being deployed on the unit square [0, 1]% [18,45], and the weighted
adjacency matrix Wy 5, 1= (Wg 4, (i, j)a(i, j)); jev being scaled from
the unweighted adjacency matrix A = (a(i, j)); joy on the Min-
nesota traffic graph, where (x;,y;),i € V, are the coordinates of the
vertex i € V, and the weights

Wy 2, (i, j) = (1 + N (i, y:) —2ol2)? A+ NI (%, y)) = 20ll2). i j eV,

depend on the distances between the location of vertices i, j e V
and the given center zy. Shown in Fig. 1 are the principal eigen-
vectors of the hyperlink matrix

HO,ZO = W9.Zg (]:)9.20)71

on the weighted undirected Minnesota traffic graph My 5, where
Dy 4, is the degree matrix and the coordinate (0.5185, 0.2675) of a
vertex representing a traffic intersection in downtown Minneapo-
lis is selected as the center zy of the weights Wo g, (i, §), i, j € V. As
Hy ;,Dy 2,1 = Dy 4,1, principal eigenvectors of the hyperlink matrix
Hy 4, are proportional to the degree vector Dy , 1. The above con-
clusion is confirmed from Fig. 1 that the large entries of the prin-
cipal eigenvectors are mainly concentrated in a neighborhood of
the chosen center z; for small 6 < 0, and far away from the cho-
sen center zy for large 6 > 0. Shown in the second row of Fig. 1 is
the local influence of an intersection at downtown Rochester to its
neighborhood. We observe that its local influence to intersections
in a small neighborhood does not change much for -1 <60 <1,
even its global influence to the whole traffic network changes dra-
matically for -1 <6 < 1.

We compare the performance of the conventional power it-
eration method (2.15), the proposed PGDA and the OpGDA in
Remark 2.4 to find principal eigenvectors of the hyperlink ma-

trix Hy 5, -2 < 6 <2, see Fig. 2. It is observed that the proposed
PGDA has better performance than the conventional power itera-
tion method (Power), the OpGDA has better performance than the
proposed PGDA does, while their performances are still compara-
ble. We remark that the PGDA and Power can be implemented in a
distributed manner, while the OpGDA is not always considered as a
distributed algorithm since one may need some global information
to determine the optimal step size.

3. Principal eigenvectors of Hermitian matrices

In this section, we consider finding principal eigenvectors asso-
ciated with the minimal/maximal eigenvalue of a Hermitian matrix
on a graph G = (V,E) of order N in a distributed manner. We pro-
pose a distributed algorithm to find principal eigenvectors, which
converges faster and has less computational and communication
expense in each iteration than Algorithm 1 to find eigenvectors of
an arbitrary matrix does.

Theorem 3.1. Let A= (A(i, j)); jov be a positive semidefinite matrix
on the graph G of order N with geodesic-width w(A), and QY™ =
diag(QY™(i, i));cy be a nonsingular diagonal matrix satisfying

QY™ i) = Y |AG ) ieV. (3.1)
JjeB(i.w(A))

Then for any initial X, € CN, the sequence X, defined by

Xp1 = (1= (QY™)1A)x,, n >0, (3.2)

converges exponentially to either the zero vector or an eigenvector u
associated with the zero eigenvalue of the matrix A.

Proof. Set BY™ =] — (Q¥Y™)-1/24(Q¥Y™)~1/2, Following the argu-
ment in [16, Theorem IIl.1] and applying (3.1), we obtain that
Q%YM _— A is positive semidefinite. This together with the positive
semidefiniteness of the matrix A implies that all eigenvalues of the
Hermitian matrix BSY™ are in the unit interval [0, 1]. Applying sim-
ilar argument used in the proof of Theorem 2.1 with Q and A*A
replaced by (Q¥™)1/2 and A respectively, we obtain

QY™ (xn — w2 = QY™ *Xol2r", n=0 (33)
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r)

Convergence rate log,(1
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Fig. 2. Plotted are the convergence rate r in the logarithmic scale log;,(1 — r) for the Power, OpGDA and PGDA, see (2.15), (2.14) and (2.12), to find the principal eigenvectors
of the hyperlink matrices Hy ,,, —2 < 6 < 2, on the weighted Minnesota traffic graphs My, = (V,E,Wjy 5 ), where the center z, of the weights wy, (i, j).i, j € V on the left
and right figures are traffic intersections in downtown Minneapolis at position z, = (0.5185,0.2675) and Duluth at position zo = (0.6655, 0.5936) respectively.

for some vector u e CN, where r is the largest eigenvalue of BY™
in [0, 1). This together with the nonsingularity of the matrix QY™
proves the exponential convergence of x,,n > 0.

Taking limit in (3.2) proves Au =0, and hence completes the
proof. O

We remark that the normalized matrix QY™ in (3.1) associated
with a diffusion matrix has been used to understand diffusion pro-
cess [38], and the one corresponding to the Laplacian L on the
connected graph is twice of the degree matrix D [16,39]. For a
positive semidefinite matrix A = (A(i, j)); jov with geodesic-width
(A), a nonsingular diagonal matrix QY™ = diag(Q>¥™ (i, i))icy sat-
isfying (3.1) can be constructed at the vertex level by setting

> AGDc). eV,

JjeB(i.w(A))

QY™ (i, i) = max (3.4)

where c is a positive constant, cf. (2.10). One may verify that the
above preconditioning matrix has its condition number given by

maxey QY™ (i,i)  Max (C! MaXicy 3 jep i wa)) A f)|)

K(Q™) =

(3.5)

With the above selection of the preconditioning matrix in (3.2), we
can find eigenvectors associated with minimal/maximal eigenval-
ues of a Hermitian matrix by the distributed iterative algorithm
(3.2) implementable at the vertex level, see Algorithm 2. Following
the terminology in [16], we call the algorithm (3.2) with a ran-
dom initial having entries i.i.d on [0, 1] as a symmetric precondi-
tioned gradient descent algorithm, SPGDA for abbreviation. By (3.3),
the proposed SPGDA converges exponentially with the convergence
rate

Tspcpa = Max A;,

<ii<1

(3.6)

where ;1 <i<N, are eigenvalues of the Hermitian matrix
I— (QYm)12A(Q%Y™)~1/2, Similar to the PGDA, we can apply
Algorithm 2 to implement the proposed SPGDA distributively and
synchronously. Moreover, comparing with Algorithm 1 to find
eigenvectors of an arbitrary matrix, the Algorithm 2 to find princi-
pal eigenvectors of a Hermitian matrix has less computational cost
and communication expense in each iteration. Our numerical sim-
ulations in Section 5 also indicate that it may converge faster.

Let H be a Hermitian matrix with minimal eigenvalue A, (H)
and maximal eigenvalue Amax(H). Then A; =H — A, (H)I and
Ay = Amax(H)I —H have eigenvalue zero and they are positive

. sym : =~ . . . .
min;ey QY™ (1,1)  max (C, MiNicy 3 icp(iw(a)) |AG, J)|)

Algorithm 2 Realization of the SPGDA at a vertex i e V.
Inputs: The totaliteration number M,the geodesic-width w(A) of
the positive semidefinite matrix A,the set B(i, w(A)) of w(A)-hop
neighbors of the vertex i,entries A(i, j), j € B(i, w(A)), in the ith
row of the matrix A,and the ith entry Q%Y™(i, i) of the diagonal
matrix QSY™,
Initial:Selectxy (i) randomly in [0, 1],and set n = 0.
Iteration:

1. Send x;, (i) to all neighbors k € B(i, w(A))\{i}and receive x;, (k)
from neighbors k € B(i, w(A))\{i}.

2. Evaluate ;1 (i) = xn (i) — ZjeB(i,w(A)) @Y™ (i, 1)) "1Ax, j)xa(j)
and setn=n+ 1.

3. Return to Step 1 if n < M, otherwise go to Output.

Output: u(i) ~ yy (i), where u = (u(i))jcy-

semidefinite. Then applying the SPGDA to A; (resp. Ay) with a ran-
dom initial Xy having entries i.i.d on [0, 1], we obtain the principal
eigenvectors associated with minimal (resp. maximal) eigenvalues
of the Hermitian matrix H by Theorem 3.1.

Remark 3.2. Replacing the preconditioning matrix QY™ in (3.2) by
(y¥Y™)~1I with step size yY™ > 0, the corresponding SPGDA be-
comes

X1 = (1= y¥MA)Xp, n > 0, (3.7)

the symmetric version of the gradient descent algorithm
(213) with step size y¥M™ >0 [15,16]. By a similar proof of
Theorem 3.1, we can show that the above sequence x;,n >0,
with step size Y™ e (0,2/Amax(A)) converges exponentially
to some vector u satisfying Au =0 and the convergence rate is
max(|1 — ¥ ApinoA)], |1 — ¥ Amax(A)|). Moreover, the optimal step
size is yYop" =2/(Amino(A) + Amax(A)) and the corresponding
convergence rate is

T _ Amax (A) - )‘min.O (A)
OPSEPA = % min0 (A) + Amax (A)

(3.8)

We call the symmetric gradient descent algorithm (3.7) with the
optimal step size yosg'm by the optimal symmetric gradient de-
scent algorithm and use the notion OpSGDA for abbreviation, see

Section 5 for numerical demonstrations.

Remark 3.3. For a positive semidefinite matrix H with maximal
eigenvalue Amax(H), applying (3.7) with A and ySY™ replaced by
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Amax(H)I —H and (Amax (H))~! respectively yields
Xpi1 = (Amax(H))"HX,, n > 0. (3.9

The above sequence x;,n > 0, converges exponentially with the
convergence rate

max 2 (H)
T'cAPower = m

and the limit u is a principal eigenvector of the matrix H as-
sociated with the eigenvalue Amax(H) if u+#0, where A, (H)
is the second largest eigenvalue of the positive semidefinite ma-
trix H. The above approach can be considered as the conventional
power iteration method without normalization [40] and its varia-
tions have been discussed in [22,41-43]. Following the terminol-
ogy Chaotic Asynchronous Power Iteration Algorithm in [41], we use
CAPower for abbreviation of the above approach with entries of
the initial X randomly selected in [0, 1], see Section 5 for numer-
ical demonstrations.

(3.10)

4. Eigenvectors of polynomial filters

Graph filter is a fundamental concept in graph signal pro-
cessing and it has been used in many applications such as
denoising, smoothing, and consensus of multi-agent systems
[4,8,12,13,15,16,18,44-50]. An elementary graph filter is a graph
shift, which has 1 as its geodesic-width. Graph filters in most of
literature are designed to be polynomials

.Sq) = Z Zhll ,,,,, LSSl (41)

=0  I,=0

A=h(S,,...

of commutative graph shifts Sy, ..., Sy, i.e., S;Sy
k, k' < d, where the multivariate polynomial

h(ty, ... td)_z Zhl, ,,,,, Lt

=0  1;=0

=SS, forall 1 <

of degree Zﬁzl L, has polynomial coefficients hy ;. 0<l <
L, 1 <k <d [10-14,18,51,52]. In this section, we propose iterative
algorithms to determine eigenvectors associated with a polynomial
graph filter, which can be implemented on an SDN with 1 as its
communication range, i.e., direct communication exists between all
adjacent vertices only.

Observe that

(4.2)

is a polynomlal graph filter of commutative shifts S3, ..., S;;- Then
applying [15, Algorithm II.2] to implement the filtering procedure
associated with polynomial graph filters A and A*, and then apply-
ing the diagonal preconditioning matrices Q=2 and (Q%¥Y™)~!, we
can implement the iteration (2.3) of the PGDA and (3.2) of the
SPGDA in finite steps with each step including data exchanging be-
tween adjacent vertices only. Using the above implementation, the
PGDA and SPGDA can be applied to find eigenvectors of a polyno-
mial graph filter on SDNs with communication range one.
Now it remains to construct diagonal matrices satisfying
(2.2) and (3.1) on SDNs with communication range 1. For the
polynomial graph filter A in (4.1), define diagonal matrices Qc =
diag(Qc(i. 1))y and QY™ = dlag(Qiym @ 1)>,ev by

and
Q™ (i, i) = max { S A, k), c}, iev, (4.4)

keV
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where ¢ > 0 is a positive number, [Si| = (|S(i, )Dijev.1 <k <d,
and

.. |Sd|ld.
L=0  I;=0
One may verify that
|AG, j)] gﬁ(i, j) foralli,jeV. (4.5)

Therefore the matrices Qc in (4.3) and szm in (4.4) satisfy
(2.2) and (3.1) respectively. Moreover following |15, Algorithm IL.2]
to implement the filtering procedure, we can construct diagonal
preconditioning matrices Q. and QY™ at the vertex level in finite
steps such that in each step, every vertex needs to exchange data
with adjacent vertices only.

5. Numerical simulations

Let Gy,N > 2, be random geometric graphs with N vertices
whose coordinates (x;,y;),1 <i <N, randomly deployed on the
unit square [0, 1]? and an undirected edge between two vertices in
Vy exists if their physical distance is not larger than ,/2/N [18,53].
In this section, we consider finding eigenvectors associated with
maximal eigenvalue 1 of graph matrices

Hy m = (I - GGWH LYWy )™

of order m>1, where 6 >0 is a weight parameter, LY™ is
the symmetric normalized Laplacian matrix on the graph Gy,
W, = diag(wy(i)) is a diagonal weighted matrix with diago-
nal entries wy (i) = (14 N||(x;,.y;) — (1/2,1/2)]2)?, and Gy = (1 +
N/+/2)729 /2. The matrices Hy ,, with 6 = 0 are lowpass spline fil-
ters of HSpln m > 1, introduced in [18,54] for nonsubsampled fil-
ter banks In the simulations, we use PGDA and PGDA1h to denote
the PGDA with A replaced by I - Hy ,, and Q by Q. in (2.10) and
@ in (4.3) respectively, and similarly we use SPGDA and SPGDA1h
to denote the SPGDA with A replaced by I-Hy ,, and Q by Q™
in (3.4) and szm in (4.4) respectively. Our numerical simulations
indicate that the iterative PGDA and SPGDA have slower conver-
gence speed for larger thresholding constant ¢ > 0 and their expo-
nential convergence rates do not change for small ¢ > 0, see Fig. 3.
However we cannot confirm the above phenomenon mathemati-
cally. One may verify that the matrices QY™ in (3.4) and Q%™
in (4.4) are nonsingular if ¢ >0, and they could be singular if
¢ =0 is selected, see (2.11) and (3.5) for the condition numbers of
those preconditioning matrices. Based on the above observations,
we take ¢ = 0.001 in our simulations from now on.

For the sequences x,,n > 0, in the PGDA, SPGDA, PGDA1h and
SPGDA1h and their limits u, define relative convergence errors

E(n) = log;o ([|Xn — ul2/|ull2)

in the logarithmic scale to measure their performance. Shown in
Fig. 4 is the average over 200 trials for the convergence rate
with 0 <6 <2 and m=1,4, and the relative convergence errors
E(n) for # =0,3/2 and m = 4, where the convergence rates r for
the PGDA and PGDA1h are given in (2.12) with A replaced by
I-Hy,, and Q by Q¢ in (2.10) and @ in (4.3) respectively, and
similarly the convergence rates for the SPGDA and SPGDA1h are
given in (3.6) with A replaced by I-Hy , and Q%¥™ are replaced
by QY™ in (3.4) and Q¥™ in (4.4) respectively. This demonstrates
the exponential convergence of the sequence x,, n > 0, established
in Theorems 2.1 and 3.1, and hence the proposed PGDA, SPGDA,
PGDA1h and SPGDA1h can be applied to find eigenvectors associ-
ated with a given eigenvalue.

One may verify that 1 is the maximal eigenvalue of matri-
ces Hy,,m > 1. Therefore the OpGDA in Remark 2.4 and the
OpSGDA in Remark 3.2 with A replaced by I-Hy,, and the
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Convergence Rate with SPGDA for 0=0
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Fig. 3. Plotted are the convergence rate r in the logarithmic scale log;,(1 —r) for using PGDA (left) and SPGDA (right), see (2.12) and (3.6), to find the principal eigenvectors
of graph filters Hy ,, on a random geometric graph Gs;,, where the weight parameter # = 0 (top) and 6 = 3/2 (bottom), m =1,2,3,4,6 and 0 < c < 3. It is observed that the
PGDA and SPGDA converge slow for large thresholding constant ¢ > 0.
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Fig. 4. Plotted on the top are the average of convergence rate r in the logarithmic scale log;,(1 —r) over 200 trials versus the weight parameter 0 < 6 <2 for m =1 (left)
and m = 4 (right), where the average of the convergence rate for the algorithms, SPGDA, SPGDA1h, OpSGDA, CAPower, PGDA, PGDA1h and OpGDA, with m =4 and 6 = 3/2
are 0.997548570, 0.998814592, 0.999783754, 0.999896610, 0.999999867, 0.999999967, 0.999999968 respectively. On the second row are the average of the convergence
errors E(n), 1 < n < 2000, in the logarithmic scale over 200 trials, where m =4 and 6 = 0, 3/2 from the left to the right respectively.
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Fig. 5. Plotted are the average of convergence rate r in the logarithmic scale log;y(1 —r) over 200 trials versus the weight parameter —2 <6 <2 for m =1 (top left) and
m = 4 (bottom left), and the average of the convergence errors E(n), 1 < n < 2000, in the logarithmic scale over 200 trials, where (m, ) = (1, 0) (top middle), (1,3/2) (top
right), (4, 0) (bottom middle) and (4, 3/2) (bottom right). The averages of the convergence rate for the algorithms PGDA and OpGDA are 0.9999998612 and 0.9999995487 (top
middle), 0.9999994358 and 0.9999999970 (top right), 0.9999993358 and 0.9999999496 (bottom middle), and 0.9999951127 and 0.9999999828 (bottom right) respectively.

CAPower in Remark 3.3 with H and Amax(H) replaced by Hy
and 1 can be used to find principal eigenvectors associated
with eigenvalue 1 of matrices Hy,,,m > 1. Shown in Fig. 4 are
their performance and comparison with the proposed PGDA,
SPGDA, PGDA1lh and SPGDA1h, where the convergence rate for
the CAPower is given in (3.10) with H and Amax(H) replaced by
Hy , and 1, and the convergence rates for the OpGDA and OpS-
GDA are given in (2.14) and (3.8) with A replaced by I-Hy
respectively.

From the above numerical simulations, we observe that
SPGDA, SPGDA1h, OpSGDA, CAPower outperform OpGDA, PGDA
and PGDA1h to find principal eigenvectors associated with maxi-
mal eigenvalue of positive semidefinite matrices Hy ,,,, m > 1, the
CAPower has slightly slower convergence speed than the OpSGDA
does, and the OpSGDA has the best performance for small 6 > 0
while the distributed SPGDA has the fastest convergence rate for
large 6 < 2. We remark that OpSGDA and OpGDA are usually not
considered as distributed algorithms as we need some global in-
formation to determine the optimal step size.

Numerical simulations are also conducted on the Minnesota
traffic graph with coordinates of vertices being rescaled such that
it can be deployed on the unit square [0, 1]? [18,45]. We observe
similar performances of the algorithms to find principal eigenvec-
tors associated with eigenvalue 1 of matrices Hy ,,,m > 1, on the
Minnesota traffic graph.

In addition to find the eigenvector associated with the prin-
cipal eigenvalue of the filters Hy,, we conduct the numer-
ical experiments to evaluate the eigenvector associated with
the second largest eigenvalue An.c, of matrices Hy,,, which
is also the eigenvector associated with the first positive eigen-
value of weighted Laplacian WyL%Y™W,, by the algorithm PGDA
in (2.12), and to compare the performance with the OpGDA in
Remark 2.4 with A and Q replaced by Amax2l—Hg,, and Q. in
(2.10) respectively. Shown in Fig. 5 is the average over 200 tri-
als for the convergence rate in the logarithmic scale with -2 <
0 <2 and m = 1,4, and the relative convergence errors E(n) for
0 =0,3/2 and m = 1,4, where the convergence rates r for the

PGDA given in (2.12) and the OpGDA given in (2.14). This demon-
strates that the sequence xj,n >0, in Theorem 2.1 has the ex-
ponential convergence and that the proposed distributed PGDA
can be applied to find eigenvectors associated with any given
eigenvalue and it has comparable performance with the global
OpGDA algorithm on finding eigenvectors associated with a given
eigenvalue.

6. Conclusions and future study

On an SDN with communication range L, we can use the dis-
tributed PGDA with the preconditioning matrix in (2.2) to find
eigenvectors associated with an arbitrary given eigenvalue for
a matrix H with geodesic-width w(H) <L, and the distributed
SPGDA with the preconditioning matrix in (3.4) to find eigenvec-
tors associated with maximal/minimal eigenvalue of a positive
semidefinite matrix H with geodesic-width w(H) < L.

In [35,36], asynchronous power iteration method is proposed
to find principal eigenvectors of some left stochastic matrix. We
do not know whether asynchronous power iteration method can
be extended to find eigenvectors of arbitrary matrix with small
geodesic-width, or whether we can find a synchronous version of
the distributed algorithms proposed in this paper, which be con-
sidered in our future works.

The importance of distributively estimating the eigenvalues of a
matrix on a graph G has been illustrated in many applications, see
[29] and references therein. Most of distributed algorithms avail-
able are based on the consensus approach, and hence the mem-
ory, computational cost and communication expense for each ver-
tex depend linearly or quadratically on the order of the graph. The
distributed estimation of eigenvalues of matrices on graphs with
small geodesic-width will be considered in our future work so that,
similar to the proposed algorithms in this paper to evaluate eigen-
vectors, the memory, computational cost and communication ex-
pense for each vertex depend independently on the order of the
graph, c.f. [55,56] for distributed criteria on the stability of matri-
ces on graphs.
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