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a b s t r a c t 

Eigenvectors of matrices on a network have been used for understanding influence of a vertex and spec- 

tral clustering. For matrices with small geodesic-width and their given eigenvalues, we propose precon- 

ditioned gradient descent algorithms in this paper to find eigenvectors. We also consider synchronous 

implementation of the proposed algorithms at vertex/agent level in a spatially distributed network in 

which each agent has limited data processing capability and confined communication range. 
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. Introduction 

Spatially distributed networks (SDNs) consist of a large amount 

f agents, and each agent is equipped with subsystems for limited 

ata processing and direct communication link to its “neighbor- 

ng” agents within communication range. SDNs appear in (wire- 

ess) sensor networks, smart grids, social network and many real 

orld applications [1–9] . In this paper, we describe the topologi- 

al structure of an SDN by a finite graph G := (V, E) with a vertex

n V representing an agent, an edge in E between vertices indi- 

ating that the corresponding agents are within some range in the 

patial space, and the communication range L being the maximal 

eodesic distance such that direct communication link between 

gents i, j ∈ V exists whenever ρ(i, j) ≤ L , where the geodesic dis-

ance ρ(i, j) is the number of edges in a shortest path connecting 

, j ∈ V . As SDNs may not have a central server, data processing on

DNs should be designed at the agent/vertex level with direct data 

xchanging between neighboring vertices within the communica- 

ion range L . 

Matrices on SDNs appear as filters in graph signal process- 

ng, transition matrices in Markov chains, state matrices of dy- 

amic systems in control theory, sensing matrices in sampling 

heory, and in many more applications [6,9–16] . In this paper, 
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e consider complex-valued graph filters represented by matri- 

es A = (A (i, j)) i, j∈ V on the graph G = (V, E) with limited geodesic- 

idth ω(A ) , which is the smallest nonnegative integer such that 

 (i, j) = 0 for all i, j ∈ V satisfying ρ(i, j) > ω(A ) [9,16–19] . Our il-

ustrative examples of graph filters with small geodesic-width are 

he graph Laplacian matrix with geodesic-width one and polyno- 

ial graph filters with geodesic-width no more than the degree of 

he polynomial [15] . The concept of geodesic-width for graph fil- 

ers can be considered as the correspondence of the duration for 

nite impulse response filters in the graph setting. 

Eigenspaces of matrices with limited geodesic-width have been 

sed to understand the communicability between vertices, spectral 

lustering for the network, and influence of a vertex on the net- 

ork, see [3,6,20–32] and references therein. Most of distributed 

lgorithms proposed in the literature, such as the conventional 

ower method and gradient descent method, are based on the 

onsensus approach and required to have some prior global pa- 

ameters other than the eigenvalue, such as the largest eigenvalue 

r its estimation, for the normalization, see Remarks 2.4 and 3.3 . 

ased on the preconditioned gradient descent approach in [16] for 

nverse filtering, in Section 2 we propose a preconditioned gradi- 

nt descent algorithm (PGDA) to determine eigenvectors associated 

ith an eigenvalue λ of a given matrix A with limited geodesic- 

idth ω(A ) , which is proved to converge exponentially to the de- 

ired eigenvector without any global assumptions on spectrum of 

he matrix and the magnitudes of its entries, see Theorem 2.1 and 

emark 2.3 . More importantly, the proposed algorithm can be im- 
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Algorithm 1 Realization of the PGDA at a vertex i ∈ V . 

Inputs : The totaliteration number M, the geodesic-width ω(H ) 

of the matrix H = (H(i, j)) i, j∈ V ,the set B (i, ω(H )) of ω(H ) -hop 

neighbors of the vertex i ,the eigenvalue λ of the matrix H ,entries 

H (i, j) and H ( j, i ) , j ∈ B (i, ω(H )) in the i th row and column of 

the matrix H ,and the i th diagonal entry Q(i, i ) of the matrix Q . 

Pre-iteration : Compute A (i, j) = H(i, j) − λδ(i, j) and ˜ A ( j, i ) = 

(Q(i, i )) −2 
(
H( j, i ) − λ̄δ( j, i ) 

)
for j ∈ B (i, ω(H )) ,where δ is the 

Kronecker delta. 

Initial :Select the i th component x 0 (i ) ∈ [0 , 1] of the initial vector 

x 0 randomly, and set n = 0 . 

Iteration : 

1. Send x n (i ) to all neighbors k ∈ B (i, ω(H )) \{ i } andreceive x n (k ) 
from neighbors k ∈ B (i, ω(H )) \{ i } . 

2. Evaluate ˜ x n (i ) = 

∑ 

j∈ B (i,ω(H )) A (i, j ) x n ( j ) . 

3. Send ˜ x n (i ) to all neighbors k ∈ B (i, ω(H )) \{ i } andreceive ˜ x n (k ) 
from neighbors k ∈ B (i, ω(H )) \{ i } . 

4. Evaluate ̂  x n (i ) = 

∑ 

j∈ B (i,ω(H )) 
˜ A ( j, i ) ̃ x n ( j) . 

5. Set x n +1 (i ) = x n (i ) − ̂ x n (i ) and n = n + 1 . 

6. Return to Step 1 if n ≤ M, go to Output otherwise. 

Output : u (i ) ≈ x M 
(i ) , where u = (u (i )) i ∈ V is the eigenvector. 
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lemented distributively and synchronously at the vertex level, see 

lgorithm 2.1, and the preconditioning matrix could be explicitly 

onstructed at the vertex level (and hence on SDNs with commu- 

ication range L ≥ ω(A ) ). For the implementation of Algorithm 1 

n the network, every vertex i is only required to have the infor- 

ation of its ω(A ) -hop neighbors, it is equipped direct commu- 

ication links with its ω(H) -hop neighbors, and it needs memory 

o store the eigenvalue λ, the iteration number M, the i th diago- 

al entry of the preconditioning matrix and entries in the i th row 

nd column of the matrix A . Therefore the memory, computational 

ost and communication expense at each vertex to implement the 

reconditioned gradient descent algorithm are independent on the 

rder of the graph G, while they depend on the order of the graph

n the distributed algorithms based on the consensus approach al- 

ost linearly [3,22] and quadratically [29,33,34] . We believe that 

he proposed PGDA and its symmetric version in Section 3 are im- 

ortant for the scenario that each agent of the network has lim- 

ted memory, computing power and communication bandwidth, 

nd also limited access to the whole matrix due to various reasons 

such as privacy and limitation of storage), and the only global in- 

ormation available is the eigenvalue. 

In Sections 3 , we propose the symmetric preconditioned gradi- 

nt descent algorithm (SPGDA), a symmetric version of the PGDA 

n Section 2 , to find principal eigenvectors of a Hermitian matrix. 

imilar to the PGDA, it can be implemented distributively and syn- 

hronously at the vertex level, see Algorithm 3.1 . Moreover, com- 

aring with Algorithm 1 to find eigenvectors of an arbitrary ma- 

rix, the Algorithm 3.1 has less computational cost and commu- 

ication expense in each iteration and our numerical simulations 

lso indicate that it may converge faster. In Section 4 , we mod- 

fy the PGDA and SPGDA to find eigenvectors of a polynomial fil- 

er of graph shifts, which can be implemented at the vertex level 

ith each agents being required to exchange data between adja- 

ent vertices only. In Section 5 , we demonstrate the performance 

f the proposed algorithms on finding eigenvectors associated with 

he (second) largest eigenvalue of lowpass-spline-like filters and 

ompare their performance with the gradient descent method with 

ptimal step size and the conventional power method without nor- 

alization. 

Notation : Set ‖ x ‖ 2 = ( 
∑ 

j∈ V | x ( j) | 2 ) 1 / 2 for graph signals x =
x j ) j∈ V , denote the set of all s -hop neighbors of a vertex i ∈ V 
2 
y B (i, s ) = { j ∈ V, ρ( j, i ) ≤ s } , s ≥ 0 , denote the identity matrix by

 and Hermitian transpose of a complex-valued matrix A by A 
∗, 

nd let λmax (A ) , λmax , 2 (A ) , λmin (A ) and λmin , 0 (A ) be the maxi-

al eigenvalue, second largest eigenvalue, minimal eigenvalue and 

inimal nonzero eigenvalue of a positive semidefinite matrix A re- 

pectively. 

. A distributed iterative algorithm for determining 

igenvectors 

Let G = (V, E) be an undirected and unweighted graph of order 

. For a graph matrix A = (A (i, j)) i, j∈ V with geodesic-width ω(A ) , 

e define the diagonal matrix P A with diagonal elements 

 A (i, i ) := max 
k ∈ B (i,ω(A )) 

{ 
max 

( ∑ 

j∈ B (k,ω(A )) 

| A ( j, k ) | , ∑ 

j∈ B (k,ω(A )) 

| A (k, j) | 
)} 

, i ∈ V 

(2.1) 

heng et al. [16] . Denote the standard inner product on C 
N by 〈·, ·〉 .

n this section, we consider the problem of finding eigenvectors of 

 complex-valued matrix associated with any of its eigenvalues. 

heorem 2.1. Let A be a complex-valued matrix on the graph G of 

rder N, P A be the diagonal matrix in (2.1) , and Q be a nonsingular

iagonal matrix such that 

Q − P A ) is positive semidefinite . (2.2) 

hen for x 0 ∈ C 
N , the sequence x n defined inductively by 

 n +1 = (I − Q 
−2 A 

∗A ) x n , n ≥ 0 , (2.3) 

onverges exponentially to some vector u being either the zero vector 

r an eigenvector associated with the zero eigenvalue of the matrix A , 

 Q (x n − u ) ‖ 2 ≤ ‖ Qx 0 ‖ 2 r 
n , n ≥ 0 , (2.4)

here λi (B ) , 1 ≤ i ≤ N, are eigenvalues of the Hermitian matrix B =
 − Q 

−1 A 
∗AQ 

−1 , u i , 1 ≤ i ≤ N are orthonormal eigenvectors associated 

ith eigenvalues λi (B ) , 

u i = λi (B ) u i , 1 ≤ i ≤ N, (2.5) 

he convergence rate r is given by 

 := max 
0 ≤λi (B ) < 1 

λi (B ) ∈ [0 , 1) , (2.6) 

nd the limit vector u is defined by 

 = 

∑ 

λi (B )=1 

〈 Qx 0 , u i 〉 Q 
−1 u i . (2.7) 

roof. Following the argument in [16 , Theorem II.1] and applying 

2.2) , we obtain that Q 
2 − A 

∗A is positive semidefinite, 

 
∗A 
 P 

2 
A 
 Q 

2 , (2.8) 

here the first inequality in the real setting is established in [16 , 

heorem II.1] and the second inequality follows from (2.2) . This to- 

ether with nonsingularity of the matrix Q implies that eigenval- 

es λi (B ) , 1 ≤ i ≤ N, of the matrix B are contained in the interval

0 , 1] . Therefore the convergence rate r in (2.6) satisfies 

 = max 
λi (B ) � =1 

λi (B ) ∈ [0 , 1) . 

Write Qx 0 = 

∑ N 
i =1 〈 Qx 0 , u i 〉 u i . By (2.3) , we have that 

x n = (Q − Q 
−1 A ∗A ) x n −1 = (I − Q 

−1 A ∗AQ 
−1 ) Qx n −1 = BQx n −1 , n ≥ 1 , 

here the first equality follows from (2.3) . This together with 

2.5) implies that 

x n = B 
n Qx 0 = 

N ∑ 

i =1 

(λi (B )) n 〈 Qx 0 , u i 〉 u i , n ≥ 0 . (2.9)
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ombining (2.7), (2.9) and the orthonormality of u i , 1 ≤ i ≤ N, we 

btain 

 Q (x n − u ) ‖ 2 = 

∥∥∥ ∑ 

0 ≤λi (B ) < 1 

(λi (B )) n 〈 Qx 0 , u i 〉 u i 

∥∥∥
= 

( ∑ 

0 ≤λi (B ) < 1 

|〈 Qx 0 , u i 〉| 2 (λi (B )) 2 n 
)
1 / 2 

≤ ‖ Qx 0 − Qu ‖ 2 r 
n ≤ ‖ Qx 0 ‖ 2 r 

n , n ≥ 0 . 

his proves (2.4) and the desired exponential convergence of the 

equence x n , n ≥ 0 . 

Taking the limit in (2.3) and applying the convergence in 

2.4) yields Q 
−2 A 

∗Au = 0 . This proves the desired conclusion that u

n (2.7) is either the zero vector or an eigenvector associated with 

igenvalue zero. �

Take a positive constant c > 0 and define the diagonal matrix 

 c = diag (Q c (i, i )) i ∈ V by 

 c (i, i ) = max 
(
P A (i, i ) , c 

)
, i ∈ V. (2.10)

hen Q c is a nonsingular diagonal matrix satisfying (2.2) , it has 

ondition number 

(Q c ) := 

max i ∈ V Q c (i, i ) 

min i ∈ V Q c (i, i ) 
= 

max 
(
c, max i ∈ V P A ( i, i ) 

)
max 

(
c, min i ∈ V P A (i, i ) 

) , (2.11) 

nd it can be constructed at the vertex level (and hence on 

DNs with communication range L ≥ ω(A ) ), since diagonal entries 

 A (i, i ) , i ∈ V , of the preconditioning matrix P A can, cf. [16 , Algo-

ithm II.1]. Let e i , i ∈ V , be the standard unit vector taking value

ero except value one at i th component. Under the assumption that 

 = (A (i, j)) i, j∈ V is nonsingular, one may verify that 

 A (i, i ) ≥
∑ 

j∈ B (i,ω(A )) 

| A (i, j) | ≥ ‖ Ae i ‖ 2 = 

∥∥∥A −1 Ae i 
‖ Ae i ‖ 2 

∥∥∥−1 

2 
≥

(
sup 

‖ u ‖ 2 =1 

‖ A −1 u ‖ 2 
)

−1

nd hence for all 0 ≤ c ≤ ( sup ‖ u ‖ 2 =1 ‖ A 
−1 u ‖ 2 ) −1 , the precondition-

ng matrices Q c in (2.10) are the same. We remark that the pre- 

onditioning matrix Q c with c = 0 is used in [16] to solve the lin-

ar system Ax = y in a distributed manner, where A is assumed to 

e nonsingular, see [16,34] and references therein for distributed 

lgorithms to solving a linear system on graphs. 

emark 2.2. In Theorem 2.1 , we do not assume that zero is the

igenvalue of the matrix A with multiplicity one. For the case that 

he eigenspace associated with the zero eigenvalue of the matrix A 

s a one-dimensional space spanned by a unit vector w , the eigen- 

ector u i in (2.5) associated with the eigenvalue 1 of the matrix 

 is given by u i = Qw / ‖ Qw ‖ 2 . Hence it follows from (2.7) and

x 0 = 

∑ N 
i =1 〈 Qx 0 , u i 〉 u i that the limit of the sequence x n , n ≥ 0 , is

iven by u = 〈 Qx 0 , Qw 〉 w / ‖ Qw ‖ 2 2 . 
emark 2.3. Let H = (H(i, j)) i, j∈ V be a matrix with geodesic-width 

(H ) and λ ∈ C be its eigenvalue. By selecting a random initial 

 0 with entries i.i.d. on [0 , 1] , and applying the iterative algo-

ithm (2.3) to the matrix A = H − λI or λI − H , we obtain from

heorem 2.1 that the limit of the sequence x n , n ≥ 0 , is the nonzero

ector u in (2.7) (and hence an eigenvector associated with the 

iven eigenvalue λ) with probability one, where u is not a zero 

ector with probability one because for the selection of the ran- 

om initial x 0 , the event 〈 Qx 0 , u i 〉 = 〈 x 0 , Qu i 〉 = 0 happens with

robability zero. Following the terminology in [16] where Q = P A , 

e call the above algorithm (2.3) to find eigenvectors associated 

ith a given eigenvalue as a preconditioned gradient descent algo- 

ithm , PGDA for abbreviation. By Theorem 2.1 , the proposed PGDA 

onverges exponentially with the convergence rate 

 PGDA = max 
0 ≤λi < 1 

λi , (2.12) 
3 
here λi , 1 ≤ i ≤ N, are eigenvalues of the Hermitian matrix I −
 (λI − H ) ∗(λI − H ) Q 

−1 . Moreover, the proposed PGDA can be im-

lemented distributively and synchronously at the vertex level, 

ee Algorithm 1 . For the implementation of Algorithm 1 , every 

ertex i ∈ V is required to have the information of its ω(H ) -hop

eighbors, equipped direct communication links with its ω(H ) -hop 

eighbors, and needs memory to store the eigenvalue λ, the itera- 
ion number M, the i th diagonal entry of the matrix Q , and entries

(i, j) and H( j, i ) , j ∈ B (i, ω(H )) in the i th row and column of the

atrix H . Moreover, it is observed that the computational cost and 

ommunication expense for each vertex are independent on the or- 

er N of the graph G, cf. [15] for the detailed explanation. 

emark 2.4. The preconditioning matrix Q in (2.3) is closely 

elated to the conventional gradient descent algorithm 

10,13,15,16,37] . Replacing the preconditioning matrix Q in (2.3) by 
−1 / 2 I with step size γ > 0 , the corresponding PGDA becomes the 

onventional gradient descent algorithm, GDA for abbreviation, 

 n +1 = (I − γA 
∗A ) x n , n ≥ 0 , (2.13) 

hich has been widely used for inverse filtering [10,13,15,16,30,37] . 

pplying the similar argument used to prove Theorem 2.1 , one 

ay show that the sequence x n , n ≥ 0 , in (2.13) with step

ize γ ∈ (0 , 2 /λmax (A 
∗A )) converges exponentially to some vec- 

or u satisfying Au = 0 , and the convergence rate is max (| 1 −
λmin , 0 (A 

∗A ) | , | 1 − γ λmax (A 
∗A ) | ) . Therefore the optimal step size

n the GDA (2.13) is 

OpGDA : = 

2 

λmin , 0 (A 
∗A ) + λmax (A 

∗A ) 

= arg min 
γ

max (| 1 − γ λmin , 0 (A 
∗A ) | , | 1 − γ λmax (A 

∗A ) | ) 
nd the corresponding convergence rate is 

 OpGDA = 

λmax (A 
∗A ) − λmin , 0 (A 

∗A ) 

λmin , 0 (A 
∗A ) + λmax ( A 

∗A ) 
(2.14) 

hi et al. [48] . We call the above GDA with optimal step size

OpGDA by the optimal gradient descent algorithm and use the no- 

ion OpGDA for abbreviation, see Section 5 for numerical demon- 

trations. 

.1. Principal eigenvectors of the hyperlink matrix 

Principal eigenvectors of a left stochastic matrix on a network 

ave been used to measure the influence of a vertex on the whole 

etwork, and a node with the larger entry value has a greater 

nfluence on the network which has been used in Google’s page 

anking algorithm and some other applications, see [1,6,35,36] and 

eferences therein. The left stochastic matrix has 1 as the leading 

igenvalue and the principal eigenvector associated with the eigen- 

alue 1 has positive entries by Perron-Frobenius theorem. The con- 

entional approach to find principal eigenvectors of a left stochas- 

ic matrix A is the power iteration method, Power for abbreviation, 

 n = Ax n −1 , n ≥ 1 , (2.15) 

ith the initial x 0 has positive entries, c.f. Remark 3.3 for power 

teration method for positive definite matrices. One may verify that 

he convergence rate r Power of the power iteration method is the 

argest magnitude of non-one eigenvalues λi of the matrix A , 

 Power = max 
λi � =1 

| λi | . 
et H = WD 

−1 be the hyperlink matrix on a network described 

y a weighted (un)directed graph G = (V, E, W ) , where W =
w (i, j)) i, j∈ V is the weight and D = diag (d i ) i ∈ V is the in-degree ma- 

rix given by d i = 

∑ 

j∈ V w ( j, i ) , i ∈ V . The matrix H is a left stochas-

ic matrix with 1 being the leading eigenvalue and hence the prin- 

ipal eigenvectors associated with the eigenvalue 1 have positive 
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Fig. 1. Plotted from the left to the right on the top row are principal eigenvectors of the hyperlink matrix H θ, z 0 for θ = −1 , 0 , 1 respectively, where the principal eigenvectors 

are normalized so that the maximal entry takes value 1. Plotted from the left to the right on the bottom row are entries of the principal eigenvectors in a neighborhood 

around downtown Rochester at position (0 . 6212 , 0 . 0923) . 
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‖  
ntries. For the case that the graph G is connected and undirected, 

ne may verify that the principal eigenvectors associated with the 

igenvalue 1 are proportional to D1 , where 1 is the vector with all

ntries taking value 1. The distributed PGDA proposed in this sec- 

ion is an applicable distributed algorithm to evaluate the princi- 

al eigenvectors of the hyperlink matrix H and hence identify the 

lobal influence of a vertex in the whole network and also local 

nfluence of a vertex on its neighborhood. 

Take θ ∈ [ −2 , 2] and z 0 ∈ [0 , 1] 2 . Let M θ, z 0 
= (V, E, W θ, z 0 

) be

he Minnesota traffic graph of order N = 2642 with vertices i ∈ V 

eing deployed on the unit square [0 , 1] 2 [18,45] , and the weighted

djacency matrix W θ, z 0 
:= (w θ, z 0 

(i, j) a (i, j)) i, j∈ V being scaled from 

he unweighted adjacency matrix A = (a (i, j)) i, j∈ V on the Min- 

esota traffic graph, where (x i , y i ) , i ∈ V , are the coordinates of the

ertex i ∈ V , and the weights 

 θ, z 0 
(i, j) = (1 + N‖ (x i , y i ) − z 0 ‖ 2 ) θ (1 + N‖ (x j , y j ) − z 0 ‖ 2 ) θ , i, j ∈ V, 

epend on the distances between the location of vertices i, j ∈ V 

nd the given center z 0 . Shown in Fig. 1 are the principal eigen-

ectors of the hyperlink matrix 

 θ, z 0 = W θ, z 0 (D θ, z 0 ) 
−1 

n the weighted undirected Minnesota traffic graph M θ, z 0 
, where 

 θ, z 0 
is the degree matrix and the coordinate (0.5185, 0.2675) of a 

ertex representing a traffic intersection in downtown Minneapo- 

is is selected as the center z 0 of the weights w θ, z 0 
(i, j) , i, j ∈ V . As

 θ, z 0 
D θ, z 0 

1 = D θ, z 0 
1 , principal eigenvectors of the hyperlink matrix 

 θ, z 0 
are proportional to the degree vector D θ, z 0 

1 . The above con- 

lusion is confirmed from Fig. 1 that the large entries of the prin- 

ipal eigenvectors are mainly concentrated in a neighborhood of 

he chosen center z 0 for small θ < 0 , and far away from the cho-

en center z 0 for large θ > 0 . Shown in the second row of Fig. 1 is

he local influence of an intersection at downtown Rochester to its 

eighborhood. We observe that its local influence to intersections 

n a small neighborhood does not change much for −1 ≤ θ ≤ 1 , 

ven its global influence to the whole traffic network changes dra- 

atically for −1 ≤ θ ≤ 1 . 

We compare the performance of the conventional power it- 

ration method (2.15) , the proposed PGDA and the OpGDA in 

emark 2.4 to find principal eigenvectors of the hyperlink ma- 
4 
rix H θ, z 0 
, −2 ≤ θ ≤ 2 , see Fig. 2 . It is observed that the proposed

GDA has better performance than the conventional power itera- 

ion method (Power), the OpGDA has better performance than the 

roposed PGDA does, while their performances are still compara- 

le. We remark that the PGDA and Power can be implemented in a 

istributed manner, while the OpGDA is not always considered as a 

istributed algorithm since one may need some global information 

o determine the optimal step size. 

. Principal eigenvectors of Hermitian matrices 

In this section, we consider finding principal eigenvectors asso- 

iated with the minimal/maximal eigenvalue of a Hermitian matrix 

n a graph G = (V, E) of order N in a distributed manner. We pro-

ose a distributed algorithm to find principal eigenvectors, which 

onverges faster and has less computational and communication 

xpense in each iteration than Algorithm 1 to find eigenvectors of 

n arbitrary matrix does. 

heorem 3.1. Let A = (A (i, j)) i, j∈ V be a positive semidefinite matrix 

n the graph G of order N with geodesic-width ω(A ) , and Q 
sym = 

iag (Q 
sym (i, i )) i ∈ V be a nonsingular diagonal matrix satisfying 

 
sym (i, i ) ≥

∑ 

j∈ B (i,ω(A )) 

| A (i, j) | , i ∈ V. (3.1) 

hen for any initial x 0 ∈ C 
N , the sequence x n defined by 

 n +1 = (I − (Q 
sym ) −1 A ) x n , n ≥ 0 , (3.2) 

onverges exponentially to either the zero vector or an eigenvector u 

ssociated with the zero eigenvalue of the matrix A . 

roof. Set B sym = I − (Q 
sym ) −1 / 2 A (Q 

sym ) −1 / 2 . Following the argu- 

ent in [16 , Theorem III.1] and applying (3.1) , we obtain that 

 
sym − A is positive semidefinite. This together with the positive 

emidefiniteness of the matrix A implies that all eigenvalues of the 

ermitian matrix B sym are in the unit interval [0 , 1] . Applying sim- 

lar argument used in the proof of Theorem 2.1 with Q and A 
∗A

eplaced by (Q 
sym ) 1 / 2 and A respectively, we obtain 

 (Q 
sym ) 1 / 2 (x n − u ) ‖ 2 ≤ ‖ (Q 

sym ) 1 / 2 x 0 ‖ 2 r 
n , n ≥ 0 (3.3)
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Fig. 2. Plotted are the convergence rate r in the logarithmic scale log 10 (1 − r) for the Power, OpGDA and PGDA, see (2.15), (2.14) and (2.12) , to find the principal eigenvectors 

of the hyperlink matrices H θ, z 0 , −2 ≤ θ ≤ 2 , on the weighted Minnesota traffic graphs M θ, z 0 = (V, E, W θ, z 0 ) , where the center z 0 of the weights w θ, z 0 (i, j) , i, j ∈ V on the left 
and right figures are traffic intersections in downtown Minneapolis at position z 0 = (0 . 5185 , 0 . 2675) and Duluth at position z 0 = (0 . 6655 , 0 . 5936) respectively. 
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Algorithm 2 Realization of the SPGDA at a vertex i ∈ V . 

Inputs : The totaliteration number M,the geodesic-width ω(A ) of 

the positive semidefinite matrix A ,the set B (i, ω(A )) of ω(A ) -hop 

neighbors of the vertex i ,entries A (i, j) , j ∈ B (i, ω(A )) , in the i th 

row of the matrix A ,and the i th entry Q 
sym (i, i ) of the diagonal 

matrix Q 
sym . 

Initial :Select x 0 (i ) randomly in [0 , 1] ,and set n = 0 . 

Iteration : 

1. Send x n (i ) to all neighbors k ∈ B (i, ω(A )) \{ i } and receive x n (k ) 
from neighbors k ∈ B (i, ω(A )) \{ i } . 

2. Evaluate x n +1 (i ) = x n (i ) −
∑ 

j∈ B (i,ω(A )) (Q 
sym (i, i )) −1 A (i, j ) x n ( j ) 

and set n = n + 1 . 

3. Return to Step 1 if n ≤ M, otherwise go to Output. 

Output : u (i ) ≈ y M 
(i ) , where u = (u (i )) i ∈ V . 

s

d  

e
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e

or some vector u ∈ C 
N , where r is the largest eigenvalue of B sym 

n [0 , 1) . This together with the nonsingularity of the matrix Q 
sym 

roves the exponential convergence of x n , n ≥ 0 . 

Taking limit in (3.2) proves Au = 0 , and hence completes the 

roof. �

We remark that the normalized matrix Q 
sym in (3.1) associated 

ith a diffusion matrix has been used to understand diffusion pro- 

ess [38] , and the one corresponding to the Laplacian L on the 

onnected graph is twice of the degree matrix D [16,39] . For a 

ositive semidefinite matrix A = (A (i, j)) i, j∈ V with geodesic-width 

(A ) , a nonsingular diagonal matrix Q 

sym 

c = diag (Q 

sym 

c (i, i )) i ∈ V sat-
sfying (3.1) can be constructed at the vertex level by setting 

 

sym 

c (i, i ) = max 

( ∑ 

j∈ B (i,ω(A )) 

| A (i, j) | , c 
)
, i ∈ V, (3.4)

here c is a positive constant, cf. (2.10) . One may verify that the 

bove preconditioning matrix has its condition number given by 

(Q 

sym 

c ) = 

max i ∈ V Q 

sym 

c (i, i ) 

min i ∈ V Q 

sym 

c (i, i ) 
= 

max 
(
c, max i ∈ V 

∑ 

j∈ B (i,ω(A )) | A (i, j) |
max 

(
c, min i ∈ V 

∑ 

j∈ B (i,ω(A )) | A (i, j) |
(3.5) 

ith the above selection of the preconditioning matrix in (3.2) , we 

an find eigenvectors associated with minimal/maximal eigenval- 

es of a Hermitian matrix by the distributed iterative algorithm 

3.2) implementable at the vertex level, see Algorithm 2 . Following 

he terminology in [16] , we call the algorithm (3.2) with a ran- 

om initial having entries i.i.d on [0 , 1] as a symmetric precondi- 

ioned gradient descent algorithm , SPGDA for abbreviation. By (3.3) , 

he proposed SPGDA converges exponentially with the convergence 

ate 

 SPGDA = max 
0 ≤˜ λi < 1 

˜ λi , (3.6) 

here ˜ λi , 1 ≤ i ≤ N, are eigenvalues of the Hermitian matrix 

 − (Q 
sym ) 1 / 2 A (Q 

sym ) −1 / 2 . Similar to the PGDA, we can apply

lgorithm 2 to implement the proposed SPGDA distributively and 

ynchronously . Moreover, comparing with Algorithm 1 to find 

igenvectors of an arbitrary matrix, the Algorithm 2 to find princi- 

al eigenvectors of a Hermitian matrix has less computational cost 

nd communication expense in each iteration. Our numerical sim- 

lations in Section 5 also indicate that it may converge faster. 

Let H be a Hermitian matrix with minimal eigenvalue λmin (H ) 

nd maximal eigenvalue λmax (H ) . Then A 1 = H − λmin (H ) I and

 = λmax (H ) I − H have eigenvalue zero and they are positive 
2 

5 
emidefinite. Then applying the SPGDA to A 1 (resp. A 2 ) with a ran- 

om initial x 0 having entries i.i.d on [0 , 1] , we obtain the principal

igenvectors associated with minimal (resp. maximal) eigenvalues 

f the Hermitian matrix H by Theorem 3.1 . 

emark 3.2. Replacing the preconditioning matrix Q 
sym in (3.2) by 

γ sym ) −1 I with step size γ sym > 0 , the corresponding SPGDA be- 

omes 

 n +1 = (I − γ sym A ) x n , n ≥ 0 , (3.7) 

he symmetric version of the gradient descent algorithm 

2.13) with step size γ sym > 0 [15,16] . By a similar proof of 

heorem 3.1 , we can show that the above sequence x n , n ≥ 0 ,

ith step size γ sym ∈ (0 , 2 /λmax (A )) converges exponentially 

o some vector u satisfying Au = 0 and the convergence rate is 

ax (| 1 − γ λmin , 0 (A ) | , | 1 − γ λmax (A ) | ) . Moreover, the optimal step

ize is γ sym 

op = 2 / (λmin , 0 (A ) + λmax (A )) and the corresponding 

onvergence rate is 

 OpSGDA = 

λmax (A ) − λmin , 0 (A ) 

λmin , 0 (A ) + λmax (A ) 
. (3.8) 

e call the symmetric gradient descent algorithm (3.7) with the 

ptimal step size γ sym 

op by the optimal symmetric gradient de- 

cent algorithm and use the notion OpSGDA for abbreviation, see 

ection 5 for numerical demonstrations. 

emark 3.3. For a positive semidefinite matrix H with maximal 

igenvalue λmax (H ) , applying (3.7) with A and γ sym replaced by 
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max (H ) I − H and (λmax (H )) −1 respectively yields 

 n +1 = (λmax (H )) −1 Hx n , n ≥ 0 . (3.9) 

he above sequence x n , n ≥ 0 , converges exponentially with the 

onvergence rate 

 CAPower = 

λmax , 2 (H ) 

λmax (H ) 
, (3.10) 

nd the limit u is a principal eigenvector of the matrix H as- 

ociated with the eigenvalue λmax (H ) if u � = 0 , where λmax , 2 (H )

s the second largest eigenvalue of the positive semidefinite ma- 

rix H . The above approach can be considered as the conventional 

ower iteration method without normalization [40] and its varia- 

ions have been discussed in [22,41–43] . Following the terminol- 

gy Chaotic Asynchronous Power Iteration Algorithm in [41] , we use 

APower for abbreviation of the above approach with entries of 

he initial x 0 randomly selected in [0 , 1] , see Section 5 for numer-

cal demonstrations. 

. Eigenvectors of polynomial filters 

Graph filter is a fundamental concept in graph signal pro- 

essing and it has been used in many applications such as 

enoising, smoothing, and consensus of multi-agent systems 

4,8,12,13,15,16,18,44–50] . An elementary graph filter is a graph 

hift , which has 1 as its geodesic-width. Graph filters in most of 

iterature are designed to be polynomials 

 = h (S 1 , . . . , S d ) = 

L 1 ∑ 

l 1 =0 

· · ·
L d ∑ 

l d =0 

h l 1 , ... ,l d S 
l 1 
1 

· · · S l d 
d 

(4.1) 

f commutative graph shifts S 1 , . . . , S d , i.e., S k S k ′ = S k ′ S k for all 1 ≤
, k ′ ≤ d, where the multivariate polynomial 

 (t 1 , . . . , t d ) = 

L 1 ∑ 

l 1 =0 

· · ·
L d ∑ 

l d =0 

h l 1 , ... ,l d t 
l 1 
1 

. . . t 
l d 
d 

f degree 
∑ d 

k =1 L k has polynomial coefficients h l 1 , ... ,l d , 0 ≤ l k ≤
 k , 1 ≤ k ≤ d [10–14,18,51,52] . In this section, we propose iterative 

lgorithms to determine eigenvectors associated with a polynomial 

raph filter, which can be implemented on an SDN with 1 as its 

ommunication range, i.e., direct communication exists between all 

djacent vertices only. 

Observe that 

 
∗ = 

L 1 ∑ 

l 1 =0 

· · ·
L d ∑ 

l d =0 

h l 1 , ... ,l d (S 
∗
d ) 

l d · · · (S ∗1 ) l 1 (4.2) 

s a polynomial graph filter of commutative shifts S ∗
1 
, . . . , S ∗

d 
. Then

pplying [15 , Algorithm II.2] to implement the filtering procedure 

ssociated with polynomial graph filters A and A 
∗, and then apply- 

ng the diagonal preconditioning matrices Q 
−2 and (Q 

sym ) −1 , we 

an implement the iteration (2.3) of the PGDA and (3.2) of the 

PGDA in finite steps with each step including data exchanging be- 

ween adjacent vertices only. Using the above implementation, the 

GDA and SPGDA can be applied to find eigenvectors of a polyno- 

ial graph filter on SDNs with communication range one . 

Now it remains to construct diagonal matrices satisfying 

2.2) and (3.1) on SDNs with communication range 1. For the 

olynomial graph filter A in (4.1) , define diagonal matrices ̂ Q c = 

iag ( ̂  Q c (i, i )) i ∈ V and ̂ Q 

sym 

c = diag ( ̂  Q 

sym 

c (i, i )) i ∈ V by 

̂ 
 c (i, i ) = max 

ρ( j,i ) ≤ω(A ) 
max 

{ ∑ 

k ∈ V 

̂ A ( j, k ) , 
∑ 

k ∈ V 

̂ A (k, j) , c 
} 

(4.3) 

nd 

̂ 
 

sym 

c (i, i ) = max 

{ ∑ 

k ∈ V 

̂ A (i, k ) , c 
} 

, i ∈ V, (4.4)
6 
here c > 0 is a positive number, | S k | = (| S k (i, j) | ) i, j∈ V , 1 ≤ k ≤ d,

nd 

 ̂
 A (i, j)) i, j∈ V =: ̂  A := 

L 1 ∑ 

l 1 =0 

· · ·
L d ∑ 

l d =0 

| h l 1 , ... ,l d | | S 1 | l 1 · · · | S d | l d . 

ne may verify that 

 A (i, j) | ≤ ̂ A (i, j) for all i, j ∈ V. (4.5) 

herefore the matrices ̂ Q c in (4.3) and ̂ Q 

sym 

c in (4.4) satisfy 

2.2) and (3.1) respectively. Moreover following [15 , Algorithm II.2] 

o implement the filtering procedure, we can construct diagonal 

reconditioning matrices ̂ Q c and ̂ Q 

sym 

c at the vertex level in finite 

teps such that in each step, every vertex needs to exchange data 

ith adjacent vertices only. 

. Numerical simulations 

Let G N , N ≥ 2 , be random geometric graphs with N vertices 

hose coordinates (x i , y i ) , 1 ≤ i ≤ N, randomly deployed on the 

nit square [0 , 1] 2 and an undirected edge between two vertices in 

 N exists if their physical distance is not larger than 
√ 

2 /N [18,53] . 

n this section, we consider finding eigenvectors associated with 

aximal eigenvalue 1 of graph matrices 

 θ,m 
= (I −C θW θL 

sym W θ ) m 

f order m ≥ 1 , where θ ≥ 0 is a weight parameter, L sym is 

he symmetric normalized Laplacian matrix on the graph G N , 
 θ = diag (w θ (i )) is a diagonal weighted matrix with diago- 

al entries w θ (i ) = (1 + N‖ (x i , y i ) − (1 / 2 , 1 / 2) ‖ 2 ) θ , and C θ = (1 +
/ 
√ 

2 ) −2 θ / 2 . The matrices H θ,m 
with θ = 0 are lowpass spline fil-

ers of H 

spln 
0 ,m 

, m ≥ 1 , introduced in [18,54] for nonsubsampled fil- 

er banks. In the simulations, we use PGDA and PGDA1h to denote 

he PGDA with A replaced by I − H θ,m 
and Q by Q c in (2.10) and

 
 c in (4.3) respectively, and similarly we use SPGDA and SPGDA1h 

o denote the SPGDA with A replaced by I − H θ,m 
and Q by Q 

sym 

c 

n (3.4) and ̂ Q 

sym 

c in (4.4) respectively. Our numerical simulations 

ndicate that the iterative PGDA and SPGDA have slower conver- 

ence speed for larger thresholding constant c > 0 and their expo- 

ential convergence rates do not change for small c > 0 , see Fig. 3 .

owever we cannot confirm the above phenomenon mathemati- 

ally. One may verify that the matrices Q 

sym 

c in (3.4) and ̂ Q 

sym 

c 

n (4.4) are nonsingular if c > 0 , and they could be singular if

 = 0 is selected, see (2.11) and (3.5) for the condition numbers of 

hose preconditioning matrices. Based on the above observations, 

e take c = 0 . 001 in our simulations from now on. 

For the sequences x n , n ≥ 0 , in the PGDA, SPGDA, PGDA1h and

PGDA1h and their limits u , define relative convergence errors 

(n ) = log 10 ( ‖ x n − u ‖ 2 / ‖ u ‖ 2 ) 

n the logarithmic scale to measure their performance. Shown in 

ig. 4 is the average over 200 trials for the convergence rate 

ith 0 ≤ θ ≤ 2 and m = 1 , 4 , and the relative convergence errors

(n ) for θ = 0 , 3 / 2 and m = 4 , where the convergence rates r for

he PGDA and PGDA1h are given in (2.12) with A replaced by 

 − H θ,m 
and Q by Q c in (2.10) and ̂ Q c in (4.3) respectively, and 

imilarly the convergence rates for the SPGDA and SPGDA1h are 

iven in (3.6) with A replaced by I − H θ,m 
and Q 

sym are replaced 

y Q 

sym 

c in (3.4) and ̂ Q 

sym 

c in (4.4) respectively. This demonstrates 

he exponential convergence of the sequence x n , n ≥ 0 , established 

n Theorems 2.1 and 3.1 , and hence the proposed PGDA, SPGDA, 

GDA1h and SPGDA1h can be applied to find eigenvectors associ- 

ted with a given eigenvalue. 

One may verify that 1 is the maximal eigenvalue of matri- 

es H θ,m 
, m ≥ 1 . Therefore the OpGDA in Remark 2.4 and the

pSGDA in Remark 3.2 with A replaced by I − H θ,m 
, and the 
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Fig. 3. Plotted are the convergence rate r in the logarithmic scale log 10 (1 − r) for using PGDA (left) and SPGDA (right), see (2.12) and (3.6) , to find the principal eigenvectors 

of graph filters H θ,m on a random geometric graph G 512 , where the weight parameter θ = 0 (top) and θ = 3 / 2 (bottom), m = 1 , 2 , 3 , 4 , 6 and 0 ≤ c ≤ 3 . It is observed that the 

PGDA and SPGDA converge slow for large thresholding constant c > 0 . 

Fig. 4. Plotted on the top are the average of convergence rate r in the logarithmic scale log 10 (1 − r) over 200 trials versus the weight parameter 0 ≤ θ ≤ 2 for m = 1 (left) 

and m = 4 (right), where the average of the convergence rate for the algorithms, SPGDA, SPGDA1h, OpSGDA, CAPower, PGDA, PGDA1h and OpGDA, with m = 4 and θ = 3 / 2 

are 0.997548570, 0.998814592, 0.999783754, 0.999896610, 0.999999867, 0.999999967, 0.999999968 respectively. On the second row are the average of the convergence 

errors E(n ) , 1 ≤ n ≤ 20 0 0 , in the logarithmic scale over 20 0 trials, where m = 4 and θ = 0 , 3 / 2 from the left to the right respectively. 

7 
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Fig. 5. Plotted are the average of convergence rate r in the logarithmic scale log 10 (1 − r) over 200 trials versus the weight parameter −2 ≤ θ ≤ 2 for m = 1 (top left) and 

m = 4 (bottom left), and the average of the convergence errors E(n ) , 1 ≤ n ≤ 20 0 0 , in the logarithmic scale over 200 trials, where (m, θ ) = (1 , 0) (top middle), (1 , 3 / 2) (top 

right), (4 , 0) (bottom middle) and (4 , 3 / 2) (bottom right). The averages of the convergence rate for the algorithms PGDA and OpGDA are 0.9999998612 and 0.9999995487 (top 

middle), 0.9999994358 and 0.9999999970 (top right), 0.9999993358 and 0.9999999496 (bottom middle), and 0.9999951127 and 0.9999999828 (bottom right) respectively. 
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APower in Remark 3.3 with H and λmax (H ) replaced by H θ,m 

nd 1 can be used to find principal eigenvectors associated 

ith eigenvalue 1 of matrices H θ,m 
, m ≥ 1 . Shown in Fig. 4 are

heir performance and comparison with the proposed PGDA, 

PGDA, PGDA1h and SPGDA1h, where the convergence rate for 

he CAPower is given in (3.10) with H and λmax (H ) replaced by 

 θ,m 
and 1, and the convergence rates for the OpGDA and OpS- 

DA are given in (2.14) and (3.8) with A replaced by I − H θ,m 

espectively. 

From the above numerical simulations, we observe that 

PGDA, SPGDA1h, OpSGDA, CAPower outperform OpGDA, PGDA 

nd PGDA1h to find principal eigenvectors associated with maxi- 

al eigenvalue of positive semidefinite matrices H θ,m 
, m ≥ 1 , the 

APower has slightly slower convergence speed than the OpSGDA 

oes, and the OpSGDA has the best performance for small θ ≥ 0 

hile the distributed SPGDA has the fastest convergence rate for 

arge θ ≤ 2 . We remark that OpSGDA and OpGDA are usually not 

onsidered as distributed algorithms as we need some global in- 

ormation to determine the optimal step size. 

Numerical simulations are also conducted on the Minnesota 

raffic graph with coordinates of vertices being rescaled such that 

t can be deployed on the unit square [0 , 1] 2 [18,45] . We observe

imilar performances of the algorithms to find principal eigenvec- 

ors associated with eigenvalue 1 of matrices H θ,m 
, m ≥ 1 , on the

innesota traffic graph. 

In addition to find the eigenvector associated with the prin- 

ipal eigenvalue of the filters H θ,m 
, we conduct the numer- 

cal experiments to evaluate the eigenvector associated with 

he second largest eigenvalue λmax , 2 of matrices H θ,m 
, which 

s also the eigenvector associated with the first positive eigen- 

alue of weighted Laplacian W θL 
sym W θ , by the algorithm PGDA 

n (2.12) , and to compare the performance with the OpGDA in 

emark 2.4 with A and Q replaced by λmax , 2 I − H θ,m 
and Q c in 

2.10) respectively. Shown in Fig. 5 is the average over 200 tri- 

ls for the convergence rate in the logarithmic scale with −2 ≤
≤ 2 and m = 1 , 4 , and the relative convergence errors E(n ) for

= 0 , 3 / 2 and m = 1 , 4 , where the convergence rates r for the
 c

8 
GDA given in (2.12) and the OpGDA given in (2.14) . This demon- 

trates that the sequence x n , n ≥ 0 , in Theorem 2.1 has the ex-

onential convergence and that the proposed distributed PGDA 

an be applied to find eigenvectors associated with any given 

igenvalue and it has comparable performance with the global 

pGDA algorithm on finding eigenvectors associated with a given 

igenvalue. 

. Conclusions and future study 

On an SDN with communication range L , we can use the dis- 

ributed PGDA with the preconditioning matrix in (2.2) to find 

igenvectors associated with an arbitrary given eigenvalue for 

 matrix H with geodesic-width ω(H ) ≤ L , and the distributed 

PGDA with the preconditioning matrix in (3.4) to find eigenvec- 

ors associated with maximal/minimal eigenvalue of a positive 

emidefinite matrix H with geodesic-width ω(H ) ≤ L . 

In [35,36] , asynchronous power iteration method is proposed 

o find principal eigenvectors of some left stochastic matrix. We 

o not know whether asynchronous power iteration method can 

e extended to find eigenvectors of arbitrary matrix with small 

eodesic-width, or whether we can find a synchronous version of 

he distributed algorithms proposed in this paper, which be con- 

idered in our future works. 

The importance of distributively estimating the eigenvalues of a 

atrix on a graph G has been illustrated in many applications, see 

29] and references therein. Most of distributed algorithms avail- 

ble are based on the consensus approach, and hence the mem- 

ry, computational cost and communication expense for each ver- 

ex depend linearly or quadratically on the order of the graph. The 

istributed estimation of eigenvalues of matrices on graphs with 

mall geodesic-width will be considered in our future work so that, 

imilar to the proposed algorithms in this paper to evaluate eigen- 

ectors, the memory, computational cost and communication ex- 

ense for each vertex depend independently on the order of the 

raph, c.f. [55,56] for distributed criteria on the stability of matri- 

es on graphs. 
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