
Journal of Fourier Analysis and Applications (2021) 27:83
https://doi.org/10.1007/s00041-021-09864-9

Polynomial Control onWeighted Stability Bounds and
Inversion Norms of Localized Matrices on Simple Graphs

Qiquan Fang1 · Chang Eon Shin2 ·Qiyu Sun3

Received: 13 September 2020 / Revised: 29 May 2021 / Accepted: 31 May 2021 /
Published online: 13 September 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The (un)weighted stability for somematrices on a graph is one of essential hypotheses
in time-frequency analysis and applied harmonic analysis. In the first part of this paper,
we show that for a localized matrix in a Beurling algebra, its weighted stabilities for
different exponents and Muckenhoupt weights are equivalent to each other, and recip-
rocal of its optimal lower stability bound for one exponent and weight is controlled
by a polynomial of reciprocal of its optimal lower stability bound for another expo-
nent and weight. Banach algebras of matrices with certain off-diagonal decay is of
great importance in many mathematical and engineering fields, and its inverse-closed
property can be informally interpreted as localization preservation. Let B(�

p
w) be the

Banach algebra of bounded linear operators on the weighted sequence space �
p
w on a

graph. In the second part of this paper, we prove that Beurling algebras of localized
matrices on a connected simple graph are inverse-closed in B(�

p
w) for all 1 ≤ p < ∞

and Muckenhoupt Ap-weights w, and the Beurling norm of the inversion of a matrix
A is bounded by a bivariate polynomial of the Beurling norm of the matrix A and the
operator norm of its inverse A−1 in B(�

p
w).
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1 Introduction

Let G := (V , E) be a connected simple graph with the vertex set V and edge set
E . Our illustrative examples are (i) the d-dimensional lattice graph Zd := (Zd , Ed)

where there exists an edge between k and l ∈ Z
d , i.e., (k, l) ∈ Ed , if the Euclidean

distance between k and l is one; (ii) the (in)finite circulant graph CG = (VG , EG)

associated with an abelian group

VG =
{

k∏
i=1

gnii , n1, . . . , nk ∈ Z

}

generated by G = {g1, . . . , gk}, where (λ, λ′) ∈ EG if and only if either λ(λ′)−1 or
λ′λ−1 ∈ G [5,6,27,32,38]; and (iii) the communication graph of a spatially distributed
network (SDN) whose agents have limited sensing, data processing, and communica-
tion capacity for data transmission, where agents are used as elements in the vertex
set and direct communication links between two agents as edges between two vertices
[1,12,13,40].

For 1 ≤ p < ∞ and a weight w = (w(λ))λ∈V on the graph G, let �
p
w := �

p
w(G)

be the space of all weighted p-summable sequences/vectors c = (c(λ))λ∈V equipped
with the standard norm

‖c‖p,w =
(∑

λ∈V
|c(λ)|pw(λ)

)1/p

.

For the trivial weight w0 = (w0(λ))λ∈V , we will use the simplified notation �p and
‖ · ‖p instead of �

p
w0 and ‖ · ‖p,w0 , where w0(λ) = 1 for all λ ∈ V . We say that a

matrix

A := (a(λ, λ′)
)
λ,λ′∈V (1.1)

on the graph G has �
p
w-stability if there exist two positive constants B1 and B2 such

that

B1‖c‖p,w ≤ ‖Ac‖p,w ≤ B2‖c‖p,w, c ∈ �pw (1.2)

[2,40,42,49,50]. We call the maximal constant B1 for the weighted stability inequality
(1.2) to hold as the optimal lower �

p
w-stability bound of the matrix A and denote by

βp,w(A). The (un)weighted stability for matrices is an essential hypothesis in time-
frequency analysis, applied harmonic analysis, and many other mathematical and
engineering fields [3,15,21,33,47].
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In practical sampling and reconstruction on an SDN of large size, signals and
noises are usually contained in some range. For robust signal reconstruction and noise
reduction, the sensing matrix on the SDN is required to have stability on �∞ [12],
however there are some difficulties to numerically verify �p-stability of a matrix at
the vertex level for p �= 2 [12,34,45]. For a matrix A on a finite graph G = (V , E), its
weighted �

p
w-stability are equivalent to each other for different exponents 1 ≤ p ≤ ∞

and weights w, since �
p
w is isomorphic to �2 for any exponent 1 ≤ p ≤ ∞ and weight

w. In particular, for the unweighted case onemay verify that the optimal lower stability
bounds of a matrix A for different exponents are comparable,

βp,w0(A)

βq,w0(A)
≤ M |1/p−1/q|, 1 ≤ p, q ≤ ∞, (1.3)

where M = #V is the number of vertices of the graph G. The above estimation on
optimal lower stability bounds for different exponents is unfavorable for matrices of
large size, but it can be improved if the matrix A has some additional property, such
as off-diagonal decay. For an infinite matrix A = (a(i, j))i, j∈Zd in the Baskakov-
Gohberg-Sjöstrand algebra, it is proved in [2,27,42,50] that its unweighted stabilities
are equivalent to each other for all exponents, i.e., for all 1 ≤ p, q < ∞,

βq,w0(A) > 0 if and only if βp,w0(A) > 0.

In [44], Beurling algebras of infinite matrices A = (a(i, j))i, j∈Z are introduced.
Comparingwith theBaskakov-Gohberg-Sjöstrand algebras,matrices in theBaskakov-
Gohberg-Sjöstrand algebra (resp. the Beurling algebra) are dominated by a bi-infinite
Toeplitz matrix associated with a (resp. radially decreasing) sequence with certain
decay, and they are bounded linear operators on unweighted sequence spaces �

p
w0

(resp. on weighted spaces �
p
w for all Muckenhoupt Ap-weights w). For an infinite

matrix in a Beurling algebra on Zd , its weighted stabilities for different exponents and
Muckenhoupt weights are established in [44],

βp,w(A) > 0 if and only if βq,w′(A) > 0

where 1 ≤ p, q < ∞ and w,w′ are Muckenhoupt Ap- and Aq -weights respectively,
however the optimal lower stability bound βq,w′ on �

q
w′ is not explicitly expressed in

terms of the optimal lower stability bound βp,w on �
p
w. Obviously, the lattice Zd is the

vertex set of the lattice graphZd . Inspired by the above observation, Beurling algebras
Br ,α(G) of matrices A = (a(λ, λ′))λ,λ′∈V on an arbitrary simple graph G = (V , E)

are introduced in [40], where 1 ≤ r ≤ ∞ and α ≥ 0. In [40], unweighted stabilities
of a matrix A ∈ Br ,α(G) for different exponents are shown to be equivalent to each
other, where 1 ≤ r ≤ ∞, α > dG(1 − 1/r) and dG is the Beurling dimension of the
graph G. Moreover, we have the following polynomial control on its optimal lower
stability bounds for different exponents,

βp,w0(A)

βq,w0(A)
≤ D1

( ‖A‖Br ,α

βp,w0(A)

)D0|1/p−1/q|
, 1 ≤ p, q < ∞, (1.4)



83 Page 4 of 33 Journal of Fourier Analysis and Applications (2021) 27 :83

where D0, D1 are absolute constants independent of matrices A and the size M of the
graph G. The first main contribution of this paper is to establish the polynomial control
property for matrices in Beurling algebras on a connected simple graph G on their
optimal lower weighted stability bounds for different exponents and Muckenhoupt
weights, see Theorem 3.1 and Remark 3.2 for the comparison with previous works.

Let B(�
p
w) be the Banach algebra of all matrices A which are bounded operators

on the weighted vector space �
p
w and denote the norm of A ∈ B(�

p
w) by ‖A‖B(�

p
w).

The weighted �
p
w-stability of a matrix A is usually considered as a weak notion of its

invertibility, since

βp,w(A) ≥
(
‖A−1‖B(�

p
w)

)−1

when the matrix A is invertible in �
p
w. However for a matrix A in a Beurling algebra,

we discover that its weighted stability in �
p
w implies the existence of its “inverse"

B = (b(λ, λ′))λ,λ′∈V in the same Beurling algebra such that

|c(λ)| ≤
∑
λ′∈V

|b(λ, λ′)|(Ac)(λ′)|, λ ∈ V , (1.5)

hold for all vectors c = (c(λ))λ∈V ∈ �
p
w, see Lemma 3.4. The above “weak invert-

ibility" of a matrix in Beurling algebras is crucial for us to discuss polynomial control
on optimal lower weighted stability bounds for different exponents and Muckenhoupt
weights, and also to establish norm-controlled inversion of Beurling algebras inB(�

p
w)

in the second topic of this paper. We remark that the proof of the weak invertibility
(1.5) depends on the concept of maximal disjoint set VN in Sect. 2.1 and the crucial
estimate (3.10) to the commutator [�2N

λ , A] between a matrix A in Beurling algebra
and smooth version �2N

λ of the truncation operator for λ ∈ VN , cf. [8,40,43,44].
Given two Banach algebrasA and B with common identity such thatA is a Banach

subalgebra of B, we say that A is inverse-closed in B if A ∈ A and A−1 ∈ B
implies A−1 ∈ A [7,8,26,28,43,44,46,48,51]. An equivalent condition for the inverse-
closedness of A in B is that given an A ∈ A, its spectral sets σA(A) and σB(A) in
Banach algebras A and B are the same,

σA(A) = σB(A) for all A ∈ A.

In this paper, we also call the inverse-closed property for a Banach subalgebra as
Wiener’s lemma for that subalgebra [8,26,44,46,48,51]. For algebras of matrices
with certain off-diagonal decay, Wiener’s lemma can be informally interpreted as
localization preservation under inversion. Such a localization preservation is of great
importance in applied harmonic analysis, numerical analysis, and many mathematical
and engineering fields, see the survey papers [22,31,41] and references therein for his-
torical remarks. We remark that Wiener’s lemma does not provide a norm estimate for
the inversion, which is essential for some mathematical and engineering applications.
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We say that a Banach subalgebra A of B admits norm-controlled inversion in B if
there exists a continuous function h from [0,∞) × [0,∞) to [0,∞) such that

‖A−1‖A ≤ h
(
‖A‖A, ‖A−1‖B

)
(1.6)

for all A ∈ A being invertible inB [23,24,35,38,40]. By the norm-controlled inversion
(1.6), we have the following estimate for the resolvent of A ∈ A,

‖(λI − A)−1‖A ≤ h
(
‖λI−A‖A, ‖(λI − A)−1‖B

)
, λ �∈σB(A)=σA(A), (1.7)

where I is the common identity of Banach algebras A and B. The norm-controlled
inversion is a strong version of Wiener’s lemma. The classical Wiener algebra of
periodic functions with summable Fourier coefficients is an inverse-closed subalgebra
of the Banach algebra of all periodic continuous functions [51], however it does not
have norm-controlled inversion [9,35].

We say that A is a differential subalgebra of order θ ∈ (0, 1] in B if there exists a
positive constant D := D(A,B, θ) such that

‖AB‖A ≤ D‖A‖A‖B‖A
(( ‖A‖B

‖A‖A
)θ

+
( ‖B‖B

‖B‖A
)θ
)

for all A, B ∈ A. (1.8)

The concept of differential subalgebras of order θ was introduced in [11,30,36] for
θ = 1 and [14,24,40] for θ ∈ (0, 1). It has been proved that a differential ∗-subalgebra
A of a symmetric ∗-algebra B has norm-controlled inversion in B [23,24,38,39,48].
A crucial step in the proof is to introduce B := I − ‖A∗A‖−1

B A∗A for any A ∈ A
being invertible in B, whose spectrum is contained in an interval on the positive real
axis. The above reduction depends on the requirements that B is symmetric and both
A and B are ∗-algebras with common identity and involution ∗.

Several algebras of localized matrices with certain off-diagonal decay, includ-
ing some subfamilies of Gröchenig–Schur algebra, Baskakov–Gohberg–Sjöstrand
algebra, Beurling algebra and Jaffard algebra, have been shown to be differential ∗-
subalgebras of the symmetric ∗-algebra B(�2), and hence they admit norm-controlled
inversion in B(�2) [23–25,28,37,38,40,44,46,48]. In [23,24,40], the authors show that
for the Baskakov-Gohberg-Sjöstrand algebra, Jaffard algebra, and Beurling algebra of
matrices, a bivariate polynomial can be selected to be the norm-control function h in
(1.6).

For applications in some mathematical and engineering fields, the widely-used
algebrasB of infinite matrices are the operator algebrasB(�

p
w), 1 ≤ p ≤ ∞, which are

symmetric only when p = 2. Unlike norm-controlled inversion in symmetric algebras
[23,24,35,38,40], to our knowledge, norm-controlled inversion in a nonsymmetric
algebra is not well studied [17,44]. The second main contribution is to show that
Beurling algebras of localized matrices admit norm-controlled inversion in B(�

p
w)

for all exponents 1 ≤ p < ∞ and Muckenhoupt Ap-weights w, see Theorem 4.1.
Moreover, we prove that the Beurling algebra norm of the inversion of a matrix A is
bounded by a bivariate polynomial of its Beurling algebra norm of the matrix A and
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the operator norm of its inverse A−1 in B(�
p
w), see Remark 4.2 for the comparison of

previous works.
The paper is organized as follows. In Sect. 2, we recall some preliminary results

on a connected simple graph G, Beurling algebras of matrices on the graph G and on
its maximal disjoint sets, and weighted norm inequalities for matrices in a Beurling
algebra. For matrices in a Beurling algebra, we consider the equivalence of their
weighted stability for different exponents 1 ≤ p < ∞ and Muckenhoupt Ap-weights
w in Sect. 3, and their norm-controlled inversion inB(�

p
w) in Sect. 4. All proofs, except

the proof of Theorem 3.1 in Sect. 3, are collected in Sect. 5.

1.1 Notation

For a real number t , we use the standard notation 
t� and �t
 to denote its floor and
ceiling, respectively. For two terms A and B, we write A � B if A ≤ CB for some
absolute constant C , and A ≈ B if A � B and B � A.

2 Preliminaries

In Sect. 2.1, we recall the doubling property for the countingmeasureμ on a connected
simple graph G [12,40,52], we show that the counting measure μ has the strong poly-
nomial growth property (2.11), and then we define generalized Beurling dimension of
the graph G. In Sects. 2.2 and 2.3, we recall the definition of two closely-related Beurl-
ing algebras of matrices on the graph G and on its maximal disjoint sets [10,40,44],
and we provide some algebraic and approximation properties of those two Banach
algebras of matrices. In Sect. 2.4, we prove that any matrix in a Beurling algebra is
a bounded linear operator on weighted vector spaces �

p
w for all 1 ≤ p < ∞ and

Muckenhoupt Ap-weights w.

2.1 Generalized Beurling Dimension of a Connected Simple Graph

Let ρ be the geodesic distance on the connected simple graph G, which is the nonneg-
ative function on V × V such that ρ(λ, λ) = 0, λ ∈ V , and ρ(λ, λ′) is the number
of edges in a shortest path connecting distinct vertices λ, λ′ ∈ V [16]. This geodesic
distance ρ is a metric on V of a connected simple graph G. For the lattice graph Zd ,
one may verify that its geodesic distance between two points k = (k1, . . . , kd) and
� = (�1, . . . , �d) is given by ρ(k, �) := ∑d

j=1 |k j − � j |; for the circulant graph CG
generated by G = {g1, . . . , gk}, we have

ρ(λ, λ′) = inf

{
k∑

i=1

|ni |, λ′λ−1 =
k∏

i=1

gnii , n1, . . . , nk ∈ Z

}
;

and for the communication graph of an SDN, ρ(λ, λ′) is the time delay of data trans-
mission between two agents λ and λ′. Using the geodesic distance ρ, we define the
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closed ball with center λ ∈ V and radius r > 0 by

B(λ, r) = {λ′ ∈ V , ρ(λ, λ′) ≤ r},

which contains all r -neighboring vertices of λ ∈ V .
Let μ be the counting measure on the vertex set V , i.e., μ(F) is the number of

vertices in F ⊂ V . In this paper, we always assume that the counting measure μ has
doubling property, i.e., there exists a positive constant D such that

μ (B(λ, 2r)) ≤ Dμ (B(λ, r)) for all λ ∈ V and r > 0 (2.1)

[12,40,52].We denote theminimal constant D in the doubling property (2.1) by D(μ),
which is also known as the doubling constant of the measureμ. Applying the doubling
property (2.1) repeatedly, we have

μ(B(λ, r)) ≤ μ
(
B(λ, 2�log2(r/r ′)
r ′)

) ≤ D(μ)(r/r ′)log2 D(μ)μ(B(λ, r ′)) (2.2)

for all r ≥ r ′ > 0. Taking r ′ = 1−ε in (2.2) for sufficiently small ε > 0, we conclude
that the counting measure μ has polynomial growth in the sense that

μ(B(λ, r)) ≤ D1(r + 1)d1 for all λ ∈ V and r ≥ 0, (2.3)

where D1 and d1 are positive constants. The notion of polynomial growth for the
counting measure μ is introduced in [12], where the minimal constants d1 and D1 in
(2.3), to be denoted by dG and DG , are known as the Beurling dimension and density
of the graph G respectively.

Let N ≥ 0. We say that a subset VN of the vertex set V is maximal N-disjoint if

B(λ, N ) ∩ ( ∪λm∈VN B(λm, N )
) �= ∅ for all λ ∈ V (2.4)

and

B(λm, N ) ∩ B(λn, N ) = ∅ for all distinct λm, λn ∈ VN . (2.5)

For N = 0, one may verify that the whole set V is the only maximal N -disjoint set
VN , i.e.,

VN = V if N = 0, (2.6)

while for N ≥ 1, one may construct many maximal N -disjoint sets VN . For example,
we can construct a maximal N -disjoint set VN = {λm,m ≥ 1} by taking a vertex
λ1 ∈ V and defining vertices λm,m ≥ 2, recursively by

λm = arg minλ∈Am
ρ(λ, λ1),
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where Am = {λ ∈ V , B(λ, N ) ∩ ∪m−1
m′=1B(λm′ , N ) = ∅} [12]. For a maximal N -

disjoint set VN , it is observed in [12,40] that for any N ′ ≥ 2N , B(λm, N ′), λm ∈ VN ,
form a finite covering of the whole set V , and

1 ≤ inf
λ∈V

∑
λm∈VN

χB(λm ,N ′)(λ)

≤ sup
λ∈V

∑
λm∈VN

χB(λm ,N ′)(λ) ≤ (D(μ)
)�log2(2N ′/N+1)


. (2.7)

For λ ∈ V and R ≥ 0, set

AR(λ, N ) := {λm ∈ VN : ρ(λm, λ) ≤ (N + 1)R
}
, (2.8)

and let λm0 ∈ AR(λ, N ) be so chosen that

μ(B(λm0 , N )) = inf
λm∈AR(λ,N )

μ(B(λm, N )). (2.9)

Then we obtain from (2.2), (2.5) and (2.9) that

μ(AR(λ, N ))≤
∑

λm∈AR(λ,N ) μ(B(λm, N ))

μ(B(λm0 , N ))
= μ

( ∪λm∈AR(λ,N ) B(λm, N )
)

μ(B(λm0 , N ))

≤ μ(B(λm0 , N + 2(N + 1)R)

μ(B(λm0 , N ))
≤ (D(μ))3(R + 1)log2 D(μ). (2.10)

Therefore the counting measure μ on the graph G has strong polynomial growth since
there exist two positive constants D and d such that

sup
λ∈V

μ
({

λm ∈ VN : ρ(λm, λ) ≤ (N + 1)R
}) ≤ D(R + 1)d (2.11)

hold for all R, N ≥ 0 and maximal N -disjoint set VN . Recall that the whole set V is
the only maximal N -disjoint set VN for N = 0. So in this paper the minimal constants
d and D in (2.11), to be denoted by d̃G and D̃G , are considered as generalized Beurling
dimension and density respectively. Moreover it follows from (2.6) and (2.10) that

dG ≤ d̃G ≤ log2 D(μ), (2.12)

where dG is the Beurling dimension of the graph G.
We say that the counting measure μ on the graph G is Ahlfors d0-regular if there

exist positive constants B3 and B4 such that

B3(r + 1)d0 ≤ μ
(
B(λ, r)

) ≤ B4(r + 1)d0 (2.13)

hold for all balls B(λ, r)with center λ ∈ V and radius 0 ≤ r ≤ diam G, where diam G
denotes the diameter of the graph G [29,52]. Clearly for a graph G with its counting
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measure μ being Ahlfors d0-regular, its Beurling dimension dG is equal to d0. In the
following proposition, we show that the generalized Beurling dimension d̃G is also
equal to d0, see Sect. 5.1 for the proof.

Proposition 2.1 Let G be a connected simple graph. If the counting measure μ is
Ahlfors d0-regular, then d̃G = d0.

2.2 Beurling Algebras of Matrices on Graphs

Let G := (V , E) be a connected simple graph with its counting measure μ satisfying
the doubling property (2.1). For 1 ≤ r ≤ ∞ and α ≥ 0, we define the Beurling algebra
Br ,α := Br ,α(G) by

Br ,α(G) :=
{
A = (a(λ, λ′)

)
λ,λ′∈V : ‖A‖Br ,α < ∞

}
, (2.14)

where dG is the Beurling dimension of the graph G,

‖A‖Br ,α :=
{ (∑∞

n=0 hA(n)r (n + 1)αr+dG−1
)1/r if 1 ≤ r < ∞

supn≥0 hA(n)(n + 1)α if r = ∞,
(2.15)

and

hA(n) = sup
ρ(λ,λ′)≥n

|a(λ, λ′)|, n ≥ 0.

The Beurling algebra Br ,α(G) is introduced in [44] for the lattice graph Zd and for an
arbitrary simple graph G in [40], see also [8]. For a matrix A = (a(λ, λ′))λ,λ′∈V in the
Beurling algebra Br ,α(G), we define approximation matrices AK , K ≥ 1, with finite
bandwidth by

AK := (a(λ, λ′)χ[0,1](ρ(λ, λ′)/K )
)
λ,λ′∈V . (2.16)

For the Beurling algebraBr ,α(G), we recall some elementary properties where the first
four conclusions have been established in [40], see Sect. 5.2 for the proof.

Proposition 2.2 Let G := (V , E) be a connected simple graph such that its counting
measureμ satisfies the doubling property (2.1)with the doubling constant D(μ). Then
the following statements hold.

(i) Br ,α(G) with 1 ≤ r ≤ ∞ and α ≥ 0 are solid in the sense that

‖A‖Br ,α ≤ ‖B‖Br ,α (2.17)

hold for all A = (a(λ, λ′))λ,λ′∈V and B = (b(λ, λ′))λ,λ′∈V satisfying
|a(λ, λ′)| ≤ |b(λ, λ′)| for all λ, λ′ ∈ V .
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(ii) B1,0(G) is a Banach algebra, and

‖AB‖B1,0 ≤ dGDG2dG+1‖A‖B1,0‖B‖B1,0 for all A, B ∈ B1,0(G). (2.18)

(iii) Br ,α(G) with 1 ≤ r ≤ ∞ and α > dG(1 − 1/r) are Banach algebras, and

‖AB‖Br ,α ≤ dGDG2α+1+dG/r
(α − (dG − 1)(1 − 1/r)

α − dG(1 − 1/r)

)1−1/r‖A‖Br ,α‖B‖Br ,α

(2.19)

hold for all A, B ∈ Br ,α(G).
(iv) Br ,α(G) with 1 ≤ r ≤ ∞ and α > dG(1 − 1/r) are Banach subalgebras of

B1,0(G), and

‖A‖B1,0 ≤
(α − (dG − 1)(1 − 1/r)

α − dG(1 − 1/r)

)1−1/r‖A‖Br ,α for all A ∈ Br ,α(G).

(2.20)

(v) Amatrix A inBr ,α(G)with 1 ≤ r ≤ ∞ andα > dG(1−1/r) is well approximated
by its truncation AK , K ≥ 1, in the norm ‖ · ‖B1,0 ,

‖A − AK ‖B1,0 ≤ C0‖A‖Br ,α K
−α+dG(1−1/r), (2.21)

where

C0 =
{
2α+1 if r = 1

2α+1−dG (1−1/r)

(α/(1−1/r)−dG)1−1/r if r > 1.

2.3 Beurling Algebras of Matrices on aMaximal Disjoint Set

Let G = (V , E) be a connected simple graph. Given 1 ≤ r ≤ ∞, α̃ ≥ 0 and a
maximal N -disjoint subset VN of the vertex set V , we define Beurling algebras of
matrices B := (b(λm, λk)

)
λm ,λk∈VN

on VN by

Br ,α̃;N (VN ) := {B, ‖B‖Br ,α̃;N < ∞} (2.22)

where

‖B‖Br ,α̃;N :=
⎧⎨
⎩
(∑∞

n=0(n + 1)α̃r+d̃G−1
(
supρ(λm ,λk )≥n(N+1) |b(λm , λk )|

)r)1/r
if 1 ≤ r < ∞,

supn≥0(n + 1)α̃
(
supρ(λm ,λk )≥n(N+1) |b(λm , λk )|

)
if r = ∞.

(2.23)

The Banach algebra Br ,α̃;N (VN ) is introduced in [40], where the counting measure μ

is assumed to be Ahlfors regular in which the generalized Beurling dimension d̃G and
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the Beurling dimension dG coincides by Proposition 2.1. Following the argument used
in the proof of Proposition 2.2 with the polynomial growth property (2.3) replaced by
the strong polynomial growth property (2.11), we have the following properties for
Banach algebras Br ,α̃;N (VN ) of matrices on VN .

Proposition 2.3 Let G := (V , E) be a connected simple graph such that its counting
measure μ satisfies the doubling property (2.1), and VN be a maximal N-disjoint set.
Then the following statements hold.

(i) B1,0;N (VN ) is a Banach algebra and

‖AB‖B1,0;N ≤ d̃G D̃G23d̃G+1‖A‖B1,0;N ‖B‖B1,0;N , A, B ∈ B1,0;N (VN ).(2.24)

(ii) Br ,α̃;N (VN ) with 1 ≤ r ≤ ∞ and α̃ > d̃G(1 − 1/r) are Banach subalgebras of
B1,0;N (VN ), and

‖A‖B1,0;N ≤
(

α̃ − (d̃G − 1)(1 − 1/r)

α̃ − d̃G(1 − 1/r)

)1−1/r

‖A‖Br ,α̃;N , A ∈ Br ,α̃;N (VN ).

(2.25)

(iii) Br ,α̃;N (VN ) with 1 ≤ r ≤ ∞ and α̃ > d̃G(1 − 1/r) are Banach algebras, and

‖AB‖Br ,α̃;N ≤ d̃G D̃G2α̃+d̃G(2+1/r)+2

(
α̃ − (d̃G − 1)(1 − 1/r)

α̃ − d̃G(1 − 1/r)

)1−1/r

×‖A‖Br ,α̃;N ‖B‖Br ,α̃;N , A, B ∈ Br ,α̃;N (VN ). (2.26)

Beurling algebra on the graph G and on its maximal N -disjoint set VN are closely
related. For N = 0, we have

Br ,α̃;0(V0) = Br ,α̃+(d̃G−dG)/r (G) (2.27)

as the only maximal 0-disjoint set V0 is the whole vertex set V . For N ≥ 1, we have
the following results about Beurling algebras on a graph and its maximal disjoint sets,
which will be used in our proofs to establish the equivalence of weighted stability for
different exponents and weights and also the norm-controlled inversion. The detailed
proof will be given in Sect. 5.3.

Proposition 2.4 Let 1 ≤ r ≤ ∞, G := (V , E) be a connected simple graph such that
its counting measure μ satisfies the doubling property (2.1), and VN , N ≥ 1, be a
maximal N-disjoint set. Then the following statements hold.

(i) If A = (a(λ, λ′))λ,λ′∈V ∈ Br ,α(G), α ≥ 0, then its submatrix B =
(a(λm, λk))λm ,λk∈VN belongs to Br ,α−(d̃G−dG)/r;N , and

‖B‖Br ,α−(d̃G−dG )/r;N ≤ ‖A‖Br ,α . (2.28)
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(ii) If B = (b(λm, λk))λm ,λk∈VN ∈ Br ,α;N , α ≥ 0, the matrix

A =
( ∑

λm∈B(λ,2N )

∑
λk∈B(λ′,4N )

b(λm, λk)
)

λ,λ′∈V (2.29)

on the graph G belongs to Br ,α+(d̃G−dG)/r (G), and

‖A‖Br ,α+(d̃G−dG )/r
≤ 8α+d̃G/r (D(μ))7Nα+d̃G/r‖B‖Br ,α;N . (2.30)

(iii) If A = (a(λ, λ′))λ,λ′∈V ∈ Br ,α(G) for some α > dG(1 − 1/r), then the matrix

SA,N = (SA,N (λm, λk)
)
λm ,λk∈VN

(2.31)

belongs to Br ,α−(d̃G−dG)/r;N , and

‖SA,N‖Br ,α−(d̃G−dG )/r;N ≤ C̃0‖A‖Br ,α ×
{
N−min(1,α−dG/r ′) if α �= dG/r ′ + 1
N−1(ln(N + 1))1/r

′
if α = dG/r ′ + 1,

(2.32)

where 1/r ′ = 1 − 1/r , hA(n) = supρ(λ,λ′)≥n |a(λ, λ′)|, n ≥ 0,

C̃0 = 24α+4dG/r+2 ×
{( 1+|α−1−dG/r ′|

|α−1−dG/r ′|
)1/r ′

if α �= dG/r ′ + 1
1 if α = dG/r ′ + 1,

and for λm, λk ∈ VN ,

SA,N (λm, λk) =
{
NdGhA

(
ρ(λm, λk)/2

)
if ρ(λm, λk) > 12(N + 1)

N−1∑2N
n=0 hA(n)(n + 1)dG if ρ(λm, λk) ≤ 12(N + 1).

(2.33)

We conclude this subsection with an example to illustrate the construction of the
matrix SA,N in (2.33). This also demonstrates that the exponent min(1, α − dG/r ′) in
(2.32) is optimal in the sense that the estimate (2.32) could fail if it is replaced by a
large exponent β > min(1, α − dG/r ′).

Example 2.5 Let 1 ≤ r ≤ ∞, α > 1 − 1/r , and Aκ := (aκ(n − n′))n,n′∈Z, where
κ ∈ (0, 1) is a constant sufficiently close to one, and

aκ(n) =
⎧⎨
⎩
1 if n = 0
−κ if n = 1
0 otherwise.

(2.34)
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Then its inverse (Aκ)−1 = (ǎκ(n − n′))n,n′∈Z is given by

ǎκ (n) =
{

κn if n ≥ 0
0 otherwise,

and

‖Aκ‖Br ,α ≈ 1 and ‖A−1
κ ‖Br ,α ≈ (1 − κ)−α−1/r . (2.35)

Observe that VN = {λm = (2N + 1)m,m ∈ Z} is a maximal N -disjoint subset of Z.
For the matrix Aκ and the above maximal disjoint subset VN , one may verify that the
matrix SA,N in (2.33) associated with the matrix Aκ and its inverse (Aκ)−1 are given
by

SAκ ,N (λm, λk) =
{
0 if |λm − λk | > 12(N + 1)
N−1(1 + 2κ) if |λm − λk | ≤ 12(N + 1)

(2.36)

and

S(Aκ )−1,N (λm, λk) =
{
Nκ�|λm−λk |/2
 if |λm − λk | > 12(N + 1)
1−(2N+2)κ2N+(2N+1)κ2N+1

N (1−κ)2
if |λm − λk | ≤ 12(N + 1)

respectively, where the last equality as h(Aκ )−1(n) = κn, n ≥ 0, and

2N∑
n=0

(n + 1)tn =
( 2N∑
n=0

tn+1
)′ = 1 − (2N + 2)t2N+1 + (2N + 1)t2N+1

(1 − t)2
, 0 < t < 1.

By direct calculation, we obtain

‖SAκ ,N‖Br ,α−(d̃G−dG )/r;N = ‖SAκ ,N‖Br ,α;N ≈ N−1

and

‖S(Aκ )−1,N‖Br ,α;N ≈ (1 − κ)−1(max(N (1 − κ), 1))−min(1,α−1/r ′).

This together with (2.35) demonstrates that the estimate (2.32) holds with the matrix
A replaced by matrices Aκ and also by the inverse (Aκ)−1 for κ ∈ (0, 1) close to one,
and that the exponent min(1, α − dG/r ′) in (2.32) is optimal.

2.4 Weighted Norm Inequalities

Let G := (V , E) be a connected simple graph with its counting measure μ satisfying
the doubling property (2.1). For 1 ≤ p < ∞, a positive function w = (w(λ))λ∈V on
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the vertex set V is aMuckenhoupt Ap-weight if there exists a positive constant C such
that (

1

μ(B)

∑
λ∈B

w(λ)

)(
1

μ(B)

∑
λ∈B

(w(λ))−1/(p−1)

)p−1

≤ C (2.37)

for 1 < p < ∞, and a Muckenhoupt A1-weight if

1

μ(B)

∑
λ∈B

w(λ) ≤ C inf
λ∈B w(λ) (2.38)

for any ball B ⊂ V [20]. The smallest constant C for which (2.37) holds for 1 < p <

∞, and (2.38) holds for p = 1, respectively is known as the Ap-bound of the weight
w and is denoted by Ap(w). An equivalent definition of a Muckenhoupt Ap-weight
w := (w(λ))λ∈V is that

(
1

μ(B)

∑
λ∈B

|c(λ)|
)p (

1

μ(B)

∑
λ∈B

w(λ)

)
≤ Ap(w)

μ(B)

∑
λ∈B

|c(λ)|pw(λ) (2.39)

holds for all balls B ⊂ V and sequences c := (
c(λ)

)
λ∈V ∈ �

p
w, where Ap(w) is

Ap-bound of the weight w. For λ ∈ V and r ≥ 0, set

w(B(λ, r)) =
∑

λ′∈B(λ,r)

w(λ′).

It is well known that a Muckenhoupt Ap-weight w is a doubling measure. In fact,
replacing the ball B and the sequence c by B(λ, 2 j r), 1 ≤ j ∈ Z and the index
sequence on B(λ, r) in (2.39) and using the doubling condition (2.1) for the counting
measure μ, we obtain that

w(B(λ, 2 j r)) ≤ Ap(w)

(
μ(B(λ, 2 j r)

μ(B(λ, r)

)p

w(B(λ, r))

≤ (D(μ)) j p Ap(w)w(B(λ, r)) (2.40)

hold for all λ ∈ V , r ≥ 0 and positive integers j .
Weighted norm inequalities of linear operators are an important topic in harmonic

analysis, see [20] and references therein for historical remarks. In the following propo-
sition, we show that the Banach algebra B1,0(G) is a Banach subalgebra of B(�

p
w), see

Sect. 5.4 for the proof.

Proposition 2.6 Let G := (V , E) be a connected simple graph such that its counting
measureμ satisfies the doubling property (2.1). ThenB1,0(G) is a subalgebra ofB(�

p
w)

for any 1 ≤ p < ∞ and Muckenhoupt Ap-weight w, and

‖Ac‖p,w ≤ 23dG DG(Ap(w))1/p‖A‖B1,0‖c‖p,w for all A ∈ B1,0(G) and c ∈ �
p
w. (2.41)
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By Propositions 2.2 and 2.6, we conclude that Br ,α(G) with 1 ≤ r ≤ ∞ and
α > dG(1−1/r) are Banach subalgebras ofB(�

p
w) too.We remark that the subalgebra

property in Proposition 2.6 was established in [12,40] for the unweighted case and in
[44] for the weighted case on the lattice graph Zd .

3 Polynomial Control on Optimal Lower Stability Bounds

In this section, we show that weighted stabilities of matrices in a Beurling algebra
for different exponents and Muckenhoupt weights are equivalent to each other, and
reciprocal of the optimal lower stability bound for one exponent and weight is dom-
inated by a polynomial of reciprocal of the optimal lower stability bound for another
exponent and weight.

Theorem 3.1 Let 1 ≤ r ≤ ∞, 1 ≤ p, q < ∞, G := (V , E) be a connected simple
graph satisfying the doubling property (2.1), w, w′ be Muckenhoupt Ap-weight and
Aq-weight respectively, and let A ∈ Br ,α(G) for some α > d̃G − dG/r , where dG and
d̃G are the Beurling and generalized Beurling dimension of the graph G respectively.
If A has �

p
w-stability with the optimal lower stability bound βp,w(A),

βp,w(A)‖c‖p,w ≤ ‖Ac‖p,w for all c ∈ �pw, (3.1)

then A has �
q
w′ -stability with the optimal lower stability bound denoted by βq,w′(A),

βq,w′(A)‖c‖q,w′ ≤ ‖Ac‖q,w′ for all c ∈ �
q
w′ . (3.2)

Moreover, there exists an absolute constant C, independent of matrices A ∈ Br ,α(G)

and weights w and w′, such that

βp,w(A)

βq,w′(A)
≤C

(
Aq(w

′)
)1/q (

Ap(w)
)1/p ((Ap(w)

)2/p ‖A‖Br ,α

βp,w(A)

)E(α,r)

×
{
1 if α �= 1 + dG/r ′(
ln
(

(Ap(w))2/p‖A‖Br ,α
βp,w(A)

))(2dG+1)/r ′
if α = 1 + dG/r ′,

(3.3)

where 1/r ′ = 1 − 1/r and

E(α, r) = d̃G + dG + 1

min
(
α − dG/r ′, 1

) .
Remark 3.2 The equivalence of unweighted stabilities for different exponents is dis-
cussed for matrices in Baskakov–Gohberg–Sjöstrand algebras, Jaffard algebras and
Beurling algebras [2,12,27,42,44,50], for convolution operators [4], and for localized
integral operators of non-convolution type [18,19,37,42]. For a matrix A in the Jaf-
fard algebra Jα(G) = B∞,α(G) with α > dG , Cheng, Jiang and Sun use differential
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subalgebra approach to prove in [12, Theorem 5.2] that

‖A‖B∞,α

βq,w0

≤ h

(‖A‖B∞,α

β2,w0

)
(3.4)

for some positive function h with subexponential growth. The above conclusion is
improved by Shin and Sun in [40, Theorem 4.1]. They used the boot-strap argument
to show that, for a matrix A in the Beurling algebra Br ,α(G) with 1 ≤ r ≤ ∞ and
α > dG(1 − 1/r), reciprocal of its optimal lower unweighted stability bound for one
exponent is dominated by a polynomial of reciprocal of its optimal lower unweighted
stability bound for another exponent,

‖A‖Br ,α

βq,w0

≤ C

⎧⎪⎨
⎪⎩
( ‖A‖Br ,α

βp,w0

)(1+θ(p,q))K0

if α �= 1 + dG/r ′( ‖A‖Br ,α
βp,w0

ln
(
1 + ‖A‖Br ,α

βp,w0

))(1+θ(p,q))K0

if α = 1 + dG/r ′,
(3.5)

whereC is an absolute constant, K0 is a positive integer satisfying K0 >
dG

min(α−dG/r ′,1) ,
and

θ(p, q) = dG |1/p − 1/q|
K0 min(α − dG/r ′, 1) − dG |1/p − 1/q| .

Given 1 ≤ p < ∞, we remark that for an exponent q close to p, the conclusion (3.5)
provides a better estimate to the optimal lower unweighted stability bound βq,w0(A)

than the one in (3.3) withw = w′ = w0, while the conclusion (3.3) withw = w′ = w0
gives a tighter estimate to the optimal lower unweighted stability bound βq,w0(A) than
the one in (3.5) when q is close to one or infinity.

For 1 ≤ N ∈ Z and λ ∈ V , we introduce a truncation operator χN
λ and its smooth

version �N
λ by

χN
λ : (c(λ)

)
λ∈V �−→ (

χ[0,N ]
(
ρ(λ, λ′)

)
c(λ′)

)
λ′∈V (3.6)

and

�N
λ : (c(λ)

)
λ∈V �−→ (

ψ0
(
ρ(λ, λ′)/N

)
c(λ′)

)
λ′∈V , (3.7)

where ψ0(t) = max{0,min(1, 3 − 2|t |)} is the trapezoid function satisfying

χ[−1,1](t) ≤ ψ0(t) ≤ χ[−3/2,3/2](t), t ∈ R.

The operators χN
λ and �N

λ localize a sequence to a neighborhood of λ and they can be
considered as diagonal matrices with entries χB(λ,N )(λ

′) andψ0(ρ(λ, λ′)/N ), λ′ ∈ V
respectively.
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Let VN be amaximal N -disjoint set. To prove Theorem3.1, we start from estimating
the weighted terms

(
w
(
B(λm, 4N )

))−1/p‖�2N
λm

c‖p,w, λm ∈ VN , for sufficiently large
N , which is established in [40] for the trivial weight w0.

Lemma 3.3 Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞, α > dG(1−1/r),w be aMuckenhoupt Ap-
weight, and A = (a(λ, λ′))λ,λ′∈V ∈ Br ,α(G) have �

p
w-stability. Assume that N ≥ 1 is

a positive integer such that

2C1(Ap(w))1/p‖A‖Br ,α N
−α+dG(1−1/r) ≤ βp,w(A), (3.8)

whereβp,w(A) is the optimal lower �
p
w-stability bound, C0 is the constant in (2.21) and

C1 = 23dGC0DG . Then for all maximal N-disjoint sets VN and weighted sequences
c ∈ �

p
w, we have

βp,w(A)
(
w
(
B(λm, 4N )

))−1/p‖�2N
λm

c‖p,w

≤ 2
(
w
(
B(λm, 4N )

))−1/p‖�2N
λm

Ac‖p,w + C2
(
Ap(w)

)2/p
×
∑

λk∈VN

SA,N (λm, λk)
(
w
(
B(λk, 4N )

))−1/p‖�2N
λk

c‖p,w, λm ∈ VN , (3.9)

where the smooth truncation operators �2N
λm

, λm ∈ VN , are defined in (3.7), the
matrix SA,N = (SA,N (λm, λk))λm ,λk∈VN is given in (2.33), and C2 ≥ 2 is an absolute
constant.

Let [�2N
λm

, A] := �2N
λm

A − A�2N
λm

be the commutator between the smooth

truncation operator �2N
λm

and the matrix A [40,42,43], and the matrix SA,N =
(SA,N (λm, λk))λm ,λk∈VN be given in (2.33). A crucial step in the proof of Lemma
3.3 is the following estimate to the commutator [�2N

λm
, A],

‖χ4N
λm

[�2N
λm

, A]χ3N
λk

‖B1,0 � SA,N (λm, λk), λm, λk ∈ VN , (3.10)

see Sect. 5.5 for the detailed argument. By Propositions 2.3 and 2.4, we have the
following estimate for l-th power of the matrix SA,N for all l ≥ 1,

∥∥(SA,N
)�∥∥Br ,α−(d̃G−dG )/r;N

≤ (C3‖A‖Br ,α )l

×
{
N−min(1,α−dG/r ′)l if α �= dG/r ′ + 1
N−l(ln(N + 1))l/r

′
if α = dG/r ′ + 1

(3.11)

where 1/r ′ = 1 − 1/r and C3 is an absolute constant independent on N ≥ 1, l ≥ 1
and matrices A ∈ Br ,α . Applying (3.9) and (3.11) repeatedly, we have the following
crucial estimates (3.13) and (3.14), see Sect. 5.6 for the proof.

Lemma 3.4 Let 1 ≤ p < ∞, w be a Muckenhoupt Ap-weight, and A =
(a(λ, λ′))λ,λ′∈V ∈ Br ,α(G) for some 1 ≤ r ≤ ∞ and α > d̃G − dG/r . Assume
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that A has �
p
w-stability with the optimal lower stability bound βp,w(A) and that the

positive integer N satisfies

βp,w(A)≥ 2max(C1,C2C3)
(
Ap(w)

)2/p‖A‖Br ,α

×
{
N−min(1,α−dG/r ′) if α �= dG/r ′ + 1
N−1(ln(N + 1))1/r

′
if α = dG/r ′ + 1,

(3.12)

where C1,C2,C3 are absolute constants in (3.8), (3.9) and (3.11) respectively. Then
there exist a matrix HA,N = (HA,N (λ, λ′))λ,λ′∈V and two absolute constants C4 and
C5 such that

‖HA,N‖Br ,α ≤ C4N
α+dG/r (3.13)

and

|c(λ)| ≤ C5(Ap(w))1/p(βp,w(A))−1NdG
∑
λ′∈V

HA,N (λ, λ′)|Ac(λ′)|, c ∈ �pw.(3.14)

Next we provide an explicit construction of the matrix HAκ ,N in the above lemma
for the matrix Aκ in Example 2.5 when w is the trivial weight w0.

Example 3.5 (Continuation of Example 2.5) Let Aκ be as in Example 2.5 with κ ∈
(0, 1) sufficiently close to one. Take the trivial weight w0 ≡ 1 and the maximal N -
disjoint set VN = {λm = (2N + 1)m,m ∈ Z} with N ≥ 3 satisfying (3.12). In the
above setting, we obtain from (2.36) that the estimate in (3.9) becomes

(1 − κ)‖�2N
λm

c‖p ≤ 2‖�2N
λm

Aκc‖p + C2N
−1(1 + κ)

∑
|k−m|≤6

‖�2N
λk

c‖p, λm ∈ VN .

Applying the above inequality repeatedly for L ≥ 1 times, we obtain

‖�2N
λm

c‖p ≤ 2

1 − κ
‖�2N

λm
Aκc‖p + C2(1 + κ)

N (1 − κ)

∑
k∈Z

B1(k − m)‖�2N
λk

c‖p

≤ 2

1 − κ
‖�2N

λm
Aκc‖p + 2C2(1 + κ)

N (1 − κ)2

∑
k∈Z

B1(k − m)‖�2N
λk

Aκc‖p

+2C2(1 + κ)

N (1 − κ)2

∑
k∈Z

B2(k − m)‖�2N
λk

c‖p

≤ · · ·

≤ 2

1 − κ

∑
k∈Z

( L−1∑
l=0

(C2(1 + κ)

N (1 − κ)

)l
Bl(k − m)

)
‖�2N

λk
Aκc‖p

+ 2

1 − κ

(C2(1 + κ)

N (1 − κ)

)L−1∑
k∈Z

BL(k − m)‖�2N
λk

c‖p, (3.15)
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where B0 is the delta sequence, and Bn := (Bn(k))k∈Z, n ≥ 1, are the n-th discrete
convolution of B1 := (χ[−6,6](k))k∈Z. Set

hAκ (m) =
∞∑
l=0

(C2(1 + κ)

N (1 − κ)

)l
Bl(m),m ∈ Z. (3.16)

For n ∈ Z, letλm = (2N+1)m be the unique vertex in VN such that 0 ≤ n−λm ≤ 2N .
Then

|c(n)|≤ ‖�2N
λm

c‖p ≤ 2

1 − κ

∑
k∈Z

hAκ (k − m)‖�2N
λk

Aκc‖p

≤ 2

1 − κ

∑
k∈Z

hAκ (k − m)
∑

|n′−(2N+1)k|≤3N

|Aκc(n
′)|, (3.17)

where the first and third inequalities follow as ψ0 is bounded above and below by
the characteristic function on the interval [−1, 1] and [−3/2, 3/2] respectively, and
the second inequality is obtained from taking limit L → ∞ in (3.15). By (3.17), the
matrix HA,N in Lemma 3.4 with A replaced by Aκ can be defined by

HAκ ,N =
⎛
⎝ 2

1 − κ

∑
|n′−(2N+1)k|≤3N

hAκ (k − 
n/(2N + 1)�)
⎞
⎠

n,n′∈Z
.

Now we are ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1 As for α′ ≥ α,Br ,α′(G) is a Banach subalgebra ofBr ,α(G). Then
it suffices to prove (3.3) for all α satisfying

dG/r ′ ≤ d̃G − dG/r < α ≤ d̃G − dG/r + 1. (3.18)

Define

N0 =
{
Ñ0 if α �= dG/r ′ + 1
2Ñ0(ln(Ñ0 + 1))1−1/r if α = dG/r ′ + 1,

(3.19)

where

Ñ0 =
⌊(

2max(C1,C2C3)
(
Ap(w)

)2/p‖A‖Br ,α

βp,w(A)

)1/min(1,α−dG/r ′)⌋
+ 2.

Then one may verify that (3.12) is satisfied for N = N0. Applying Lemma 3.4 with
N replaced by N0 and also Proposition 2.6, we obtain

‖c‖q,w′ � (Aq(w
′))1/q(Ap(w))1/p(βp,w(A))−1N

dG
0 ‖HA,N0‖B1,0‖Ac‖q,w′ ,
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c ∈ �pw ∩ �
q
w′ , (3.20)

where w′ is an Aq -weight with 1 ≤ q < ∞ and the matrix HA,N is given in Lemma
3.4. This together with (3.13) and the density of �

p
w ∩ �

q
w′ in �

q
w′ implies that

‖c‖q,w′ � (Aq(w
′))1/q(Ap(w))1/p(βp,w(A))−1N

α+dG(1+1/r)
0 ‖Ac‖q,w′

for all c ∈ �
q
w′ . Therefore

‖A‖Br ,α

βq,w′(A)
�
(
Aq(w

′)
)1/q(

Ap(w)
)1/p

(
Ap(w)

)2/p‖A‖Br ,α

βp,w(A)
N

α+dG(1+1/r)
0 , (3.21)

where βq,w′(A) is the optimal lower �q
w′ -stability bound of the matrix A. This together

with (3.18) and (3.19) completes the proof of Theorem 3.1. ��

4 Norm-Controlled Inversion

In this section, we show that Banach algebras Br ,α(G) with 1 ≤ r ≤ ∞ and α >

d̃G −dG/r admit a polynomial norm-controlled inversion inB(�
p
w) for all 1 ≤ p < ∞

and Muckenhoupt Ap-weights, see Sect. 5.7 for the proof.

Theorem 4.1 Let 1 ≤ r ≤ ∞, 1 ≤ p < ∞, G := (V , E) be a connected simple
graph satisfying the doubling property (2.1), and w be a Muckenhoupt Ap-weight.
If A belongs to Br ,α(G) for some α > d̃G − dG/r and it is invertible in B(�

p
w), then

A−1 ∈ Br ,α . Moreover, there exists an absolute constant C such that

‖A−1‖Br ,α ≤ C(Ap(w))1/p‖A−1‖B(�
p
w)

((
Ap(w)

)2/p‖A−1‖B(�
p
w)

‖A‖Br ,α

) α+dG (1+1/r)
min(α−dG/r ′,1)

×
⎧⎨
⎩
1 if α �= 1 + dG/r ′,(
ln
(
(Ap(w))2/p‖A−1‖B(�

p
w)

‖A‖Br ,α + 1
))(2dG+1)/r ′

if α = 1 + dG/r ′,
(4.1)

where 1/r ′ = 1 − 1/r .

Remark 4.2 In [12, Theorem 5.3], Jaffard algebras Jα(G) = B∞,α(G) with α > dG
are shown to admit norm-controlled inversion in the symmetric ∗-algebra B(�2) =
B(�2w0

), and moreover

‖A−1‖B∞,α
‖A‖B∞,α

≤ h
(‖A−1‖B(�2)‖A‖B∞,α

)
(4.2)

hold for all matrices A ∈ Jα(G) being invertible in B(�2), where h is a positive
function with subexponential growth. Recall from (2.12) that d̃G ≥ dG . Therefore for
the case that α > d̃G , the estimate in (4.1) with the parameter r , the exponent p and
Muckenhoupt Ap-weight w replaced by ∞, 2 and the trivial weight w0 respectively
provides a better estimate than the one in (4.2), while the case that d̃G ≥ α > dG and
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r = ∞ is not covered in Theorem 4.1. The estimate (4.2) was improved by Shin and
Sun under the additional assumption that the counting measure μ is Ahlfors regular
in which d̃G = dG by Proposition 2.1. They show in [40, Theorem 5.1] that for any
matrix A in Beurling algebras Br ,α(G) with 1 ≤ r ≤ ∞ and α > dG(1 − /r),

‖A−1‖Br ,α ≤ C‖A−1‖B(�2)

(‖A−1‖B(�2)‖A‖Br ,α

)(α+dG/r)/min(α−dG/r ′,1)

×
{
1 if α �= 1 + dG/r ′(
ln
(‖A−1‖B(�2)‖A‖Br ,α + 1

))(dG+1)/r ′
if α = 1 + dG/r ′,

(4.3)

where 1/r ′ = 1 − 1/r and C is an absolute constant. Hence under the additional
assumption that the counting measure μ is Ahlfors regular, the conclusion (4.3) pro-
vides a better upper bound estimate to‖A−1‖Br ,α than the one in (4.1)with the exponent
p andMuckenhoupt Ap-weightw replaced by 2 and the trivial weightw0 respectively.

In the following example, we demonstrate the almost optimality of the norm esti-
mate (4.1) for the inversion.

Example 4.3 (Continuation of Example 2.5) Let Aκ be as in Example 2.5, where κ ∈
(0, 1) is a constant sufficiently close to one, and let wθ = ((|n| + 1)θ )n∈Z,−1 < θ <

p − 1. Then wθ is a Muckenhoupt Ap-weight and

‖A−1
κ ‖B(�

p
wθ

) � ‖A−1
κ ‖B1,0 � (1 − κ)−1. (4.4)

Take c0 = (c0(n))n∈Z, where

c0(n) :=
{

κn if n ≥ 0
0 otherwise.

Therefore

‖c0‖p,wθ =
( ∞∑
n=0

κnp(n + 1)θ
)1/p

≈ (1 − κ)−(θ+1)/p (4.5)

and

‖A−1
κ c0‖p,wθ =

( ∞∑
n=0

κnq(n + 1)p(n + 1)θ
)1/p

≈ (1 − κ)−(θ+p+1)/p. (4.6)

By (4.4), (4.5) and (4.6), we have

‖A−1
κ ‖B(�

p
wθ

) ≈ (1 − κ)−1. (4.7)

Combining (2.35) and (4.7) yields

‖A−1
κ ‖Br ,α ≈ ‖A−1

κ ‖B(�
p
wθ

)

(‖A−1
κ ‖B(�

p
wθ

)‖Aκ‖Br ,α

)α+dG/r−dG , (4.8)
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while the estimate (4.1) in Theorem 4.1 for α > 1 + dG(1 − 1/r) is

‖A−1
κ ‖Br ,α � ‖A−1

κ ‖B(�
p
w)

(‖A−1
κ ‖B(�

p
w)‖Aκ‖Br ,α

)α+dG/r+dG . (4.9)

We observe that the difference of exponents in (4.8) and (4.9) is 2dG (independent on
α) when α > 1 + dG/r .

5 Proofs

In this section, we collect the proofs of Propositions 2.1, 2.2, 2.4 and 2.6, Lemmas 3.3
and 3.4, and Theorem 4.1.

5.1 Proof of Proposition 2.1

By (2.6), it suffices to establish (2.11) for N ≥ 1 and R ≥ 3. Let VN be a maximal
N -disjoint set, and define AR(λ, N ) as in (2.8). Then we obtain from (2.5) and (2.13)
that

μ (AR(λ, N ))≤
∑

λm∈AR(λ,N ) μ(B(λm, N ))

infλm′ ∈AR(λ,N ) μ(B(λm′, N ))

≤ B−1
3 N−d0μ

(∪λm∈AR(λ,N )B(λm, N )
)

≤ B−1
3 N−d0μ (B(λ, N + (N + 1)R) ≤ 2d0B−1

3 B4(R + 1)d0 ,

which implies that

d̃G ≤ d0. (5.1)

Similarly by (2.7) and (2.13), we get

μ
(
AR(λ, N )

)≥
∑

λm∈AR(λ,N ) μ(B(λm, 2N ))

maxλm∈AR(λ,N ) μ(B(λm, 2N ))

≥ B−1
4 (2N + 1)−d0μ

( ∪λm∈AR(λ,N ) B(λm, 2N )
)

≥ 3−d0B−1
4 N−d0μ(B(λ, N (R − 2))

≥ 2−2d03−d0B−1
4 B3(R + 1)d0 , R ≥ 3,

where the third inequality holds as B(λm, 2N )) ∩ B(λ, N (R − 2)) = ∅ for all λm /∈
AR(λ, N ). This show that

d̃G ≥ d0. (5.2)

Combining (5.1) and (5.2) completes the proof.
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5.2 Proof of Proposition 2.2

The conclusion (i) is obvious and the conclusions in (ii), (iii) and (iv) are presented
in [40, Propositions 3.3 and 3.4]. Now we prove the conclusion (v). Write A =
(a(λ, λ′))λ,λ′∈V and set hA(n) = supρ(λ,λ′)≥n |a(λ, λ′)|, n ≥ 0. Then for K ≥ 1 and
1 < r ≤ ∞, we have

‖A − AK ‖B1,0 ≤ 2
∞∑

n=�(K+1)/2

hA(n)(n + 1)dG−1

≤ 2‖A‖Br ,α

⎛
⎝ ∞∑

n=�(K+1)/2

(n + 1)−αr ′+dG−1

⎞
⎠

1/r ′

≤ 2‖A‖Br ,α

(∫ ∞

�(K+1)/2

xdG−1−αr ′

dx

)1/r ′

≤ 2α−dG/r ′+1

(αr ′ − dG)1/r
′ ‖A‖Br ,α K

−α+dG/r ′
,

where r ′ = r/(r − 1). This proves (2.21) for 1 < r ≤ ∞. Similarly we can prove
(2.21) for r = 1.

5.3 Proof of Proposition 2.4

The conclusion (i) follows from the definition of Beurling algebras on the graph G and
on its maximal disjoint set VN .

Now we prove the conclusion (ii). Set α̌ = α + (d̃G − dG)/r . For 1 ≤ r < ∞, we
obtain

‖A‖rBr ,α̌
≤

∞∑
n′=0

(n′+1)(N+1)−1∑
n=n′(N+1)

(n + 1)αr+d̃G−1

⎛
⎜⎜⎝ sup

ρ(λ,λ′)≥n

∑
λm∈B(λ,2N )
λk∈B(λ′,4N )

|b(λm, λk)|

⎞
⎟⎟⎠

r

≤ (N + 1)αr+d̃G
∞∑

n′=0

(n′ + 1)αr+d̃G−1

×

⎛
⎜⎜⎝ sup

ρ(λ,λ′)≥n′(N+1)

∑
λm∈B(λ,2N )
λk∈B(λ′,4N )

|b(λm, λk)|

⎞
⎟⎟⎠

r

≤ (D(μ))7r (N + 1)αr+d̃G
∞∑

n′=0

(n′ + 1)αr+d̃G−1
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×
(

sup
ρ(λm ,λk )≥max(n′−6,0)(N+1)

|b(λm, λk)|
)r

≤ 8αr+d̃G (D(μ))7r Nαr+d̃G‖B‖rBr ,α;N , (5.3)

where the third inequality follows from (2.7). This proves (2.30) and the conclusion
(ii) for 1 ≤ r < ∞.

Similarly for r = ∞, we have

‖A‖B∞,α̌
≤ sup

λ,λ′∈V

∑
λm∈B(λ,2N ),λk∈B(λ′,4N )

|b(λm, λk)|(ρ(λ, λ′) + 1)α

≤‖B‖∞,α;N sup
λ,λ′∈V

∑
λm∈B(λ,2N ),λk∈B(λ′,4N )

(
ρ(λ, λ′) + 1


ρ(λm, λk)/N� + 1

)α

≤ 8α(D(μ))7Nα‖B‖∞,α;N . (5.4)

Combining (5.3) and (5.4) proves (2.30) and the conclusion (ii).
Finally we prove the conclusion (iii). Set α̃ = α− (d̃G −dG)/r and 1/r ′ = 1−1/r .

Then for 1 < r < ∞, we have

‖SA,N‖Br ,α̃;N ≤ NdG

( ∞∑
n=13

(hA(n(N + 1)/2))r (n + 1)αr+dG−1

)1/r

+N−1

(
2N∑
n=0

hA(n)(n + 1)dG

)
×
(

12∑
n=0

(n + 1)αr+dG−1

)1/r

≤ 22α+(2dG−1)/r N−α+dG/r ′
( ∞∑
m=4N

(hA(m))r (m + 1)αr+dG−1

)1/r

+13α+dG/r N−1
2N∑
n=0

hA(n)(n + 1)dG

≤ 22α+(2dG−1)/r N−α+dG/r ′ ‖A‖Br ,α

+13α+dG/r‖A‖Br ,α N
−1

(
2N∑
n=0

(n + 1)−(α−1)r ′+dG−1

)1/r ′

≤ 22α+(2dG−1)/r N−α+dG/r ′ ‖A‖Br ,α + 13α+dG/r‖A‖Br ,α

×

⎧⎪⎨
⎪⎩
2
(
1+|α−1−dG/r ′|
|α−1−dG/r ′|

)1/r ′
N−min(1,α−dG/r ′)

if α �= dG/r ′ + 1,
31/r

′
N−1(ln(N + 1))1/r

′
if α = dG/r ′ + 1.

(5.5)

This proves (2.32) for 1 < r < ∞. Using similar argument, we can prove (2.32) for
r = 1,∞.
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5.4 Proof of Proposition 2.6

For the completeness of this paper, we follow the argument in [20,44] and give a sketch
of the proof. Write A = (a(λ, λ′))λ,λ′∈V , and set hA(n) = supρ(λ,λ′)≥n |a(λ, λ′)|,
n ≥ 0. Then for any c ∈ �

p
w with 1 < p < ∞, we have

‖Ac‖p,w ≤
(∑

λ∈V

(∑
λ′∈V

hA(ρ(λ, λ′))|c(λ′)|
)p

w(λ)

)1/p

≤ hA(0)‖c‖p,w +
⎛
⎝∑

λ∈V

⎛
⎝ ∞∑

l=1

hA(2l−1)
∑

2l−1≤ρ(λ,λ′)<2l

|c(λ′)|
⎞
⎠

p

w(λ)

⎞
⎠

1/p

≤ hA(0)‖c‖p,w +
( ∞∑

l=1

hA(2l−1)2ldG

)1−1/p

×
⎛
⎝ ∞∑

l=1

hA(2l−1)2−(p−1)ldG
∑
λ∈V

⎛
⎝ ∑

2l−1≤ρ(λ,λ′)<2l
|c(λ′)|

⎞
⎠

p

w(λ)

⎞
⎠

1/p

. (5.6)

By the equivalent definition (2.39) of the Muckenhoupt Ap-weight w and the polyno-
mial property (2.3) of the counting measure μ, we obtain

∑
λ∈V

( ∑
ρ(λ,λ′)<2l

|c(λ′)|
)p

w(λ)

≤
∑
λ∈V

( ∑
ρ(λ,λ′)<2l

|c(λ′)|pw(λ′)
)( ∑

ρ(λ,λ′′)<2l

(w(λ′′))−1/(p−1)
)p−1

w(λ)

≤ Ap(w)
∑
λ∈V

w(λ)
( ∑

ρ(λ′,λ)<2l

|c(λ′)|pw(λ′)
)

×
(
μ(B(λ, 2l+1 − 2))

)p∑
ρ(λ,λ′′)≤2l+1−2 w(λ′′)

≤ Ap(w)(DG)p2p(l+1)dG
∑
λ′∈V

|c(λ′)|pw(λ′) ×
∑

ρ(λ,λ′)<2l

w(λ)∑
ρ(λ′,λ′′)≤2l−1 w(λ′′)

= Ap(w)(DG)p2p(l+1)dG‖c‖p
p,w.

This together with (5.6) and the following estimate

hA(0) +
∞∑
l=1

h(2l−1)2ldG

≤ hA(0) + 22dG
∞∑
l=1

∑
2l−2<n≤2l−1

hA(n)(n + 1)dG−1 ≤ 22dG‖A‖B1,0

proves (2.41) for 1 < p < ∞.
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Applying a similar argument as above, we can verify (2.41) for p = 1.

5.5 Proof of Lemma 3.3

We follow the procedure used in [40], where a similar result is established for the
unweighted case. Take λm ∈ VN . Denote the commutator between the smooth trun-
cation operator �2N

λm
and the matrix A by [�2N

λm
, A] := �2N

λm
A − A�2N

λm
, and set

�2N := (∑
λk∈VN

�2N
λk

)−1. Replacing c in (3.1) by �2N
λm

c and applying Proposition
2.6, we have

βp,w(A)‖�2N
λm

c‖p,w ≤ ‖A�2N
λm

c‖p,w ≤ ‖�2N
λm

Ac‖p,w + ‖[�2N
λm

, A]c‖p,w

≤‖�2N
λm

Ac‖p,w + ‖χ4N
λm

[�2N
λm

, A]c‖p,w + ‖(I − χ4N
λm

)Aχ3N
λm

�2N
λm

c‖p,w

≤‖�2N
λm

Ac‖p,w +
∑

λk∈VN

‖χ4N
λm

[�2N
λm

, A]χ3N
λk

�2N�2N
λk

c‖p,w

+23dG DG
(
Ap(w)

)1/p‖(I − χ4N
λm

)Aχ3N
λm

‖B1,0‖�2N
λm

c‖p,w, (5.7)

where the second inequality holds, as

(I − χ4N
λm

)[�2N
λm

, A] = (I − χ4N
λm

)A�2N
λm

= (I − χ4N
λm

)Aχ3N
λm

�2N
λm

by the supporting properties for χ3N
λm

, χ4N
λm

and�2N
λm

. From (2.17) and (2.21) in Propo-
sition 2.2, we obtain

‖(I − χ4N
λm

)Aχ3N
λm

‖B1,0 ≤ ‖A − AN‖B1,0 ≤ C0‖A‖Br ,α N
−α+dG(1−1/r). (5.8)

Combining (5.7) and (5.8) yields

βp,w(A)‖�2N
λm

c‖p,w ≤ ‖�2N
λm

Ac‖p,w +
∑

λk∈VN

‖χ4N
λm

[�2N
λm

, A]χ3N
λk

�2N�2N
λk

c‖p,w

+23dGC0DG(Ap(w))1/p‖A‖Br ,α N
−α+dG(1−1/r)‖�2N

λm
c‖p,w.

This together with (3.8) proves that

βp,w(A)‖�2N
λm

c‖p,w≤2‖�2N
λm

Ac‖p,w+2
∑

λk∈VN

‖χ4N
λm

[�2N
λm

, A]χ3N
λk

�2N�2N
λk

c‖p,w.

(5.9)

For λk ∈ VN with ρ(λm, λk) > 12(N + 1), we obtain from the finite covering
property (2.7) for the maximal N -disjoint set VN , the equivalent definition (2.39) of
the weight w, the polynomial growth property (2.3) of the counting measure μ, and
the monotonicity of hA(n), n ≥ 0, that

‖χ4N
λm

[�2N
λm

, A]χ3N
λk

�2N�2N
λk

c‖p,w = ‖�2N
λm

Aχ3N
λk

�2N�2N
λk

c‖p,w
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≤ hA

(ρ(λm, λk)

2

)( ∑
λ∈B(λm ,4N )

( ∑
λ′∈B(λk ,4N )

|�2N
λk

c(λ′)|
)p

w(λ)

)1/p

� (Ap(w))1/pSA,N (λm, λk)‖�2N
λk

c‖p,w

(
w
(
B(λm, 4N )

)
w
(
B(λk, 4N )

) )1/p

. (5.10)

Set ÃM = (|a(λ, λ′)|ρ(λ, λ′)χ[0,M](ρ(λ, λ′))
)
λ,λ′∈V , M ≥ 0. For λk ∈ VN with

ρ(λm, λk) < 12(N + 1), we have

‖χ4N
λm

[�2N
λm

, A]χ3N
λk

�2N�2N
λk

c‖p,w

�
(
Ap(w)

)1/p‖χ4N
λm

[�2N
λm

, A]χ3N
λk

‖B1,0‖�2N�2N
λk

c‖p,w

�
(
Ap(w)

)1/p
N−1‖ Ã19N+12‖B1,0‖�2N

λk
c‖p,w, (5.11)

where the first inequality follows from the weighted norm inequality (2.41) in Propo-
sition 2.6, and the second one holds by the solidness of the Banach algebra B1,0(G)

in Proposition 2.2 and the Lipschitz property for the trapezoid function ψ0. Observe
that

w
(
B(λk, 4N )

) ≤ w
(
B(λm, 19N + 12)

) ≤ (D(μ))3p Ap(w)w
(
B(λm, 4N )

)
(5.12)

by the double property (2.40) for the Ap-weight w, and

‖ Ã19N+12‖B1,0 =
19N+12∑
n=0

(n + 1)dG−1 sup
n≤ρ(λ,λ′)≤19N+12

|a(λ, λ′)|ρ(λ, λ′)

≤ 2
19N+12∑
n=0

(n + 1)dG−1
∑

n/2≤m≤19N+12

hA(m) �
2N∑
n=0

hA(n)(n + 1)dG

(5.13)

by the monotonicity of hA(n), n ≥ 0. Combining (5.11), (5.12) and (5.13), we get

‖χ4N
λm

[�2N
λm

, A]χ3N
λk

�2N�2N
λk

c‖p,w

�
(
Ap(w)

)2/p
SA,N (λm, λk)‖�2N

λk
c‖p,w

(
w
(
B(λm, 4N )

)
w
(
B(λk, 4N )

) )1/p

(5.14)

if ρ(λm, λk) ≤ 12(N + 1).
Combining (5.9), (5.10) and (5.14) proves (3.9).
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5.6 Proof of Lemma 3.4

Set αλm := w
(
B(λm, 4N )

)
, λm ∈ VN , and write

(
SA,N

)l := (SA,N ;l(λm, λk)
)
λm ,λk∈VN

, l ≥ 1.

By (3.12), the integer N satisfies (3.8) and hence (3.9) holds by Lemma 3.3. Applying
(3.9) repeatedly, we get

(
αλm

)−1/p‖�2N
λm

c‖p,w

≤ 2(βp,w(A))−1(αλm

)−1/p‖�2N
λm

Ac‖p,w + C2
(
Ap(w)

)2/p
(βp,w(A))−1

×
∑

λk∈VN

SA,N (λm, λk)
(
αλk

)−1/p‖�2N
λk

c‖p,w

≤· · ·
≤ 2(βp,w(A))−1(αλm

)−1/p‖�2N
λm

Ac‖p,w

+2(βp,w(A))−1
L−1∑
l=1

(
C2
(
Ap(w)

)2/p
(βp,w(A))−1)l

×
∑

λk∈VN

SA,N ;l(λm, λk)
(
αλk

)−1/p‖�2N
λk

Ac‖p,w

+(C2
(
Ap(w)

)2/p
(βp,w(A))−1)L

×
∑

λk∈VN

SA,N ;L(λm, λk)
(
αλk

)−1/p‖�2N
λk

c‖p,w, (5.15)

where L ≥ 2. Define

WA,N = 2I + 2
∞∑
l=1

(
C2
(
Ap(w)

)2/p
(βp,w(A))−1)l(SA,N )l . (5.16)

Then by (3.11) and (3.12), we have

‖WA,N‖Br ,α−(d̃G−dG )/r;N ≤ 2 + 2
∞∑
l=1

(
C2C3

(
Ap(w)

)2/p
(βp,w(A))−1‖A‖Br ,α

)l

×
{
N−min(1,α−dG/r ′)l if α �= dG/r ′ + 1
N−l(ln(N + 1))l/r

′
if α = dG/r ′ + 1,

≤ 2 + 2
∞∑
l=1

2−l = 4. (5.17)



Journal of Fourier Analysis and Applications (2021) 27 :83 Page 29 of 33 83

Following the argument used in the proof of Proposition 2.6, we obtain

( ∑
λm∈VN

∣∣∣ ∑
λk∈VN

SA,N ;L(λm, λk)
(
αλk

)−1/p‖�2N
λk

c‖p,w

∣∣∣pαλm

)1/p

�
∥∥(SA,N )L

∥∥B1,0;N

( ∑
λk∈VN

∣∣∣(αλk

)−1/p‖�2N
λk

c‖p,w

∣∣∣pαλk

)1/p
≤ C6

∥∥(SA,N )L
∥∥Br ,α−(d̃G−dG )/r;N

‖c‖p,w, (5.18)

where C6 is an absolute constant. This together with (3.11) and (3.12) implies that

( ∑
λm∈VN

∣∣∣ ∑
λk∈VN

SA,N ;L(λm, λk)
(
αλk

)−1/p‖�2N
λk

c‖p,w

∣∣∣pαλm

)1/p

×
(
C2
(
Ap(w)

)2/p
(βp,w(A))−1

)L ≤ C62
−L‖c‖p,w → 0 as L → ∞.(5.19)

Taking limit L → ∞ in (5.15) and applying (5.17) and (5.19), we obtain

βp,w(A)
(
αλm

)−1/p‖�2N
λm

c‖p,w ≤
∑

λk∈VN

WA,N (λm, λk)
(
αλk

)−1/p‖�2N
λk

Ac‖p,w

(5.20)

where λm ∈ VN and c ∈ �
p
w.

Define HA,N := (HA,N (λ, λ′)
)
λ,λ′∈V by

HA,N (λ, λ′) :=
∑

λm∈B(λ,2N )

∑
λk∈B(λ′,4N )

WA,N (λm, λk). (5.21)

Then the desired norm estimate (3.13) follows from (2.17), (2.30) and (5.17).
Let λ ∈ V and select λm ∈ VN such that λ ∈ B(λm, 2N ). Such a vertex λm exists

by the covering property (2.7). Replacing the vector (c(λ′))λ′∈V and the ball B by the
delta vector (δ0(λ, λ′))λ′∈V and B(λm, 4N ) in (2.39), respectively, we get

αλm � Ap(w)N pdGw(λ). (5.22)

Combining (3.9), (5.20) and (5.22), we obtain

|c(λ)|� (Ap(w))1/pNdG
∑

λm∈B(λ,2N )

α
−1/p
λm

‖�2N
λm

c‖p,w

� (Ap(w))1/p(βp,w(A))−1NdG∑
λm∈B(λ,2N )

∑
λk∈VN

WA,N (λm, λk)α
−1/p
λk

‖�2N
λk

Ac‖p,w
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� (Ap(w))1/p(βp,w(A))−1NdG
∑
λ′∈V

HA,N (λ, λ′)|Ac(λ′)| (5.23)

for all c ∈ �
p
w, where the last inequality holds as α

−1/p
λk

‖�2N
λk

Ac‖p,w ≤
‖�2N

λk
Ac‖p,w0 ≤ ‖�2N

λk
Ac‖1,w0 . This proves (3.14).

5.7 Proof of Theorem 4.1

By the invertibility assumption of the matrix A in �
p
w, it has the �

p
w-stability (3.1) and

its optimal lower stability bound βp,w(A) satisfies

βp,w(A) ≥ (‖A−1‖B(�
p
w)

)−1
. (5.24)

Let r ′ be the conjugate exponent of r , i.e., 1/r + 1/r ′ = 1, N ≥ 2 be an integer
satisfying

(‖A−1‖B(�
p
w)

)−1 ≥ 2max(C2C3,C1)
(
Ap(w)

)2/p‖A‖Br ,α

×
{
N−min(1,α−dG/r ′) if α �= dG/r ′ + 1
N−1(ln(N + 1))1/r

′
if α = dG/r ′ + 1,

(5.25)

and HA,N = (HA,N (λ, λ′))λ,λ′∈V be as in (5.21) except replacing βp,w(A) by
(‖A−1‖B(�

p
w))

−1. Following the argument used in the proof of Lemma 3.4, we obtain

‖HA,N‖Br ,α � Nα+dG/r (5.26)

and

|c(λ)| � (Ap(w))1/p‖A−1‖B(�
p
w)N

dG
∑
λ′∈V

HA,N (λ, λ′)|(Ac)(λ′)| (5.27)

for c = (c(λ))λ∈V ∈ �
p
w.

Write A−1 := (ǎ(λ′, λ))λ′,λ∈V and denote ǎλ := (ǎ(λ′, λ))λ′∈V , λ ∈ V . Then
ǎλ ∈ �

p
w by (5.24) and the invertibility of the matrix A. Replacing c in (5.27) by ǎλ,

we get

|ǎ(λ′, λ)|� (Ap(w))1/p‖A−1‖B(�
p
w)N

dG
∑
λ′′∈V

HA,N (λ′, λ′′)|(Aǎλ)(λ
′′)|

= (Ap(w))1/p‖A−1‖B(�
p
w)N

dG HA,N (λ′, λ) for all λ, λ′ ∈ V . (5.28)

This together with (5.26) and the solidness of the Beurling algebra Br ,α(G) in Propo-
sition 2.2 implies that

‖A−1‖Br ,α � (Ap(w))1/p‖A−1‖B(�
p
w)N

dG‖HA,N‖Br ,α
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� (Ap(w))1/p‖A−1‖B(�
p
w)N

α+dG(1+1/r). (5.29)

Define

N1 =
{
Ñ1 if α �= dG/r ′ + 1
2Ñ1(ln(Ñ1 + 1))1/r

′
if α = dG/r ′ + 1,

(5.30)

where

Ñ1 =
⌊(

2max(C1,C2C3)
(
Ap(w)

)2/p‖A−1‖B(�
p
w)‖A‖Br ,α

)1/min(1,α−dG/r ′)⌋+ 2

and C1,C2,C3 are absolute constants in (3.8), (3.9) and (3.11) respectively. One may
verify that N1 satisfies (5.25). Then replacing N in (5.29) by the above integer N1
completes the proof.
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