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Abstract

The (un)weighted stability for some matrices on a graph is one of essential hypotheses
in time-frequency analysis and applied harmonic analysis. In the first part of this paper,
we show that for a localized matrix in a Beurling algebra, its weighted stabilities for
different exponents and Muckenhoupt weights are equivalent to each other, and recip-
rocal of its optimal lower stability bound for one exponent and weight is controlled
by a polynomial of reciprocal of its optimal lower stability bound for another expo-
nent and weight. Banach algebras of matrices with certain off-diagonal decay is of
great importance in many mathematical and engineering fields, and its inverse-closed
property can be informally interpreted as localization preservation. Let B(£1,) be the
Banach algebra of bounded linear operators on the weighted sequence space £5, on a
graph. In the second part of this paper, we prove that Beurling algebras of localized
matrices on a connected simple graph are inverse-closed in B(£%) forall 1 < p < oo
and Muckenhoupt A ,-weights w, and the Beurling norm of the inversion of a matrix
A is bounded by a bivariate polynomial of the Beurling norm of the matrix A and the
operator norm of its inverse A~ lin B(h).
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1 Introduction

Let G := (V, E) be a connected simple graph with the vertex set V and edge set
E. Our illustrative examples are (i) the d-dimensional lattice graph 29 := (Z¢, E4)
where there exists an edge between k and [ € Zd, ie., (k,]) € E d, if the Euclidean
distance between k and [ is one; (ii) the (in)finite circulant graph C = (Vg, Eg)
associated with an abelian group

k
Vg = l_[g;“, ni,....,nx €Z
i=1

generated by G = {g, ..., gk}, where (A, 1)) € Eg if and only if either A(A")~! or
22—l e G [5,6,27,32,38]; and (iii) the communication graph of a spatially distributed
network (SDN) whose agents have limited sensing, data processing, and communica-
tion capacity for data transmission, where agents are used as elements in the vertex
set and direct communication links between two agents as edges between two vertices
[1,12,13,40].

For 1 < p < oo and a weight w = (w(X))sey on the graph G, let £, := ¢5(G)
be the space of all weighted p-summable sequences/vectors ¢ = (c(X)),cy equipped
with the standard norm

1/p
el pw = (Z |c(x>|f’w(x)> :

reV

For the trivial weight wg = (wo(X))xcv, we will use the simplified notation £7 and
| - |l instead of Zﬁo and || - || p,wy» Where wo(A) = 1 forall A € V. We say that a
matrix

A= (a0, 1)), ey (1.1)

on the graph G has £/ -stability if there exist two positive constants B and B, such
that

Billcllpw = lAcllp,w < Ballclp,w, ¢ €45 (1.2)

[2,40,42,49,50]. We call the maximal constant By for the weighted stability inequality
(1.2) to hold as the optimal lower €%, -stability bound of the matrix A and denote by
Bp.w(A). The (un)weighted stability for matrices is an essential hypothesis in time-
frequency analysis, applied harmonic analysis, and many other mathematical and
engineering fields [3,15,21,33,47].
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In practical sampling and reconstruction on an SDN of large size, signals and
noises are usually contained in some range. For robust signal reconstruction and noise
reduction, the sensing matrix on the SDN is required to have stability on £°° [12],
however there are some difficulties to numerically verify £”-stability of a matrix at
the vertex level for p # 2 [12,34,45]. For a matrix A on a finite graph G = (V, E), its
weighted £/ -stability are equivalent to each other for different exponents 1 < p < oo
and weights w, since £%, is isomorphic to ¢ for any exponent 1 < p < oo and weight
w. In particular, for the unweighted case one may verify that the optimal lower stability
bounds of a matrix A for different exponents are comparable,

Ppan) _iii/p-1/a1.

< 1 <p,g<o0, (1.3)
By (A) p-a

where M = #V is the number of vertices of the graph G. The above estimation on
optimal lower stability bounds for different exponents is unfavorable for matrices of
large size, but it can be improved if the matrix A has some additional property, such
as off-diagonal decay. For an infinite matrix A = (a(i, j)); jeza in the Baskakov-
Gohberg-Sjostrand algebra, it is proved in [2,27,42,50] that its unweighted stabilities
are equivalent to each other for all exponents, i.e., forall 1 < p,g < oo,

Bg.we(A) > 0if and only if B ,,(A) > 0.

In [44], Beurling algebras of infinite matrices A = (a(i, j));, jez are introduced.
Comparing with the Baskakov-Gohberg-Sjostrand algebras, matrices in the Baskakov-
Gohberg-Sjostrand algebra (resp. the Beurling algebra) are dominated by a bi-infinite
Toeplitz matrix associated with a (resp. radially decreasing) sequence with certain
decay, and they are bounded linear operators on unweighted sequence spaces €%,
(resp. on weighted spaces ¢4, for all Muckenhoupt A p-weights w). For an infinite
matrix in a Beurling algebra on Z¢, its weighted stabilities for different exponents and
Muckenhoupt weights are established in [44],

Bp.w(A) > 0if and only if B, ,(A) > 0

where 1 < p, g < oo and w, w’ are Muckenhoupt A p- and A, -weights respectively,
however the optimal lower stability bound g, ,, on EZ}, is not explicitly expressed in
terms of the optimal lower stability bound . ,, on 5. Obviously, the lattice Z¢ is the
vertex set of the lattice graph Z¢. Inspired by the above observation, Beurling algebras
By «(G) of matrices A = (a(A, X)), ey on an arbitrary simple graph G = (V, E)
are introduced in [40], where | < r < oo and @ > 0. In [40], unweighted stabilities
of a matrix A € B, (G) for different exponents are shown to be equivalent to each
other, where 1 <r < 0o, > dg(1 — 1/r) and dg is the Beurling dimension of the
graph G. Moreover, we have the following polynomial control on its optimal lower
stability bounds for different exponents,
Do[1/p—1/q]
&w&QSD«Jﬂ&i) . 1=pg<oo. (14
JBq,wo(A) ,Bp,wo(A)
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where Dy, D are absolute constants independent of matrices A and the size M of the
graph G. The first main contribution of this paper is to establish the polynomial control
property for matrices in Beurling algebras on a connected simple graph G on their
optimal lower weighted stability bounds for different exponents and Muckenhoupt
weights, see Theorem 3.1 and Remark 3.2 for the comparison with previous works.

Let B(¢}) be the Banach algebra of all matrices A which are bounded operators
on the weighted vector space ¢8 and denote the norm of A € B(¢5) by [|A]| By
The weighted £ -stability of a matrix A is usually considered as a weak notion of its
invertibility, since

-1
B = (147 ey )

when the matrix A is invertible in £,. However for a matrix A in a Beurling algebra,
we discover that its weighted stability in €5 implies the existence of its “inverse"
B = (b(A, 1)) ey in the same Beurling algebra such that

lc)| = Z bk, MDA, A eV, (1.5)
MNeV

hold for all vectors ¢ = (c(A))ey € €L, see Lemma 3.4. The above “weak invert-
ibility" of a matrix in Beurling algebras is crucial for us to discuss polynomial control
on optimal lower weighted stability bounds for different exponents and Muckenhoupt
weights, and also to establish norm-controlled inversion of Beurling algebras in B(¢%))
in the second topic of this paper. We remark that the proof of the weak invertibility
(1.5) depends on the concept of maximal disjoint set Vy in Sect. 2.1 and the crucial
estimate (3.10) to the commutator [\IlfN , A] between a matrix A in Beurling algebra
and smooth version \V}%N of the truncation operator for A € Vy, cf. [8,40,43,44].

Given two Banach algebras A and 3 with common identity such that A is a Banach
subalgebra of B, we say that A is inverse-closed in Bif A € Aand A™' € B
implies AleA [7,8,26,28,43,44,46,48,51]. An equivalent condition for the inverse-
closedness of A in B is that given an A € A, its spectral sets 0 4(A) and og(A) in
Banach algebras A and 3 are the same,

o4(A) = op(A) forall A € A.

In this paper, we also call the inverse-closed property for a Banach subalgebra as
Wiener’s lemma for that subalgebra [8,26,44,46,48,51]. For algebras of matrices
with certain off-diagonal decay, Wiener’s lemma can be informally interpreted as
localization preservation under inversion. Such a localization preservation is of great
importance in applied harmonic analysis, numerical analysis, and many mathematical
and engineering fields, see the survey papers [22,31,41] and references therein for his-
torical remarks. We remark that Wiener’s lemma does not provide a norm estimate for
the inversion, which is essential for some mathematical and engineering applications.
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We say that a Banach subalgebra A of B admits norm-controlled inversion in B if
there exists a continuous function & from [0, co) x [0, c0) to [0, co) such that

1A 4 <k (14l 147" 1) (1.6)

forall A € Abeing invertible in 5[23,24,35,38,40]. By the norm-controlled inversion
(1.6), we have the following estimate for the resolvent of A € A,

160 = A7 a <k (IA= Al NGE = A5 % goB(A)=0a(A), (17)

where [ is the common identity of Banach algebras 4 and B. The norm-controlled
inversion is a strong version of Wiener’s lemma. The classical Wiener algebra of
periodic functions with summable Fourier coefficients is an inverse-closed subalgebra
of the Banach algebra of all periodic continuous functions [51], however it does not
have norm-controlled inversion [9,35].

We say that A is a differential subalgebra of order 6 € (0, 1] in B if there exists a
positive constant D := D(A, B3, 0) such that

1AlI5\?  (IBls\’
IAB| 4 < DIIAll4llBll o + forall A, B € A. (1.8)
am IBll A

The concept of differential subalgebras of order 6 was introduced in [11,30,36] for
0 = 1 and [14,24,40] for 6 € (0, 1). It has been proved that a differential x-subalgebra
A of a symmetric *-algebra B has norm-controlled inversion in B [23,24,38,39,48].
A crucial step in the proof is to introduce B := [ — ||A*A||l_31A*A forany A € A
being invertible in 53, whose spectrum is contained in an interval on the positive real
axis. The above reduction depends on the requirements that B is symmetric and both
A and B are *-algebras with common identity and involution .

Several algebras of localized matrices with certain off-diagonal decay, includ-
ing some subfamilies of Grochenig—Schur algebra, Baskakov—Gohberg—Sjostrand
algebra, Beurling algebra and Jaffard algebra, have been shown to be differential -
subalgebras of the symmetric *-algebra B(£2), and hence they admit norm-controlled
inversion in B(£%) [23-25,28,37,38,40,44,46,48]. In [23,24,40], the authors show that
for the Baskakov-Gohberg-Sjostrand algebra, Jaffard algebra, and Beurling algebra of
matrices, a bivariate polynomial can be selected to be the norm-control function 4 in
(1.6).

For applications in some mathematical and engineering fields, the widely-used
algebras B of infinite matrices are the operator algebras 5 (Eﬁ), 1 < p < oo, which are
symmetric only when p = 2. Unlike norm-controlled inversion in symmetric algebras
[23,24,35,38,40], to our knowledge, norm-controlled inversion in a nonsymmetric
algebra is not well studied [17,44]. The second main contribution is to show that
Beurling algebras of localized matrices admit norm-controlled inversion in B(£%))
for all exponents 1 < p < oo and Muckenhoupt A ,-weights w, see Theorem 4.1.
Moreover, we prove that the Beurling algebra norm of the inversion of a matrix A is
bounded by a bivariate polynomial of its Beurling algebra norm of the matrix A and
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the operator norm of its inverse A~! in B(£%), see Remark 4.2 for the comparison of
previous works.

The paper is organized as follows. In Sect. 2, we recall some preliminary results
on a connected simple graph G, Beurling algebras of matrices on the graph G and on
its maximal disjoint sets, and weighted norm inequalities for matrices in a Beurling
algebra. For matrices in a Beurling algebra, we consider the equivalence of their
weighted stability for different exponents 1 < p < 0o and Muckenhoupt A ,-weights
w in Sect. 3, and their norm-controlled inversion in B(£5) in Sect. 4. All proofs, except
the proof of Theorem 3.1 in Sect. 3, are collected in Sect. 5.

1.1 Notation

For a real number ¢, we use the standard notation |7 ] and [¢] to denote its floor and
ceiling, respectively. For two terms A and B, we write A < B if A < CB for some
absolute constant C, and A ~ Bif A < Band B < A.

2 Preliminaries

In Sect. 2.1, we recall the doubling property for the counting measure ¢ on a connected
simple graph G [12,40,52], we show that the counting measure w has the strong poly-
nomial growth property (2.11), and then we define generalized Beurling dimension of
the graph G. In Sects. 2.2 and 2.3, we recall the definition of two closely-related Beurl-
ing algebras of matrices on the graph G and on its maximal disjoint sets [10,40,44],
and we provide some algebraic and approximation properties of those two Banach
algebras of matrices. In Sect. 2.4, we prove that any matrix in a Beurling algebra is
a bounded linear operator on weighted vector spaces £5 for all 1 < p < oo and
Muckenhoupt A ,-weights w.

2.1 Generalized Beurling Dimension of a Connected Simple Graph

Let p be the geodesic distance on the connected simple graph G, which is the nonneg-
ative function on V x V such that p(A,A) = 0,1 € V, and p(A, })) is the number
of edges in a shortest path connecting distinct vertices A, A" € V [16]. This geodesic
distance p is a metric on V of a connected simple graph G. For the lattice graph Z¢,
one may verify that its geodesic distance between two points k = (kq, ..., ky) and
= (y,...,2L4)1s given by p(k, £) := 2?21 |k; — £;]; for the circulant graph Cg
generated by G = {g1, ..., gk}, we have

k k
pO Ay =inf 4D inil, AT =T gl . e Z} :
i=l

i=1

and for the communication graph of an SDN, p(A, 1) is the time delay of data trans-
mission between two agents A and A". Using the geodesic distance p, we define the
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closed ball with center A € V and radius r > 0 by
Bh,r)={"€V, p(r,2) <r},
which contains all 7-neighboring vertices of A € V.
Let i be the counting measure on the vertex set V, i.e., u(F) is the number of

vertices in F' C V. In this paper, we always assume that the counting measure p has
doubling property, i.e., there exists a positive constant D such that

w(B,2r)) < Du(B(\,r)) forallAeVandr >0 2.1
[12,40,52]. We denote the minimal constant D in the doubling property (2.1) by D(u),

which is also known as the doubling constant of the measure . Applying the doubling
property (2.1) repeatedly, we have

W(B(, 1) < w(B, 210201y < Dy (r/r')°2 PWp(BG., 1)) (2.2)

forallr > r’ > 0. Taking r’ = 1 — € in (2.2) for sufficiently small € > 0, we conclude
that the counting measure p has polynomial growth in the sense that

w(B(A,r)) < Di(r + D% forall A€ Vandr >0, (2.3)
where D and d; are positive constants. The notion of polynomial growth for the
counting measure p is introduced in [12], where the minimal constants d; and D in
(2.3), to be denoted by dg and Dg, are known as the Beurling dimension and density
of the graph G respectively.

Let N > 0. We say that a subset Vy of the vertex set V is maximal N-disjoint if
B, N)N (Up,evy B, N)) # 0 forallx € V (2.4)
and

B(Am, N)N B(A,, N) =@ forall distinct A,,, 1, € V. 2.5)

For N = 0, one may verify that the whole set V is the only maximal N-disjoint set
Vn, l.e.,

Vy = Vif N =0, (2.6)

while for N > 1, one may construct many maximal N-disjoint sets V. For example,
we can construct a maximal N-disjoint set Vy = {A,,, m > 1} by taking a vertex
A1 € V and defining vertices A,,,, m > 2, recursively by

Am = argmin, ¢4 o (A, A1),
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where A, = {A € V,B(A, N) N Um 1By, N) = @} [12]. For a maximal N-
disjoint set Vi, it is observed in [12, 40] that forany N’ > 2N, B(A, N'), A,y € Vi,
form a finite covering of the whole set V, and

I'= inf > KB

)LmEVN
log, (2N’ /N+1
<sup > KBy < (D) RN NEDT @7
AEVA eV
N
For A € V and R > 0, set
ARG N) 1= {2 € Vit p(m, 1) < (N + DR}, 2.8)
and let A,,, € Agr(X, N) be so chosen that
U(B(Amy, N)) = inf  wu(B(Am, N)). (2.9)

Am€AR(X,N)

Then we obtain from (2.2), (2.5) and (2.9) that

Yoy KBGm  N)) p1( Uy, cagny BOum, N))
(B (Ao, N)) B (B (hmy, N))

- W(B g, N +2(N + 1R)

(B (Amg, N))

(AR, N)) =

< (D(W)*(R + 1822w (2.10)

Therefore the counting measure p on the graph G has strong polynomial growth since
there exist two positive constants D and d such that

sup iu({Am € Vv : p(km, M) < (N +DR}) < D(R + )¢ (2.11)
reV

hold for all R, N > 0 and maximal N-disjoint set Viy. Recall that the whole set V is
the only maximal N-disjoint set Viy for N = 0. So in this paper the minimal constants
dand D in (2.11), to be denoted by dg and Dg, are considered as generalized Beurling
dimension and density respectively. Moreover it follows from (2.6) and (2.10) that

dg < dg <logy D(). (2.12)
where dg is the Beurling dimension of the graph G.
We say that the counting measure i on the graph G is Ahlfors dy-regular if there
exist positive constants B3 and B4 such that

By(r + )™ < (B, 1)) < Ba(r + )P (2.13)

hold for all balls B(A, r) with center A € V and radius 0 < r < diam G, where diam G
denotes the diameter of the graph G [29,52]. Clearly for a graph G with its counting
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measure u being Ahlfors dy-regular, its Beurling dimension dg is equal to do. In the
following proposition, we show that the generalized Beurling dimension dg is also
equal to dp, see Sect. 5.1 for the proof.

Proposition 2.1 Let G be a connected simple graph. If the counting measure p is
Ahlfors dy-regular, then dg = dj.

2.2 Beurling Algebras of Matrices on Graphs

Let G := (V, E) be a connected simple graph with its counting measure p satisfying
the doubling property (2.1). For 1 <r < ooand« > 0, we define the Beurling algebra
Br,a = Dr,a (G) by

Bra(@) i= {4 = (a0 ), eyt 1Al <o), 2.14)
where dg is the Beurling dimension of the graph G,

(22 o ha(m) (n+ D@ +da=)V" i | < < oo

a (2.15)
SUp,>0 ha(n)(n + 1)* if r = o0,

1AlB,. = {

and

ha(m) = sup la(r,A)|, n>0.
p(A)=n

The Beurling algebra B,  (G) is introduced in [44] for the lattice graph Z4 and for an
arbitrary simple graph G in [40], see also [8]. For a matrix A = (a(, A')); /ey in the
Beurling algebra B,  (G), we define approximation matrices Ax, K > 1, with finite
bandwidth by

Ag = (a(k, M) xj0.11(p (1, )»/)/K))A,A,E‘,. (2.16)

For the Beurling algebra B, 4 (G), we recall some elementary properties where the first
four conclusions have been established in [40], see Sect. 5.2 for the proof.

Proposition 2.2 Let G := (V, E) be a connected simple graph such that its counting
measure (L satisfies the doubling property (2.1) with the doubling constant D (j1). Then
the following statements hold.

(1) By «(G) with1 <r < oo and o > 0 are solid in the sense that

IAlB,. = IBls5,, 2.17)

r.a —

hold for all A = (a(A, X))y wey and B = (b(A, X)) wey satisfying
laGu, V)| < |bO M) forall &, 3! € V.

Birkhauser



83 Page100f33 Journal of Fourier Analysis and Applications (2021) 27:83

(ii) B1.,0(9) is a Banach algebra, and
IAB5,, < dgDg2%* | Allg, I Blis, , for all A, B € Bio(G). (2.18)
(iii) Bro(G) with1 <r < oo and a > dg(1 — 1/r) are Banach algebras, and

o — (dg — 1)1 = 1/r)
o —dg(1—1/r)

1-1/r
) Al NBls,,

(2.19)

”AB”B,O[ S ngg2a+l+dg/r<

hold for all A, B € B, 4(G).
(iv) Bro(G) with1l < r < oo and « > dg(1 — 1/r) are Banach subalgebras of
Bi,0(G), and

a—(dg— 1A —=1/r)\1-1/r
14150 = (* _gdg(l m—ym ) lAlls,, forall A € B, ,(©).
(2.20)
(v) Amatrix Ain By o(G)withl <r < ococanda > dg(1—1/r) iswell approximated
by its truncation Ak, K > 1, in the norm || - ||g, o,
IA — Axlls, , < CollAllg, K+ =1, 2.21)
where
20+l ifr =1
CO = patl—dg(1-1/r) .
@i —dgyrr it > 1.

2.3 Beurling Algebras of Matrices on a Maximal Disjoint Set

Let G = (V, E) be a connected simple graph. Given 1 < r < oco,& > 0 and a
maximal N-disjoint subset Vy of the vertex set V, we define Beurling algebras of

matrices B := (b(Am, )‘k))x vy On Vn by
By a:n(Vy) = {B, IIBlB, ., < oo} (2.22)
where
( o (n+1)5"+”79_1(sup oVt [5G Ak)|>r>l/r i1 <r<oo
1B, 5 = n=0 o (i M) =n(N+1) ; = ;

Supnzo(l’l + 1)5‘(supp(km,;tk)zn(1v+l) |b()»m, )‘k)l) if r = oo.
(2.23)

The Banach algebra B, 4.y (Vy) is introduced in [40], where the counting measure
is assumed to be Ahlfors regular in which the generalized Beurling dimension dg and
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the Beurling dimension dg coincides by Proposition 2.1. Following the argument used
in the proof of Proposition 2.2 with the polynomial growth property (2.3) replaced by
the strong polynomial growth property (2.11), we have the following properties for
Banach algebras B, 5.y (Vy) of matrices on Vy.

Proposition 2.3 Let G := (V, E) be a connected simple graph such that its counting
measure | satisfies the doubling property (2.1), and Vi be a maximal N -disjoint set.
Then the following statements hold.

(i) B1.0.n(Vn) is a Banach algebra and
IABIB, o < dgDg2* 9" |AllB, o\ IBIIB, gy As B € Bion(Vn).(2.24)

(ii) B, g n(VN) with1 <r < ocoand a > c?g(l — 1/r) are Banach subalgebras of
Bi,o;n(VN), and

Al < (& —(dg— 1)1 —=1/r)
1,0N —

1-1/r
= IAIB, ..s A € Bran(VN).
& _ dg(l _ 1/}") ) Br,a,N r,oz,N N

(2.25)

(iil) B, g.n(Vn) withl <r < ocanda > c]g(l — 1/r) are Banach algebras, and

= 1—1/r
IAB|g. ., <dgDg2%+de@+1/n+2 (Ot —(dg — (1 — 1/r)>
r.a;N —

& —dg(1—1/r)
X AlB, sy IBIB, 5y As B € Bran(Vn). (2.26)

Beurling algebra on the graph G and on its maximal N-disjoint set Vi are closely
related. For N = 0, we have

Br,&;O(VO) = Br,&+(tzg—dg)/r (g) (227)

as the only maximal O-disjoint set Vj is the whole vertex set V. For N > 1, we have
the following results about Beurling algebras on a graph and its maximal disjoint sets,
which will be used in our proofs to establish the equivalence of weighted stability for
different exponents and weights and also the norm-controlled inversion. The detailed
proof will be given in Sect. 5.3.

Proposition2.4 Let 1 <r <00, G := (V, E) be a connected simple graph such that
its counting measure L satisfies the doubling property (2.1), and Vy, N > 1, be a
maximal N-disjoint set. Then the following statements hold.

D IfA = (@i, Viwev € Bro(G),a > 0, then its submatrix B =
@y M) rp 2pcvy belongs to Br,a—(dg—dg)/r;N’ and

IBls v = AllB, - (2.28)

r.af(dhg —dg)/r:
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(i) If B = (b, M)y iweVy € Bra:n, @ > 0, the matrix

A:( 3 3 b(xm,xk))wev (2.29)

Am€B(A,2N) Ay eB(\ ,4N)

on the graph G belongs to B, a+(dg—dg)/r (@), and

IAIB, ., g age = 8T (DG NTETBlIg, -

(2.30)

(i) If A = (a(h, M)avev € Bro(G) for some a > dg(1 — 1/r), then the matrix
SA,N = (SA,N()"mv )\'k)))\m,)thVN (231)

belongs 10 B, ,_i._4.) N> and

N-min(be=dg/r) i o £ dg fr' + 1
S <CollA :
IS8, o dg-agyrin = COlANIB, {N“(ln(N—i— WY i« =dg/r' +1,
(2.32)
where 1/r' =1 —1/r, ha(n) = SUP, .= 1A (A, A, n >0,
1 1—d 1
Go = 2terttorria | (AT e £ dg/r 41
1 if @ =dg/r' + 1,
and for hpy, A € Vy,
S G M) = N hy(p (. 21)/2) if p(Am, M) > 12(N + 1)
AN P N2 b () (1 1) B p G, ) < 12(N + 1),
(2.33)

We conclude this subsection with an example to illustrate the construction of the
matrix S4 y in (2.33). This also demonstrates that the exponent min(1, « — dg/r’) in
(2.32) is optimal in the sense that the estimate (2.32) could fail if it is replaced by a
large exponent 8 > min(1, & — dg/r").

Example2.5 Let 1 <r < oo,a > 1 —1/r,and A, := (ax(n — 1))y wez, Where
k € (0, 1) is a constant sufficiently close to one, and

1 ifn=0
an)={ -« ifn=1 (2.34)
0 otherwise.
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Then its inverse (A,) ™' = (& (n — 1)) ez is given by

e (1) = k" ifn>0
G =19 otherwise,

and

I1Acls,, =1 and 1A 5, ~ (1 =)~ (2.35)
Observe that Viy = {A,, = 2N + 1)m, m € Z} is a maximal N-disjoint subset of Z.
For the matrix A, and the above maximal disjoint subset V, one may verify that the

matrix S4 n in (2.33) associated with the matrix A, and its inverse (A) ! are given
by

)0 if A — Ak > 12(N + 1)
SN Gy ) = { N1+ 20) if o — Ag| < 12(N + 1) (2.36)
and
S o A1) Nic1Am—hel/2] if |Am — Ak| > 12(N + 1)
0 , = _ 2N ONH1 |
(A~ N Ams Ak 1 (2N+2)’1(V(1:((2)12V+1)K if A — Akl < 12(N + 1)
respectively, where the last equality as h( Ao~ (n) =«",n >0, and
2N 2N ON+1 2N+1
71— @QN +2)t 2N + )t
St = () = LT ENERC A ONEDT T oo an,
n=0 n=0 (l - t)z

By direct calculation, we obtain

-1

1Sac.nlB =1Sa.nlB, v ® N

ra—(dg—dg)/riN
and

ISca )1 N 1By ay & (1= 1)~ (max(N (1 — k), 1))~ mine=1/m),
This together with (2.35) demonstrates that the estimate (2.32) holds with the matrix

A replaced by matrices A, and also by the inverse (A)" ! fork € (0, 1) close to one,
and that the exponent min(1, & — dg/r’) in (2.32) is optimal.

2.4 Weighted Norm Inequalities

Let G := (V, E) be a connected simple graph with its counting measure u satisfying
the doubling property (2.1). For 1 < p < o0, a positive function w = (w(A))ycv on

Birkhauser



83 Page140f33 Journal of Fourier Analysis and Applications (2021) 27:83

the vertex set V is a Muckenhoupt A ,-weight if there exists a positive constant C such
that

p—1
! ! ~1/(p=1)
(M(B) Zwm) (M(B) é(u}(m ’ ) <C (2.37)

reB

for 1 < p < oo, and a Muckenhoupt A-weight if

w(A) < C inf w(}) (2.38)
rEB

n(B) =

for any ball B C V [20]. The smallest constant C for which (2.37) holds for 1 < p <
00, and (2.38) holds for p = 1, respectively is known as the A ,-bound of the weight
w and is denoted by A, (w). An equivalent definition of a Muckenhoupt A ,-weight
w = (w(A)),ey is that

p
1 1 A, (w)
A — ») <L MIPw() (239
(M(B)glc( )I) (M(B);w( )) < — B §|c( Pw()  (2.39)

holds for all balls B C V and sequences ¢ := (c(k))
A p-bound of the weight w. For A € V and r > 0, set

p .
rev € Ly, where A, (w) is

wBO, N = Y wk).

MNeB(A,r)

It is well known that a Muckenhoupt A ,-weight w is a doubling measure. In fact,
replacing the ball B and the sequence ¢ by B(A,2/r),1 < j € Z and the index
sequence on B(X, r) in (2.39) and using the doubling condition (2.1) for the counting
measure i, we obtain that

B, 2 r)\"
i) )
< (D(W)’? A, (wyw(B(r, 1)) (2.40)

w(B(\,2/r)) < Ap(w)(

hold for all A € V,r > 0 and positive integers j.

Weighted norm inequalities of linear operators are an important topic in harmonic
analysis, see [20] and references therein for historical remarks. In the following propo-
sition, we show that the Banach algebra 1 (G) is a Banach subalgebra of B(£}), see
Sect. 5.4 for the proof.

Proposition 2.6 Let G := (V, E) be a connected simple graph such that its counting
measure i satisfies the doubling property (2.1). Then By,0(G) is a subalgebra of B(€%))
forany 1 < p < 0o and Muckenhoupt A ,-weight w, and

I1Acllp,w < 2799 Dg(Ap )/ PIIAllB, il pw forall A € By g(G) and c € €f,. (2.41)
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By Propositions 2.2 and 2.6, we conclude that B, ,(G) with 1 < r < oo and
o > dg(1—1/r) are Banach subalgebras of B (£5) too. We remark that the subalgebra
property in Proposition 2.6 was established in [12,40] for the unweighted case and in
[44] for the weighted case on the lattice graph Z¢.

3 Polynomial Control on Optimal Lower Stability Bounds

In this section, we show that weighted stabilities of matrices in a Beurling algebra
for different exponents and Muckenhoupt weights are equivalent to each other, and
reciprocal of the optimal lower stability bound for one exponent and weight is dom-
inated by a polynomial of reciprocal of the optimal lower stability bound for another
exponent and weight.

Theorem3.1 Let1 <r <00, 1 < p,q <00, G := (V, E) be a connected simple
graph satisfying the doubling property (2.1), w, w’ be Muckenhoupt A ,-weight and
Ag-weight respectively, and let A € B, (G) for some a > c?g —dg/r, where dg and
cig are the Beurling and generalized Beurling dimension of the graph G respectively.
If A has €5 -stability with the optimal lower stability bound Bpw(A),

Bpw(@lcllpw < lAcllp,w forallc e E{jp 3.1
then A has EZ}/-stability with the optimal lower stability bound denoted by B .y (A),
Bgw (Allcllgw < IAcllgw forallce el (3.2)

Moreover, there exists an absolute constant C, independent of matrices A € By 4 (G)
and weights w and w', such that

2/p E(a,r)
Prn®) ¢ (4w )" (4pw)"” ((A”(w)) ”A”B'-“>

IBq,w’(A) - ﬁp’w(A)
1 if o # 14dg/r

x Y Qdg+1)/r’ 33

(111 (%)) ‘ if o = 1+dg/r/, (3.3)

where 1/r' =1 —1/r and

c]g +dg+1
min (oz —dg/r, 1)'

E(a,r) =

Remark 3.2 The equivalence of unweighted stabilities for different exponents is dis-
cussed for matrices in Baskakov—Gohberg—Sjostrand algebras, Jaffard algebras and
Beurling algebras [2,12,27,42,44,50], for convolution operators [4], and for localized
integral operators of non-convolution type [18,19,37,42]. For a matrix A in the Jaf-
fard algebra Ju(G) = Boo,«(G) wWith @ > dg, Cheng, Jiang and Sun use differential
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subalgebra approach to prove in [12, Theorem 5.2] that

A A
1Al _ h(ll ||BM) (3.4)

IBq,w() 132,11)()

for some positive function 7 with subexponential growth. The above conclusion is
improved by Shin and Sun in [40, Theorem 4.1]. They used the boot-strap argument
to show that, for a matrix A in the Beurling algebra B, o(G) with 1 < r < oo and
a > dg(1 — 1/r), reciprocal of its optimal lower unweighted stability bound for one
exponent is dominated by a polynomial of reciprocal of its optimal lower unweighted
stability bound for another exponent,

IAlg, , \ 1+0(P.a)*o .
1415, _ ] () o1+ dg/r
B = (1+0(p.gnko

where C is an absolute constant, K is a positive integer satisfying Ko >
and

dg
min(e—dg/r',1)°

dg|1/p —1/q|
Komin(a —dg/r', 1) —dg|1/p — 1/q|

0(p,q) =

Given 1 < p < oo, we remark that for an exponent g close to p, the conclusion (3.5)
provides a better estimate to the optimal lower unweighted stability bound B, v, (A)
than the one in (3.3) with w = w’ = wy, while the conclusion (3.3) withw = w’ = wy
gives a tighter estimate to the optimal lower unweighted stability bound B, (A) than
the one in (3.5) when ¢ is close to one or infinity.

For 1 < N € Z and 1 € V, we introduce a truncation operator X){V and its smooth
version \IJ){V by

X (eW) ey > (xo.n1 (PG, A))e0N)0ey (3.6)
and
v (C()‘))AGV — (Vo(p (2, )‘/)/N)C()‘/))NGV’ G.7
where Yo (t) = max{0, min(1, 3 — 2|¢|)} is the trapezoid function satisfying
X—1.11() < Yo(@) < x(-3/2,3/21(1), t € R.
The operators X){V and \I/){V localize a sequence to a neighborhood of A and they can be
considered as diagonal matrices with entries x g, vy (A') and Yo(p (A, A')/N), 1" € V

respectively.
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Let V be amaximal N-disjoint set. To prove Theorem 3.1, we start from estimating
the weighted terms (w (B (A 4N)))_l/p I \I/fi:’cn p.ws Am € Vi, for sufficiently large
N, which is established in [40] for the trivial weight wy.

Lemma3.3 Letl < p < 00,1 <r <00,a > dg(1—1/r), wbea Muckenhoupt A -
weight, and A = (a(:, M) wvev € By o(G) have 05 -stability. Assume that N > 1 is
a positive integer such that

2C1(Ap(w) P || AN, N1 < g (A), (3.8)

where B, (A) is the optimal lower £5), -stability bound, Cy is the constant in (2.21) and
C) = 2% CoDg. Then for all maximal N -disjoint sets Vi and weighted sequences
c € EI,Z, we have

B (A) (W (B G, 4N))) 7192V e
<2(w(B G, 4N))) "IN Acl s + Co(Ap(w)) "
<Y San G ) (B Ok AN)) T PIWEV el A € Viv. (B9

MEVN

where the smooth truncation operators \Il)%”]:’ ,Am € Vn, are defined in (3.7), the
matrix Sa,N = (Sa,N Ay A, apevy i8 givenin (2.33), and Co > 2 is an absolute
constant.

Let [\IJ)%::] LAl = \IJ)%i] A — A\Ilkz’{lv be the commutator between the smooth

truncation operator \Iff,’: and the matrix A [40,42,43], and the matrix Sa y =
(Sa, Ny M), aevy be given in (2.33). A crucial step in the proof of Lemma
3.3 is the following estimate to the commutator [\Ilffnv , Al,

NN AL 1B, S Sav s M) A Ak € Vi, (3.10)

~

see Sect. 5.5 for the detailed argument. By Propositions 2.3 and 2.4, we have the
following estimate for /-th power of the matrix S4 y forall/ > 1,

|(San) |5 < (C3llAls,,)

r,a—(zig —dg )/r;N

—min(l,a—dg/r')l . ’
{N ﬁa#@ﬁ+16“)

N7 In(N + 1) if @ =dg/r' +1

where 1/r’ = 1 — 1/r and C3 is an absolute constant independent on N > 1,1 > 1
and matrices A € B, 4. Applying (3.9) and (3.11) repeatedly, we have the following
crucial estimates (3.13) and (3.14), see Sect. 5.6 for the proof.

Lemma3.4 Let 1 < p < oo,w be a Muckenhoupt A,-weight, and A =
(@, M vev € Bro(G) for some 1 < r < oo and o > c?g — dg/r. Assume
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that A has €% -stability with the optimal lower stability bound B p.w(A) and that the
positive integer N satisfies

Bpw(A)=2max(Cy, C2C3) (A, (w)) A5,

{ N—min(l,a—dg/r/) if o # dg/’”/ +1

, 3.12
N='In(N + 1))V if a =dg/r' + 1, (3-12)

where C1, Co, C3 are absolute constants in (3.8), (3.9) and (3.11) respectively. Then
there exist a matrix Ha,y = (Ha,n (A, M),y ev and two absolute constants C4 and
Cs such that

IHanIB,, < C4NT9/" (3.13)

and
e < Cs(Apw)'P(Bpw(A) T N >~ Hy y O, M) Ac()], ¢ € £5(3.14)
MNeV

Next we provide an explicit construction of the matrix Hy,  y in the above lemma
for the matrix A, in Example 2.5 when w is the trivial weight wy.

Example 3.5 (Continuation of Example 2.5) Let A, be as in Example 2.5 with k €
(0, 1) sufficiently close to one. Take the trivial weight wg = 1 and the maximal N-
disjoint set Vy = {1, = 2N + 1)m,m € Z} with N > 3 satisfying (3.12). In the
above setting, we obtain from (2.36) that the estimate in (3.9) becomes

A=Wl < 2N Accll, + N7 U +x6) Y 11 Nellp. A € V.
|k—m|<6

Applying the above inequality repeatedly for L > 1 times, we obtain

2 Co(1 + k)
|| w} C||p<l N Aell, + N(l—_ZB(k m)[WNell,
2C2(1 + k)
||w£7A cllp + —ZBl(k w2 Al
“T-w N( —«
2C2(1 +«)
N(l—_ZBz(k m)[[WNell,
2 SOl 410y
_ _ 2N
E1—;<2:<2:(N(1_K))Bz(k m))||\IJ Acellp
keZ =0
2 Cr(1 +x)\L-1 .
Br(k —m)| W : 3.15
1—K(N(1—K)) /gz: Lk —m) W3 cllp (3.15)
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where By is the delta sequence, and B, := (B, (k))kez,n > 1, are the n-th discrete
convolution of By := (x[-6,6](k))kez. Set

o (Ca(1+ )y
ha (m) = ,; (m) By(m), m € Z. (3.16)

Forn € Z,let A, = (2N +1)m be the unique vertex in Viy suchthat0 < n—»x,, <2N.
Then

lem)| < WNell,, < l—ZhA k—m)[WZN Acell,
keZ

<7 L S hatk—m Y A, (3.17)

keZ |n'—@N+1k|<3N

where the first and third inequalities follow as v is bounded above and below by
the characteristic function on the interval [—1, 1] and [—3/2, 3/2] respectively, and
the second inequality is obtained from taking limit L — oo in (3.15). By (3.17), the
matrix H4 n in Lemma 3.4 with A replaced by A, can be defined by

2
Haonv=|1—2 X hak=11/@N+D))

— K
[’ —2N+1)k|<3N '€z

Now we are ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1 Asfora’ > «, BB, o(G) is a Banach subalgebra of B, 4(G). Then
it suffices to prove (3.3) for all « satisfying

dg/r' <dg —dg/r <a <dg —dg/r + 1. (3.18)
Define
No if o # dg/r' + 1
No=19 8 3.19
0 {ZNo(ln(No I if o = dg /i + 1, G149
where

N <2maX(C1, CZCS)(Ap(w))Z/P”A”Br,a)l/min(l,adg/r/) . ,
0= .
Bp.w(A)

Then one may verify that (3.12) is satisfied for N = Ny. Applying Lemma 3.4 with
N replaced by Ny and also Proposition 2.6, we obtain

_ d,
llellg,w < (AgwN'4(A (NP (Bpw(A) T Ny 1 Hano B, ol Acli,ur
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cethnel, (3.20)

where w’ is an A4-weight with 1 < ¢ < oo and the matrix Hy y is given in Lemma
3.4. This together with (3.13) and the density of £3, N ¢, in €7 implies that

_ dg(1+1
lellgo S (AgNYEA, NP By w(ANTINGTO D A,

forall c € EZ},. Therefore

1 2
1415, (Ag@)'"* (A @) "IAl5., arigaim
O )

Bow ™~ (A, @) Bpau(d)

(3.21)

where B, v (A) is the optimal lower qu,—stability bound of the matrix A. This together
with (3.18) and (3.19) completes the proof of Theorem 3.1. O

4 Norm-Controlled Inversion

I~n this section, we show that Banach algebras B, ,(G) with 1 < r < oo and o >
dg —dg/r admit a polynomial norm-controlled inversion in B (b foralll < p < oo
and Muckenhoupt A ,-weights, see Sect. 5.7 for the proof.

Theorem4.1 Let 1 <r <00, 1 < p < 00, G := (V, E) be a connected simple
graph satisfying the doubling property (2.1), and w be a Muckenhoupt A ,-weight.

If A belongs to By 4 (G) for some o > c?g — dg/r and it is invertible in B(h), then
Al e By .«. Moreover, there exists an absolute constant C such that

a+dg (1+1/r)
147118, o = CCAp@NPIA g g ((Ap@)* P 1A g gp 14115, ) ™6 /D

1 ifo # 14+dg/r',

(1n ((Ap @) P1A I gp 1AL, , + 1))(2dg+])/r,ifa =1+dg/r', @D

where 1/r' =1 —1/r.

Remark 4.2 In [12, Theorem 5.3], Jaffard algebras Jy(G) = Boo,o(G) With o > dg
are shown to admit norm-controlled inversion in the symmetric %-algebra B(£?) =
B (E%)O), and moreover

1A B AN, <h(IA 5w IAllB,,) (4.2)

hold for all matrices A € J,(G) being invertible in B(¢£?), where h is a positive
function with subexponential growth. Recall from (2.12) that Jg > dg. Therefore for
the case that o > c?g, the estimate in (4.1) with the parameter r, the exponent p and
Muckenhoupt A ,-weight w replaced by oo, 2 and the trivial weight wy respectively
provides a better estimate than the one in (4.2), while the case that d~g > a > dg and
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r = oo is not covered in Theorem 4.1. The estimate (4.2) was improved by Shin and
Sun under the additional assumption that the counting measure p is Ahlfors regular
in which dg = dg by Proposition 2.1. They show in [40, Theorem 5.1] that for any
matrix A in Beurling algebras B, o(G) with1 <r <ocoand o > dg(1 — /r),

_ — (a+dg/r)/ min(a—dg /r',1)
< ClIA 1@y (1A ey I Allg, ) @ FAo/m minte=da/r

1 ifa#1+dg/r
—1 (dg—}—l)/r’ . _ ,
(h’l (||A ”B(Zz)”A”Br,a + l)) ifa=1+dg/r,

1A g

(4.3)

where 1/r' = 1 — 1/r and C is an absolute constant. Hence under the additional
assumption that the counting measure w is Ahlfors regular, the conclusion (4.3) pro-
vides abetter upper bound estimate to || A1 | B, thanthe one in (4.1) with the exponent
p and Muckenhoupt A ,-weight w replaced by 2 and the trivial weight wy respectively.

In the following example, we demonstrate the almost optimality of the norm esti-
mate (4.1) for the inversion.

Example 4.3 (Continuation of Example 2.5) Let A, be as in Example 2.5, where « €
(0, 1) is a constant sufficiently close to one, and let wg = ((|n| + 1)?)pez, —1 < 6 <
p — 1. Then wy is a Muckenhoupt A ,-weight and

1A e, < 1AL B, < (=07 4.4

Take co = (co(n)),ez, where

() = k" ifn>0
OV =10 otherwise.
Therefore
00 1/p
”CO”p,wg = (Z Knp(n + 1)0> I (1 — K)_(0+1)/[7 (45)
n=0
and

00 1/p
||A,:1C()||p,um — <Z K (n+ 1)P(n+ 1)0> ~(1— K)—(9+p+1)/p. (4.6)
n=0

By (4.4), (4.5) and (4.6), we have

1A en,y > (1 =) 7 (€)
Combining (2.35) and (4.7) yields
a+dg/r—dg 438)

—1 ~ —1 —1
142 5,0 ~ 1AL s, ) (17 s, 1 Ak 5, )
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while the estimate (4.1) in Theorem 4.1 foro > 1 +dg(1 — 1/r) is

- - - +dg /r+d
1A 18,0 S 1AL Ngeny (1A sy 1 Acls, o )49/ 4. (4.9)

ro N~

We observe that the difference of exponents in (4.8) and (4.9) is 2dg (independent on
a)wheno > 1 +dg/r.

5 Proofs

In this section, we collect the proofs of Propositions 2.1, 2.2, 2.4 and 2.6, Lemmas 3.3
and 3.4, and Theorem 4.1.

5.1 Proof of Proposition 2.1

By (2.6), it suffices to establish (2.11) for N > 1 and R > 3. Let Viy be a maximal
N-disjoint set, and define Agr(A, N) as in (2.8). Then we obtain from (2.5) and (2.13)
that

D imeArN) LB, N))

infy eArG.N) LBy, N))

<By'N"u (Us, cagn) B, N))

<B7'N"0u (BOL N + (N + DR) < 2B By(R + 1)®,

n(Ar(A, N)) <

which implies that
dg < do. (5.1)
Similarly by (2.7) and (2.13), we get

Y imerGNy LB, 2N))
maxy,, eAp(.,N) (B, 2N))
> 3471(2N + 1)_d0H(UAmeAR(A,N) B, 2N))
>3 0B IN"hD (B, N(R - 2))
>27203=dop 1By (R + 1)%, R > 3,

(AR, N)) =

where the third inequality holds as B(XA,;,, 2N)) N B(A, N(R — 2)) = ( for all A, ¢
AR(X, N). This show that

dg > dy. (5.2)
Combining (5.1) and (5.2) completes the proof.
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5.2 Proof of Proposition 2.2

The conclusion (i) is obvious and the conclusions in (ii), (iii) and (iv) are presented
in [40, Propositions 3.3 and 3.4]. Now we prove the conclusion (v). Write A =
(@A, M) vev and set ha(n) = SUP, 3= 1A (A, A)|,n > 0. Then for K > 1 and
1 < r < oo, we have

o
1A= Akllg, <2 Y., ham@+ 1%
n=[(K+1)/2]
~ 1/r
<20Alg, | Y. @+t
n=[(K+1)/2]
o0 l/r’
<2)Alls,, ( / x"g—l—“f’dx)
' [(K+1)/2]
pa—dg/r'+1

= o gy Al KT

where r' = r/(r — 1). This proves (2.21) for | < r < oo. Similarly we can prove
2.21) forr = 1.

5.3 Proof of Proposition 2.4

The conclusion (i) follows from the definition of Beurling algebras on the graph G and
on its maximal disjoint set Vi . B

Now we prove the conclusion (ii). Set & = « + (dg — dg)/r. For 1 <r < oo, we
obtain

oo (W'+D(N+D—1

IAlG, =Y Y G+DTFET sup Y (bCun, )

=0 n=n'(N+1) POM)Zn,  CcB(L2N)
MEBGO 4N)

00
<(N + 1)ar+dg Z(n/ + 1)ar+dg—l

n'=0

pOMZ' (NHD) 5 pa oN)
A€B(. 4N)

< (D(M))7r(N + l)ar+d~g Z(n/ + 1)0”"‘529—1

n’'=0
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,
X ( sup 16, kk)l>
P (A Ak )=max(n'—6,0)(N+1)

<8245 (D) NS | Bl (5.3)

where the third inequality follows from (2.7). This proves (2.30) and the conclusion
(i) forl <r < 0.
Similarly for r = oo, we have

1AllB, , < sup > 16 (G 2| (p (A, X)) + 1)
AAEV ) eBOL2N) I eBOV,4N)

PG+ )
<IBllsoa:n sup > (

AVEV 3 poanymeenoran \PGm A/N]+1

<8*(D(w)' N*|IBlloo.a:N- (5.4)

Combining (5.3) and (5.4) proves (2.30) and the conclusion (ii).
Finally we prove the conclusion (iii). Set& = « — (dg —dg)/rand 1/r' = 1—1/r.
Then for 1 < r < oo, we have

o] 1/r
IS4V 1B, gy < N (Z (ha(n(N +1)/2))" (n + 1)“’*"@‘)
n=13

2N 12 Ir
+N7! (Z ha(n)(n + 1)d9> x (Z(n + 1)°"+d9—1)

n=0 n=0
o] 1/r
522a+(2dg—1)/rN—ot+dg/r’ ( Z (hA(m))r(m + 1)0["+dg—l>
m=4N

2N
F13H49 NS () (n 4 1%
n=0
< 22t QAlg =)/ et dg /7 g5

1/r

2N
+13a+dg/r”A”B,,aN_l (Z(n + 1)—(a—l)r/+dg—l>
n=0

S220{+(2dg7])/}’N701+dg/r/”A”Bra + 130l+dg/r||A||Bra
) <1+|a—1—dg/r’|)1/’/ N—min(la—dg/r")

la—1—dg/r'|
if o« # dg/r' + 1, (5-3)
3NN n(N + 1)V if « = dg/r' + 1.

This proves (2.32) for | < r < oo. Using similar argument, we can prove (2.32) for
r=1,o00.

Birkhauser



Journal of Fourier Analysis and Applications (2021) 27:83 Page250f33 83

5.4 Proof of Proposition 2.6

For the completeness of this paper, we follow the argument in [20,44] and give a sketch
of the proof. Write A = (a(X,2"))s vev, and set ha(n) = sup,q ;1)>, la(r, X)),
n > 0. Then for any ¢ € £, with 1 < p < oo, we have

P 1/p
1Acllp.w < (Z (Z hA<p(A,A’)>|c<X)|> w(m)

reV \\Vev
P 1/p

<haOlclpw+ [ DD ora@™H D> 10D w)
1

reV \I= 2=1<p(r,1)<2!

00 1-1/p

< ha©llellpw + (Z hA<2“)2’d9‘)
=1

14 1/p

< | Y ha@' 2= (pm g R ST 10D wy | .(5.6)
=1

eV \2I-1<p(a,1)2!

By the equivalent definition (2.39) of the Muckenhoupt A ,-weight w and the polyno-
mial property (2.3) of the counting measure &, we obtain

S teenn) we

eV o) <2!

(X eorwen)( X wen ) w)

AV p(an)<2! p(A M) <2!

/ , (B, 211 —2)))P
p
=Apw) Zw(k)< 2 letHIrwG )> : 2 pan<attt 2 W)

revV p()\/,k)<21
w(A
pr(IU)(Dg)PZI’(l+l)dg Z I Pw(r)) x Z n) _
NeV PO <2 Zp(”,l”)fﬂ—l w( )

= Ap(w)(Dg)" 2PV e .
This together with (5.6) and the following estimate
o
ha(0)+ Y h(2'mh2e
=1

e}
<ha@+229% " " ham@n+ DT <229 A5,

=1 21—2<n§21—l

proves (2.41) for 1 < p < oo.
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Applying a similar argument as above, we can verify (2.41) for p = 1.

5.5 Proof of Lemma 3.3

We follow the procedure used in [40], where a similar result is established for the
unweighted case. Take A,, € Vy. Denote the commutator between the smooth trun-
cation operator \Iffiv and the matrix A by [\IJ)%;V VA = lllffnv A— A\Il)%i’ , and set

N .= (Zxk eVy \IJ)%;V )_1. Replacing ¢ in (3.1) by \Il)%iv ¢ and applying Proposition
2.6, we have
Bpw NN el pw < 1AV ellpw < 157N Acllpw + ITYEY, Ale]l p.w
<IN Acllpow + 1V TWEN, Alellpow + 11T = M) ANV e

2N 2N 3N x2N 2N
<IN Aclpw+ Y IGN 19N, ALY 2N WiV
reVN

1
+2%49 Dg (A, ) "I = M) AN 18, 192V €l - (5.7)
where the second inequality holds, as
(I = itMIWN, Al = (1 — (AW = (1 — i AN WiV

by the supporting properties for x frlnv , Xffnv and \IJ/%;V .From (2.17) and (2.21) in Propo-
sition 2.2, we obtain

I =M AN 1, < 1A = Axlig,, < CollAllg, ,N™T491=10 0 (5.8)
Combining (5.7) and (5.8) yields

B DIEN el pw < 1N Aclpw + Y 1N T9Y, ALY 2N WiV

m
M €EVN

+2%99 CoDg (A, (w) /P ||Allg, , N~* VDN e, .
This together with (3.8) proves that

BNV el w<201W7N Al pw+2 D7 1IN TN, ALGN 02N WiV el 0.
A€eVN
(5.9)
For Ay € Vi with p(A, Ax) > 12(N + 1), we obtain from the finite covering
property (2.7) for the maximal N-disjoint set Vyy, the equivalent definition (2.39) of
the weight w, the polynomial growth property (2.3) of the counting measure u, and
the monotonicity of 4 (n), n > 0, that

N TN, ALGN 2N WN e, = WY AN 02N WV e
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1/p
shA(MX 3 ) |\If%,fvc<x/)|)”w<x>)

AEB(Am AN) W €B(hi,4N)

w(B O, 4N))\ 7
w(B (A, 4N))> '

S (Ap )P S N O, KON c||,,,w< (5.10)

Set Ay = (la(x, 1) p(ny M) 10,01 (P (A, M), ey M = 0.For it € Vy with
oA, M) < 12(N + 1), we have

AN 2N N 12N \1,2N
N TN, ALGN 02N W e

1
S(Apw)) i N TN, AL, o 192N WV el
1
S (A,) PN A on 128, W2Vl (5.11)
where the first inequality follows from the weighted norm inequality (2.41) in Propo-
sition 2.6, and the second one holds by the solidness of the Banach algebra 31 ,0(G)

in Proposition 2.2 and the Lipschitz property for the trapezoid function . Observe
that

w(B (i, 4N)) < w(B(hm, 19N + 12)) < (D(u))3pAp(w)w(B(Am, 4N))

(5.12)
by the double property (2.40) for the A ,-weight w, and
19N+12
lAon+i2lB 0= D (4 1D%! sup jaG, ) p(h, A
n<p(,A)<I9N+12
19N+12 2N
<2 ) DB YT halm) £ ha()(n+ DT
n=0 n/2<m<19N+12 n=0
(5.13)

by the monotonicity of 4 4(n), n > 0. Combining (5.11), (5.12) and (5.13), we get

4N 2N 3N 52N \1,2N
”X)W ["IJ)Lm ) A]X)Lk N q")% cllp,w

w (B, 4N))>1/p (5.14)

2
< (Ap )" San O M) WY c||,,,w( (B0 )

if oA, Ap) < 12(N + 1).
Combining (5.9), (5.10) and (5.14) proves (3.9).
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5.6 Proof of Lemma 3.4

Setay,, := w(B(Am,4N)), Ay € Vi, and write

(SA,N)I = (SA,N;Z()"WM )\‘k)))\m,)»kEVN’l 2 1

By (3.12), the integer N satisfies (3.8) and hence (3.9) holds by Lemma 3.3. Applying
(3.9) repeatedly, we get

-1
() P19V el
— -1 2 —
<2(Bp.u(A) e,) TP IV Acl o + C2(Ap )P (Bpw(A) ™!
-1
3 San G ) o) TNV el

A€VN

_ —1
<2(Bp.w (AN (an,) P IWEY A
L—1

+2(Bp.uw(AN D (Ca(Ap ) (Bpw (AN

=1
—1
xSt G ) () PN Acl

MEVN
H(Co (A )P By (AN
<3 S G 20 ()T I el (5.15)

r€eVN
where L > 2. Define
> 2 l
Wan =21 +2> (Co(Apw)*” (Bpuw(A) ™) (San)'. (5.16)
=1

Then by (3.11) and (3.12), we have

o0

2 — !

IWa B, o < 272D (C2C3(Apw) " Bruw (4D~ 1Al15,,,)
=1

N-minQa=dg /Ml if o £ dg/r' + 1
N~ (In(N + D)) if o = dg/r' + 1,

o0
<2+42) 27" =4 (5.17)
=1
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Following the argument used in the proof of Proposition 2.6, we obtain

- P I/p
(3|3 sanaCom () 7192 el a,)

Am€VN AreVy
_ 1/
<1 Sam g (3 [@n) P 1Rell | e,) "
h M EVN

< Cs(Sam)* ng_(jg_dg)/rw el paws (5.18)

where Cg is an absolute constant. This together with (3.11) and (3.12) implies that

_ 1/
(|2 sameGo o) P19 el w, )

Im€VN IeVy

2 1\t _
x(Cz(Ap(w)) ' (B w(A)) ‘) < C2 7 el pw — 0 as L — 00.(5.19)
Taking limit L — oo in (5.15) and applying (5.17) and (5.19), we obtain

-1 —1
B (@) IV el < D Wan Ouns i) (@)~ PIWEY Acl o

r€VN
(5.20)
where A,, € Vi and ¢ € £5.
Define Ha,y := (Ha N (A, A’))“,ev by
HanGo )= > Wan O ki) (5.21)

Am€B(L,2N) AxeB(W 4N)

Then the desired norm estimate (3.13) follows from (2.17), (2.30) and (5.17).

Let A € V and select A,,, € Vy such that A € B(A,,, 2N). Such a vertex A, exists
by the covering property (2.7). Replacing the vector (c(A'));/cy and the ball B by the
delta vector (8o(A, A"))wey and B(Ay, 4N) in (2.39), respectively, we get

@, S Ap(WINPw(R). (5.22)
Combining (3.9), (5.20) and (5.22), we obtain

-1
e S Ap)PNIe S o VP eVey,
Am€B(OL2N)

S (A, (W) P (B0 (A) T IND

—1
S>> Waw G e, IR Act
Jm€BOL2N) AgeVy
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SAp @) (Bpw(A) TN S Hy n L M) ACOH] (5.23)
MNeV

for all ¢ € £, where the last inequality holds as a;kl/pH\l/)%lvachw <
19N Acll pwy < 195N A1,y This proves (3.14).

5.7 Proof of Theorem 4.1

By the invertibility assumption of the matrix A in £, it has the £/ -stability (3.1) and
its optimal lower stability bound 8, ,,(A) satisfies

Bpan(A) = (1A 000)) (5.24)

Let v’ be the conjugate exponent of r, i.e., 1/r +1/r' = 1, N > 2 be an integer
satisfying

_ —1 2
(1A 1 ggery) " = 2max(C2C3, €Y (A, (w) " Al s,

{N—min(l,a—dg/r/) if o #dg/r/"‘l

, 5.25
N='(In(N + )" if @ = dg/r' + 1, (5:25)

and Hay = (HanN(A, A));0ey be as in (5.21) except replacing Bp,w(A) by
(A=Y A ))_1. Following the argument used in the proof of Lemma 3.4, we obtain

IHanlg,, S NOTIe/r (5.26)

ro N~

and

)| S (Ap@)PIIA ger N9 Y Ha n (L A)I(A))] (5.27)
NeV

for ¢ = (c(M\))sey € £5.

Write A=! := (d(A', 1))y sev and denote d; = (a(X, A))ey, » € V. Then
a; € £} by (5.24) and the invertibility of the matrix A. Replacing c in (5.27) by a;,
we get

a( 20| S (Ap NP A 3n N9 D~ Ha v A 1(Ad) ()]
2'eV

= (Apw) P A" I gur N9 Hp n (1, 2) forall 1,2/ € V. (5.28)

This together with (5.26) and the solidness of the Beurling algebra B, ,(G) in Propo-
sition 2.2 implies that

ro N~

1A 8, S (Ap)YPIA™ I gr N | Ha N B, ,
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SApDPIIAT g pp, NOFAGUHD, (5.29)
Define
Ny if @ #dg/r' + 1
N=10 , 5.30
: {2N1(ln(N1+1))1/r if @ =dg/r' +1, (5.30)
where

w

- ) _ 1/ min(l,a—dg /r')
Ny = UZmaX(Cl, C2C3)(Ap(w)) Pj1A 1||B(e”)”A”Br.a> J +2

and C1, C3, C3 are absolute constants in (3.8), (3.9) and (3.11) respectively. One may
verify that N satisfies (5.25). Then replacing N in (5.29) by the above integer N|
completes the proof.
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