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Abstract
We analyze a new spectral graph matching algorithm, GRAph Matching by Pair-
wise eigen-Alignments (GRAMPA), for recovering the latent vertex correspondence
between two unlabeled, edge-correlated weighted graphs. Extending the exact recov-
ery guarantees established in a companion paper for Gaussian weights, in this work,
we prove the universality of these guarantees for a general correlated Wigner model.
In particular, for two Erdős-Rényi graphs with edge correlation coefficient 1−σ 2 and
average degree at least polylog(n), we show that GRAMPA exactly recovers the latent
vertex correspondence with high probability when σ � 1/ polylog(n). Moreover, we
establish a similar guarantee for a variant of GRAMPA, corresponding to a tighter
quadratic programming relaxation of the quadratic assignment problem. Our analysis
exploits a resolvent representation of the GRAMPA similarity matrix and local laws
for the resolvents of sparse Wigner matrices.
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1 Introduction

Given two (weighted) graphs, graph matching aims at finding a bijection between the
vertex sets that maximizes the total edge weight correlation between the two graphs.
It reduces to the graph isomorphism problem when the two graphs can be matched
perfectly. Let A and B be the (weighted) adjacency matrices of the two graphs on n
vertices. Then, the graphmatching problem can be formulated as solving the following
quadratic assignment problem (QAP) [5, 18]:

max
Π∈Sn

〈A,ΠBΠ�〉, (1)

whereSn denotes the set of permutation matrices inRn×n and 〈·, ·〉 denotes the matrix
inner product. The QAP is NP-hard to solve or to approximate within a growing factor
[17].

In the companion paper [14], we proposed a computationally efficient spectral
graph matching method, called GRAph Matching by Pairwise eigen-Alignments
(GRAMPA). Let us write the spectral decompositions of A and B as

A =
∑

i

λiviv
�
i and B =

∑

j

μ jw jw
�
j . (2)

Given a tuning parameter η > 0, GRAMPA first constructs an n×n similarity matrix1

X =
∑

i, j

η

(λi − μ j )2 + η2
viv

�
i Jw jw

�
j , (3)

where J is the n × n all-ones matrix. Then, it outputs a permutation matrix Π̂ by
“rounding” X to a permutation matrix, for example, by solving the following linear
assignment problem (LAP)

Π̂ ∈ argmax
Π∈Sn

〈X ,Π〉. (4)

Let Π∗ ∈ Sn be the latent true matching, and denote the entries of A and
Π∗BΠ�∗ as ai j and bπ∗(i)π∗( j). A Gaussian Wigner model is studied in [14],
where {(ai j , bπ∗(i)π∗( j))} are i.i.d. pairs of correlated Gaussian variables such that

1 In [14], X is defined without the factor η in the numerator. We include η here for convenience in the
proof; this does not affect the algorithm as the rounded solution Π̂ is invariant to rescaling X .
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bπ∗(i)π∗( j) = ai j + σ zi j for a noise level σ ≥ 0, and ai j and zi j are independent stan-
dard Gaussian. It is shown that GRAMPA exactly recovers the vertex correspondence
Π∗ with high probability when σ = O(1/ log n). Simulation results in [14,Sect. 4.1]
further show that the empirical performance of GRAMPA under the Gaussian Wigner
model is very similar to that under the Erdős-Rényi model where {(ai j , bπ∗(i)π∗( j))}
are i.i.d. pairs of correlated centered Bernoulli random variables, suggesting that the
performance of GRAMPA enjoys universality.

In this paper, we prove a universal exact-recovery guarantee for GRAMPA, under
a general Wigner matrix model for the weighted adjacency matrix: Let A = (ai j )
be a symmetric random matrix in R

n×n , where the entries (ai j )i≤ j are independent.
Suppose that

E
[
ai j
] = 0 for all i, j, E

[
a2i j

]
= 1

n
for all i 	= j, (5)

and

E

[∣∣ai j
∣∣k
]

≤ Ck

nd(k−2)/2
for all i, j and each k ∈

[
2, (log n)10 log log n

]
, (6)

where d ≡ d(n) is an n-dependent sparsity parameter and C is an absolute positive
constant.

Of particular interest are the following special cases:

– Bounded case: The entries are bounded in magnitude by C√
n
. Then, (6) is fulfilled

for d = n and all k.
– Sub-Gaussian case: The sub-Gaussian norm of each entry satisfies

‖ai j‖ψ2 � sup
k≥1

k−1/2
E

[∣∣ai j
∣∣k
]1/k = O

(
1/

√
n
)
. (7)

It is easily checked that (6) is satisfied for d = n/(log n)11 log log n and all large n.
– Erdős-Rényi graphs with edge probability p ≡ p(n). We may center and scale the
adjacency matrix A such that ai j ∼ (Bern(p)− p)/

√
np(1 − p) for i 	= j , which

satisfies (5) and (6) for d = np(1 − p) (cf. Lemma 1).

With the moment conditions (5) and (6) specified, we are ready to introduce the
correlatedWignermodel, which encompasses the correlated Erdős-Rényi graphmodel
proposed in [19] as a special case.

Definition 1 (Correlated Wigner model) Let n be a positive integer, σ ∈ [0, 1] an (n-
dependent) noise parameter, π∗ a latent permutation on [n], and Π∗ ∈ {0, 1}n×n

the corresponding permutation matrix such that (Π∗)iπ∗(i) = 1. Suppose that{
(ai j , bπ∗(i)π∗( j)) : i ≤ j

}
are independent pairs of random variables such that both

A = (ai j ) and B = (bi j ) satisfy (5) and (6),

E
[
ai j bπ∗(i)π∗( j)

] ≥ 1 − σ 2

n
for all i 	= j, (8)

123



Foundations of Computational Mathematics

and for a constant C > 0, any D > 0, and all n ≥ n0(D),

P

{∥∥∥A − Π∗BΠ�∗
∥∥∥ ≤ Cσ

}
≥ 1 − n−D (9)

where ‖ · ‖ denotes the spectral norm.

The parameter σ measures the effective noise level in the model. In the special case
of sparse Erdős-Rényi model, A and B are the centered and normalized adjacency
matrices of two Erdős-Rényi graphs, which differ by a fraction 2σ 2 of edges approx-
imately.

In this paper, we prove the following exact recovery guarantee for GRAMPA:

Theorem (Informal statement) For the correlated Wigner model, if d ≥ polylog(n)

and σ ≤ c (log n)−2κ for any fixed constant κ > 2 and a sufficiently small constant
c > 0, then GRAMPA with η = 1/ polylog n recovers π∗ exactly with high probability
for large n. If furthermore ai j and bi j are sub-Gaussian and satisfy (7), then this holds
with κ = 1.

This theorem generalizes the exact recovery guarantee for GRAMPAproved in [14]
for the GaussianWigner model, albeit at the expense of a slightly stronger requirement
for σ than in the Gaussian case. The requirement that d ≥ polylog(n) and σ ≤
1/ polylog(n) is the state-of-the-art for polynomial time algorithms on sparse Erdős-
Rényi graphs [10], although we note that the recent work of [2] provided an algorithm
with super-polynomial runtime nO(log n) that achieves exact recovery when d ≥ no(1)

under the much weaker condition of σ ≤ 1 − (log n)−o(1) (see the end of Sect. 2
for more detailed discussion). Numerical experiments in the companion paper [14]
suggest that the failure of GRAMPA occurs at σ = C/ log n for some constant C ,
indicating that our theoretical characterization of the performance of GRAMPA here
is almost tight. In [14], we further demonstrate the superior empirical performance
of GRAMPA on a variety of synthetic and real datasets, in terms of both statistical
accuracy and computational efficiency. In the conference version [15], GRAMPA is
also shown to improve existing shape matching algorithms on 3D deformable shape
data.

The analysis in [14] relies heavily on the rotational invariance of Gaussian Wigner
matrices, and does not extend to non-Gaussian models. Here, instead, our universality
analysis uses a resolvent representation of the GRAMPA similarity matrix (3) via a
contour integral (cf. Proposition 1). Capitalizing on local laws for the resolvent of
sparse Wigner matrices [11, 12], we show that the similarity matrix (3) is with high
probability diagonal dominant in the sense that mink Xkπ∗(k) > max	 	=π∗(k) Xk	. This
enables rounding procedures as simple as thresholding to succeed.

From an optimization point of view, GRAMPA can also be interpreted as solving a
regularized quadratic programming (QP) relaxation of the QAP. More precisely, the
QAP (1) can be equivalently written as

min
Π∈Sn

‖AΠ − ΠB‖2F , (10)
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and the similarity matrix X in (3) is a positive scalar multiple of the solution X̃ to

argmin
X∈Rn×n

‖AX − XB‖2F + η2‖X‖2F
s.t. 1�X1 = n. (11)

(See [14,Corollary 2.2].) This is a convex relaxation of the program (10) with an
additional ridge regularization term. As a result, our analysis immediately yields the
same exact recovery guarantees for algorithms that round the solution X̃ to (11) instead
of X . In Sect. 6, we study a tighter relaxation of the QAP (10) that imposes row-
sum constraints, and establish the same exact recovery guarantees (up to universal
constants) by employing similar technical tools.

Organization The rest of the paper is organized as follows. In Sect. 2, we state the
main exact recovery guarantees for GRAMPA under the correlated Wigner model,
as well as the results specialized to the (sparse) Erdős-Rényi model. We start the
analysis by introducing the key resolvent representation of the GRAMPA similarity
matrix in Sect. 3. As a preparation for the main proof, Sect. 4 provides the needed
tools from random matrix theory. The proof of correctness for GRAMPA is then
presented in Sect. 5. In Sect. 6, we extend the theoretical guarantees to a tighter QP
relaxation. Finally, Sect. 7 is devoted to proving the resolvent bounds which form the
main technical ingredient to our proofs.

Notation Let [n] � {1, . . . , n}. Let i = √−1. In a Euclidean space Rn or Cn , let ei
be the i-th standard basis vector, and let 1 = 1n be the all-ones vector. Let J = Jn
denote the n × n all-ones matrix, and let I = In denote the n × n identity matrix. The
subscripts are often omitted when there is no ambiguity.

The inner product of u, v ∈ C
n is defined as 〈u, v〉 = u∗v. Similarly, for matrices,

〈A, B〉 = Tr(A∗B). Let ‖v‖ ≡ ‖v‖2 = 〈v, v〉 and ‖v‖∞ = supi |vi | for vectors. Let
‖M‖ ≡ ‖M‖op = supv:‖v‖=1 ‖Mv‖, ‖M‖2F = 〈M, M〉, and ‖M‖∞ = supi, j |Mi j |
for matrices.

Let x ∧ y = min(x, y) and x ∨ y = max(x, y). We use C,C ′, c, c′, . . . to denote
positive constants that may change at each appearance. For sequences of positive real
numbers (an)∞n=1 and (bn)∞n=1, we write an � bn (resp. an � bn) if there is a constant
C > 0 such that an ≤ Cbn (resp. bn ≤ Can) for all n ≥ 1, an � bn if both relations
an � bn and an � bn hold, and an � bn if an/bn → 0 as n → ∞. We write
an = O(bn) if |an| � bn and an = o(bn) if |an| � bn .

2 Exact Recovery Guarantees for GRAMPA

In this section,we state the exact recovery guarantees forGRAMPA,making the earlier
informal statement precise.

Theorem 1 Fix constants a > 0 and κ > 2, and let η ∈ [1/(log n)a, 1]. Consider the
correlated Wigner model with n ≥ d ≥ (log n)c0 where c0 > max(32 + 4a, 4 + 7a).
Then, there exist (a, κ)-dependent constants C0, n0 > 0 and a deterministic quantity

123



Foundations of Computational Mathematics

r(n) ≡ r(n, η, d, a) satisfying r(n) → 0 as n → ∞, such that for all n ≥ n0, with
probability at least 1 − n−10, the matrix X in (3) satisfies

max
	 	=π∗(k)

|Xk	| ≤ C0(log n)κ
1√
η
,

max
k

∣∣∣∣Xkπ∗(k) − 1 − σ 2

η

∣∣∣∣ ≤ C0

(
r(n)

η
+ σ

η2
+ (log n)κ

1√
η

)
. (12)

If there is a universal constant K for which ai j and bi j are sub-Gaussian with
‖ai j‖ψ2 , ‖bi j‖ψ2 ≤ K/

√
n, then the above holds also with κ = 1.

As an immediate corollary, we obtain the following exact recovery guarantee for
GRAMPA.

Corollary 1 (Universal graphmatching)Under the conditions of Theorem 1, there exist
constants c, c′ > 0 such that for all n ≥ n0, if

(log n)−a ≤ η ≤ c(log n)−2κ and σ ≤ c′η, (13)

then with probability at least 1 − n−10,

min
k

Xkπ∗(k) > max
	 	=π∗(k)

Xk	, (14)

and hence Π̂ that solves the linear assignment problem (4) equals Π∗.

Proof Let c = 1/(64C2
0 ) and c

′ = 1/(2C0), whereC0 is the constant given in Theorem
1. Then under assumption (13), we have

C0(log n)κ
√

η ≤ C0(log n)κ
√
c

(log n)κ
= C0

√
c ≤ 1/8,

so max	 	=π∗(k) |Xk	| ≤ 1/(8η). We also have C0σ/η ≤ C0c′ = 1/2 and 1−σ 2 > 7/8
andC0r(n) < 1/8 for all large n, so that maxk Xkπ∗(k) > (7/8−1/8−1/2−1/8)/η =
1/(8η). This implies (14). ��

An important application of the above universality result is matching two correlated
sparse Erdős-Rényi graphs. Let G be an Erdős-Rényi graph with n vertices and edge
probability q, denoted by G ∼ G(n, q). Let A and B′ be two copies of Erdős-Rényi
graphs that are i.i.d. conditional on G, each of which is obtained from G by deleting
every edge of G with probability 1− s independently where s ∈ [0, 1]. Then, we have
that A,B′ ∼ G(n, p) marginally where p � qs. Equivalently, we may first sample an
Erdős-Rényi graph A ∼ G(n, p), and then define B′ by

B′
i j ∼

{
Bern(s) if Ai j = 1

Bern
(
p(1−s)
1−p

)
if Ai j = 0.
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Suppose that we observe a pair of graphs A and B = Π�∗ B′Π∗, where Π∗ is an
unknown permutation matrix. We then wish to recover the permutation matrix Π∗.

We transform the adjacency matrices A and B so that they satisfy the moment
conditions (5) and (6): Define the centered, rescaled versions of A and B by

A � (np(1 − p))−1/2(A − E[A]) and B � (np(1 − p))−1/2 (B − E[B]). (15)

Then, (5) clearly holds, and we check the following additional properties.

Lemma 1 For all large n, the matrices A = (ai j ) and B = (bi j ) satisfy (6), (8), and
(9) with d = np(1 − p) and

σ 2 = max

(
1 − s

1 − p
,
(log n)7

d

)
.

Proof Assume without loss of generality thatΠ∗ is the identity matrix. For any k ≥ 2,
we have

E

[∣∣ai j
∣∣k
]

= (np(1 − p))−k/2
[
p (1 − p)k + (1 − p)pk

]
= (1 − p)k−1 + pk−1

nd(k−2)/2

≤ 1

nd(k−2)/2
.

Thus, the moment condition (6) is satisfied. In addition, we have that for all i < j ,

E
[
ai j bi j

] = 1

d
E
[(
Ai j − p

) (
Bi j − p

)] = 1

d

(
ps − p2

)
= s − p

n(1 − p)
≤ 1 − σ 2

n
,

where the last inequality holds by the choice of σ 2. Thus, (8) is satisfied. Moreover,
let Δi j = 1√

2σ 2

(
ai j − bi j

)
. It follows that E

[
Δi j
] = 0 and

E

[∣∣Δi j
∣∣k
]

= 2p(1 − s)
(
2σ 2d

)k/2 ≤ 1

n(2σ 2d)(k−2)/2

where the last inequality is due to σ 2 ≥ 1−s
1−p . Thus, by applying Lemma 3 and

2(log n)7 ≤ 2σ 2d ≤ nwhere the upper bound follows from p(1−s) ≤ s(1−s) ≤ 1/4,
there exists a constantC > 0 such that for any D > 0, with probability at least 1−n−D

for all n ≥ n0(D), we have ‖Δ‖ ≤ C and hence ‖A − B‖ ≤ √
2Cσ . Thus, (9) is

satisfied. ��

Combining Lemma 1 with Corollary 1 immediately yields a sufficient condition
for GRAMPA to exactly recover Π∗ in the correlated Erdős-Rényi graph model.

Corollary 2 (Erdős-Rényi graph matching) Suppose that either
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(a) (dense case)

δ ≤ p ≤ 1 − δ,
1 − s

1 − p
≤ (log n)−c1

for constants δ ∈ (0, 1) and c1 > 4, or
(b) (sparse case)

np(1 − p) ≥ (log n)c0 ,
1 − s

1 − p
≤ (log n)−c1

for constants c0 > 48 and c1 > 8.

There exist (δ, c0, c1)-dependent constants a, n0 > 0 such that if η = (log n)−a and
n ≥ n0, then with probability at least 1 − n−10,

min
k

Xkπ∗(k) > max
	 	=π∗(k)

Xk	,

and hence the solution Π̂ to the linear assignment problem (4) coincides with Π∗.

Proof For (a), pick κ = 1 and any a such that c1/2 > a > 2κ = 2. For (b), pick any
a, κ such that c1/2 > a > 2κ > 4 and c0 > 32 + 4a > 4 + 7a. Then, all conditions
of Theorem 1 and Corollary 1 are satisfied for large n, and the result follows. ��

Comparison to information-theoretic limits and existing algorithmic guarantees of
exact recovery For the correlated Erdős-Rényi graph model, exact recovery of the
hidden vertex correspondence with high probability is shown to be information-
theoretically possible if nps− log n → +∞ and p/s = O(log−3(n)), and impossible
ifnps2−log n = O(1) [7, 8]. Froma computational perspective, recentwork [9] shows
that degree matching can achieve exact recovery with high probability in polynomial
time provided that np � n4/5 log7/5(n) and 1 − s � p4/ log6(n).

This result is further improved to np = Ω(log2(n)) and 1 − s ≤ O(log−2(n))

in [10] by matching degree profiles (that is, empirical distributions of neighbors’
degrees). The performance guarantee of the proposed GRAMPA method matches
the state of the art of polynomial-time algorithms up to polylogarithmic factors
and holds for more general models of correlated matrices. It is worth noting that a
quasi-polynomial time (nO(log n)) algorithm is proposed in [2] which succeeds when
np ∈ [no(1), n1/153] ∪ [n2/3, n1−ε

]
and s ≥ (log n)−o(1). However, it remains open

whether exact recovery is achievable in polynomial time for any constant s bounded
away from 1. It is conceivable that there exists a “hard regime” where exact recov-
ery is information-theoretically possible but computationally intractable, resembling
the conjectured computational hardness for the planted clique problem [3] and the
stochastic block model [6].
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3 Resolvent Representation

For a real symmetric matrix A with spectral decomposition (2), its resolvent is defined
by

RA(z) � (A − zI)−1 =
∑

i

1

λi − z
viv

�
i

for z ∈ C \ R. Then, we have the matrix symmetry RA(z)� = RA(z), conjugate
symmetry RA(z) = RA(z̄), and the following Ward identity.

Lemma 2 (Ward identity) For any z ∈ C \ R and any real symmetric matrix A,

RA(z)RA(z) = Im RA(z)

Im z
.

Proof By the definition of R(z) ≡ RA(z) and conjugate symmetry, it holds

Im R(z)

Im z
= R(z) − R(z)

z − z̄
= (A − zI)−1 − (A − z̄I)−1

z − z̄
= (A − zI)−1(A − z̄I)−1

= R(z)R(z).

��
The following resolvent representation of X is central to our analysis.

Proposition 1 Consider symmetric matrices A and B with spectral decomposi-
tions (2), and suppose that ‖A‖ ≤ 2.5. Then, the matrix X defined in (3) admits
the following representation

X = 1

2π
Re
∮

Γ

RA(z)JRB(z + iη)dz, (16)

where

Γ = {z : |Re z| = 3 and | Im z| ≤ η/2 or | Im z| = η/2 and |Re z| ≤ 3} (17)

is the rectangular contour with vertices ±3 ± iη/2 (See Fig. 1 for an illustration).

Proof We have

X = η
∑

i, j

viv
�
i J

w jw
�
j

(λi − μ j )2 + η2

= η
∑

i

viv
�
i JRB(λi + iη)RB(λi − iη)
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= Im
∑

i

viv
�
i JRB(λi + iη) (18)

by Lemma 2. Consider the function f : C → C
n×n defined by f (z) = JRB(z + iη).

Then, each entry fk	 is analytic in the region {z : Im z > −η}. Since Γ encloses each
eigenvalue λi of A, the Cauchy integral formula yields entrywise equality

− 1

2π i

∮

Γ

f (z)

λi − z
dz = f (λi ). (19)

Substituting this into (18), we obtain

X = Im
∑

i

viv
�
i

(
− 1

2π i

∮

Γ

f (z)

λi − z
dz

)
= 1

2π
Re
∮

Γ

RA(z) f (z)dz, (20)

which completes the proof in view of the definition of f . ��

4 Tools from RandomMatrix Theory

Before proving our main results, we introduce the relevant tools from random matrix
theory. In particular, the resolvent bounds in Theorem 2 constitute an important tech-
nical ingredient in our analysis.

4.1 Concentration Inequalities

We start with some known concentration inequalities in the literature.

Lemma 3 (Norm bounds) For any constant ε > 0 and a universal constant c > 0, if
n ≥ d ≥ (log n)6+6ε, then with probability at least 1 − e−c(log n)1+ε

,

‖A‖ ≤ 2 + (log n)1+ε

d1/4
.

Proof See [12,Lemma 4.3], where we fix the parameter ξ = 1 + ε in [12,Eq. (2.4)].
The notational identification is q ≡ √

d. ��
Lemma 4 (Concentration inequalities) Let α, β ∈ R

n be independent random vectors
with independent entries, satisfying

E[αi ] = E[βi ] = 0, E[α2
i ] = E[β2

i ] = 1

n
,

max(E[|αi |k],E[|βi |k]) ≤ 1

nd(k−2)/2
, for each k ∈ [2, (log n)10 log log n]. (21)

For any constant ε > 0 and universal constants C, c > 0, if n ≥ d ≥ (log n)6+6ε,
then:
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(a) For each i ∈ [n], with probability at least 1 − e−c(log n)1+ε
,

|αi | ≤ C√
d

. (22)

(b) For any deterministic vector v ∈ C
n, with probability at least 1 − e−c(log n)1+ε

,

∣∣∣v�α

∣∣∣ ≤ (log n)1+ε

(‖v‖∞√
d

+ ‖v‖2√
n

)
. (23)

Furthermore, for any even integer p ∈ [2, (log n)10 log log n],

E

[∣∣∣v�α

∣∣∣
p] ≤ (Cp)p

(‖v‖∞√
d

+ ‖v‖2√
n

)p

. (24)

(c) For any deterministic matrix M ∈ C
n×n, with probability at least 1−e−c(log n)1+ε

,

∣∣∣∣α
�Mα − 1

n
Tr M

∣∣∣∣ ≤ (log n)2+2ε
(
2‖M‖∞√

d
+ ‖M‖F

n

)
(25)

and

∣∣∣α�Mβ

∣∣∣ ≤ (log n)2+2ε
(
2‖M‖∞√

d
+ ‖M‖F

n

)
. (26)

Proof See [12,Lemma 3.7, Lemma 3.8, and Lemma A.1(i)], where again we fix ξ =
1 + ε. ��

Next, based on the above lemma, we state concentration inequalities for a bilinear
form that apply to our setting directly.

Lemma 5 (Concentration of bilinear form) Let α, β ∈ R
n be random vectors such that

the pairs (αi , βi ) for i ∈ [n] are independent, with

E[αi ] = E[βi ] = 0, E

[
α2
i

]
= E

[
β2
i

]
= 1

n
, E [αiβi ] ≥ 1 − σ 2

n
.

Let M ∈ C
n×n be any deterministic matrix.

(a) For any constant ε > 0, suppose (21) holds where n ≥ d ≥ (log n)6+6ε. Then,
there are universal constants C, c > 0 such that with probability at least 1 −
e−c(log n)1+ε

,

∣∣∣∣α
�Mβ − 1 − σ 2

n
Tr M

∣∣∣∣ ≤ C (log n)2+2ε
(
1

n
‖M‖F + 1√

d
‖M‖∞

)
. (27)
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(b) Suppose that αi , βi are sub-Gaussian with ‖αi‖ψ2 = ‖βi‖ψ2 ≤ K√
n
for a constant

K > 0. Then for any D > 0, there exists a constant C ≡ CK ,D only depending
on K and D such that with probability at least 1 − n−D,

∣∣∣∣α
�Mβ − 1 − σ 2

n
Tr M

∣∣∣∣ ≤
C log n

n
‖M‖F . (28)

Proof In view of the polarization identity

α�Mβ = 1

4
(α + β)�M(α + β) − 1

4
(α − β)�M(α − β),

it suffices to analyze the two terms separately. Note that

E

[
(α + β)�M(α + β)

]
= 4 − 2σ 2

n
Tr M,

E

[
(α − β)�M(α − β)

]
= 2σ 2

n
Tr M,

which yields the desired expectation E[α�Mβ] = 1−σ 2

n Tr M . Thus, it remains to
study the deviation.

To prove the concentration bound (27), we obtain from (25) that, there is a universal
constant c > 0 such that with probability at least 1 − e−c(log n)1+ε

,

∣∣∣(α ± β)�M(α ± β) − E[(α ± β)�M(α ± β)]
∣∣∣ ≤ (log n)2+2ε

(
1

n
‖M‖F + 2√

d
‖M‖∞

)
,

from which (27) easily follows.
The sub-Gaussian concentration bound (28) follows from the Hanson–Wright

inequality [16, 20]. More precisely, note that max{‖α + β‖ψ2 , ‖α − β‖ψ2} ≤
‖α‖ψ2 + ‖β‖ψ2 ≤ 2K/

√
d, so taking δ = n−D/2 in [14,Lemma A.2] yields that

with probability at least 1 − n−D ,

∣∣∣(α ± β)�M(α ± β) − E

[
(α ± β)�M(α ± β)

]∣∣∣ ≤ CK ,D
log n

n
‖M‖F ,

which completes the proof. ��

4.2 The Stieltjes Transform

Denote the semicircle density and its Stieltjes transform by

ρ(x) = 1

2π

√
4 − x2 1{|x |≤2} and m0(z) =

∫
1

x − z
ρ(x)dx = −z + √

z2 − 4

2
,

(29)
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respectively, where m0(z) is defined for z /∈ [−2, 2], and √
z2 − 4 is defined with

a branch cut on [−2, 2] so that
√
z2 − 4 ∼ z as |z| → ∞. We have the conjugate

symmetry m0(z) = m0(z̄).
We record the following basic facts about the Stieltjes transform.

Proposition 2 For each z ∈ C \ R, the Stieltjes transform m0(z) is the unique value
satisfying

m0(z)
2 + zm0(z) + 1 = 0 and Imm0(z) · Im z > 0. (30)

Setting ζ(z) � min(|Re z − 2|, |Re z + 2|), uniformly over z ∈ C \ [−2, 2] with
|z| ≤ 10,

|m0(z)| � 1, | Imm0(z)| � | Im z|, and | Imm0(z)| �{√
ζ(z) + | Im z| if |Re z| ≤ 2,

| Im z|/√ζ(z) + | Im z| if |Re z| > 2.
(31)

For x ∈ [−2, 2], the continuous extensions

m+
0 (x) � lim

z→x : z∈C+ m0(z), m−
0 (x) � lim

z→x : z∈C− m0(z)

from C
+ and C

− both exist. For all x ∈ [−2, 2], these satisfy

m±
0 (x)2 + xm±

0 (x) + 1 = 0, m+
0 (x) = m−

0 (x),

1

π
Imm+

0 (x) = − 1

π
Imm−

0 (x) = ρ(x), |m±
0 (x)| = 1. (32)

Proof (30) follows from the definition of m0. (31) follows from [11,Lemma 4.3] and
continuity and conjugate symmetry of m0. For the existence of m

+
0 (and hence also

m−
0 ), see, e.g., the more general statement of [4,Corollary 1]. The first claim of (32)

follows from continuity and (30), the second from conjugate symmetry, the third from
the Stieltjes inversion formula, and the last from the fact that the two roots of (30)

at z = x ∈ [−2, 2] are m+
0 (x) and m−

0 (x) = m+
0 (x), so that 1 = m±

0 (x)m±
0 (x) =

|m±
0 (x)|2. ��

4.3 Resolvent Bounds

For a fixed constant a > 0 and all large n, we bound the resolvent R(z) = RA(z) over
the spectral domain

D = D1 ∪ D2, where

D1 = {z ∈ C : Re z ∈ [−3, 3], | Im z| ∈ [1/(log n)a, 1]}, and

D2 = {z ∈ C : |Re z| ∈ [2.6, 3], | Im z| ≤ 1/(log n)a}.
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Here, D1 is the union of two strips in the upper and lower half planes, and D2 is the
union of two strips in the left and right half planes.

Theorem 2 (Resolvent bounds) Suppose A ∈ R
n×n has independent entries (ai j )i≤ j

satisfying (5) and (6). Fix a constant a > 0 which defines the domain D, fix ε > 0,
and set

b = max(16 + 3ε + 2a, 3 + 3ε + 5a/2), b′ = max(16 + 4ε + 2a, 4 + 5ε + 6a).

Suppose n ≥ d ≥ (log n)b
′
. Then for some constants C, c, n0 > 0 depending on a

and ε, and for all n ≥ n0, with probability 1 − e−c(log n)(log log n), the following hold
simultaneously for every z ∈ D:

(a) (Entrywise bound) For all j 	= k ∈ [n],

|R jk(z)| ≤ C(log n)2+2ε+a

√
d

. (33)

For all j ∈ [n],

|R j j (z) − m0(z)| ≤ C(log n)2+2ε+3a/2

√
d

. (34)

(b) (Row sum bound) For all j ∈ [n],
∣∣∣e�

j R(z)1
∣∣∣ ≤ C(log n)1+ε+a . (35)

(c) (Total sum bound)

|1�R(z)1 − n · m0(z)| ≤ Cn(log n)b√
d

. (36)

The proof follows ideas of [12], and we defer this to Sect. 7. As the spectral param-
eter z is allowed to converge to the interval [−2, 2] with increasing n, this type of
result is often called a “local law” in the random matrix theory literature. The focus
of the above is a bit different from the results stated in [12], as we wish to obtain
explicit logarithmic bounds for | Im z| � 1/ polylog(n), rather than bounds for more
local spectral parameters down to the scale of | Im z| � polylog(n)/n.

5 Proof of Correctness for GRAMPA

In this section, we prove Theorem 1. Note that the mapping B �→ Π�∗ BΠ∗ for any
permutation Π∗ induces w j �→ Π�∗ w j and X �→ XΠ∗, since JΠ�∗ = J. By virtue of
this equivariance, throughout the proof, we may assume without loss of generality that
Π∗ = I, i.e., the underlying true permutation π∗ is the identity permutation. Then, we
aim to show that X is diagonally dominant, in the sense that mink Xkk > maxk 	=	 Xk	.
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In view of Lemma 3, we have that ‖A‖ ≤ 2.5 holds with probability 1 − n−D for
any D > 0 and all n ≥ n0(D). In the following, we assume that ‖A‖ ≤ 2.5 holds. On
this event, by Proposition 1, we get that

Xk	 = 1

2π
Re
∮

Γ

(e�
k RA(z)1)(e�

	 RB(z + iη)1)dz (37)

Note that one may attempt to directly apply (35) to bound the row sums e�
k RA(z)1

and e�
	 RB(z + iη)1. This would yield

∣∣∣(e�
k RA(z)1)(e�

	 RB(z + iη)1)
∣∣∣ � (log n)2+2ε+2a,

and hence |Xk	| � (log n)2+2ε+2a . However, this estimate is too crude to capture
the differences between the diagonal and off-diagonal entries. In fact, the row sum
e�
k RA(z)1 does not concentrate on its mean, and the deviation e�

k RA(z)1−m0(z) and
e�
	 RB(z + iη)1−m0(z) is uncorrelated for k 	= 	 and positively correlated for k = 	.
For this reason, the diagonal entries of (37) dominate the off-diagonals. Thus, it is
crucial to gain a better understanding of the deviation terms. We do so by applying
Schur complement decomposition.

5.1 Decomposition Via Schur Complement

We recall the classical Schur complement identity for the inverse of a block matrix.

Lemma 6 (Schur complement identity)For any invertiblematrix M ∈ C
n×n and block

decomposition

M =
[
A B
C D

]
,

if D is square and invertible, then

M−1 =
[

S −SBD−1

−D−1CS D−1 + D−1CSBD−1

]
(38)

where S = (A − BD−1C)−1.

We decompose e�
k RA(z)1 and e�

	 RB(z+ iη)1 using this identity, focusing without
loss of generality on (k, 	) = (1, 2). Let RA,12 ∈ C

2×2 be the upper-left 2 × 2 sub-
matrix of RA, and let R

(12)
A ∈ C

(n−2)×(n−2) be the resolvent of the (n − 2) × (n − 2)
minor of A with the first two rows and columns removed. Let a�

1 and a�
2 be the first

two rows of A with first two entries removed, and let A�
o ∈ R

2×(n−2) be the stacking
of a�

1 and a�
2 .

The following deterministic lemma approximates e�
1 RA(z)1 based on the Schur

complement.
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Lemma 7 Suppose |z| ≤ 10, and

∥∥RA,12(z) − m0(z)I
∥∥ ≤ δ (39)

where 0 ≤ δ ≤ minz:|z|≤10 |m0(z)|/2. Then for a constant C > 0 and k = 1, 2

∣∣∣e�
k RA(z)1 − m0(z)

(
1 − a�

k R(12)
A (z)1n−2

)∣∣∣ ≤ Cδ (1 + ‖RA(z)1‖∞) . (40)

Proof It suffices to consider k = 1. Applying the Schur complement identity (38), the
first two rows of RA are given by

[
RA,12 −RA,12A�

o R(12)
A

]
. (41)

Thus,

e�
1 RA(z)1 = [1 0

] [
RA,12 −RA,12A�

o R(12)
A

] [ 12
1n−2

]

= [1 0
]
RA,12

(
12 − A�

o R(12)
A 1n−2

)
.

Denote ΔA � RA,12(z) − m0(z)I. Then,

e�
1 RA(z)1 = [1 0

]
(m0(z)I + ΔA)

(
12 − A�

o R(12)
A 1n−2

)
.

= m0(z)
(
1 − a�

1 R(12)
A 1n−2

)
+ [1 0

]
ΔA

(
12 − A�

o R(12)
A 1n−2

)
.

= m0(z)
(
1 − a�

1 R(12)
A 1n−2

)
+ O

(
δ
(
1 +

∥∥∥A�
o R(12)

A 1n−2

∥∥∥
))

, (42)

where the last equality applies (39). We next upper bound
∥∥∥A�

o R(12)
A 1n−2

∥∥∥. In view

of the fact that C ≥ |m0(z)| ≥ c for absolute constants c and C , the assumption (39)
implies that RA,12 is invertible with ‖R−1

A,12‖ � 1. Using (41) again, we have

A�
o R(12)

A 1n−2 = 12 − R−1
A,12

[
e1 e2

]�
RA1n . (43)

It follows that

∥∥∥A�
o R(12)

A 1n−2

∥∥∥ � 1 +
∣∣∣e�

1 RA1n
∣∣∣+
∣∣∣e�

2 RA1n
∣∣∣ � 1 + ‖RA1n‖∞ . (44)

The desired bound (40) follows by combining (42) and (44). ��

123



Foundations of Computational Mathematics

5.2 Off-Diagonal Entries

Without loss of generality, we focus on the off-diagonal entry X12:

X12 = 1

2π
Re
∮

Γ

(
e�
1 RA(z)1

) (
e�
2 RB(z + iη)1

)
dz.

For the given value a > 0 in Theorem 1, and for some small constant ε > 0, let b, b′
be as defined in Theorem 2. Under the given condition for c0 in Theorem 1, for ε > 0
sufficiently small, we have c0 > b′ and c0 > 2b—thus d � (log n)b

′
so Theorem 2

applies, and also
√
d � (log n)b. Fix the constant κ , where κ = 1 in the sub-Gaussian

case where ‖ai j‖ψ2 , ‖bi j‖ψ2 � 1/
√
n, and κ > 2 otherwise. For ease of notation, we

define

δ1 = (log n)2+2ε+3a/2

√
d

, δ2 = (log n)1+ε+a

√
n

, δ3 = (log n)b√
d

, δ4 = (log n)κ/2

√
n

.

(45)

Note that we have δi = o(1) for each i = 1, 2, 3, 4, and also δ1δ
2
2n = o(1).

5.2.1 Resolvent Approximation

Define an event E1 wherein the following hold simultaneously for all z ∈ Γ :

∥∥RA,12(z) − m0(z)I
∥∥ � δ1 (46)

∥∥RB,12(z + iη) − m0(z + iη)I
∥∥ � δ1 (47)

‖RA(z)1‖∞ � δ2
√
n (48)

‖RB(z + iη)1‖∞ � δ2
√
n. (49)

Applying the resolvent approximations given in Theorem 2, we have that

P {E1} ≥ 1 − e−c(log n)(log log n).

In the following, we assume the event E1 holds.
On E1, by Lemma 7, we get that uniformly over z ∈ Γ ,

e�
1 RA(z)1 = m0(z)

(
1 − a�

1 R(12)
A 1n−2

)
+ O

(
δ1δ2

√
n
)
, (50)

e�
2 RB(z + iη)1 = m0(z + iη)

(
1 − b�

2 R(12)
B 1n−2

)
+ O

(
δ1δ2

√
n
)
. (51)

Each of (50) and (51) is itself O(δ2
√
n), by (48) and (49). Then multiplying the two,

we have
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[
e�
1 RA(z)1

] [
e�
2 RB(z + iη)1

]

= m0(z)m0(z + iη)
(
1 − a�

1 R(12)
A 1n−2 − b�

2 R(12)
B 1n−2 + a�

1 R(12)
A Jn−2R

(12)
B b2

)

+ O
(
δ1δ

2
2n
)

.

It follows that
∮

Γ

[
e�
1 RA(z)1

] [
e�
2 RB(z + iη)1

]
dz

=
∮

Γ

m0(z)m0(z + iη)dz − a�
1 g − b�

2 h + a�
1 Mb2 + O

(
δ1δ

2
2n
)

, (52)

where

g �
∮

Γ

m0(z)m0(z + iη)R(12)
A (z)1n−2dz,

h �
∮

Γ

m0(z)m0(z + iη)R(12)
B (z + iη)1n−2dz,

M �
∮

Γ

m0(z)m0(z + iη)R(12)
A (z)Jn−2R

(12)
B (z + iη)dz. (53)

5.2.2 Term-By-Term Analysis

Next, we bound the individual terms of (52). By the boundedness of m0(z), we have

∮

Γ

m0(z)m0(z + iη)dz = O(1). (54)

Define the event E2 wherein the following hold simultaneously:

∣∣∣a�
1 g
∣∣∣+
∣∣∣b�

2 h
∣∣∣ � δ1 (‖g‖∞ + ‖h‖∞) + δ4 (‖g‖2 + ‖h‖2) (55)

∣∣∣a�
1 Mb2

∣∣∣ � δ1‖M‖∞ + δ24‖M‖F . (56)

Note that the triple (g, h, M) is independent of the pair (a1, b2) and a1 and b2 are
independent. Hence, by first conditioning on (g, h, M) and then applying (23) and
(26), we get that

P {E2} ≥ 1 − n−D

for any constant D > 0,2 and all n ≥ n0(D), in both the sub-Gaussian (κ = 1) and
general (κ > 2) cases. Henceforth, we assume E2 holds. It then remains to bound the
	2 and 	∞ norms of g, h, and M .

2 The constant D can be made arbitrarily large by setting the hidden constants in (55) and (56) sufficiently
large.
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Fig. 1 Nested contours Γ and Γ ′

Recall that Γ is the rectangular contour with vertices±3± i η2 . Let us define another
contour (to be used later) Γ ′ inside Γ , with vertices ±2.6 ± i η4 , cf. Fig. 1. Define the
event E3 wherein the following hold simultaneously for all z ∈ Γ ∪ Γ ′:

∥∥∥R(12)
A (z)1n−2

∥∥∥∞ � δ2
√
n, (57)

∥∥∥R(12)
B (z + iη)1n−2

∥∥∥∞ � δ2
√
n, (58)

∣∣∣1�
n−2R

(12)
A (z)1n−2 − m0(z)(n − 2)

∣∣∣ � δ3n, (59)
∣∣∣1�

n−2R
(12)
B (z + iη)1n−2 − m0(z + iη)(n − 2)

∣∣∣ � δ3n. (60)

By Theorem 2, we have that P {E3} ≥ 1 − e−c(log n)(log log n). In the following, we
assume the event E3 holds.

Note that

‖g‖∞ � sup
z∈Γ

‖R(12)
A (z)1n−2‖∞ � δ2

√
n, (61)

where the second inequality holds in view of (57). Similarly, in view of (58), we have
that ‖h‖∞ � δ2

√
n. Furthermore,

‖M‖∞ � sup
z∈Γ

∥∥∥R(12)
A (z)Jn−2R

(12)
B (z + iη)

∥∥∥∞

≤ sup
z∈Γ

∥∥∥R(12)
A (z)1n−2

∥∥∥∞

∥∥∥1�
n−2R

(12)
B (z + iη)

∥∥∥∞ � δ22n. (62)

The 	2 bounds of g, h and M are deferred to Lemma 8. Applying (59), (60), and
Lemma 8 with RA = R(12)

A and RB = R(12)
B , we get ‖g‖22 � n log 1

η
, ‖h‖22 � n log 1

η

and ‖M‖F � n/
√

η.

Combining the above bounds on the norms of g, h, M with (55), (56), and (54),
and plugging into (52), we conclude that on the event {‖A‖ ≤ 2.5} ∩ E1 ∩ E2 ∩ E3,
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|X12| = 2π

∣∣∣∣
∮

Γ

[
e�
1 RA(z)1

] [
e�
2 RB(z + iη)1

]
dz

∣∣∣∣

� 1 + δ4

√

n log
1

η
+ δ24n

1√
η

+ δ1δ
2
2n � δ24n

1√
η

= (log n)κ
1√
η
, (63)

where in the third step we used δ1δ
2
2n = o(1) and η ≤ 1 so that δ4

√
n = (log n)κ/2 �√

η log 1
η

+ η1/4.

5.2.3 Bounding the Norms of g, h andM

Lemma 8 Suppose ‖A‖ ≤ 2.5 and
∣∣1�R(z)1

∣∣ � n for all z ∈ Γ ∪ Γ ′ and both
R(z) = RA(z) and R(z) = RB(z + iη). Define

g =
∮

Γ

m0(z)m0(z + iη)RA(z)1dz

h =
∮

Γ

m0(z)m0(z + iη)RB(z + iη)1dz

M =
∮

Γ

m0(z)m0(z + iη)RA(z)JRB(z + iη)dz.

Then, ‖g‖2 � n log 1
η
, ‖h‖2 � n log 1

η
and ‖M‖2F � n2

η
.

Proof Since ‖A‖ ≤ 2.5, the function m0(z)m0(z + iη)RA(z)1 is analytic in z in the
region between Γ ′ and Γ . It follows that

g =
∮

Γ

m0(z)m0(z + iη)RA(z)1dz =
∮

Γ ′
m0(w)m0(w + iη)RA(w)1dw.

Thus,

‖g‖2 (a)=
∮

Γ

dz
∮

Γ ′
dw m0(z)m0(z + iη)m0(w̄)m0(w̄ − iη)1�RA(w̄)RA(z)1

(b)= −
∮

Γ

dz
∮

Γ ′
dw m0(z)m0(z + iη)m0(w)m0(w − iη)1�RA(w)RA(z)1

(c)= −
∮

Γ

dz
∮

Γ ′
dw m0(z)m0(z + iη)m0(w)m0(w − iη)1� RA(z) − RA(w)

z − w
1

(d)

� n
∮

Γ

dz
∮

Γ ′
1

|z − w| (64)

where (a) applies conjugation symmetry ofm0 and RA; (b) changes variables w �→ w̄

which reverses the direction of integration along Γ ′; (c) follows from the identity
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RA(z)RA(w) = (A − z)−1 (A − w)−1 = 1

z − w

[
(A − z)−1 − (A − w)−1

]

= 1

z − w
[RA(z) − RA(w)] (65)

and (d) holds because |m0(z)| � 1 and
∣∣1�RA(z)1

∣∣ � n for all z ∈ Γ ∪ Γ ′ by
assumption. For either z or w in the vertical strips of Γ ∪Γ ′ of length O(η), we apply
simply |z − w| � η. For both z and w in the horizontal strips, i.e., | Im z| = η/2 and
| Imw| = η/4, we apply |z − w| � |Re(z) − Re(w)| + η. This gives

‖g‖2 � n

(
1 +

∫ 3

−3
dx
∫ 2.6

−2.6
dy

1

|x − y| + η

)
� n log

1

η
.

For ‖h‖2, we have similarly

‖h‖2 = −
∮

Γ

dz
∮

Γ ′
dw m0(z)m0(z + iη)m0(w)m0(w − iη)1�

RB(z + iη) − RB(w − iη)

(z + iη) − (w − iη)
1 � n

∮

Γ

dz
∮

Γ ′
1

|z − w + 2iη|.

We may again bound |z − w + 2iη| � η if either z or w belongs to a vertical strip, or
|z − w + 2iη| � |Re(z) − Re(w)| + η otherwise, to obtain ‖h‖2 � n log(1/η).

Finally, we bound ‖M‖F . Since ‖A‖ ≤ 2.5, the function m0(z)m0(z +
iη)RA(z)JRB(z + iη) is analytic in z in the region between Γ ′ and Γ , so

M =
∮

Γ

m0(z)m0(z + iη)RA(z)JRB(z + iη)dz =
∮

Γ ′
m0(w)m0(w + iη)

RA(w)JRB(w + iη)dw.

Consequently, by the same arguments that leads to (64),

‖M‖2F
= Tr(M∗M)

=
∮

Γ

dz
∮

Γ ′
dw m0(z)m0(z + iη)m0(w)m0(w − iη)Tr

× [RA(z)11�RB(z + iη)RB(w − iη)11�RA(w)
]

= −
∮

Γ

dz
∮

Γ ′
dw m0(z)m0(z + iη)m0(w)m0(w − iη)1�RA(w)RA(z)11�

RB(z + iη)RB(w − iη)1

= −
∮

Γ

dz
∮

Γ ′
dw m0(z)m0(z + iη)m0(w)m0(w − iη)

1�(RA(z) − RA(w))1
z − w

1�(RB(z + iη) − RB(w − iη))1
z + iη − (w − iη)
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� n2
∮

Γ

dz
∮

Γ ′
dw

1

|z − w|
1

|z − w + 2iη| .

If z orw belongs to a vertical strip ofΓ ∪Γ ′, of lengthO(η), then |z−w|·|z−w+2iη| �
η2; otherwise, |z−w|·|z−w+2iη| � (|Re(z)−Re(w)|+η)2 � (Re(z)−Re(w))2+η2.
Then

‖M‖2F � n2
(
1

η
+
∫ 3

−3
dx
∫ 2.6

−2.6
dy

1

(x − y)2 + η2

)
� n2

η
.

��

5.3 Diagonal Entries

Without loss of generality, we consider the diagonal entry X11:

X11 = 1

2π
Re
∮

Γ

[
e�
1 RA(z)1

] [
1�RB(z + iη)e1

]
dz.

By similar arguments as in the off-diagonal entry X12 that lead to (50) and (51), we
obtain that for all z ∈ Γ ,

e�
1 RA(z)1 = m0(z)

(
1 − a�

1 R(1)
A (z)1n−1

)
+ O

(
δ1δ2

√
n
)

e�
1 RB(z + iη)1 = m0(z + iη)

(
1 − b�

1 R(1)
B (z)1n−1

)
+ O

(
δ1δ2

√
n
)
.

It follows that
[
e�
1 RA(z)1

] [
1�RB(z + iη)e1

]

= m0(z)m0(z + iη)
(
1 − a�

1 R(1)
A 1n−1 − 1�

n−1R
(1)
B b1 + a�

1 R(1)
A Jn−1R

(1)
B b1

)

+ O
(
δ1δ

2
2n
)

,

where, respectively, a�
1 and b�

1 are the first rows of A and B with first entries removed;

and R(1)
A and R(1)

B are the resolvents of the minors of A and B with first rows and
columns removed. Thus, we get that

∮

Γ

[
e�
1 RA(z)1

] [
1�RB(z + iη)e1

]
dz

=
∮

Γ

m0(z)m0(z + iη)dz − a�
1 g − b�

1 h + a�
1 Mb1 + O

(
δ1δ

2
2n
)

, (66)

where

g �
∮

Γ

m0(z)m0(z + iη)R(1)
A (z)1dz,
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h �
∮

Γ

m0(z)m0(z + iη)R(1)
B (z + iη)1dz,

M �
∮

Γ

m0(z)m0(z + iη)R(1)
A (z)JR(1)

B (z + iη)dz.

By the same argument as in the off-diagonal entry X12, we can control each term
above. The only difference is that for the bilinear form, instead of using (26), applying
Lemma 5 to control a�

1 Mb1 gives an extra expectation term (1−σ 2)n−1 Tr M . There-
fore, we obtain that for any fixed constant D > 0, with probability at least 1 − n−D ,
for all sufficiently large n,

∣∣∣∣X11 − 1 − σ 2

2π
Re

Tr M

n

∣∣∣∣ � (log n)κ
1√
η
. (67)

Denote by E4 the event where the following hold simultaneously for all z ∈ Γ :

‖A − B‖ � σ
∣∣∣1�

n−1R
(1)
A (z)1n−1 − m0(z)n

∣∣∣ � δ3n
∣∣∣1�

n−1R
(1)
B (z + iη)1n−1 − m0(z + iη)n

∣∣∣ � δ3n.

By the assumption (9) and Theorem 2, we have that P {E4} ≥ 1−n−D for any constant
D > 0 and all n ≥ n0(D).

We defer the analysis of Tr M to Lemmas 9 and 10:Assuming E4 holds and applying
Lemmas 9 and 10 with RA, RB replaced by R(1)

A , R(1)
B , respectively, we get

1

n
Re Tr(M) = 2π + oη(1)

η
+ O

(
σ

η2
+ δ3

η

)
. (68)

Setting r(n) = oη(1) + δ3, we get

∣∣∣∣X11 − 1 − σ 2

η

∣∣∣∣ �
r(n)

η
+ σ

η2
+ (log n)κ

1√
η
.

5.3.1 Analyzing the Trace ofM

Lemma 9 Suppose ‖A‖ ≤ 2.5 and ‖A − B‖ � σ and

∣∣∣1�RA(z)1 − m0(z)n
∣∣∣ � δ3n,

∣∣∣1�RB(z + iη)1 − m0(z + iη)n
∣∣∣ � δ3n, (69)

for all z ∈ Γ . Define

M =
∮

Γ

m0(z)m0(z + iη)RA(z)JRB(z + iη)dz.
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Then,

1

n
Tr M = 1

iη

∮

Γ

m0(z)m0(z + iη)(m0(z + iη) − m0(z))dz + O

(
σ

η2
+ δ3

η

)
.

Proof Applying the identity

RB(z + iη) − RA(z) = (B − (z + iη))−1 − (A − z)−1 = RB(z + iη)(A − B + iη)RA(z),

we get RB(z + iη)RA(z) = 1
iη (RB(z + iη) − RA(z) − RB(z + iη)(A − B)RA(z)).

Therefore

Tr M =
∮

Γ

dz m0(z)m0(z + iη)Tr
[
RA(z)JRB(z + iη)

]

=
∮

Γ

dz m0(z)m0(z + iη)1�RB(z + iη)RA(z)1

= 1

iη

∮

Γ

dz m0(z)m0(z + iη)1� (RB(z + iη) − RA(z)

−RB(z + iη)(A − B)RA(z)) 1. (70)

To proceed, we use the following facts. First, it holds that

∣∣∣1�RB(z + iη)(A − B)RA(z)1
∣∣∣ ≤

∥∥∥1�RB(z + iη)

∥∥∥ ‖A − B‖ ‖RA(z)1‖ .

For z ∈ Γ with Im z = ±η/2, in view of the Ward identity given in Lemma 2 and the
assumption given in (69), we get that

‖RA(z)1‖2 = 1�RA(z)RA(z)1 = 2

η
| Im 1�RA(z)1| � n

η

For z ∈ Γ with Re z = ±3, we have that ‖RA(z)1‖2 ≤ n ‖RA(z)‖2 � n thanks to the
assumption ‖A‖ ≤ 2.5. Similarly, we have ‖RB(z + iη)1‖2 � n/η. Combining these
bounds with the assumption that ‖A − B‖ � σ yields that

∣∣∣1�RB(z + iη)(A − B)RA(z)1
∣∣∣ �

nσ

η
.

Then applying |m0(z)| � 1 and (69), we obtain

1

n
Tr M = 1

iη

∮

Γ

m0(z)m0(z + iη)(m0(z + iη) − m0(z))dz + O

(
σ

η2
+ δ3

η

)
.

��
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Lemma 10 Let Γ be the rectangular contour with vertices ±3 ± iη/2. Then

Im

[∮

Γ

m0(z)m0(z + iη)(m0(z + iη) − m0(z))dz

]
= 2π + oη(1).

Proof By Proposition 2, the integrand is analytic and bounded over

{z ∈ C : |z| ≤ 9, z /∈ [−2, 2], z + iη /∈ [−2, 2]}.

Hence, wemay deformΓ to the contourΓε with vertices±(2+ε)±iε, and take ε → 0
(for fixed η). The portion of Γε where |Re z| > 2 has total length O(ε), so the integral
over this portion vanishes as ε → 0. We may apply the bounded convergence theorem
for the remaining two horizontal strips of Γε to get (recall that contour integrals are
evaluated counterclockwise):

∮

Γ

m0(z)m0(z + iη)(m0(z + iη) − m0(z))dz

=
∫ −2

2
m+

0 (x)m0(x + iη)(m0(x + iη) − m+
0 (x))dx

+
∫ 2

−2
m−

0 (x)m0(x + iη)(m0(x + iη) − m−
0 (x))dx,

where m+
0 and m−

0 are the limits from C
+ and C

− defined in Proposition 2.
Now applying the bounded convergence theorem again to take η → 0, we have
limη→0 m0(x + iη) = m+

0 (x) and hence

lim
η→0

∮

Γ

m0(z)m0(z + iη)(m0(z + iη) − m0(z))dz

=
∫ 2

−2
m−

0 (x)m+
0 (x)(m+

0 (x) − m−
0 (x))dx =

∫ 2

−2
|m+

0 (x)|2 · 2π iρ(x)dx = 2π i,

the last two steps applying (32). Thus, the imaginary part of the integral is 2π + oη(1)
for small η. ��

6 A Tighter Regularized QP Relaxation

As discussed in the introduction, GRAMPA can be interpreted as solving the regular-
ized QP relaxation (11) of the QAP (10). We further explore this optimization aspect
in this section, and study a tighter regularized QP relaxation.

Let us begin by recalling the following QP relaxation of the QAP (10) that replaces
the feasible set of permutation matrices by its convex hull, the Birkhoff polytope
consisting of all doubly stochastic matrices [1, 21]:
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min
X∈Rn×n

‖AX − XB‖2F
s.t. X1 = 1, X�1 = 1, X ≥ 0. (71)

This program differs from the QP relaxation (11) that underlies GRAMPA in two
aspects. First, the added ridge penalty η2‖X‖2F in (11) is crucial for ensuring the
desired statistical property of the solution,3 while for (71) there is no such need for
regularization. Moreover, the Birkhoff polytope constraint, being the tightest possible
convex relaxation, is significantly tighter than the constraint 1�X1 = n. Although
it is much slower to solve (71) than to implement GRAMPA, the doubly stochastic
relaxation achieves superior performance over the weaker program (11) as demon-
strated by ample empirical evidence (cf. [10, 14]); nevertheless, a rigorous theoretical
understanding is still lacking.

As a further step toward understanding the relaxations, we analyze the following
intermediate program between (71) and (11):

min
X∈Rn×n

‖AX − XB‖2F + η2‖X‖2F
s.t. X1 = 1, (72)

where we enforce the sum of each row of X to be equal to one. The above program
without the regularization term η2‖X‖2F has been studied in [1] in a small noise regime.
As we are analyzing the structure of the solution rather than the value of the program,
the exact recovery guarantee forGRAMPA (and hence for (11)) does not automatically
carries over to the tighter program (72). Fortunately, we are able to employ similar
technical tools to analyze the solution to (72), denoted henceforth by Xc.

The following result is the counterpart of Theorem 1 and Corollary 1:

Theorem 3 Fix constants a > 0 and κ > 2, and let η ∈ [1/(log n)a, 1].
Consider the correlated Wigner model with n ≥ d ≥ (log n)c0 where c0 >

max(34 + 11a, 8 + 12a). Then, there exist (α, κ)-dependent constants C, n0 > 0
and a deterministic quantity r(n) ≡ r(n, η, d, a) satisfying r(n) → 0 as n → ∞,
such that for all n ≥ n0, with probability at least 1 − n−10,

max
π∗(k) 	=	

∣∣n · X c
k	

∣∣ ≤ C(log n)κ
1√
η
, (73)

max
k

∣∣∣∣n · X c
kπ∗(k) − 4(1 − σ 2)

πη

∣∣∣∣ ≤ C

(
r(n)

η
+ σ

η2
+ (log n)κ

1√
η

)
. (74)

If ‖ai j‖ψ2 , ‖bi j‖ψ2 ≤ K/
√
n, then the above guarantees hold also for κ = 1, with

constants possibly depending on K .
Furthermore, there exist constants c, c′ > 0 such that for all n ≥ n0, if

(log n)−a ≤ η ≤ c(log n)−2κ and σ ≤ c′η, (75)

3 See [14,Sect. 1.3] for a more detailed discussion in this regard.
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Fig. 2 Fraction of correctly matched pairs of vertices by GRAMPA and the tighter QP (72) (both followed
by linear assignment rounding) on Erdős-Rényi graphs with 1000 vertices and edge density 0.5, averaged
over 10 repetitions

then with probability at least 1 − n−10,

min
k

Xkπ∗(k) > max
π∗(k) 	=	

Xk	. (76)

Compared with Corollary 1, the theoretical guarantee for the tighter program (72) is
similar to that for (11) and the GRAMPA method. In practice the performance of the
former is slightly better (cf. Fig. 2). Furthermore, Theorem 3 applies verbatim to the
solution of (72) with column-sum constraints X�1 = 1 instead. This simply follows
by replacing (A, B, X ,Π∗) with (B, A, X�,Π�∗ ).

6.1 Structure of Solutions to QP Relaxations

Before proving Theorem 3, we first provide an overview of the structure of solutions
to the QP relaxations (11), (72), and (71). Using the Karush–Kuhn–Tucker (KKT)
conditions, the solution of (72) can be expressed as

Xc =
∑

i, j

〈vi , μ〉〈w j , 1〉
(λi − μ j )2 + η2

viw
�
j , (77)

where μ ∈ R
n is the dual variable corresponding to the row sum constraints, chosen

so that Xc is feasible. Since

Xc1 =
∑

i, j

〈w j , 1〉2
(λi − μ j )2 + η2

viv
�
i μ =

{
∑

i

τiviv
�
i

}
μ,
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where

τi �
∑

j

〈w j , 1〉2
(λi − μ j )2 + η2

. (78)

Solving Xc1 = 1 yields

μ =
∑

i

〈vi , 1〉
τi

vi , (79)

so we obtain

Xc =
∑

i, j

1

(λi − μ j )2 + η2

1

τi
viv

�
i Jw jw

�
j . (80)

Let us provide some heuristics regarding the solution Xc. As before we can express
τi via resolvents as follows:

τi = 1

η
Im
∑

j

〈w j , 1〉2
μ j − (λi + iη)

= 1

η
1�
[
Im
∑

j

1

μ j − (λi + iη)
w jw

�
j

]
1

= 1

η
Im[1�RB(λi + iη)1]. (81)

Invoking the resolvent bound (36), we expect τi ≈ n
η
Im[m0(λi +iη)], where, by prop-

erties of the Stieltjes transform (cf. Proposition 2), Im[m0(λi + iη)] ≈ Im[m0(λi )] =
πρ(λi ) as η → 0. Thus, we have the approximation

Xc ≈ 1

πn

∑

i, j

η

(λi − μ j )2 + η2

1

ρ(λi )
viv

�
i Jv jw

�
j ,

Compared with the unconstrained solution (3), apart from normalization, the only
difference is the extra spectral weight 1

ρ(λi )
according to the inverse semicircle density.

The effect is that eigenvalues near the edge are upweighted while eigenvalues in the
bulk are downweighted, the rationale being that eigenvectors corresponding to the
extreme eigenvalues are more robust to noise perturbation.

Remark 1 (Structure of the QP solutions) Let us point out that solution of various QP
relaxations, including (71), (72), and (11), is of the following common form:

X =
∑

i, j

η

(λi − μ j )2 + η2
viv

�
i Sw jw

�
j , (82)

where S is an n × n matrix that can depend on A and B. Specifically, from the loosest
to the tightest relaxations, we have:
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– For (11) with the total sum constraint, S = αJ, where the dual variable α > 0 is
chosen for feasibility. Since scaling by α does not affect the subsequent rounding
step, this is equivalent to (3) that we analyze.

– For (72) with the row sum constraint, S = μ1� is rank-one with μ given in (79).
– For (71) without the positivity constraint, S = μ1� + 1ν� is rank-two. Unfortu-
nately, the dual variables and the spectral structure of the optimal solution turn out
to be difficult to analyze.

– For (71) with the positivity constraint, S = μ1� + 1ν� + H , where H ≥ 0 is the
dual variable certifying the positivity of the solution and satisfies complementary
slackness.

6.2 Proof of Theorem 3

We now apply the resolvent technique to analyze the behavior of the constrained
solution Xc and establish its diagonal dominance.

6.2.1 Resolvent Representation of the Solution

We start by giving a resolvent representation of Xc via a contour integral.

Lemma 11 Consider symmetric matrices A and B with the spectral decomposi-
tions (2), and suppose that ‖A‖ ≤ 2.5. Then, the solution X c of the program (72)
admits the following representation

X c = 1

2π
Re
∮

Γ

F(z)RA(z)JRB(z + iη), (83)

where Γ is defined by (17) and

F(z) � 2i
1�RB(z + iη)1 − 1�RB(z − iη)1

. (84)

Proof By (81) we have τ−1
i = ηF(λi ). This leads to the following contour represen-

tation of Xc analogous to (16) for the unconstrained solution:

Xc = η
∑

i

F(λi )viv
�
i J

⎧
⎨

⎩
∑

j

1

(λi − μ j )2 + η2
w jw

�
j

⎫
⎬

⎭

(a)= Im

[
∑

i

F(λi )viv
�
i JRB(λi + iη)

]

(b)= Im

[
1

−2π i

∮

Γ

F(z)RA(z)JRB(z + iη)

]

= 1

2π
Re
∮

Γ

F(z)RA(z)JRB(z + iη),
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where (a) follows from theWard identity (Lemma 2); (b) follows fromCauchy integral
formula and the analyticity of F in the region enclosed by the contour Γ . ��
6.2.2 Entrywise Approximation

For some small constant ε > 0, let b, b′ be as defined in Theorem 2. Under the
assumptions of Theorem 3, we have c0 > b′ for ε sufficiently small, so that Theorem 2
applies. Recall the notation δ1, . . . , δ4 defined in (45). For sufficiently small ε > 0,
we may also verify under the assumptions of Theorem 3 that δi = o(1) for each
i = 1, 2, 3, 4, and

δ1δ
2
2n

η
≤ 1,

δ22δ3n

η2
≤ (log n)κ√

η
, and δ3 ≤ η3. (85)

We also assume throughout the proof that the high-probability event ‖A‖ ≤ 2.5 holds.
Thanks to (36), we can approximate F(z) by

F̃(z) = 1

n

2i
m0(z + iη) − m0(z − iη)

(86)

and approximate Xc by

X̃c = 1

2π
Re
∮

Γ

F̃(z)RA(z)JRB(z + iη) (87)

= −1

πn
Im
∮

Γ

1

m0(z + iη) − m0(z − iη)
RA(z)JRB(z + iη). (88)

The following lemma makes the approximation of Xc precise in the entrywise sense:

Lemma 12 Suppose (85) holds. On the high-probability event where Theorem 2 holds
and also ‖A‖ ≤ 2.5,

‖X̃ c − X c‖	∞ � δ22δ3

η2
≤ (log n)κ

n
√

η
, (89)

where δ2, δ3 are defined in (45).

Proof For notational convenience, put G(z) = 2i/(nF(z)) and G̃(z) = 2i/(nF̃(z)).
Note that | Im(z)| ≤ η/2 for z ∈ Γ , and thus Im(z+ iη) and Im(z− iη) have different
signs. Therefore,

|G̃(z)| ≥ | Im G̃(z)| = | Imm0(z + iη)| + | Imm0(z − iη)| � η,

where the last step follows from (31). Furthermore, by (36), we have supz∈Γ |G(z) −
G̃(z)| ≤ 2Cδ3. In view of (85), δ3 � η. Hence, we have |G(z)| � η and

sup
z∈Γ

|F(z) − F̃(z)| � 1

n

δ3

η2
.
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Finally, by (83) and (87), we have

|(Xc − X̃c)k	| ≤
∮

Γ

dz|F(z) − F̃(z)||e�
k RA(z)1||e�

	 RB(z + iη)1|.

By (35), for all k, 	, |e�
k RA(z)1| � δ2

√
n and |e�

	 RB(z + iη)1| � δ2
√
n. Combining

the last two displays yields the desired claim. ��

In view of the entrywise approximation, we may switch our attention to the approx-
imate solution X̃c and establish its diagonal dominance, assuming without loss of
generality π∗ is the identity permutation. The proof parallels the analysis in Sect. 5 so
we focus on the differences. To make the scaling identical to the unconstrained case,
define

Y � n X̃c = 1

2π
Re
∮

Γ

f (z)RA(z)JRB(z + iη), (90)

with

f (z) � 2i
m0(z + iη) − m0(z − iη)

.

Compared with the unconstrained solution (16), the only difference is the weighting
factor f (z).

We aim to show that with probability at least 1− n−D , for any constant D > 0, the
following holds:

1. For off-diagonals, we have

max
k 	=	

|Yk	| � (log n)κ /
√

η. (91)

2. For diagonal entries, we have

min
k

∣∣∣∣Ykk − 4(1 − σ 2)

πη

∣∣∣∣ �
r(n)

η
+ σ

η2
+ (log n)κ

1√
η
. (92)

In view of Lemma 12, this implies the desired (73) and (74). Finally, analogous to
Corollary 1, under the assumption (75)with constants c = 1/(64C2) and c′ = 1/(2C),
for all sufficiently large n,

4(1 − σ 2)

πη
≥ 7

8η
> C

(
r(n)

η
+ σ

η2
+ 2(log n)κ

1√
η

)
,

implying the diagonal dominance in (76).
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6.2.3 Off-Diagonal Entries

Let us first consider Y12. Recall that for z ∈ Γ , we have | Im(z + iη)| � η, | Im(z −
iη)| � η, and these imaginary parts have opposite signs. Then,

| f (z)| ≤ 2

| Im[m0(z + iη) − m0(z − iη)]| = 2

| Imm0(z + iη)| + | Imm0(z − iη)| � 1

η
,

(93)

where the last step applies (31). Analogous to (52), we get

2πY12 = Re

(∮

Γ

f (z)
[
e�
1 RA(z)1

] [
e�
2 RB(z + iη)1

]
dz

)

= Re
(
α − a�

1 g − b�
2 h + a�

1 Mb2
)

+ O

(
δ1δ

2
2n

η

)
, (94)

where

α �
∮

Γ

f (z)m0(z)m0(z + iη)dz, (95)

g �
∮

Γ

f (z)m0(z)m0(z + iη)R(12)
A (z)1n−2dz, (96)

h �
∮

Γ

f (z)m0(z)m0(z + iη)R(12)
B (z + iη)1n−2dz, (97)

M �
∮

Γ

f (z)m0(z)m0(z + iη)R(12)
A (z)Jn−2R

(12)
B (z + iη)dz. (98)

Here, the constant Re α is in fact equal to 2π , which is consistent with the row-sum
constraints. Indeed, opening up m0(z) and applying the Cauchy integral formula, we
have

Re α = Re
∮

dz
2i

m0(z + iη) − m0(z − iη)
m0(z)m0(z + iη)

=
∫

ρ(x)dx Re
∮

dz
1

x − z

2i m0(z + iη)

m0(z + iη) − m0(z − iη)

=
∫

ρ(x)dx Re

[
(−2π i)

2i m0(x + iη)

m0(x + iη) − m0(x − iη)

]

= 2π
∫

ρ(x)dx Re

[
2m0(x + iη)

2i Imm0(x + iη)

]
= 2π

∫
ρ(x)dx = 2π. (99)

As in Sect. 5.2.2, to bound the linear and bilinear terms, we need to bound the
	∞-norms and 	2-norms of g, h and M . Clearly, by (93), the 	∞-norms are at most
an O(1/η) factor of those obtained in (61) and (62), i.e., ‖g‖∞ � δ2

√
n/η and

‖M‖∞ � δ22n/η. The 	2-norms need to be bounded more carefully. The following
result is the counterpart of Lemma 8:
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Lemma 13 Assume the same setting of Lemma 8, and define M, g, and h as in (96–98)
with RA, RB in place of R(12)

A , R(12)
B . Then, ‖M‖2F � n2/η, ‖g‖2 � n log(1/η), and

‖h‖2 � n log(1/η).

Proof We start with ‖M‖F , as the arguments for ‖g‖ and ‖h‖ are analogous and
simpler. Recall the contour Γ ′ from Fig. 1. Proceeding as in the proof of Lemma 8,
we have

1

n2
‖M‖2F = −

∮

Γ
dz
∮

Γ ′ dw m0(z)m0(z + iη)m0(w)m0(w − iη) f (z) f (w)×

n−11�(RA(z) − RA(w))1
z − w

n−11�(RB (z + iη) − RB (w − iη))1
z + iη − (w − iη)

= −
∮

Γ
dz
∮

Γ ′ dwm0(z)m0(z + iη)m0(w)m0(w − iη) f (z) f (w)
m0(z) − m0(w)

z − w

m0(z + iη) − m0(w − iη)

z + iη − (w − iη)
︸ ︷︷ ︸

(I)

+ (II),

where (II) denotes the remainder term. Applying (36), (93), and the boundedness of
m0, the residual term is bounded as

|(II)| � δ3

∮

Γ

dz
∮

Γ ′
dw| f (z)|| f (w)| 1

|z − w|
1

|z + iη − (w − iη)| � δ3

η4
� 1

η
.

(100)

To control the leading term (I), let us define the auxiliary contours γ with vertices
±(2 + 2η) ± (η/2)i and γ ′ with vertices ±(2 + η) ± (η/4)i. By first deforming Γ ′
to γ ′ for each fixed z ∈ Γ , then deforming Γ to γ , and finally taking the complex
modulus and applying |m0| � 1, we get

|(I)| �
∮

γ

dz
∮

γ ′
dw | f (z)|| f (w)|

∣∣∣∣
m0(z) − m0(w)

z − w

∣∣∣∣

∣∣∣∣
m0(z + iη) − m0(w − iη)

z + iη − (w − iη)

∣∣∣∣ .

The reason for performing these deformations is that for any z ∈ γ ∪ γ ′, since Re z ∈
[−2−2η, 2+2η], we have from (31) that Imm0(z+iη) � √

η + ζ(z) and− Imm0(z−
iη) � √

η + ζ(z), where ζ(z) is as defined in Proposition 2. Then, we obtain from
(93) the improved bound | f (z)| � 1/

√
η + ζ(z), and hence

|(I)| �
∮

γ

dz
∮

γ ′
dw

1√
η + ζ(z)

1√
η + ζ(w)

∣∣∣∣
m0(z) − m0(w)

z − w

∣∣∣∣

∣∣∣∣
m0(z + iη) − m0(w − iη)

z + iη − (w − iη)

∣∣∣∣ .

To bound the above integral, for a small constant c0 > 0, consider the two cases
where |z−w| ≥ c0 and |z−w| < c0. For the first case |z−w| ≥ c0, we simply apply
|m0| � 1 and

√
η + κ ≥ √

η to get that

∮ ∮

|z−w|≥c0
dz dw

1√
η + ζ(z)

1√
η + ζ(w)

∣∣∣∣
m0(z) − m0(w)

z − w

∣∣∣∣ |
m0(z + iη) − m0(w − iη)

z + iη − (w − iη)

∣∣∣∣ �
1

η
. (101)
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In the second case |z − w| < c0, we claim that for c0 sufficiently small, we have

|m0(z) − m0(w)| �
√

η + ζ(z) +√η + ζ(w), (102)

|m0(z + iη) − m0(w − iη)| �
√

η + ζ(z) +√η + ζ(w). (103)

Indeed, if ζ(z) > c0, then (102) and (103) hold because
√

η + ζ(z)+√
η + ζ(w) � 1.

If instead ζ(z) ≤ c0, say, Re z ≥ 2 − c0, then from the explicit form (29) for m0(z)

we get 1 + m0(z) = 2−z+√
z2−4

2 and hence

|1 + m0(z)| � |z − 2| +√|z − 2||z + 2| � √|z − 2| � √η + ζ(z).

Furthermore, since Rew ≥ Re z − |z − w| ≥ 2 − 2c0, we also have |1 + m0(w)| �√
η + ζ(w). Then, (102) follows from the triangle inequality. The case of Re z ≤

−2 + c0, and the argument for (103), are analogous.
Having established (102) and (103), we apply

(√
η + ζ(z) + √

η + ζ(w)
)2

√
η + ζ(z)

√
η + ζ(w)

�
√

η + max(ζ(z), ζ(w))√
η + min(ζ(z), ζ(w))

≤
√

η + min(ζ(z), ζ(w)) + √|ζ(z) − ζ(w)|√
η + min(ζ(z), ζ(w))

≤ 1 +
√|z − w|√

η

to get

∮ ∮

|z−w|<c0
dz dw

1√
η + ζ(z)

1√
η + ζ(w)

∣∣∣∣
m0(z) − m0(w)

z − w

∣∣∣∣

∣∣∣∣
m0(z + iη) − m0(w − iη)

z + iη − (w − iη)

∣∣∣∣

�
∮ ∮

|z−w|<c0
dz dw

(
1 +

√|z − w|√
η

)
1

|z − w||z + iη − (w − iη)| .

Then divide this into the integrals where |z − w| < η and |z − w| ≥ η, applying

∮ ∮

|z−w|<η

dz dw
1

|z − w||z + iη − (w − iη)| �
∮ ∮

|z−w|<η

dz dw
1

η2
� 1

η

and

∮ ∮

η≤|z−w|<c0
dz dw

√|z − w|√
η

· 1

|z − w||z + iη − (w − iη)|
� 1√

η

∮ ∮

η≤|z−w|<c0
dz dw

1

|z − w|3/2 � 1√
η

1√
η

� 1

η
. (104)

Combining with the first case (101), we get |(I)| � 1/η. Finally, combining with
(100), we get ‖M‖2F � n2/η as desired.
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Next we bound ‖g‖. Proceeding as in the proof of Lemma 8 and following the same
argument as above, we get

1

n
‖g‖2 �

∮

γ

dz
∮

γ ′
dw | f (z)|| f (w)| |m0(z) − m0(w)|

|z − w| + O

(
δ3

η3

)

�
∮

γ

dz
∮

γ ′
dw

1√
η + ζ(z)

1√
η + ζ(w)

|m0(z) − m0(w)|
|z − w| + O

(
δ3

η3

)
.

For |z − w| ≥ c0, we have

∮ ∮

|z−w|≥c0
dzdw

1√
η + ζ(z)

1√
η + ζ(w)

|m0(z) − m0(w)|
|z − w|

�
(∮

1√
η + ζ(z)

dz

)(∮
1√

η + ζ(w)
dw

)
� 1.

For |z − w| < c0, we apply |m0(z) − m0(w)| �
√

η + ζ(z) + √
η + ζ(w) as above,

so that
∮ ∮

|z−w|<c0
dzdw

1√
η + ζ(z)

1√
η + ζ(w)

|m0(z) − m0(w)|
|z − w|

�
∮

dz
1√

η + ζ(z)

∮
dw

1

|z − w| +
∮

dw
1√

η + ζ(w)

∮
dz

1

|z − w|
� log(1/η) ·

(∮
dz

1√
η + ζ(z)

+
∮

dw
1√

η + ζ(w)

)
� log(1/η).

Combining the above yields ‖g‖2 � n log(1/η). The argument for ‖h‖2 is the same
as that for ‖g‖2. ��

Finally, proceeding as in (55)–(56) and using the preceding norm bounds, we obtain
from (94):

|Y12| � 1 + δ4

√

n log
1

η
+ δ24n√

η
+ δ1δ

2
2n

η
� δ24n√

η
= (log n)κ /

√
η,

with probability at least 1 − n−D , for any constant D. This implies the desired (91)
by the union bound.

6.2.4 Diagonal Entries

We now consider Y11. Following the derivation from (66) to (67) and using Lemma
13 in place of Lemma 8, we obtain, with probability at least 1− n−D for any constant
D,

∣∣∣∣Y11 − 1 − σ 2

2π
Re

Tr(M)

n

∣∣∣∣ � (log n)κ
1√
η
, (105)
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where

M �
∮
Γ

f (z)m0(z)m0(z + iη)R(1)
A (z)JR(1)

B (z + iη)dz.

The trace is computed by the following result, which parallels Lemma 9 and Lemma
10:

Lemma 14 Suppose δ3 ≤ η2. Assume the setting of Lemma 9. Define

M =
∮

Γ

f (z)m0(z)m0(z + iη)RA(z)JRB(z + iη)dz.

Then,

1

n
Tr(M) = 8 + oη(1)

η
+ O

(
σ + δ3

η2

)
.

Proof Analogous to (70), we have 1
n Tr(M) = (I) − (II), where

(I) = 1

iη

∮

Γ

f (z)m0(z)m0(z + iη)
1

n
1�(RB(z + iη) − RA(z))1dz

(II) = 1

iη

∮

Γ

f (z)m0(z)m0(z + iη)
1

n
1�RB(z + iη)(A − B)RA(z)1 dz.

To bound (II), consider two cases:

– For z ∈ Γ with | Im z| = η/2, by the Ward identity and (36), we have

‖RA(z)1‖2 = 2

η
| Im 1�RA(z)1| � n

η
(| Imm0(z)| + O(δ3)).

and similarly,

‖RB(z + iη)1‖2 � n

η
(| Imm0(z + iη)| + O(δ3)).

Thus, it holds that

∣∣∣1�RB(z + iη)(A − B)RA(z)1
∣∣∣ �

nσ

η

(√| Imm0(z) Imm0(z + iη)| +√δ3

)
.

Using (31) and (93), we conclude that

| f (z)|√| Imm0(z) Imm0(z + iη)| ≤ 2
√| Imm0(z) Imm0(z + iη)|

| Imm0(z + iη)| + | Imm0(z − iη)| � 1

for all z ∈ Γ with | Im z| = η/2.
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– For z ∈ Γ with Re z = ±3, since ‖A‖ ≤ 2.5,
∣∣1�RB(z + iη)(A − B)RA(z)1

∣∣ �
nσ .

Furthermore, by (93), | f (z)| � 1
η
for all z ∈ Γ . Combining the above two cases yields

|(II)| � σ

η2

(
1 +

√
δ3

η

)
+ σ

η
� σ

η2
,

since δ3 ≤ η2 by the assumption.
For (I), applying (36) again and plugging the definition of f (z) yields

(I) = 2

η

∮

Γ

m0(z)m0(z + iη)
m0(z + iη) − m0(z)

m0(z + iη) − m0(z − iη)
dz + O

(
δ3

η2

)
.

We now apply an argument similar to that of Lemma 10: Note that

|m0(z + iη) − m0(z − iη)| ≥ Im(m0(z + iη) − m0(z − iη)) � η

by (31), so the integrand is bounded for fixed η. Then deforming Γ to Γε with vertices
±(2 + ε) ± iε, taking ε → 0 for fixed η, and applying the bounded convergence
theorem, we have the equality

∮

Γ

m0(z)m0(z + iη)
m0(z + iη) − m0(z)

m0(z + iη) − m0(z − iη)
dz

=
∫ −2

2
m+

0 (x)m0(x + iη)
m0(x + iη) − m+

0 (x)

m0(x + iη) − m0(x − iη)
dx

+
∫ 2

−2
m−

0 (x)m0(x + iη)
m0(x + iη) − m−

0 (x)

m0(x + iη) − m0(x − iη)
dx . (106)

We show that these integrands are uniformly bounded over small η: For any constant
δ > 0 and for |x | ≤ 2 − δ, we have the lower bound

|m0(x + iη) − m0(x − iη)| = 2 Imm0(x + iη) �
√

ζ(x) + η ≥ √
δ. (107)

Then, the above integrands are bounded byC/
√

δ for |x | ≤ 2−δ. For |x | ∈ [2−δ, 2],
let us apply

|m0(x + iη) − m+
0 (x)| �

√
ζ(x) + η

as follows from (102) and taking the limit w ∈ C
+ → x . We have also |m+

0 (x) −
m−

0 (x)| � √
ζ(x) �

√
ζ(x) + η, so that

|m0(x + iη) − m−
0 (x)| �

√
ζ(x) + η.

Combining these cases with the first inequality of (107), we see that the integrands of
(106) are uniformly bounded for all small η.
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Now apply the bounded convergence theorem and take the limit η → 0, noting that
limη→0 m0(x + iη) = m+

0 (x) and limη→0 m0(x − iη) = m−
0 (x). We get

lim
η→0

∮

Γ

m0(z)m0(z + iη)
m0(z + iη) − m0(z)

m0(z + iη) − m0(z − iη)
dz

=
∫ 2

−2
m−

0 (x)m+
0 (x)

m+
0 (x) − m−

0 (x)

m+
0 (x) − m−

0 (x)
dx =

∫ 2

−2
|m+

0 (x)|2dx = 4.

This gives (I) = (8+oη(1))/η+O(δ3/η
2). Combining with the bound for (II) yields

the lemma. ��
Finally, combining (105) with Lemma 14 and δ3 � η from (85), and applying a union
bound yields the desired (92).

7 Proof of Resolvent Bounds

In this section, we prove Theorem 2. The entrywise bounds of part (a) are essentially
the local semicircle law of [12,Theorem 2.8], restricted to the simpler domain {z :
dist(z, [−2, 2]) ≥ (log n)−a} and with small modifications of the logarithmic factors.
The bound in (b) follows from (a) using a straightforward Schur complement identity.
The bound in (c) is more involved, and relies on the fluctuation averaging technique
of [12,Sect. 5]. We provide a proof of all three statements using the tools of [12].

For each statement, it suffices to establish the claim with the stated probability for
each individual point z ∈ D. The uniform statement over z ∈ D then follows from a
union bound over a sufficiently fine discretization of D (of cardinality an arbitrarily
large polynomial in n) and standard Lipschitz bounds for m0 and R jk on the event of
‖A‖ ≤ 2.5—we omit these details for brevity.

7.1 Notation andMatrix Identities

In this section, for S ⊂ [n], denote by A(S) ∈ R
n×n the matrix A with all elements in

rows and columns belonging to S replaced by 0. Denote

R(S)(z) = (A(S) − zI)−1 ∈ C
n×n .

Note that R(S)(z) is block diagonal with respect to the block decomposition C
n =

C
S ⊕ C

[n]\S , with S × S block equal to (−1/z)I|S| and ([n] \ S) × ([n] \ S) block
equal to the resolvent of the corresponding minor of A. (We will typically only access
elements of R(S) in this ([n]\S)×([n]\S) block, inwhich case R(S) maybe understood
as the resolvent of the minor of A.)

For i ∈ [n], we write as shorthand

i S = {i} ∪ S,

(S)∑

k

=
∑

k∈[n]\S
.
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We usually omit the spectral argument z for brevity.

Lemma 15 (Schur complement identities) For any j ∈ [n],

1

R j j
= a j j − z −

( j)∑

k,	

a jk R
( j)
k	 a	 j . (108)

For any j 	= k ∈ [n],

R jk = −R j j

( j)∑

	

a j	R
( j)
	k = R j j R

( j)
kk

⎛

⎝−a jk +
( jk)∑

	,m

a j	R
( jk)
	m amk

⎞

⎠ , (109)

e�
k R = e�

k R( j) + Rkj

R j j
· e�

j R, (110)

1

Rkk
= 1

R( j)
kk

− (Rkj )
2

R( j)
kk R j j Rkk

. (111)

For any j, k, 	 ∈ [n] with j /∈ {k, 	},

Rk	 = R( j)
k	 + Rkj R j	

R j j
. (112)

These identities hold also for any S ⊂ [n] with R replaced by R(S) and with j, k, 	 ∈
[n] \ S.

Proof For all but (110), see [11,Lemma 4.5] and [13,Lemma 4.2]. As for (110), it
is equivalent to verify that (112) holds also for 	 = j , which simply follows from
R( j)
k j = 0, due to the block diagonal structure of R( j). ��

7.2 Entrywise Bound

We say an event occurs w.h.p. if its probability is at least 1−e−c(log n)1+ε
for a universal

constant c > 0. Let us show that (33) and (34) hold for z ∈ D w.h.p.
We start with (34). Note that the j th row {a jk : k ∈ [n]} is independent of A( j) and

hence R( j). Applying (108), (22), and (25) conditional on A( j), w.h.p. for all j ,

∣∣∣∣∣∣
1

R j j
+ z + 1

n

( j)∑

k

R( j)
kk

∣∣∣∣∣∣

=
∣∣∣∣∣∣
a j j −

( j)∑

k,	

a jk R
( j)
k	 a	 j + 1

n

( j)∑

k

R( j)
kk

∣∣∣∣∣∣

≤ (log n)2+2ε

(
1√
d

+ 2‖R( j)‖∞√
d

+ ‖R( j)‖F
n

)
.
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Note that ‖R( j)‖∞ ≤ ‖R( j)‖, ‖R( j)‖F ≤ √
n‖R( j)‖, and d ≤ n. For z ∈ D1 and any

S ⊂ [n], we have ‖R(S)‖ ≤ 1/| Im z| ≤ (log n)a . For z ∈ D2, we have ‖R(S)‖ ≤ 10
on the event ‖A‖ ≤ 2.5, which occurs w.h.p. by Lemma 3. Then in both cases, we get

∣∣∣∣∣∣
1

R j j
+ z + 1

n

( j)∑

k

R( j)
kk

∣∣∣∣∣∣
� (log n)2+2ε+a

√
d

. (113)

Since |z| ≤ 10, |R( j)
kk | ≤ (log n)a , and d � (log n)4+4ε, this implies 1/|R j j | �

(log n)a . Let mn(z) = n−1 Tr R(z) be the empirical Stieltjes transform. Then,

∣∣∣∣∣∣
mn − 1

n

( j)∑

k

R( j)
kk

∣∣∣∣∣∣

=
∣∣∣∣∣∣
1

n
R j j + 1

n

( j)∑

k

(
Rkk − R( j)

kk

)
∣∣∣∣∣∣

(112)=
∣∣∣∣∣
1

n

∑

k

R2
k j

R j j

∣∣∣∣∣ =
‖e�

j R‖2
n|R j j | ≤ ‖R‖2

n|R j j | � (log n)3a

n
.

Using d ≤ n and combining with (113), w.h.p. for all j ,

∣∣∣∣
1

R j j
+ z + mn

∣∣∣∣ �
(log n)2+2ε+a

√
d

. (114)

Then by the triangle inequality, also w.h.p. for all j 	= k,

∣∣∣∣
1

R j j
− 1

Rkk

∣∣∣∣ �
(log n)2+2ε+a

√
d

,

so

∣∣∣∣
mn

R j j
− 1

∣∣∣∣ =
∣∣∣∣∣n

−1
∑

k

Rkk − R j j

R j j

∣∣∣∣∣ ≤ max
k

∣∣∣∣
Rkk − R j j

R j j

∣∣∣∣

= max
k

|Rkk |
∣∣∣∣
1

R j j
− 1

Rkk

∣∣∣∣ �
(log n)2+2ε+2a

√
d

.

For d � (log n)4+4ε+4a , this implies 3
2 |R j j | ≥ |mn| ≥ |R j j |/2 w.h.p. for all j . Then

also
∣∣∣∣
1

R j j
− 1

mn

∣∣∣∣ = |R j j − mn|
|R j j ||mn| ≤ max

k

|R j j − Rkk |
|R j j ||mn| ≤ max

k

2|R j j − Rkk |
|R j j ||Rkk |

= 2max
k

∣∣∣∣
1

R j j
− 1

Rkk

∣∣∣∣ ,

123



Foundations of Computational Mathematics

so

∣∣∣∣
1

R j j
− 1

mn

∣∣∣∣ �
(log n)2+2ε+a

√
d

. (115)

Combining with (114), w.h.p. we have

1

mn
+ z + mn = rn, |rn| � (log n)2+2ε+a

√
d

� (log n)−a .

Solving for mn yields

mn ∈ −z + rn ±√z2 − 4 − 2zrn + r2n
2

where the right side denotes the two complex square roots. Note that |z2−4| = |z−2|·
|z+2| � (log n)−a |z| and |z| ≥ (log n)−a for all z ∈ D. Then, as (log n)−a � |rn|, we
have |z2 − 4| � |zrn| � |rn|2. Letting m0 be the Stieltjes transform of the semicircle
law, and letting m̃0 = 1/m0 be the other root of the quadratic Eq. (30), we obtain by
a Taylor expansion of the square root that

min(|mn − m0|, |mn − m̃0|)� |rn|
(
1 + |z|√|z2 − 4|

)
� |rn|√

ζ(z) + | Im z| , (116)

where ζ(z) is as defined in Proposition 2.
To argue that this bound holds for |mn − m0| rather than |mn − m̃0|, consider first

z ∈ D1 with Im z > 0. In this casemn ∈ C+ and m̃0 ∈ C−. Furthermore, note that (31)
implies Imm0(z) ≥ (Im z)/

√
ζ(z) + Im z, and hence Im m̃0 = −(Imm0)/|m0|2 ≤

−c(log n)−a/
√

ζ(z) + Im z. Since Immn > 0 and |rn| � (log n)−a , (116) must hold
for |mn−m0| rather than |mn−m̃0|. The same argument applies for z ∈ D1 with Im z <

0. For z ∈ D2, we have ||m0(z)|−1| ≥ c and hence |m0(z)−m̃0(z)| > c for a constant
c > 0. Consider the point z′ ∈ D1 ∩ D2 with Re z′ = Re z and Im z′ = (log n)−a .
Note that for all z ∈ D2, | d

dzm0(z)| � 1 and, on the event ‖A‖ ≤ 2.5, | d
dzmn(z)| � 1

also. Thus |m0(z)−m0(z′)| ≤ C(log n)−a and |mn(z)−mn(z′)| ≤ C(log n)−a . Since
we have already shown that (116) holds for |mn(z′) − m0(z′)| in the previous case,
this implies also that (116) must hold for |mn − m0| rather than for |mn − m̃0|.

Applying | Im z| ≥ (log n)−a , (116) yields w.h.p.

|mn − m0| � (log n)a/2|rn| � (log n)2+2ε+3a/2

√
d

. (117)

Recalling (115), |R j j | ≤ (log n)a and |mn| ≤ 3
2 |R j j |, we get

|R j j − mn| � |R j j ||mn| · (log n)2+2ε+a

√
d

� (log n)2+2ε+3a

√
d

. (118)
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Combining the last two displayed equations gives the weak estimate

|R j j − m0| � (log n)2+2ε+3a

√
d

.

Since d � (log n)4+4ε+6a by assumption, this and |m0(z)| � 1 imply |R j j | � 1
w.h.p. Then, applying the last display and (117) to the first inequality of (118) yields
the desired estimate

|R j j − m0| ≤ |R j j − mn| + |mn − m0| � (log n)2+2ε+3a/2

√
d

.

To show (33) for the off-diagonals, we now apply (109), (22), (26) conditional on
R( jk), |R j j | � 1, |R( j)

kk | � 1, ‖R( jk)‖∞ ≤ (log n)a , ‖R( jk)‖F ≤ √
n(log n)a , and

d ≤ n to get w.h.p.

|R jk | = |R j j ||R( j)
kk |
∣∣∣∣∣∣
−a jk +

( jk)∑

	,m

a j	R
( jk)
	m amk

∣∣∣∣∣∣

� (log n)2+2ε

(
1√
d

+ 2‖R( jk)‖∞√
d

+ ‖R( jk)‖F
n

)
� (log n)2+2ε+a

√
d

.

7.3 Row Sum Bound

We now show that (35) holds for z ∈ D w.h.p. Set

Zi �
(i)∑

j,k

aik R
(i)
k j =

(i)∑

k

aik
(
e�
k R(i)1

)
(119)

where the last equality holds because R(i)
ki = 0 for k 	= i . Applying (109),

e�
i R1 =

∑

j

Ri j = Rii − RiiZi .

Then applying (34), w.h.p. for every i ∈ [n],
∣∣∣e�

i R1
∣∣∣ � 1 + |Zi |. (120)

Applying (23) conditional on A(i), w.h.p. for every i ∈ [n],

|Zi | ≤ (log n)1+ε

⎛

⎝maxk 	=i |e�
k R(i)1|√
d

+
√∑(i)

k |e�
k R(i)1|2
n

⎞

⎠ . (121)
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For the second term above, we apply ‖R(i)‖ ≤ (log n)a w.h.p. to get

(i)∑

k

∣∣∣e�
k R(i)1

∣∣∣
2 ≤ 1�R(i)R(i)1 ≤ (log n)2an. (122)

For the first term, we apply (110), (33), and (34) to get, w.h.p. for all k 	= i ,

∣∣∣e�
k R(i)1

∣∣∣ =
∣∣∣∣e

�
k R1 − Rki

Rii
· e�

i R1

∣∣∣∣ ≤
∣∣∣e�

k R1
∣∣∣+ C(log n)2+2ε+a

√
d

∣∣∣e�
i R1

∣∣∣ .

(123)

Applying d � (log n)4+4ε+2a and substituting (122) and (123) into (121) and then
into (120), we get that

∣∣∣e�
i R1

∣∣∣ � 1 + (log n)1+ε

(
maxk |e�

k R1|√
d

+ (log n)a

)
(124)

Taking the maximum over i and rearranging yields (35).

7.4 Total Sum Bound

Finally, we show that (36) holds with probability 1 − e−c(log n)(log log n) for z ∈ D. As
above, we set

Zi =
(i)∑

j,k

aik R
(i)
k j =

(i)∑

k

aik
(
e�
k R(i)1

)
. (125)

Note that if we apply (122), (123), and (35) to (121), we obtain w.h.p. that for every
i ∈ [n],

|Zi | ≤ (log n)1+ε+a . (126)

The main step of the proof of (36) is to use the weak dependence of Z1, . . . ,Zn to
obtain a bound on n−1∑

i Zi that is better than (log n)1+ε+a . The idea is encapsulated
by the following abstract lemma from [12].

Lemma 16 (Fluctuation averaging) LetΞ be an event defined by A, letZ1, . . . ,Zn be
random variables which are functions of A, let p be an (n-dependent) even integer, and
let x, y > 0 be deterministic positive quantities. Suppose there exist random variables
Z[U ]
i , indexed by U ⊆ [n] and i ∈ [n] \ U, which satisfy Z[∅]

i = Zi as well as the
following conditions:

(i) Let ai denote the i th row of A. Then Z[U ]
i is independent of {a j : j ∈ U }, and

Ei

[
Z[U ]
i

]
= 0 where Ei is the partial expectation over only ai .
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(ii) For any U ⊆ S ⊂ [n] with |S| ≤ p, and for any i /∈ S, denote u = |U | + 1 and

ZS,U
i =

∑

T : T⊆U

(−1)|T |Z[(S\U )∪T ]
i . (127)

Then for a constant C > 0 and any integer r ∈ [0, p],

E

[
1{Ξ}

∣∣∣ZS,U
i

∣∣∣
r] ≤

(
y(Cxu)u

)r
.

Furthermore,

x ≤ 1/(p5 log n).

(iii) Let A ⊂ R
n×n be the matrices satisfying Ξ , i.e., Ξ = {A ∈ A}. Let Ai = {B ∈

R
n×n : B(i) = A(i) for some A ∈ A}, and define the event Ξi = {A ∈ Ai }. For

a constant C > 0 and any U , S, i as above, E

[
1{Ξi }

∣∣∣ZS,U
i

∣∣∣
2
]

≤ nCp.

(iv) For a constant C > 0 and any U ⊆ [n], 1{Ξ}
∣∣∣Z[U ]

i

∣∣∣ ≤ ynC .

(v) For a constant ε > 0, P[Ξ ] ≥ 1 − e−c(log n)1+ε p.

Then for constants C ′, n0 > 0 depending on C, ε above, and for all n ≥ n0,

P

[
1{Ξ}

∣∣∣∣∣n
−1
∑

i

Zi

∣∣∣∣∣ ≥ p12y
(
x2 + n−1

)]
≤ (C ′/p)p.

Proof See [12,Theorem 5.6]. (The theorem is stated for 1+ ε = 3/2 in condition (v),
but the proof holds for any ε > 0.) ��

The important condition encapsulating weak dependence above is (ii). Applying
(ii) with U = ∅, the condition requires first that each |Z[S]

i |, and in particular each

|Zi | = |Z[∅]
i |, is of typical size Cxy. In the application of this lemma, for S = U and

i /∈ U , we will define the variables Z[V ]
i for ∅ ⊆ V ⊆ U such that the quantity ZU ,U

i
in (127) is the variable Zi with its dependence on all {a j : j ∈ U } projected out by an
inclusion–exclusion procedure. Then, condition (ii) requires that Zi depends weakly
on {a j : j ∈ U }, in the sense that |ZU ,U

i | is of typical size x |U |+1y ·(C(|U |+1))|U |+1,
which is roughly smaller than |Zi | by a factor of x |U | for each element ofU . Assuming
1/

√
n � x � p−12, the above then estimates the average |n−1∑

i Zi | to be of the
smaller order p12yx2 � xy.We refer the reader to the discussion in [12] for additional
details.

We will check that the conditions of this lemma hold for Zi as defined by (125),
with the appropriate construction of variables Z[U ]

i . To this end, we first extend (33),
(34), and (35) to R(S) for |S| ≤ log n in the following deterministic lemma:
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Lemma 17 Suppose (33), (34), and (35) hold with the constant C ≡ C0 for a deter-
ministic symmetric matrix A, some z ∈ D, and all j, k ∈ [n]. Then for all S ⊂ [n]
with |S| ≤ log n, and all j 	= k ∈ [n] \ S,

|R(S)
j j (z) − m0(z)| ≤ 2C0(log n)2+2ε+3a

√
d

, (128)

|R(S)
jk (z)| ≤ 2C0(log n)2+2ε+a

√
d

, (129)

|e�
j R

(S)(z)1| ≤ 2C0(log n)1+ε+a . (130)

Proof For integers s ≥ 0, let

Λd
s = max

{
|R(S)

j j − m0| : |S| = s, j ∈ [n] \ S
}
,

Λo
s = max

{
|R(S)

jk | : |S| = s, j 	= k ∈ [n] \ S
}
.

When (33) and (34) hold, we have that Λd
s ≤ C0(log n)2+2ε+3a/

√
d and Λo

s ≤
C0(log n)2+2ε+a/

√
d for s = 0. By (112), we have for each s ≥ 1 and ∗ ∈ {d, o} that

Λ∗
s+1 ≤ Λ∗

s + (Λo
s )

2

|m0| − Λd
s
. (131)

Assume inductively that for some s ≤ log n,

Λd
s ≤ C0(log n)2+2ε+3a

√
d

(
1 + 4C0(log n)2+2ε+a

|m0|
√
d

)s

,

Λo
s ≤ C0(log n)2+2ε+a

√
d

(
1 + 4C0(log n)2+2ε+a

|m0|
√
d

)s

. (132)

Applying d � (log n)6+4ε+2a , |m0| ≥ c, and s ≤ log n, this implies in particular that

Λd
s ≤ 2C0(log n)2+2ε+3a

√
d

, Λo
s ≤ 2C0(log n)2+2ε+a

√
d

.

We then have |m0| − Λd
s ≥ |m0|/2 for d � (log n)4+4ε+6a , so (131) yields

Λ∗
s+1 ≤ max(Λ∗

s ,Λ
o
s )

(
1 + 2Λo

s

|m0|
)

≤ max(Λ∗
s ,Λ

o
s )

(
1 + 4C0(log n)2+2ε+a

|m0|
√
d

)
.

Thus, both bounds of (132) hold for s + 1, completing the induction. This establishes
(128) and (129).

To show (130), set

Γs = max{|e�
j R

(S)1| : |S| = s, j /∈ S}.
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When (35) holds, Γ0 ≤ C0(log n)1+ε+a . Applying (110) and the bound |m0| − Λd
s ≥

|m0|/2, we have

Γs+1 ≤ (1 + 2Λo
s /|m0|)Γs

(129)≤
(
1 + 4C0(log n)2+2ε+3a

|m0|
√
d

)
Γs,

Thus, Γs ≤ 2Γ0 for all s ≤ log n. ��
Lemma 18 Fix z ∈ D. Let Zi be defined in (125). For U ⊂ [n] not containing i ,
define

Z[U ]
i =

(iU )∑

j,k

aik R
(iU )
k j =

(iU )∑

k

aik
(
e�
k R(iU )1

)
.

Let Ξ be the event where

– (33), (34), and (35) all hold at z, for all distinct j, k ∈ [n],
– |ai j | ≤ 1 for all i, j ∈ [n], and
– ‖A‖ ≤ 2.5.

Let p ∈ [2, (log n) − 1] be an even integer, and set

x = (log n)2+2ε+a

√
d

, y = C ′√d(log n)−ε

for a sufficiently large constant C ′ > 0. Then, all of the conditions of Lemma 16 are
satisfied.

Proof Condition (i) is clear by definition, as row ai of A is independent of R(iU ).
To check (ii), note first that the bound x ≤ 1/(p5 log n) follows from d ≥

(log n)16+4ε+2a . For U ⊆ S and i /∈ S we write

ZS,U
i =

∑

T : T⊆U

(−1)|T |Z[(S\U )∪T ]
i

=
∑

T : T⊆U

(−1)|T |
((i S\U )∪T )∑

k

aik(e�
k R((i S\U )∪T )1)

=
∑

k∈U
aik

⎛

⎝
∑

T : T⊆U\{k}
(−1)|T |(e�

k R((i S\U )∪T )1)

⎞

⎠

+
(i S)∑

k

aik

⎛

⎝
∑

T : T⊆U

(−1)|T |(e�
k R((i S\U )∪T )1)

⎞

⎠

�
∑

k∈U
aikαk +

(i S)∑

k

aikβk .
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We claim that deterministically on the event Ξ , there is a constant C > 0 such that
for any W , V ⊂ [n] disjoint with |W ∪ V | ≤ log n, and any i /∈ W ∪ V , we have

∣∣∣∣∣∣

∑

T : T⊆W

(−1)|T | (e�
i R(V∪T )1

)
∣∣∣∣∣∣
≤ ỹ(Cxw)w, (133)

where w = |W | + 1, x = (log n)2+2ε+a/
√
d , and ỹ = C

√
d(log n)−1−ε. We will

verify this claim at the end of the proof. Assuming this claim, we apply it above with
V = i S \ U and either W = U or W = U \ {k}. Then setting u = |U | + 1 ≥ w, we
have on Ξ that

|αk | ≤ ỹ(Cxu)|U |, |βk | ≤ ỹ(Cxu)|U |+1. (134)

Let r be any even integer with r ≤ p ≤ (log n)− 1. As αk, βk are independent of row
ai of A by definition, we have for the partial expectation Ei over ai that

Ei

[
1{Ξ}

∣∣∣ZS,U
i

∣∣∣
r]

= Ei

⎡

⎣1{Ξ}
∣∣∣∣∣∣

∑

k∈U
aikαk +

(i S)∑

k

aikβk

∣∣∣∣∣∣

r⎤

⎦

≤ 1{|αk | ≤ ỹ(Cxu)|U | and |βk | ≤ ỹ(Cxu)|U |+1 for all k}

· Ei

⎡

⎣

∣∣∣∣∣∣

∑

k∈U
aikαk +

(i S)∑

k

aikβk

∣∣∣∣∣∣

r⎤

⎦ .

We apply (24) for the conditional expectation Ei , with v having entries vk = αk for
k ∈ U , vk = βk for k /∈ i S, and vk = 0 otherwise. Recall that w ≤ |U | ≤ |S| ≤ log n.
Since Cxw � 1 and |U |(Cxw)2|U | � (n − |U |)(Cxw)2|U |+2 by the definition of x
and d ≤ n, the bounds (134) imply

‖v‖∞ ≤ ỹ(Cxu)|U |, ‖v‖2 ≤ √
2n · ỹ(Cxw)|U |+1.

Then for a constant C ′ > 0, (24) gives

Ei

[
1{Ξ}

∣∣∣ZS,U
i

∣∣∣
r] ≤ (C ′r ỹ(Cxu)u)r .

Then, taking the full expectation and setting y = C ′(log n)ỹ ≥ C ′r ỹ (since r ≤ p ≤
log n) yields condition (ii).
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For condition (iii), we have

E

[
1{Ξi }

∣∣∣ZS,U
i

∣∣∣
2
]

≤ 2|U | ∑

T : T⊆U

E[1{Ξi }|Z[(S\U )∪T ]
i |2]

= 2|U | ∑

T : T⊆U

((i S\U )∪T )∑

k,k′
E[aikaik′ ]E

[
1{Ξi }(e�

k R((i S\U )∪T )1)(e�
k′ R((i S\U )∪T )1)

]

= 2|U | ∑

T : T⊆U

((i S\U )∪T )∑

k

E[a2ik]E
[
1{Ξi }

∣∣∣e�
k R((i S\U )∪T )1

∣∣∣
2
]

,

where the second line applies the independence of ai and A(i). Note that onΞi , we have
‖A(i)‖ ≤ 2.5. Then, applying |U | ≤ log n, the norm bound ‖R((i S\U )∪T )‖ ≤ (log n)a

on Ξi , and E[a2ik] ≤ C2/n, we get (iii). For (iv), we apply the condition |aik | ≤ 1 by
definition of Ξ , together with the bound ‖R(iU )‖ ≤ (log n)a on Ξ . Finally, (v) holds
by the probability bound of 1− e−c(log n)1+ε

established for (33), (34), (35), (22), and
in Lemma 3.

It remains to establish the claim (133). ForW = ∅, this follows from (35). Assume
then that w ≥ 1, and write W = { j1, . . . , jw−1} (in any order). For a function f :
R
n×n → C and any index j ∈ [n], define Q j f : Rn×n → C by

(Q j f )(A) = f (A) − f (A( j)).

Note that if f is in fact a function of A(S), i.e., f (A) = f (A(S)) for every matrix
A ∈ R

n×n , then Q j f (A) = f (A(S)) − f (A( j S)). Fix i and V , and define f (A) =
e�
i R(V )1. This satisfies f (A) = f (A(V )) for every A. Then by inclusion–exclusion,
the quantity to be bounded is equivalently written as

∑

T : T⊆W

(−1)|T | (e�
i R(V∪T )1

)
= (Q jw−1 . . . Q j2Q j1 f

)
(A).

We apply Schur complement identities to iteratively to expand Q jw−1 . . . Q j1 f :
First applying (110), we get

Q j1 f (A) = e�
i R(V )1 − e�

i R( j1V )1 = R(V )
i j1

· 1

R(V )
j1 j1

· e�
j1R

(V )1.

Then applying (110), (111), and (112) to the three factors on the right side above, and
using the identity

xyz − x̃ ỹ̃z = xy(z − z̃) + x(ỹ − y)̃z + (̃x − x) ỹ̃z,
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we get

Q j2Q j1 f (A) = R(V )
i j1

· 1

R(V )
j1 j1

·
(
R(V )
j1 j2

R(V )
j2 j2

· e�
j2 R

(V )1

)
+ R(V )

i j1
·

⎛

⎜⎝−
(
R(V )
j1 j2

)2

R( j2V )
j1 j1

R(V )
j2 j2

R(V )
j1 j1

⎞

⎟⎠ · e�
j1R

( j2V )1

+ R(V )
i j2

R(V )
j2 j1

R(V )
j2 j2

· 1

R( j2V )
j1 j1

· e�
j1R

( j2V )1.

Applying (112), (111), and (110) to each factor of each summand above, and
repeating iteratively, an induction argument verifies the following claims for each
t ∈ {1, . . . , w − 1}:
– Q jt . . . Q j1 f (A) is a sum of at most

∏t−1
s=1 4s summands (with the convention∏0

s=1 4s = 1), where
– Each summand is a product of at most 4t factors, where
– Each factor is one of the following three forms, for a set S ⊆ V ∪ W : R(S)

jk for

j, k /∈ S distinct, or 1/R(S)
j j for j /∈ S, or e�

j R
(S)1 for j /∈ S. Furthermore,

– Each summand of Q jt . . . Q j1 f (A) satisfies: (a) It has exactly one factor of the

form e�
j R

(S)1. (b) The number of factors of the form 1/R(S)
j j is less than or equal

to the number of factors of the form R(S)
jk for j 	= k. (c) There are at least t factors

of the form R(S)
jk for j 	= k.

Finally, we apply this with t = w − 1 and use the bound

t−1∏

s=1

4s ≤ (4w)w.

By Lemma 17, since |W ∪ V | ≤ log n, we have |R(S)
jk | ≤ C(log n)2+2ε+a/

√
d,

|R(S)
j j | ≥ |m0|/2, and |e�

j R
(S)1| ≤ C(log n)1+ε+a on the event Ξ . Thus, we get

|Q jw−1 . . . Q j1 f (A)|≤(4w)w ·
(
C(log n)2+2ε+a

√
d

)w−1

· C(log n)1+ε+a ≤ ỹ(C ′xw)w

for x = (log n)2+2ε+a/
√
d and ỹ = C

√
d(log n)−1−ε, as claimed. ��

We now show (36) holds for z ∈ D with probability 1 − e−c(log n)(log log n). The
diagonal bound (34) implies

|Tr R − n · m0| ≤ Cn(log n)2+2ε+3a/2

√
d

. (135)
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To bound the sum of off-diagonal elements of R, we apply (109) to write

∑

i 	=k

Rik = −
∑

i

RiiZi = −m0

∑

i

Zi −
∑

i

(Rii − m0)Zi . (136)

Applying (34) and (126) yields

∑

i

|(Rii − m0)Zi | ≤ Cn(log n)3+3ε+5a/2

√
d

. (137)

Then applying Lemma 16 with x, y, Ξ as defined in Lemma 18 and with p being the
largest even integer less than (log n) − 1, we have

1{Ξ}
∣∣∣∣∣n

−1
∑

i

Zi

∣∣∣∣∣ ≤ C(log n)12 · √
d(log n)−ε · (log n)4+4ε+2a/d ≤ C(log n)16+3ε+2a

√
d

(138)

with probability 1− e−c(log n)(log log n). Since 1�R1 = Tr R +∑i 	=k Rik , multiplying
(138) by n · m0 and combining with (135)–(137) yields (36).
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