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Abstract

We analyze a new spectral graph matching algorithm, GRAph Matching by Pair-
wise eigen-Alignments (GRAMPA), for recovering the latent vertex correspondence
between two unlabeled, edge-correlated weighted graphs. Extending the exact recov-
ery guarantees established in a companion paper for Gaussian weights, in this work,
we prove the universality of these guarantees for a general correlated Wigner model.
In particular, for two Erd8s-Rényi graphs with edge correlation coefficient 1 — o and
average degree at least polylog(n), we show that GRAMPA exactly recovers the latent
vertex correspondence with high probability when o < 1/ polylog(n). Moreover, we
establish a similar guarantee for a variant of GRAMPA, corresponding to a tighter
quadratic programming relaxation of the quadratic assignment problem. Our analysis
exploits a resolvent representation of the GRAMPA similarity matrix and local laws
for the resolvents of sparse Wigner matrices.
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1 Introduction

Given two (weighted) graphs, graph matching aims at finding a bijection between the
vertex sets that maximizes the total edge weight correlation between the two graphs.
It reduces to the graph isomorphism problem when the two graphs can be matched
perfectly. Let A and B be the (weighted) adjacency matrices of the two graphs on n
vertices. Then, the graph matching problem can be formulated as solving the following
quadratic assignment problem (QAP) [5, 18]:

A, [IBO"), 1
pmax ) o

where G,, denotes the set of permutation matrices in R”*”" and (-, -) denotes the matrix
inner product. The QAP is NP-hard to solve or to approximate within a growing factor
[17].

In the companion paper [14], we proposed a computationally efficient spectral
graph matching method, called GRAph Matching by Pairwise eigen-Alignments
(GRAMPA). Let us write the spectral decompositions of A and B as

A:Z)»,-v,-v;r and B:ZMjij;r. 2)
i J
Given a tuning parameter 7 > 0, GRAMPA first constructs an n x n similarity matrix'

n T T

X=) ———— —yv'Jwjw;, 3)
;(/\i—w)2+n2 e

where J is the n x n all-ones matrix. Then, it outputs a permutation matrix i by

“rounding” X to a permutation matrix, for example, by solving the following linear

assignment problem (LAP)

e argmax (X, IT). 4)
eSS,

Let I1, € &, be the latent true matching, and denote the entries of A and
I'I*BH;r as a;; and by (i)x,(j)- A Gaussian Wigner model is studied in [14],
where {(a;j, by, (i)r,(j))} are i.i.d. pairs of correlated Gaussian variables such that

I In [14], X is defined without the factor n in the numerator. We include 1 here for convenience in the
proof; this does not affect the algorithm as the rounded solution /7 is invariant to rescaling X.
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Foundations of Computational Mathematics

by, (i)r,.(j) = aij +0z;j for anoise level o > 0, and g;; and z;; are independent stan-
dard Gaussian. It is shown that GRAMPA exactly recovers the vertex correspondence
I1, with high probability when o = O(1/logn). Simulation results in [14,Sect. 4.1]
further show that the empirical performance of GRAMPA under the Gaussian Wigner
model is very similar to that under the Erd6s-Rényi model where {(a;;, bx, (i)x.(j))}
are i.i.d. pairs of correlated centered Bernoulli random variables, suggesting that the
performance of GRAMPA enjoys universality.

In this paper, we prove a universal exact-recovery guarantee for GRAMPA, under
a general Wigner matrix model for the weighted adjacency matrix: Let A = (a;;)
be a symmetric random matrix in R"*”, where the entries (a;;);<; are independent.
Suppose that

1
E[a;;] = 0 forall i, j, E[a%j] — —forall i # J. (5)

and

k
k C .
]E[|a,-j| ] < —gy foralli. jandeachk € [2, (1ogn)1°1°g1°g"], (6)

where d = d(n) is an n-dependent sparsity parameter and C is an absolute positive

constant.
Of particular interest are the following special cases:

— Bounded case: The entries are bounded in magnitude by % Then, (6) is fulfilled
ford = n and all k.
— Sub-Gaussian case: The sub-Gaussian norm of each entry satisfies

1/k
Jaijly, £ supk™"PE [fay | ] = 0 (1/3). )

It is easily checked that (6) is satisfied for d = n/(logn)!'11°21°27 and all large n.
— Erd8s-Rényi graphs with edge probability p = p(n). We may center and scale the

adjacency matrix A such that a;; ~ (Bern(p) — p)/+/np(1 — p) fori # j, which
satisfies (5) and (6) for d = np(1 — p) (cf. Lemma 1).

With the moment conditions (5) and (6) specified, we are ready to introduce the
correlated Wigner model, which encompasses the correlated Erdés-Rényi graph model
proposed in [19] as a special case.

Definition 1 (Correlated Wigner model) Let n be a positive integer, o € [0, 1] an (n-
dependent) noise parameter, 7, a latent permutation on [n], and IT, € {0, 1}**"
the corresponding permutation matrix such that ([1y);r,;) = 1. Suppose that
{(ai iy by () 1S j} are independent pairs of random variables such that both
A = (a;j) and B = (b;;) satisfy (5) and (6),

foralli # j, ®)
EOE';W
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and for a constant C > 0, any D > 0, and all n > no(D),

IP’{HA—H*BH*T

SCG}zl—n_D ©9)

where || - || denotes the spectral norm.

The parameter o measures the effective noise level in the model. In the special case
of sparse Erd6s-Rényi model, A and B are the centered and normalized adjacency
matrices of two Erd6s-Rényi graphs, which differ by a fraction 202 of edges approx-
imately.

In this paper, we prove the following exact recovery guarantee for GRAMPA:

Theorem (Informal statement) For the correlated Wigner model, if d > polylog(n)
and o < c (log n) "% for any fixed constant k > 2 and a sufficiently small constant
¢ > 0, then GRAMPA with n = 1/ polylog n recovers m, exactly with high probability
for large n. If furthermore a;j and b;; are sub-Gaussian and satisfy (7), then this holds
withk = 1.

This theorem generalizes the exact recovery guarantee for GRAMPA proved in [14]
for the Gaussian Wigner model, albeit at the expense of a slightly stronger requirement
for o than in the Gaussian case. The requirement that d > polylog(n) and o0 <
1/ polylog(n) is the state-of-the-art for polynomial time algorithms on sparse Erdés-
Rényi graphs [10], although we note that the recent work of [2] provided an algorithm
with super-polynomial runtime 79 1°2” that achieves exact recovery when d > n°(")
under the much weaker condition of o < 1 — (log n)~°M (see the end of Sect. 2
for more detailed discussion). Numerical experiments in the companion paper [14]
suggest that the failure of GRAMPA occurs at 0 = C/logn for some constant C,
indicating that our theoretical characterization of the performance of GRAMPA here
is almost tight. In [14], we further demonstrate the superior empirical performance
of GRAMPA on a variety of synthetic and real datasets, in terms of both statistical
accuracy and computational efficiency. In the conference version [15], GRAMPA is
also shown to improve existing shape matching algorithms on 3D deformable shape
data.

The analysis in [14] relies heavily on the rotational invariance of Gaussian Wigner
matrices, and does not extend to non-Gaussian models. Here, instead, our universality
analysis uses a resolvent representation of the GRAMPA similarity matrix (3) via a
contour integral (cf. Proposition 1). Capitalizing on local laws for the resolvent of
sparse Wigner matrices [11, 12], we show that the similarity matrix (3) is with high
probability diagonal dominant in the sense that ming Xz, (k) > maXgxyz, (k) Xke. This
enables rounding procedures as simple as thresholding to succeed.

From an optimization point of view, GRAMPA can also be interpreted as solving a
regularized quadratic programming (QP) relaxation of the QAP. More precisely, the
QAP (1) can be equivalently written as

min ||AIT — ITB||%, (10
e,

Elol:;ﬂ
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and the similarity matrix X in (3) is a positive scalar multiple of the solution X to

argmin |AX — XB|% + || X |1}
XERI‘[XH

s.t.17X1 = n. (11)

(See [14,Corollary 2.2].) This is a convex relaxation of the program (10) with an
additional ridge regularization term. As a result, our analysis immediately yields the
same exact recovery guarantees for algorithms that round the solution X to (11) instead
of X. In Sect. 6, we study a tighter relaxation of the QAP (10) that imposes row-
sum constraints, and establish the same exact recovery guarantees (up to universal
constants) by employing similar technical tools.

Organization The rest of the paper is organized as follows. In Sect. 2, we state the
main exact recovery guarantees for GRAMPA under the correlated Wigner model,
as well as the results specialized to the (sparse) Erdés-Rényi model. We start the
analysis by introducing the key resolvent representation of the GRAMPA similarity
matrix in Sect. 3. As a preparation for the main proof, Sect. 4 provides the needed
tools from random matrix theory. The proof of correctness for GRAMPA is then
presented in Sect. 5. In Sect. 6, we extend the theoretical guarantees to a tighter QP
relaxation. Finally, Sect. 7 is devoted to proving the resolvent bounds which form the
main technical ingredient to our proofs.

Notation Let [n] £ {1, ...,n}. Leti = «/—1. In a Euclidean space R” or C", let ¢;
be the i-th standard basis vector, and let 1 = 1,, be the all-ones vector. Let J = J,
denote the n x n all-ones matrix, and let I = I,, denote the n x n identity matrix. The
subscripts are often omitted when there is no ambiguity.

The inner product of u, v € C" is defined as (u, v) = u*v. Similarly, for matrices,
(A, B) = Tr(A*B). Let ||v]| = |lv]l2 = (v, v) and ||v||cc = sup; |v;| for vectors. Let
IMI| = 1M llop = sup,yyor 1MVl IMI3 = (M, M), and | M]loo = sup; ; |M;j]
for matrices.

Letx Ay = min(x, y) and x V y = max(x, y). Weuse C, C’, ¢, ¢, ... to denote
positive constants that may change at each appearance. For sequences of positive real
numbers (a,);,~ and (b,);2 |, we write a, S b, (resp. a, 2, by) if there is a constant
C > Osuch that a, < Cb, (resp. b, < Ca,) foralln > 1, a, < b, if both relations
ap < by and a, 2 b, hold, and a, < by, if a,/b, — 0 asn — oo. We write

~

an, = O(by) if lay| < by, and a, = o(by) if |a,| K by.

2 Exact Recovery Guarantees for GRAMPA

In this section, we state the exact recovery guarantees for GRAMPA, making the earlier
informal statement precise.

Theorem 1 Fix constants a > 0 and k > 2, and let n € [1/(logn)?, 1]. Consider the
correlated Wigner model with n > d > (logn)® where co > max(32 + 4a, 4 + Ta).
Then, there exist (a, k)-dependent constants Cq, ng > 0 and a deterministic quantity
FoL g
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r(n) = r(n,n,d, a) satisfying r(n) — 0 as n — oo, such that for all n > ng, with
probability at least 1 — n='0, the matrix X in (3) satisfies

1
max |ng| < Co(logn)“ —
ek & NG

1—o2

m]?x X]m* k) —

< Cy <m + 5+ (log n)* ﬁ) . (12)

If there is a universal constant K for which a;j and b;j are sub-Gaussian with
laijlly,, I1bijlly, < K/+/n, then the above holds also with k = 1.

As an immediate corollary, we obtain the following exact recovery guarantee for
GRAMPA.

Corollary 1 (Universal graph matching) Under the conditions of Theorem 1, there exist
constants c, ¢’ > 0 such that for all n > ny, if

(logn)™@ <n < c(logn)_z’( and o <c'n, (13)
then with probability at least 1 — n~19,
min szr*(k) > max Xy, (14)
k L#£my (k)

and hence I that solves the linear assignment problem (4) equals IT,.

Proof Letc =1/ (64C§) and ¢’ = 1/(2Cy), where Cy is the constant given in Theorem
1. Then under assumption (13), we have

Je
(logn)«

Co(logn)“/n < Co(logn)* = Cos/c < 1/8,

SO MaX¢y, k) | Xkel < 1/(8n). We also have Coo/n < Coc’ =1/2and 1 —o? > 7/8
and Cor(n) < 1/8foralllarge n, so that maxy Xyr, k) > (7/8—1/8—1/2—1/8)/n =
1/(8n). This implies (14). O

An important application of the above universality result is matching two correlated
sparse Erdds-Rényi graphs. Let G be an Erd6s-Rényi graph with n vertices and edge
probability ¢, denoted by G ~ G(n, g). Let A and B’ be two copies of Erdés-Rényi
graphs that are i.i.d. conditional on G, each of which is obtained from G by deleting
every edge of G with probability 1 — s independently where s € [0, 1]. Then, we have
that A, B’ ~ G(n, p) marginally where p £ ¢s. Equivalently, we may first sample an
Erd8s-Rényi graph A ~ G(n, p), and then define B’ by

/

{Bern(s) ifA; =1
ij

Bern(Z{52) if Ay =0.
Fol:rﬂ
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Suppose that we observe a pair of graphs A and B = [1] B'IT,, where IT, is an

unknown permutation matrix. We then wish to recover the permutation matrix I7,.
We transform the adjacency matrices A and B so that they satisfy the moment

conditions (5) and (6): Define the centered, rescaled versions of A and B by

A2 (mp(1—p) V2(A-E[A]) and B2 (np(1 - p))~"/? (B —E[B]). (15)

Then, (5) clearly holds, and we check the following additional properties.

Lemma 1 For all large n, the matrices A = (a;;) and B = (b;;) satisfy (6), (8), and
Q) withd = np(1 — p) and

2 1—s (logn)’
0° = max , .
I1—p d

Proof Assume without loss of generality that IT, is the identity matrix. For any k > 2,
we have

1 — pyk=1 4 pk—1
E[Jay["] = op = T2 [p = p)F + (1 = ppt] = ( ,f;(k_m/zp

.
= nd®D72

Thus, the moment condition (6) is satisfied. In addition, we have that for alli < j,

s—p <1—02

nl—p)~ n

[z ) = SE[(Ai — ) (B — )] = 5 (b5~ %) =

)

where the last inequality holds by the choice of o2, Thus, (8) is satisfied. Moreover,
let Aij = — (aij — bij) . It follows that E [A;;] = 0 and

k 2p(1 —s) 1
E[|A'j| ] = (20'2d)k/2 = n(202d)*=2/2

where the last inequality is due to o> > 11_;; Thus, by applying Lemma 3 and

2(logn)’ < 202d < n where the upper bound follows from p(1—s) < s(1—s) < 1/4,
there exists a constant C > 0 such that forany D > 0, with probability at least 1 —n~?
for all n > ng(D), we have ||A|| < C and hence |A — B|| < +/2Co. Thus, (9) is
satisfied. O

Combining Lemma 1 with Corollary 1 immediately yields a sufficient condition
for GRAMPA to exactly recover I1, in the correlated Erd6s-Rényi graph model.

Corollary 2 (Erd6s-Rényi graph matching) Suppose that either
EOE';W
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(a) (dense case)
1—3s .
S<p=<l1-§ —— < (logn)™
L—p

for constants § € (0, 1) and c1 > 4, or
(b) (sparse case)

. 1—
np(1 — p) > (logn), l—s < (logn) ™
- P

for constants ¢y > 48 and c¢1 > 8.

There exist (8, cg, c1)-dependent constants a, ng > 0 such that if n = (logn)™ and
n > no, then with probability at least 1 — n~10,

min Xy, k) > max Xy,
k O£, (k)

and hence the solution I1 to the linear assignment problem (4) coincides with I1.

Proof For (a), pick k = 1 and any a such that ¢;/2 > a > 2« = 2. For (b), pick any
a,k suchthatcy/2 > a > 2k > 4 and ¢y > 32 4+ 4a > 4 + 7a. Then, all conditions
of Theorem 1 and Corollary 1 are satisfied for large n, and the result follows. O

Comparison to information-theoretic limits and existing algorithmic guarantees of
exact recovery For the correlated Erd6s-Rényi graph model, exact recovery of the
hidden vertex correspondence with high probability is shown to be information-
theoretically possible if nps —logn — +oo and p/s = O (log—>(n)), and impossible
ifnps>—logn = O(1)[7, 8]. From a computational perspective, recent work [9] shows
that degree matching can achieve exact recovery with high probability in polynomial
time provided that np > n*31og’/>(n) and 1 — s <« p*/log®(n).

This result is further improved to np = £2(log>(n)) and 1 — s < O(log=%(n))
in [10] by matching degree profiles (that is, empirical distributions of neighbors’
degrees). The performance guarantee of the proposed GRAMPA method matches
the state of the art of polynomial-time algorithms up to polylogarithmic factors
and holds for more general models of correlated matrices. It is worth noting that a
quasi-polynomial time (n©{°8™) algorithm is proposed in [2] which succeeds when
np € [n"(l), n'/1331U [n?/3, nl_e] and s > (logn)~°(D. However, it remains open
whether exact recovery is achievable in polynomial time for any constant s bounded
away from 1. It is conceivable that there exists a “hard regime” where exact recov-
ery is information-theoretically possible but computationally intractable, resembling
the conjectured computational hardness for the planted clique problem [3] and the
stochastic block model [6].

Elol:;ﬂ
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3 Resolvent Representation

For a real symmetric matrix A with spectral decomposition (2), its resolvent is defined
by

1
Ra@) & (A=2D™"=3 o]
X [
1

for z € C\ R. Then, we have the matrix symmetry R4(z)| = R(z), conjugate
symmetry R4 (z) = R4(z), and the following Ward identity.

Lemma 2 (Ward identity) For any z € C \ R and any real symmetric matrix A,

Im R4 (2)

RA(DRA(z) = Tz

Proof By the definition of R(z) = R4(z) and conjugate symmetry, it holds
ImR(z) RE@)—R@ (A-zD'—@A-zD)"!

Imz z2—2 77—z
= R(2)R(2).

=A-zD'Aa-zD7!

The following resolvent representation of X is central to our analysis.

Proposition 1 Consider symmetric matrices A and B with spectral decomposi-
tions (2), and suppose that |A|| < 2.5. Then, the matrix X defined in (3) admits
the following representation

1
X = Re f RA)IRs(z + in)dz, (16)
2 I

where
={z:|Rez|=3and|Imz| <n/2 or |Imz|=n/2and|Rez| <3} (17)

is the rectangular contour with vertices £3 +in/2 (See Fig. 1 for an illustration).
Proof We have

wT

J
= viv, J—mm

=7 Z viv] JRp(hi +in)Rp (0 — in)
i
FoE'ﬂ
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=1Im ) viv,] JRg (i +in) (18)

1

by Lemma 2. Consider the function f : C — C"*" defined by f(z) = JRp(z +in).
Then, each entry fi, is analytic in the region {z : Im z > —n}. Since I" encloses each
eigenvalue A; of A, the Cauchy integral formula yields entrywise equality

1 @)

27Ti F)Li_z

dz = f(%). 19)

Substituting this into (18), we obtain

2mi F)\.i—Z

X =im Y] ( AL dz> - o Re fr Ra@f@dz,  Q0)

which completes the proof in view of the definition of f. O

4 Tools from Random Matrix Theory

Before proving our main results, we introduce the relevant tools from random matrix
theory. In particular, the resolvent bounds in Theorem 2 constitute an important tech-
nical ingredient in our analysis.

4.1 Concentration Inequalities

We start with some known concentration inequalities in the literature.

Lemma 3 (Norm bounds) For any constant ¢ > 0 and a universal constant ¢ > 0, if
n>d > (log n)6+65, then with probability at least 1 — e—c(log ”)HS,

(logn)l-i-s

Al <2+ 1

Proof See [12,LLemma 4.3], where we fix the parameter & = 1 + ¢ in [12,Eq. (2.4)].
The notational identification is ¢ = \/3 . O

Lemma 4 (Concentration inequalities) Let e, B € R" be independent random vectors
with independent entries, satisfying

2 2 1
Elej] =E[fi] =0, Eloj] =EIf]= -

1

max (E[|e;|“1, E[|8; *1) < for each k € [2, (logn)'?°gleen] (1)

nd(kfz)/z ’

For any constant ¢ > 0 and universal constants C,c > 0, ifn > d > (log n)6+6€,
then:

FoC'T
e,
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(a) Foreachi € [n], with probability at least 1 — e_c(l"g”)HS,

c
loi| < —. (22)

e . . ey PN 1+e
(b) For any deterministic vector v € C", with probability at least 1 — e~¢1°gm -

)UT(X‘ < (logn)!** (% n ||\l;%2) ' (23)

Furthermore, for any even integer p € [2, (logn)!0loglogn]

o Uv—ra‘p] < (Cp)? <% + “j}'}';)p. (24)

S . . . _ 1+
(¢) For any deterministic matrix M € C"™ " with probability at least 1 —e=¢(108™ "™

1 2M|loc | IMIIF
T 242¢
Mo ——-TrM| < 25
o Ma " T < (logn) ( Ji + . (25)
and
2M|lo | IIMIIF
T 242

o M ‘ < (logn) ( + . (26)

‘ B g Nz .
Proof See [12,L.emma 3.7, Lemma 3.8, and Lemma A.1(i)], where again we fix £ =
1+e. O

Next, based on the above lemma, we state concentration inequalities for a bilinear
form that apply to our setting directly.

Lemma 5 (Concentration of bilinear form) Let o, B € R" be random vectors such that
the pairs («;, B;) for i € [n] are independent, with

E[e;] = E[i] =0, E[a§]=E[ﬁ,~2]=%, Elaifi] > -

Let M € C"*" be any deterministic matrix.

(a) For any constant ¢ > 0, suppose (21) holds where n > d > (log n)t0 . Then,

there are universal constants C,c > 0 such that with probability at least 1 —
e—c(logn)“‘g

1 —o2

o MB— Tt M

1 1
< C (logn)**% (;nMnF + ﬁnMnoo> L@

FolCT
H_ A
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(b) Suppose that a;, B; are sub-Gaussian with ||a;|ly, = ||Billy, < %fora constant

K > 0. Then for any D > 0, there exists a constant C = Ck p only depending

on K and D such that with probability at least 1 —n™P,

1—o? Clogn

ocTM,B—

TrM| <

M| F. (28)
Proof In view of the polarization identity
T 1 T 1 T
a Mp=_(a+p) Ma+p)—(a=p) Ma-=§p).

it suffices to analyze the two terms separately. Note that

4 — 202

E [(a +8) M@+ ﬁ)] - Te M,

2
E [(oe —B) M« — ﬁ)] ~ 2 Tm,
n

which yields the desired expectation E[a ' MB] = 1_”_02 Tr M. Thus, it remains to
study the deviation.
To prove the concentration bound (27), we obtain from (25) that, there is a universal

. e 1
constant ¢ > 0 such that with probability at least 1 — e~¢{log") -,

T _ T 226 (1 2
(@£t p) M(axp)—El(e=xp) M(a=xp)]| < (ogn) n||M||F+ﬁ||M||w )

from which (27) easily follows.

The sub-Gaussian concentration bound (28) follows from the Hanson—Wright
inequality [16, 20]. More precisely, note that max{lla + Blly,, la — Blly,} =<
leelly, + IBlly, < 2K/«/E, so taking 8§ = n~P/2 in [14,Lemma A.2] yields that

with probability at least 1 — n~?,

@ ML P ~E[@spTMeEp)| < cxpo M,
which completes the proof. O
4.2 The Stieltjes Transform
Denote the semicircle density and its Stieltjes transform by

1 1 —z+72 -4
p(x) = —vV4—x2 1<z and mo(z) = / —pX)dx = ——F—,
2 X —2z

(29)
Elol:g
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respectively, where mq(z) is defined for z ¢ [—2,2], and v/z2 — 4 is defined with
a branch cut on [—2, 2] so that +/z2 —4 ~ z as |z] — co. We have the conjugate
symmetry mg(z) = mo(2).

We record the following basic facts about the Stieltjes transform.

Proposition 2 For each z € C\ R, the Stieltjes transform mq(z) is the unique value
satisfying

mo(z)> +zmo(z) +1 =0 and Immoy(z)-Imz > 0. (30)

Setting £(z2) 2 min(|Rez — 2|, |Rez + 2|), uniformly over z € C\ [—2, 2] with
lz| < 10,

|mo(z)| < 1, |Immg(z)| 2 |Imz|, and |Immo(z)| =<

V¢ (2) + | Imz| if|[Rez| <2,

. 31
|[Imz|/+/¢(z) + [Imz] if|Rez| > 2.
For x € [—2, 2], the continuous extensions
mi(x) £ lim  mo(z), my(x) = lim  mo(z)
z—x: zeCt z—>x:zeC~
from CT and C~ both exist. For all x € [—2, 2], these satisfy
my () +xmy(x) +1=0, mfx)=my(x),
1 " 1 _ +
;Imm0 (x) = —;Imm0 (x) =px), Imyx)| =1 (32)

Proof (30) follows from the definition of mg. (31) follows from [11,Lemma 4.3] and
continuity and conjugate symmetry of m. For the existence of m(‘)Ir (and hence also
my ), see, e.g., the more general statement of [4,Corollary 1]. The first claim of (32)
follows from continuity and (30), the second from conjugate symmetry, the third from
the Stieltjes inversion formula, and the last from the fact that the two roots of (30)

atz = x € [~2,2] are mJ (x) and my (x) = mg (x), so that | = mZ (x)mg (x) =
|m(j)t(x)|2. O

4.3 Resolvent Bounds

For a fixed constant @ > 0 and all large n, we bound the resolvent R(z) = R4 (z) over
the spectral domain

D = D1 U D>, where
Dy ={ze€C:Reze[-3,3], |[Imz| € [1/(logn)“, 1]}, and
Dy ={z€C:|Rez| €[2.6,3], |Imz| < 1/(logn)?}.
FoC
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Here, D is the union of two strips in the upper and lower half planes, and D; is the
union of two strips in the left and right half planes.

Theorem 2 (Resolvent bounds) Suppose A € R"*" has independent entries (a;;);< ;
satisfying (5) and (6). Fix a constant a > 0 which defines the domain D, fix ¢ > 0,
and set

b = max(16 4+ 3¢ + 2a, 3 + 3¢ + 5a/2), b’ = max(16 + 4¢ + 2a, 4 + 5¢ + 6a).

Suppose n > d > (log n)?'. Then for some constants C, c,ng > 0 depending on a
and &, and for all n > ng, with probability 1 — e~c1ogmoglogn) “yno following hold
simultaneously for every z € D:

(a) (Entrywise bound) For all j # k € [n],

C(IO n)2+28+a
IRjx(2)] < gT. (33)
Forall j € [n],
C(]O n)2+28+3a/2
IRj;(z) — mo(2)] < ——2 7 (34)
(b) (Row sum bound) For all j € [n],
‘e]TR(z)ll < C(logn)!*+e+a, (35)
(¢) (Total sum bound)
Cn(l b
TR —n - mo(2)] < % (36)

The proof follows ideas of [12], and we defer this to Sect. 7. As the spectral param-
eter z is allowed to converge to the interval [—2, 2] with increasing n, this type of
result is often called a “local law” in the random matrix theory literature. The focus
of the above is a bit different from the results stated in [12], as we wish to obtain
explicit logarithmic bounds for | Im z| < 1/ polylog(n), rather than bounds for more
local spectral parameters down to the scale of | Im z| =< polylog(n)/n.

5 Proof of Correctness for GRAMPA

In this section, we prove Theorem 1. Note that the mapping B +— H*T BII, for any

permutation [T, induces w; +> [T, w; and X + XIT,, since JIT,| = J. By virtue of

this equivariance, throughout the proof, we may assume without loss of generality that

I1, =1, i.e., the underlying true permutation 7, is the identity permutation. Then, we

aim to show that X is diagonally dominant, in the sense that ming Xy > maxy.c¢ Xg.
Elol:;ﬂ
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In view of Lemma 3, we have that ||A|| < 2.5 holds with probability 1 — n~? for
any D > Oand all n > ng(D). In the following, we assume that ||A] < 2.5 holds. On
this event, by Proposition 1, we get that

1
Xy = 5 Re fr (e] Ra@)1)(e] Rp(z +in)1)dz (37)

Note that one may attempt to directly apply (35) to bound the row sums e,;r Ra(2)1
and e; Rp(z + in)1. This would yield

(e Ra@ (€] Ra(e+imD]| < (ogn)>2+2,

and hence | Xy¢| < (log n)2+28+2a. However, this estimate is too crude to capture
the differences between the diagonal and off-diagonal entries. In fact, the row sum
e,j R A (2)1 does not concentrate on its mean, and the deviation e,—(r RA(z)1—mo(z) and
eETR g(z +1in)1 — mo(z) is uncorrelated for k 7 ¢ and positively correlated for k = ¢£.
For this reason, the diagonal entries of (37) dominate the off-diagonals. Thus, it is
crucial to gain a better understanding of the deviation terms. We do so by applying
Schur complement decomposition.

5.1 Decomposition Via Schur Complement

We recall the classical Schur complement identity for the inverse of a block matrix.

Lemma 6 (Schur complementidentity) For any invertible matrix M € C"*" and block
decomposition
A B
v-[es)

if D is square and invertible, then

1 N -SBD™!
M _[—D—lcs D'+ D 'csBD™! 38)

where S = (A — BD~'C)~ L.

We decompose e,;r RA(2)1 and eZR g (z +1in)1 using this identity, focusing without
loss of generality on (k, £) = (1,2). Let Ra 12 € C2*2 be the upper-left 2 x 2 sub-
matrix of R4, and let Rglz) € C=2x(=2) pe the resolvent of the (n — 2) x (n — 2)
minor of A with the first two rows and columns removed. Let aIr and azT be the first
two rows of A with first two entries removed, and let AI € R2x(1=2) pe the stacking
of a]— and a;— .

The following deterministic lemma approximates elTR 4(2)1 based on the Schur
complement.

FoC Tl
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Lemma 7 Suppose |z| < 10, and
|Ra12(2) — mo()I| < 8 (39
where 0 < § < ming. ;<10 |mo(2)|/2. Then for a constant C > O and k = 1,2
el Ra@1=mo(@ (1= 0/ RY’@1,2)| = C3 (1 + IRy D1ln) . (40)

Proof 1t suffices to consider k = 1. Applying the Schur complement identity (38), the
first two rows of R4 are given by

[RA,IZ —RA,leOTRSZ)] . (41)

Thus,

1,
e[ Ra@1=[10][Ra12 —Ra12ARY?] [IH}

[1 0] Ra12 (12 — A;FRI(AIZ)I,,_2> .

Denote Ay 2 R4 .12(z) — mo(z)I. Then,

el Ra(@1=[10] (o1 + 44) (12 — A R{1,2).
=mo(@) (1= al R{?1,2) +[10] 44 (12 = ATR{P1,2).
= mo(2) (1 - alTRg”)ln_z) o (5 (1 + HAIRS%”_Z H)) .42

where the last equality applies (39). We next upper bound H A;FRS 2)1,,,2 H In view

of the fact that C > |m(z)| > c for absolute constants ¢ and C, the assumption (39)
implies that R4 12 is invertible with || RZ,llz | < 1. Using (41) again, we have

—_ T
AJRY 1,5 =15 — Ry, [er e2] " Ral,. 43)

It follows that

[ATRP 1,0 S 1+ el Raly| + [ Rala| S T+ IRAL o - (44)
The desired bound (40) follows by combining (42) and (44). O
Elol:;ﬂ
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5.2 Off-Diagonal Entries

Without loss of generality, we focus on the off-diagonal entry X»:

Xp = Re?g (elTRA(zn) (eZTRB(z + in)l) dz.
2 r

For the given value a > 0 in Theorem 1, and for some small constant ¢ > 0, let b, b’

be as defined in Theorem 2. Under the given condition for ¢ in Theorem 1, for ¢ > 0

sufficiently small, we have cg > b’ and ¢y > 2b—thus d > (log n)b/ so Theorem 2

applies, and also ~/d >> (log n)”. Fix the constant «, where k = 1 in the sub-Gaussian

case where [|ajj |y, , [1bijlly, < 1/4/n, and k > 2 otherwise. For ease of notation, we

define
5 (log n)2+2s+3a/2 (logn)1+8+a 5 (log n)b 5 (log n)K/2
== 0=——~——, 03= v 04 = T :
vd Vn Vd Vn
(45)
Note that we have §; = o(1) foreachi =1, 2, 3, 4, and also 818%n =o0(1).
5.2.1 Resolvent Approximation
Define an event £; wherein the following hold simultaneously for all z € I":
|RA12(2) = mo(T|| < 8 (46)
|RB.12(z +in) —mo(z +inI| < & (47)
IRA( o S S24/10 (43)
IRp(z +im1|lo S 824/n. (49)
Applying the resolvent approximations given in Theorem 2, we have that
P{gl} >1— e—c(logn)(loglogn)'
In the following, we assume the event £ holds.
On &, by Lemma 7, we get that uniformly over z € I,
el Ra@1 = mo(@) (1 = a] R{P1,2) + 0 (31825/) (50)

) Rp(z +in)l = mo(z + in) (1 - bZTRg”)ln_z) +0 (8182v/n). (51

Each of (50) and (51) is itself O (824/n), by (48) and (49). Then multiplying the two,
we have

FoC
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[elTRA (z)l] [ezT Rp(z + in)l]
= mo@mo(z +in) (1 = af Rz = b] Ry iz + af RYP 1,2 Ry b2)
+0 (8183n).
It follows that
?g [elTRA(Z)l] [ezTRB(Z + in)l] dz
r
_ . - - . )
= f mo(z)mo(z +in)dz —a, g — b, h+a, Mby + O (818211) ’ (52)
r

where

oo
I

2 § momote+inR{Z 1,20
r
ry . p(12) .
h= % mo(2)mo(z +in) Ry~ (z +in)l, 2dz,
r
M2 7{ mo@mo(z +inRY> ()In—2RY? (@ +in)dz. (53)
r
5.2.2 Term-By-Term Analysis
Next, we bound the individual terms of (52). By the boundedness of m(z), we have
f mo(z)mo(z +in)dz = O(1). (54)
r
Define the event £ wherein the following hold simultaneously:

[al | + [pTh| < 81 (Iglloc + Al + 84 gl + 1) (55)

al Mby| S 8111 M e + 8 1M 1 5. (56)

Note that the triple (g, h, M) is independent of the pair (ai, b2) and a; and b, are
independent. Hence, by first conditioning on (g, 2, M) and then applying (23) and
(26), we get that

P{&)>1—-n"P
for any constant D > 0,2 and all n > ny(D), in both the sub-Gaussian (x = 1) and

general (k > 2) cases. Henceforth, we assume &, holds. It then remains to bound the
£ and £~ norms of g, h, and M.

2 The constant D can be made arbitrarily large by setting the hidden constants in (55) and (56) sufficiently
large.
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n/2 zel
n/4 wel’
—3 -2k R.6 |3 Re
-n/4
—n/2

Fig. 1 Nested contours I” and I"/

Recall that I" is the rectangular contour with vertices £3 :ti%. Let us define another
contour (to be used later) I"’ inside I", with vertices 2.6 4 i%, cf. Fig. 1. Define the
event &3 wherein the following hold simultaneously forall z € I" U I'":

H Ri;lz) (@1 HOO < 8o/, (57)

H Rgz) (z+inl,—2 Hoo < 8o/, (58)

LR @12 = mo@)(n = 2)| 5 dan, (59)
11_2Rg2)(1 +inl,—2 —mo(z +in)(n — 2)‘ < 83n. (60)

By Theorem 2, we have that P{&3} > 1 — g—¢cUogm(loglogn) 'y the following, we
assume the event £3 holds.
Note that

12
lgllo < sup IRYP (@12l < 82/, (61)
ZEF

where the second inequality holds in view of (57). Similarly, in view of (58), we have
that |4 |0 < 824/n. Furthermore,

~

12 12 .
IMlloe S sup | RS @30-2RY > 2 + i)
zel o0

< sup | RYP @)1,
zell 00

1 ,RYP (2 +in) Hoo < 83n. (62)
The £, bounds of g, n and M are deferred to Lemma 8. Applying (59), (60), and
Lemma 8 with R4 = R\'” and Rg = R, we get ||g|3 < nlog L Im13 S nlogd
and |Mllr Sn/mn.
Combining the above bounds on the norms of g, i, M with (55), (56), and (54),
and plugging into (52), we conclude that on the event {||A|| < 2.5} NE NE N Es,
EOE';W
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Xl =27 |§ [e] Ra1] [e] Rate +in1] z
r
<1+684 [nl 1—1—82 1+552 < 82p a )"1 (63)
S 4. /nlog — n— 10on S ogn—— = (logn)” —,
n ot ym YA NG

where in the third step we used 818%11 = o(1) and n < 1 so that §4+/n = (log n)</2 P

Jnlogt 4+ '/t

5.2.3 Bounding the Norms of g, hand M

Lemma 8 Suppose ||A|l < 2.5 and ‘ITR(z)1| S nforallz € ' UT' and both
R(z) = R4(z) and R(z) = Rp(z + in). Define

g§= ?g mo(z)mo(z +in)Ra(z)1dz
r

h= f mo(2)mo(z +in)Rp(z +in)ldz
r

M= f mo(2)mo(z +im Ra()IRp(z + in)dz.
I

2
Then, ||g|* S nlog 1., [h]* S nlog ; and IM|7 < %

Proof Since ||A|| < 2.5, the function my(z)mo(z + in) R4 (z)1 is analytic in z in the

region between I"" and I'. It follows that

g= f mo(2)mo(z +in)Ra(2)1dz = f mo(w)mo(w + in) Ra (w)ldw.
r had
Thus,

gl < fr dz f/dw mo(2mo(z + inmo(@)mo(id — i1 T Ra () Ra ()1

® _7§ dz f dw mo(2mo(z + immo(wmo(w — N1 Ra(w)Ra ()1
F !

© _ f dz f dw mo(@mo(z + imymo(wymo(w — in 1T JAL T Raw)
r r’ Z—w

%) 1
§n¢‘ dz% (64)
r rlz —wl

where (a) applies conjugation symmetry of mg and Ry4; (b) changes variables w +— w

which reverses the direction of integration along I'’; (¢) follows from the identity
Elol:;ﬂ
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1

RA@Ra@) = (A=97 A-w) ' = — |- —a-w]

1
= —— [Ra(2) — Ra(w)] (65)
Z—w

and (d) holds because |mo(z)| =< 1 and [I"Ro(x)1| < nforallz € I" U T’ by
assumption. For either z or w in the vertical strips of I" U I"" of length O (), we apply
simply |z — w| 2 7. For both z and w in the horizontal strips, i.e., | Im z| = /2 and
| Im w| = n/4, we apply |z — w| = | Re(z) — Re(w)| + n. This gives

1
||g||2<n<1+/ dx/ >§nlog—.
Ix—y|+n n

For ||h||?, we have similarly

I1A]* = — ﬁ dz ygr dw mo(z)mo(z + in)mo(w)mo(w — in1"

Rp(z +in) — Rp(w —in) 1
" . 1<n dz _
(z+in) — (w—in) r rlz —w+ 2in|.

We may again bound |z — w + 2in| 2 n if either z or w belongs to a vertical strip, or

|z — w + 2in| > |Re(z) — Re(w)| + 5 otherwise, to obtain ||A]|> < nlog(1/n).
Finally, we bound | M| . Since [|A|| < 2.5, the function mo(z)mo(z +

in)Ra(z)JRp(z + in) is analytic in z in the region between I"" and I, so

M = % mo(z)mo(z +in)Ra(2)JRp(z +in)dz :% mo(w)mo(w + in)
r It
Ra(w)JRp(w +in)dw.

Consequently, by the same arguments that leads to (64),

2
M|
= Tr(M*M)

= ﬁdz yg dw mo(2)mo(z +in)moW)mo (W — in) Tr
x [Ra(M1 Rp(z +inRp(@ — im 11" Ra(w)]
~§ dz b dw mo@mote + immotwmotw ~ 17 Raw)Ra@11T
Rp(z iin)RB(w —in1l
- frdz ?§r dw mo(z)mo(z + in)mo(w)mo(w — in)

1T(RA(z) — Ra(w)1 17 (Rp(z +in) — Rp(w —in))1
Z—w z+in — (w —in)

FoE'ﬂ
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1 1
§n27§d17§ dw —.
r oz —wl fz — w + 2in|

If z or w belongs to a vertical strip of I'UI™’, of length O (), then |z—w|-|z—w+2in| 2>
n*; otherwise, |z—w|-|z—w+2in| > (| Re(z)—Re(w)|+n)? > (Re(z)—Re(w))>+n>.

Then
nZ
IM||% < n? ( / dx/ 5 ><—.
(x—y) +n? n

5.3 Diagonal Entries

Without loss of generality, we consider the diagonal entry X;:

X1 = % Re ygr (el Ra1] [17Ru (2 +inper | dz

By similar arguments as in the off-diagonal entry X1 that lead to (50) and (51), we
obtain that forall z € I,

el Ra@1=mo(@) (1-a] R @1,-1) + 0 (518:v/)
e/ Rp(z +inl = mo(z +in) (1 — b?—Rg)(z)lnq) + 0 (81824/n) .
It follows that

[e] Ra@1][17 Ry +impe ]
= mo(@mo(z +in) (1= af RVt = L R by +af R TR by )

+0 (515§n),

where, respectively, alT and blT are the first rows of A and B with first entries removed;

and RS) and RS) are the resolvents of the minors of A and B with first rows and
columns removed. Thus, we get that

f [elTRA(z)l] [ITRB(Z + in)el] dz
r
= % mo(2)mo(z +in)dz — a g — b h 4+ a] Mby + O (815%11) , (66)
r
where

g= f mo(z)mo(z +in)Rf41)(z)1dZ,
r
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=
(>

f mo(ymo(z +inRY (z + in)ldz,

r

M2 f mo(2)mo(z + iR ()IRY (z + in)dz.
r

By the same argument as in the off-diagonal entry X1, we can control each term
above. The only difference is that for the bilinear form, instead of using (26), applying
Lemma 5 to control a; T Mb, gives an extra expectation term (1 —o2)n~" Tr M. There-

fore, we obtain that for any fixed constant D > 0, with probability at least I — n~?,
for all sufficiently large n,
’X l—ﬁR'ﬁM’<a )Kl 67)
1= e < (logn)® —.
NI

Denote by &4 the event where the following hold simultaneously for all z € I

IA=Bl <o

17 RV @)1, — mo(z)n] < 83n

1R(1)(Z +in)l,—1 —mo(z + 177)11’ < §3n.

By the assumption (9) and Theorem 2, we have that P {4} > 1 — n—P for any constant
D > 0and all n > ng(D).

We defer the analysis of Tr M to Lemmas 9 and 10: Assuming &, holds and applying
Lemmas 9 and 10 with R4, Rp replaced by Ri‘l), Rg) , respectively, we get

1 2 1 8
~ReTr(M) = L"’?()+o<%+—3>. (68)
n n n n
Setting r(n) = o0, (1) + 83, we get
1 —
n

S r(:) + =+ (logn) —

X1 —

5.3.1 Analyzing the Trace of M

Lemma9 Suppose |A|| <2.5and |A — B|| < o and

]ﬂRA (D)1 — mo(2)n

S d3n,
17 Rp (e + i1 = mo(z + ipyn| S 8, (69)

forall z € I'. Define

M =y§ mo(2)mo(z +in) Ra(2)JRp(z +in)dz.
r
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Then,
1 1 . . o 8
—TrM = — @ mo(@mo(z +in)(mo(z +in) —mo(2)dz+ 0| =+ —|.
n miJr n n

Proof Applying the identity
Rg(z+in) — Ra(2) = (B— (z+in) ™' — (A —2)7" = Rp(z +in)(A — B+inRa(2),

we get Rp(z +in)Ra(z) = # (Rp(z+1in) — Ra(z) — Rp(z +in)(A — B)RA(2)).
Therefore

TrM = f dz mo(z)mo(z +in) Tr [RA (2)JRp(z + ir})]
r

- f dz mo(ymo(z + im1T Rp(z + im Ra()1
I

% yg dz mo(z)mo(z +in)1" (Rp(z +in) — Ra(2)
r

—Rp(z+in)(A — B)Ra(2)) 1. (70)
To proceed, we use the following facts. First, it holds that
1T Rp(z+im) (A = BIR 1| = |1 Rp(+im| 14 = BIIRs @11

For z € I" with Im z = #£1/2, in view of the Ward identity given in Lemma 2 and the
assumption given in (69), we get that

I 2
IRA()LI> =1"RA(2)Ra(2)1 = 5| Im1"Rs(2)1] <

| S

For z € I' with Re z = 43, we have that [|RA(2)1]|* < n ||[R(z)]|* < n thanks to the
assumption ||A|| < 2.5. Similarly, we have | Rp(z + ir})1||2 < n/n. Combining these
bounds with the assumption that ||[A — B|| < o yields that

‘ITRB(Z Fin(A—BRA| < ”T“

Then applying |mg(z)| < 1 and (69), we obtain

1 1
-TrM = .—f mo(z)mo(z + in)(mo(z +in) — mo(2))dz + O <12 + 8—3) .
n inJr n n
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Lemma 10 Let I” be the rectangular contour with vertices =3 £ in/2. Then

Im [f mo(2)mo(z + in) (mo(z +in) — mo(z))dzi| =21 + oy(1).
r

Proof By Proposition 2, the integrand is analytic and bounded over
{zeC: 2] =9, 2 ¢[-2,2], z+in ¢ [-2, 2]}

Hence, we may deform I" to the contour I, with vertices £(2+¢)=+ie, and takee — 0
(for fixed n). The portion of Iy where | Re z| > 2 has total length O (¢), so the integral
over this portion vanishes as ¢ — 0. We may apply the bounded convergence theorem
for the remaining two horizontal strips of I'; to get (recall that contour integrals are
evaluated counterclockwise):

ﬁmo(Z)mo(Z +in)(mo(z +in) —mo(z))dz
-
_ /2 me (ymo(x + in)(mo(x + in) — m ())dx

2
+ /zma(x)mo(x +in)(mo(x +in) —my (x))dx,

where maL and m, are the limits from C* and C~ defined in Proposition 2.
Now applying the bounded convergence theorem again to take n — 0, we have
lim;omo(x +in) = mg (x) and hence

gin%) mo(z)mo(z +in)(mo(z +in) — mo(z))dz
-0Jr
2

2
=f my (x)mg (x)(mg (x) — my (x))dx =f Im§ (x)[* - 27ip(x)dx = 2ri,
-2

the last two steps applying (32). Thus, the imaginary part of the integral is 27 + 0, (1)
for small 7. m|

6 A Tighter Regularized QP Relaxation

As discussed in the introduction, GRAMPA can be interpreted as solving the regular-
ized QP relaxation (11) of the QAP (10). We further explore this optimization aspect
in this section, and study a tighter regularized QP relaxation.

Let us begin by recalling the following QP relaxation of the QAP (10) that replaces
the feasible set of permutation matrices by its convex hull, the Birkhoff polytope
consisting of all doubly stochastic matrices [1, 21]:
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min ||AX — XB|%
XERIIXV!

st.X1=1,X'1=1, X >0. (71)

This program differs from the QP relaxation (11) that underlies GRAMPA in two
aspects. First, the added ridge penalty n? X ||% in (11) is crucial for ensuring the
desired statistical property of the solution,? while for (71) there is no such need for
regularization. Moreover, the Birkhoff polytope constraint, being the tightest possible
convex relaxation, is significantly tighter than the constraint 17 X1 = n. Although
it is much slower to solve (71) than to implement GRAMPA, the doubly stochastic
relaxation achieves superior performance over the weaker program (11) as demon-
strated by ample empirical evidence (cf. [10, 14]); nevertheless, a rigorous theoretical
understanding is still lacking.

As a further step toward understanding the relaxations, we analyze the following
intermediate program between (71) and (11):

min [|AX — XB|% + n?[IX||%
XERYIX}’I

st. X1=1, (72)

where we enforce the sum of each row of X to be equal to one. The above program
without the regularization term X ||%: has been studied in [1] in a small noise regime.
As we are analyzing the structure of the solution rather than the value of the program,
the exact recovery guarantee for GRAMPA (and hence for (11)) does not automatically
carries over to the tighter program (72). Fortunately, we are able to employ similar
technical tools to analyze the solution to (72), denoted henceforth by X€.

The following result is the counterpart of Theorem 1 and Corollary 1:

Theorem 3 Fix constants a > 0 and k > 2, and let n € [1/(logn)?, 1].

Consider the correlated Wigner model with n > d > (logn)®® where cy >
max(34 + 1la, 8 + 12a). Then, there exist («, k)-dependent constants C,ng > 0
and a deterministic quantity r(n) = r(n, n,d, a) satisfying r(n) — 0 asn — oo,

such that for all n > ng, with probability at least 1 — n™19,
max |n - Xf,| < C(logn)* — ! (73)
7 (k) ¢ N

—u< (@+—+(lo n)"l) (74)
= " g NG .

Tn

C
m]?x n- an*(k)

If llaijlly,, 1bijlly, < K/«/n, then the above guarantees hold also for k = 1, with
constants possibly depending on K.
Furthermore, there exist constants ¢, ¢’ > 0 such that for all n > ny, if

(logn)™ <y < c(ogn)™* and o <c'n, (75)

3 See [14,Sect. 1.3] for a more detailed discussion in this regard.
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Fig.2 Fraction of correctly matched pairs of vertices by GRAMPA and the tighter QP (72) (both followed
by linear assignment rounding) on Erdds-Rényi graphs with 1000 vertices and edge density 0.5, averaged
over 10 repetitions

then with probability at least 1 — n~19,

min Xz, k) > max Xgg. (76)
k (k) #L

Compared with Corollary 1, the theoretical guarantee for the tighter program (72) is
similar to that for (11) and the GRAMPA method. In practice the performance of the
former is slightly better (cf. Fig. 2). Furthermore, Theorem 3 applies verbatim to the
solution of (72) with column-sum constraints X | 1 = 1 instead. This simply follows
by replacing (A, B, X, IT,) with (B, A, X T, I1]).

6.1 Structure of Solutions to QP Relaxations

Before proving Theorem 3, we first provide an overview of the structure of solutions
to the QP relaxations (11), (72), and (71). Using the Karush—Kuhn-Tucker (KKT)
conditions, the solution of (72) can be expressed as

<visl’L)(wjal> T
X = — W, , 77)
;(/\i—ﬂj)2+flzl ! (
where o € R” is the dual variable corresponding to the row sum constraints, chosen
so that X€ is feasible. Since

X1 = E %U.UTM _ :E :r-v-vT}u
- L A2 2 LY - LYYy ’
i (Ai — )=+ ;
EOE';W
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where
2
A <w]7 1)
PR N e ke A (78)
' Z i —u)?+n?
Solving X1 = 1 yields
(vi, 1)
p=) v (79)
. 1
l
SO we obtain
XC—Z;IUU Jwjw; . (80)
i — g

Let us provide some heuristics regarding the solution X€. As before we can express
7; via resolvents as follows:

1 , 1 1
oy e D7 —ITI:ImZ—_ij}r]l
] — (A +ln) 1 7wy — (ki i)
l T .
= ;Im[l Rp (A +in)1]. (81)

Invoking the resolvent bound (36), we expect t; ~ % Im[mq(X; +in)], where, by prop-
erties of the Stieltjes transform (cf. Proposition 2), Im[mo(X; +in)] ~ Im[mo(X;)] =
wp(A;) as n — 0. Thus, we have the approximation

1 n 1
X~ — viv, Juiw!,
nnlzj:(ki—uj)z+n2p(ki) e

Compared with the unconstrained solution (3), apart from normalization, the only
difference is the extra spectral weight —— P )\ ; according to the inverse semicircle density.
The effect is that eigenvalues near the edge are upweighted while eigenvalues in the
bulk are downweighted, the rationale being that eigenvectors corresponding to the
extreme eigenvalues are more robust to noise perturbation.

Remark 1 (Structure of the QP solutions) Let us point out that solution of various QP
relaxations, including (71), (72), and (11), is of the following common form:

Ui T T
X = —_—— v, Swiw;, (82)
;(/\i—uj)2+772” T

where S is an n x n matrix that can depend on A and B. Specifically, from the loosest
to the tightest relaxations, we have:

Fol:'ﬂ
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— For (11) with the total sum constraint, S = «J, where the dual variable > 0 is
chosen for feasibility. Since scaling by « does not affect the subsequent rounding
step, this is equivalent to (3) that we analyze.

— For (72) with the row sum constraint, § = MIT is rank-one with p given in (79).

— For (71) without the positivity constraint, S = u1" + 1v T is rank-two. Unfortu-
nately, the dual variables and the spectral structure of the optimal solution turn out
to be difficult to analyze.

— For (71) with the positivity constraint, S = 1" +1v" + H, where H > 0 is the
dual variable certifying the positivity of the solution and satisfies complementary
slackness.

6.2 Proof of Theorem 3

We now apply the resolvent technique to analyze the behavior of the constrained
solution X and establish its diagonal dominance.

6.2.1 Resolvent Representation of the Solution

We start by giving a resolvent representation of X via a contour integral.

Lemma 11 Consider symmetric matrices A and B with the spectral decomposi-
tions (2), and suppose that | A|| < 2.5. Then, the solution X of the program (72)
admits the following representation

1
X = L Re f FRAIRE( +in), (83)
21 r

where I' is defined by (17) and

2i

F(z) & - - .
© 1TRp(z +in)1 — 1T Rp(z —in)1

(84)

Proof By (81) we have rlfl = nF(X;). This leads to the following contour represen-
tation of X analogous to (16) for the unconstrained solution:

n

1
X-=n F(K')U'UTJ - wiw!
Zi: e’ Z(Ai—ﬂj)2+ﬁ2 I

J

-
I

Im |:Z Fu)viv] IR (M + iﬂ):|

1

b 1 .
® 1 [—f F@RA@IRp(: + m)}
2i r
1
=— Re% F(2)RA(2)IJRp(z +in),
2 r
EOE';W
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where (a) follows from the Ward identity (Lemma 2); (b) follows from Cauchy integral
formula and the analyticity of F in the region enclosed by the contour I". O

6.2.2 Entrywise Approximation

For some small constant ¢ > 0, let b, b’ be as defined in Theorem 2. Under the
assumptions of Theorem 3, we have ¢y > b’ for ¢ sufficiently small, so that Theorem 2
applies. Recall the notation 1, ..., 84 defined in (45). For sufficiently small ¢ > 0,
we may also verify under the assumptions of Theorem 3 that §; = o(1) for each
i=1,2,3,4,and

8185 _ . 8383n _ (logn)*
<1, 5 =—,

and 83 <. (85)
n n Jn

We also assume throughout the proof that the high-probability event ||A|| < 2.5 holds.
Thanks to (36), we can approximate F(z) by

Fo=1 2 (86)
Y=0 mo(z +in) — mo(z — in)

and approximate X by

~

1 ~
g — L Re f F()RAG)IRE(z + in) 87)
2]T r

-1 1
= m f . .
n r mo(z +1in) —mo(z —in)

RA(2)JRp(z +in). (88)

The following lemma makes the approximation of X precise in the entrywise sense:

Lemma 12 Suppose (85) holds. On the high-probability event where Theorem 2 holds
and also ||A| < 2.5,

28
”}?c — X 52_ - (logn)”
o S =5 = ;
n nymn

(89)

where 8>, 83 are defined in (45).

Proof For notational convenience, put G(z) = 2i/(nF(z)) and 5(2) =2i/(n F (2)).
Note that | Im(z)| < n/2 for z € I', and thus Im(z + in) and Im(z — in) have different
signs. Therefore,

1G(2)| = Im G (2)| = | Immo(z +in)| + | Immo(z — in)| = 1,

where the last step follows from (31). Furthermore, by (36), we have sup . |G (z) —
G(z)| < 2C83. In view of (85), 83 < n. Hence, we have |G (z)| 2 n and

~ 16
sup [F(z) — F(2)| S - =
zell nn
FoE'ﬂ
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Finally, by (83) and (87), we have
(X = X = f 2| F(2) = F@)lled Ra@1]le] Rp(z +im1].
r

By (35), forall k, £, |e] Ra(2)1] < 824/ and |e/ Rp(z +in)1| < 84/n. Combining
the last two displays yields the desired claim. O

In view of the entrywise approximation, we may switch our attention to the approx-
imate solution X¢ and establish its diagonal dominance, assuming without loss of
generality . is the identity permutation. The proof parallels the analysis in Sect. 5 so
we focus on the differences. To make the scaling identical to the unconstrained case,
define

~

1
R L 56 FORADIRE( +in), (90)
27'[ r

with

2i
mo(z +in) —mo(z —in)’

f@) =

Compared with the unconstrained solution (16), the only difference is the weighting
factor f(z).

We aim to show that with probability at least 1 —n 2, for any constant D > 0, the
following holds:

1. For off-diagonals, we have
?ﬁ?'y’c“ < (logn)* /. /1. o1

2. For diagonal entries, we have

4(
Yir —

min
k

<™ 4 % 4 (ogny — 92)
N n Vi

In view of Lemma 12, this implies the desired (73) and (74). Finally, analogous to
Corollary 1, under the assumption (75) with constants ¢ = 1/(64C 2yand¢ =1 /20C),
for all sufficiently large n,

41—-0% 7 r(n) o1
—7”7 > % > <T + =+ 2(logn) ﬁ)

implying the diagonal dominance in (76).
Fo C 'ﬂ
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6.2.3 Off-Diagonal Entries

Let us first consider Yy». Recall that for z € I', we have |Im(z + in)| = n, |Im(z —
in)| 2 n, and these imaginary parts have opposite signs. Then,

—

2 2

If @) < . — = . — < -,
[Tmlmo(z +in) — mo(z — i1l [Immo(z + in)| + [Tmmo(z —im)| ~ 7
(93)
where the last step applies (31). Analogous to (52), we get
27Y), = Re (jﬁ @ [elTRA(z)l] [e;—RB(Z n in)l] dz)
I
8,82
:Re(a—ang—szh+a1Tsz>+0< 1 2”), (94)
n
where
e ?g f@mo(2)mo(z +in)dz, (95)
r
= f F@mo@mo(z +inR? ()1, dz, (96)
r
h2 f F@mo@mo(z +inRY?  +inl,-2dz, 97)
r
M2 f F@mo@mo(z +in R\ (2)I,-2RY? (z + indz. (98)
r

Here, the constant Re « is in fact equal to 27, which is consistent with the row-sum
constraints. Indeed, opening up mo(z) and applying the Cauchy integral formula, we
have

2i
Rea = Re p d - : +i
* 7{ Zmo(z+1n)—mo(z—ln)mO(Z)mO(z g
1 2i i
= /.p(x)dee%dz l.mO(Z_Hn) -
x — zmo(z +in) —mo(z — in)

2i mo(x +in) ]
mo(x +in) — mo(x —in)

2mo(x +in) _ B
m] = 2ﬂ/p(x)dx =27 (99)

= /p(x)dee [(—2ni)
:2n/p(x)dee[

As in Sect. 5.2.2, to bound the linear and bilinear terms, we need to bound the
{so-norms and £,-norms of g, h and M. Clearly, by (93), the £,,-norms are at most
an O(1/n) factor of those obtained in (61) and (62), i.e., |lgllcoc < 824/n/n and
Moo < S%n /1. The £2-norms need to be bounded more carefully. The following
result is the counterpart of Lemma 8:

FolCT
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Lemma 13 Assume the same setting of Lemma 8, and define M, g, and h as in (96-98)
with Ra, Rp in place ofR(lz) R(lz) Then, ||M||2 <n?/n, llgl* < nlog(1/n), and
171* < nlog(1/1).

Proof We start with ||M ||, as the arguments for | g|| and ||%| are analogous and

simpler. Recall the contour I"’ from Fig. 1. Proceeding as in the proof of Lemma 8,
we have

1
7\IMIIZF = —% dZ% dw mo(z)mo(z + in)mow)mo(w — in) f(2) f (w) x
n r r’

nMT(RA() = Ra)1 n~ 1T (Rp(z +in) — Rg(w — in)1
z—w z+in — (w —in)

- ﬁ_ dz ﬁ_, dw mg(2)mo(z + in)mo(w)my(w — in) f(2) f (w)

mq(z) —mo(w) mo(z+in) —mo(w — in)
—w z+in — (w —1in)

@
+ (1D,

where (II) denotes the remainder term. Applying (36), (93), and the boundedness of
my, the residual term is bounded as

1 53<1

~

< 9%
lz—w|lz+in— (w—ip| ~ n* ~ g
(100)

DI < 53% dzyg dwl f (I f (w)]
r r’

To control the leading term (I), let us define the auxiliary contours y with vertices
+(2 + 2n) = (/2)i and y’ with vertices £(2 + 1) % (n/4)i. By first deforming I'’
to y’ for each fixed z € I', then deforming I" to y, and finally taking the complex
modulus and applying |mg| < 1, we get

(D] < %dzf dw | f@|f (w )l‘ mo(z) — mO(w)‘ ‘mo(z—}—in)_mo(w_in)

z4+in — (w —in)

The reason for performing these deformations is that for any z € y Uy’, since Rez €
[—2—2n, 24+2n], we have from (31) that Im my(z+in) < /1 + {(z) and — Im mo(z—
in) =< /n+ ¢(z), where ¢(z) is as defined in Proposition 2. Then, we obtain from
(93) the improved bound | f(z)| < 1/4/n + ¢(z), and hence

1 1 mo(z) —mo(w) | |mo(z +in) — mo(w — in)
D < d d .
'()'”7% 273 YTt it | z-w H Ctin— (w—in

To bound the above integral, for a small constant ¢ > 0, consider the two cases
where |z —w| > ¢p and |z — w| < cg. For the first case |z — w| > ¢, we simply apply
lmo| S 1and /n 4+« > /7 to get that

567{ dzdw 1 1 mo(z) — mo(w) ’|
lz—w|=co Vn+¢@) /n+(w) Z—w

mo(z +in) — mo(w — in)
z+in— (w —in)

(101)

~

, .
FoE'ﬂ
@ Springer u.. jO E|



Foundations of Computational Mathematics

In the second case |z — w| < c¢p, we claim that for c( sufficiently small, we have

Imo(z) —mo(w)| < v/n+¢@ + vV + ¢w), (102)
Imo(z +in) — mo(w —in)| < v/n + @) + i+ ¢ (w). (103)

Indeed, if £ (z) > o, then (102) and (103) hold because /1 + £ (2) ++/1 + ¢(w) =< 1.
If instead ¢(z) < cop, say, Rez > 2 — cp, then from the explicit form (29) for m¢(z)
2— z+«/7

we get 1 +mo(z) = and hence

1 +mo@)| Sz =21+ VIz =2z +2[ = VIz =2 < V1 + ().

Furthermore, since Rew > Rez — |z — w| > 2 — 2¢(, we also have |1 + mg(w)|
1+ ¢(w). Then, (102) follows from the triangle inequality. The case of Re z
—2 + ¢p, and the argument for (103), are analogous.

Having established (102) and (103), we apply

AN

(VIFi@ + i+ i)’
v+ ¢@v/n+¢(w)
_ V1 Fmax@), L))
™V + min(Z(z), ¢ (w))
- A/ +min(Z(2), E(w)) + +/12(2) — ¢ (w)] 14 Vlz — wl
- Vi +min(Z (), ¢ (w)) - NI

to get

‘(ﬁ f d 1 ‘mo(z) mo(w) ‘ 'mo(z +in) — mo(w — in)
zdw - -
lz—w|<co Nn+t@ v+ T(w) Z—w 7 +1in — (w —in)

«/Iz—wl)
dzdw [ 1+
%fg—wlﬂo ‘ w< v |z —wllz + n—(w—ln)l

Then divide this into the integrals where |z — w| < 5 and |z — w| > 7, applying

1 1 1
ff dzdw - - §¢% dzdw — < -
lz—wl<n |z —wllz +in — (w — ”])| lz—w|<n n n

and

?{ 7§ dz dw Y2 !
n<lz—wl|<co NI lz — wllz +in — (w —in)|

1 ¢' 1 1 1 1
< — dzdw < — < - (104)
«/ﬁ n<|z—w|<co |z — w|3/2 \/_ \/_
Combining with the first case (101), we get [(I)] < 1/#. Finally, combining with
(100), we get [|M |13 < n?/n as desired.
FoE'ﬂ
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Next we bound || g||. Proceeding as in the proof of Lemma 8 and following the same
argument as above, we get

8
e < 55 dzf aw 7@ o <U_§>

1 |mo(z) — mo(w)| (53>
d +0|—=).
5£ Z7§ ¢n+c(z> NEROEET] 7

For |z — w| > ¢o, we have

7§ f d ! L Imo() — mo(w)|
zdw
lz=—w|>co V4@ v+ t(w) lz — w]|

(e ) (F o) =

For |z — w| < co, we apply |mo(z) —mo(w)| S /1 + ¢ () + +/n+ {(w) as above,
so that

?gyg y 1 1 |mo(z) — mo(w)]
zdw
lz—w|<co N+ ¢(@2) /i + ¢ (w) |z — w]

1 1 1 1
< d d d d
”7§ Z¢n+;(z>¢ w|z—w|+7{ an+;(w_>7€ =l

< log(1/n) - < log(1/m).

1 1
d—— + P dw——
<f Z¢n+c_(z>+7€ w¢n+c<_w>)

Combining the above yields lgll? < nlog(1/n). The argument for |2 ]|% is the same
as that for || g||2. m]

Finally, proceeding as in (55)—(56) and using the preceding norm bounds, we obtain
from (94):

dgn | 8i8n _ &in
== (logn) / ’
G Vi

with probability at least 1 — n~?, for any constant D. This implies the desired (91)
by the union bound.

1
Y12l S 14684 nlog + —

6.2.4 Diagonal Entries

We now consider Y. Following the derivation from (66) to (67) and using Lemma
13 in place of Lemma 8, we obtain, with probability at least I —n~? for any constant
Da

2
1 =07 pe M) ,S(logn)'(%, (105)

Fo C 'ﬂ
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where
M2 §. f@mo@moz+imRY IR (2 +in)dz.

The trace is computed by the following result, which parallels Lemma 9 and Lemma
10:

Lemma 14 Suppose 83 < n?. Assume the setting of Lemma 9. Define

M = ?g f(@mo(2)mo(z +in)Rs(2)JRp(z + in)dz.
r

Then,

1 8 + 0, (1 5
2 Te(M) = +0”()+0<0+23).
n n n

Proof Analogous to (70), we have % Tr(M) = (I) — (II), where
1 1
@M= - ygr f@mo(z)mo(z + iﬂ)r_llT(RB(Z +in) — Ra(2))1dz
1 1
an = . ﬁ f@mo(z)mo(z + in)leRB(Z +in)(A — B)Ra(2)1dz.

To bound (II), consider two cases:

— For z € I" with | Im z| = n/2, by the Ward identity and (36), we have
2 T n
[Ra(1]" = ;Ilml Ra1 S ;(Ilmmo(Z)l + 0(83)).
and similarly,
. 2 n .
[Rp(z+ i1~ S ;(I Immo(z +in)| + 0(83)).

Thus, it holds that

TRy +im (4 = BIRA@1| ? (ViTmmo(@) Tmmoz +in)] +/33)

Using (31) and (93), we conclude that

)] < 2J/[Immo(z) Immo(z +in)|
U= Tmmoz +im| + [Immo(z —in)|

| £ (2)|y/1Tm mo(z) Tm mo(z +

forall z € I with |Im z| = n/2.
Elol:;ﬂ
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— For z € I" with Re z = £3, since ||A|| < 2.5,
no.

1TRp(z +in(A — B)Ra()1| <

Furthermore, by (93), | f (2)| < % forall z € I". Combining the above two cases yields
Nz
|(H)|§%(1+—3)+3x%,
n n n n

since 83 < 5 by the assumption.
For (I), applying (36) again and plugging the definition of f(z) yields

mo@+im) —mo@ <5_%>
mo(z +1in) —mo(z —in)

2
@O = —7{ mo(z)mo(z + in) 3
nJr n

We now apply an argument similar to that of Lemma 10: Note that
Imo(z +in) — mo(z — in)| = Im(mo(z +in) —mo(z —in) Z n

by (31), so the integrand is bounded for fixed 1. Then deforming I to I, with vertices
+(2 + &) £ ie, taking ¢ — O for fixed 5, and applying the bounded convergence
theorem, we have the equality

mo(z +in) — mo(z)
mo(z +in) —mo(z — in)

mo(x +in) — mg (x)
mo(x +in) —mo(x — in)

mo(x +in) —mg (x)
mo(x +in) — mo(x — in)

7§ mo(z2)mo(z + in)
r

-2
= /2 mg (xmo(x + i)

dx. (106)

2
+/ mq (x)mo(x + in)
-2

We show that these integrands are uniformly bounded over small 7: For any constant
8 > 0 and for |x| < 2 — §, we have the lower bound

Imo(x +in) — mo(x —in)| = 2Immo(x +in) 2 V2(x) +n =8 (107)

Then, the above integrands are bounded by C/\/S for |x| <2—4§.For|x| € [2-34, 2],
let us apply

Imo(x +in) —mg ()] < V/¢(x) +1

as follows from (102) and taking the limit w € C* — x. We have also |m(‘)F (x) —
my (x)] < £/¢(x) < 4/¢(x) + 1, so that

Imo(x +in) —my ()] < V¢(x) + 1.

Combining these cases with the first inequality of (107), we see that the integrands of
(106) are uniformly bounded for all small 7.

FolCT
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Now apply the bounded convergence theorem and take the limit  — 0, noting that
lim, .0 mo(x + in) = mg (x) and lim, .o mo(x — in) = mg (x). We get

mo(z + in) — mo(z)
mo(z +1in) —mo(z —in)
2 FoN - 2
- /zmg(x)mg(x)wdx :/ mg (x)2dx = 4.

mar(x) —mg (x) -2

limfig mo(z2)mo(z + in)
n—0Jr

This gives (I) = (8+0,(1))/n+ 083/ ). Combining with the bound for (II) yields
the lemma. O

Finally, combining (105) with Lemma 14 and §3 < n from (85), and applying a union
bound yields the desired (92).

7 Proof of Resolvent Bounds

In this section, we prove Theorem 2. The entrywise bounds of part (a) are essentially
the local semicircle law of [12,Theorem 2.8], restricted to the simpler domain {z :
dist(z, [—2, 2]) > (logn)~%} and with small modifications of the logarithmic factors.
The bound in (b) follows from (a) using a straightforward Schur complement identity.
The bound in (c¢) is more involved, and relies on the fluctuation averaging technique
of [12,Sect. 5]. We provide a proof of all three statements using the tools of [12].

For each statement, it suffices to establish the claim with the stated probability for
each individual point z € D. The uniform statement over z € D then follows from a
union bound over a sufficiently fine discretization of D (of cardinality an arbitrarily
large polynomial in n) and standard Lipschitz bounds for m and R j; on the event of
|A] < 2.5—we omit these details for brevity.

7.1 Notation and Matrix Identities

In this section, for S C [r], denote by AS) € R™™" the matrix A with all elements in
rows and columns belonging to S replaced by 0. Denote

R¥(z) = (A® —zD~ ' e C™.

Note that R®(z) is block diagonal with respect to the block decomposition C" =
CS @ C"I\S, with S x S block equal to (—1/2)I;s; and ([n] \ S) x ([n]\ S) block
equal to the resolvent of the corresponding minor of A. (We will typically only access
elements of R in this ([n] \ ) x ([n]\ S) block, in which case R ) may be understood
as the resolvent of the minor of A.)

For i € [n], we write as shorthand

($)

is={ijus, Y = > .
kK kelm\S
Elol:;ﬂ
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We usually omit the spectral argument z for brevity.

Lemma 15 (Schur complement identities) For any j € [n],

()
— =ajj—z— Y iR ;. (108)
Rjj v
Forany j # k € [n],
) , , Uk "
Rjx = —Rjj ) ajeRy = RjjRy | —aju+ Y ajeRg ame | (109)
14 L,m
Ry
el R =e¢] RV +R—"_J_ “e] R, (110)
JJ
o) W) ‘
R Rki Rkl/c R;j Rk
Forany j, k, ¢ € [n] with j ¢ {k, £},
Rie = RY) + 220 (112)

Rjj
These identities hold also for any S C [n] with R replaced by RS and with j, k, £ €

[n]\ S.

Proof For all but (110), see [11,Lemma 4.5] and [13,Lemma 4.2]. As for (110), it
is equivalent to verify that (112) holds also for £ = j, which simply follows from
R,E‘]’.) = 0, due to the block diagonal structure of R/, O

7.2 Entrywise Bound

We say an event occurs w.h.p. if its probability is at least 1 —e~¢(°¢ ' for a universal
constant ¢ > 0. Let us show that (33) and (34) hold for z € D w.h.p.

We start with (34). Note that the jthrow {a : k € [n]} is independent of AW and
hence R, Applying (108), (22), and (25) conditional on AY), w.h.p. for all j,

%) 0 U

J J

=laj; — Y ajR a; + - > Ry
kL k

1 21RD R
(logmy:+2 (_ 2Rl IRDUF

IA

il Ja "
EOE';W
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Note that [|[RD |00 < [RD ], [RD|F < /n||[RD|, and d < n. For z € Dy and any
S C [n], we have |R®)| < 1/|Imz| < (logn)®. For z € D,, we have |[R®| < 10
on the event ||A|| < 2.5, which occurs w.h.p. by Lemma 3. Then in both cases, we get

() 242e+a
1 1 (h| - (ogn)
+z4+-) RIS —F—. (113)
Rjj n Xk: . Vd

Since |z| < 10, [RY| < (logn)?, and d > (logn)*+*, this implies 1/|R;;| <

(logn)®. Let m, (z) = n~ ! Tr R(z) be the empirical Stieltjes transform. Then,
19
- R
i =~ Zk: kk

()

1 1 ;
=|-Rjj + — Z (Rkk — Rl({i))
n n <
2 T p2
(112) 12@ _ e RIT_IIRI? _ (ogm)™
n < Rj; nlRj;| — nlR;;j| ™~ n
Using d < n and combining with (113), w.h.p. for all j,
1 logn 242¢e+a
L itm,| g le T (114)
Rjj Vd

Then by the triangle inequality, also w.h.p. for all j # k,

1 1 - (logn)2+2£+a
Rjj Rk vd ’
SO
M —1‘ = |n! Ria = R;j §max‘—Rkk_Rjj
Rjj Rjj Rjj
1 lo 2+42¢e+42a
k Rjj  Rik Vd

For d > (log n)*+4+4¢  this implies %|Rjj| > |my| > |R;;1/2 w.h.p. forall j. Then
also

‘L_L — |Rjj — mal < |Rjj — Ryl < 2|Rjj_Rkk|
Rjj  mn IRjjllmal — &k |Rjjllmal ~ k  |Rjj|| Rl
1
=2max |— — —|,
ko |Rjj Rk
FoCT
|_| o
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SO

2+42e+a
_ (ogn)

‘L_L (logm)™ (115)
~ Vd

Rjj my

Combining with (114), w.h.p. we have

1 logn 2+42¢e+a
—+z+m, =1y, |rn|§L

mpy \/2

Solving for m,, yields

< (logn)™“.

€ —z+rn:l:\/z22—4—2zrn+r,%

where the right side denotes the two complex square roots. Note that |z> —4| = |z —2|-
|z+2| 2 (logn)~%|z|and |z] > (logn)~®forallz € D.Then,as (logn)™ > |r,|, we
have |22 — 4| > |zra| > |ral% Letting mg be the Stieltjes transform of the semicircle
law, and letting g = 1/mg be the other root of the quadratic Eq. (30), we obtain by
a Taylor expansion of the square root that

(116)

. ~ |z] 7]
min — — <|rll1 <
(Imp — mol, Im, — mol) Sral ( + N —4|>N\/§(z) gk

where ¢ (z) is as defined in Proposition 2.

To argue that this bound holds for |m, — mg| rather than |m,, — nig|, consider first
z € Dy withIm z > 0.Inthis case m,, € C4 andmg € C_. Furthermore, note that (31)
implies Im mo(z) > (Imz)/+/Z(z) + Imz, and hence Im iy = —(Im mg)/|mo|*> <
—c(logn)™*//T(z) + Imz. Since Imm,, > 0 and |r,| < (logn)~¢, (116) must hold
for |m, —myg| rather than |m, —nig|. The same argument applies forz € Dy withImz <
0.Forz € Dy, wehave ||my(z)|—1| > c and hence |m((z) —niy(z)| > c for a constant
¢ > 0. Consider the point 77 € D; N D, with Rez’ = Rez and Imz’ = (logn) 7.
Note that for all z € D>, |j—zmo(z)| < 1 and, on the event ||A]| < 2.5, |dd—zmn(z)| <1
also. Thus |mo(z) —mo(z)| < C(logn)~* and |m, (z) —m,(z')| < C(logn)~“. Since
we have already shown that (116) holds for |m,(z) — mo(z’)| in the previous case,
this implies also that (116) must hold for |m, — mq| rather than for |m,, — ng|.

Applying [Im z| > (logn)™¢, (116) yields w.h.p.

(log n)2+2£+3a/2
my — mol| < (logn)®?|ral < — (117)
Recalling (115), |Rj;| < (logn)“ and |m,| < %|Rjj|, we get
(log n)2+28+a (log n)2+2£+3a
IRjj —mul S |RjjlImy] - S (118)
JJ n JJ n \/Z \/E
EOE';W
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Combining the last two displayed equations gives the weak estimate

(log n)2+28+3a

Vd

Since d > (logn)*+4+6¢ by assumption, this and |mo(z)| < 1 imply |R;;| < 1
w.h.p. Then, applying the last display and (117) to the first inequality of (118) yields
the desired estimate

[Rjj —mol <

)2+26-+3a/2
Vd

To show (33) for thg off-diagonals, we now apply (109), (22), (26) conditional on
RUP, IR, S 1 IRY| S 1, IRUP|le < (logn), [RUV|p < u(logn), and
d < nto get w.h.p.

(logn
IRjj —mol < |Rjj —myu|+ |my, —mo| <

(jk)
/ k
|Rjk|=|Rjj||R,,2<)| a/k+za]lR(j)
l,m
< (10gn)2+28 L 2IRVP || IRYP || - (log n)2t2eta .

7.3 Row Sum Bound

We now show that (35) holds for z € D w.h.p. Set
() (i)

z 2 Za,kR(’) > ai (¢ R1) (119)
k

where the last equality holds because R(l) = 0 for k # i. Applying (109),

eiTRl = ZRij = R,’i — R,’l'Zi.
J
Then applying (34), w.h.p. for every i € [n],
‘ejm’ <1412 (120)

Applying (23) conditional on A®), w.h.p. for every i € [n],

maxy; le] RO N YD lel RO

Zi| < (logn)'*®
|Zi] < (logn) Ji "

(121)

Fo C 'ﬂ
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For the second term above, we apply |R?)| < (logn)® w.h.p. to get
(@) 2 -
3 ‘ekTRUH‘ <1TRORDT < (log n)*n. (122)
k

For the first term, we apply (110), (33), and (34) to get, w.h.p. for all k # i,

C (log n)2+28+a

Vd

Ri:
e/ R1— K -e] R1
R::

2]

’e,;rR(i)ll = < ’ekTRl‘ +

eiTRl‘.

(123)

Applying d >> (logn)*t#+24 and substituting (122) and (123) into (121) and then
into (120), we get that

maxj |ekTR1|

Vd

el-TRl‘ <1+ (logn)'*® ( + (logn)“) (124)

Taking the maximum over i and rearranging yields (35).

7.4 Total Sum Bound

Finally, we show that (36) holds with probability 1 — e~c{ogm(loglogn) for » e D As
above, we set

) )
Z = ZaikR]g/) = Zaik (e,jR(i)l) : (125)
ok k

Note that if we apply (122), (123), and (35) to (121), we obtain w.h.p. that for every
i €[n],

1Zi] < (logn)! e+, (126)

The main step of the proof of (36) is to use the weak dependence of Zi, ..., Z, to
obtain a bound on n~! >, Zi thatis better than (log n) I+et+a The idea is encapsulated
by the following abstract lemma from [12].

Lemma 16 (Fluctuation averaging) Let & be an event defined by A, let Zy, . .., Z, be
random variables which are functions of A, let p be an (n-dependent) even integer, and
let x, y > 0 be deterministic positive quantities. Suppose there exist random variables
Zl[U], indexed by U C [n] and i € [n]\ U, which satisfy le] = Z; as well as the
following conditions:
(i) Let a; denote the i" row of A. Then Zl[U] is independent of {a; : j € U}, and
E; [ZI[U]] = 0 where E; is the partial expectation over only a;.
EOE';W
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(i1) Forany U C S C [n] with |S| < p, and for any i ¢ S, denote u = |U| + 1 and

22V = N (T2, (127)
T:-TCU

Then for a constant C > 0 and any integer r € [0, p],
o | =s.u|” ny
E|1{Z}|Z; <(y(Cxw)") .
Furthermore,

x < 1/(p°logn).

(iii) Let A C R"™" be the matrices satisfying &, i.e, & ={A € A}. Let A; = {B €
R 2 BO = AD for some A € A}, and define the event E; = {A € A;}. For

2
Zl.S’U’ :| < nr,

a constant C > Q0 and any U, S, i as above, E |:]l{E,-}

(iv) For a constant C > 0 and any U C [n], 1{ZE} ‘ZEU]‘ < yn€.
(v) Foraconstante > 0, P[E]>1 — e—clogm)!*ep.

Then for constants C', ng > 0 depending on C, & above, and for all n > ny,

IP’[IL{E}

n! ZZ,’

1

= p'y (¥ + nl)} =(C/p)".

Proof See [12,Theorem 5.6]. (The theorem is stated for 1 4+ & = 3/2 in condition (v),
but the proof holds for any ¢ > 0.) O

The important condition encapsulating weak dependence above is (ii). Applying
(i1) with U = (¢, the condition requires first that each |ZES] |, and in particular each
|Zi| = |le] |, is of typical size Cxy. In the application of this lemma, for § = U and
i ¢ U, we will define the variables Zlm for § € V C U such that the quantity Zf]’U
in (127) is the variable Z; with its dependence on all {a; : j € U} projected out by an
inclusion—exclusion procedure. Then, condition (ii) requires that Z; depends weakly
on{a; : j € U}, in the sense that |ZfJ’U| is of typical size x/VI* 1y . (C(|U |+ 1))IVIF],
which is roughly smaller than | Z;| by a factor of x|U | for each element of U. Assuming
1//n <« x < p~'2, the above then estimates the average [n~! > Zil to be of the
smaller order p'2yx? « xy. We refer the reader to the discussion in [12] for additional
details.

We will check that the conditions of this lemma hold for Z; as defined by (125),
with the appropriate construction of variables Zl[.U]. To this end, we first extend (33),
(34), and (35) to R® for |S| < logn in the following deterministic lemma:

FoC'T
e,
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Lemma 17 Suppose (33), (34), and (35) hold with the constant C = Cy for a deter-
ministic symmetric matrix A, some z € D, and all j, k € [n]. Then for all S C [n]
with |S| <logn, and all j # k € [n]\ S,

2Co(lo n)2+28+3a
IR @) — mo()] < =28 R (128)
2Cy(lo n)2+28+a
IR @) < % (129)
lel R®) (2)1] < 2Cologn)'*ete, (130)
J

Proof For integers s > 0, let

Ad = max [IRS) = mol : 15| =5, j e nl\ 5},
Agzmax{|R§?|: S| = s, j;éke[n]\S].
When (33) and (34) hold, we have that A? < Co(logn)>+t26+3¢//d and A? <

Co(logn)*t26+a//d for s = 0. By (112), we have foreach s > 1 and x € {d, o0} that

(A2)?

S AT —

(131)

Assume inductively that for some s < logn,

Ad - Co(log n)2+28+3a (1 4C0(10g n)2+28+a )‘Y
s = ,

Vd lmo|v/d
Co (log n)2+25+a <1 4Cy (log n)2+2£+a )S
vd jmolv/d '

A9 < (132)

Applying d > (logn)®t4+2¢ |mg| > ¢, and s < logn, this implies in particular that

J . 2C) (log n)2+25+3a 2C()(10g n)2+28+a ‘

CT Vd ’ Vd

We then have |mg| — A9 > |mg|/2 for d >> (log n)*+4+6¢ 50 (131) yields

o
A2 <

2A9
A, < max(A], AY) <1 + S) < max(Ag, A7) (1 +

4C (lOg n)2+28+a )
lmol

lmol/d

Thus, both bounds of (132) hold for s + 1, completing the induction. This establishes
(128) and (129).
To show (130), set

I, = max{le;-rR(S)ll DSl =s, j¢S}h
EOEE
@ Springer =CE



Foundations of Computational Mathematics

When (35) holds, Iy < Co(logn)! ¢4, Applying (110) and the bound |mq| —
|mo|/2, we have

9) 4Co(log n 2+2&+43a
Lt < (1+24%/ImoD T | <1+ otlogn) )Fs,

lmolv/d
Thus, Iy < 2Ip forall s < logn. |

Lemma 18 Fix z € D. Let Z; be defined in (125). For U C [n] not containing i,
define

@) @u)

ZIUI Zal R(’U) Zak( TR(zU)l)

Let E be the event where

— (33), (34), and (35) all hold at z, for all distinct j, k € [n],
— laij| < 1foralli, j € [n], and
- Al <2.5.

Let p € [2, (logn) — 1] be an even integer, and set

(IOg n)2+28+a , .
x=—2M_  y_ c'Vdogn)
Va

for a sufficiently large constant C' > 0. Then, all of the conditions of Lemma 16 are
satisfied.

Proof Condition (i) is clear by definition, as row a; of A is independent of R¢").
To check (ii), note first that the bound x < 1/(p’logn) follows from d >
(logn)10+4e+2¢ For U € Sandi ¢ S we write

S\U)uT
Zis,U _ Z (_1)|T|Zl[( \U)UT]
T:TCU
(ES\U)UT)
— Z ( 1)|T| Z a: k(eTR((IS\U)UT)l)
:TCU k
— Zaik Z (_l)lTl(ekTR((iS\U)UT)l)
keU T: TCU\{k)
@S)
+Zaik Z (_1)\T\(e;{|'R((lS\U)UT)1)
k T:TCU
@S)
£ anay + Zazkﬂk
keU
Fol:'ﬂ
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We claim that deterministically on the event =, there is a constant C > 0 such that
for any W, V C [n] disjoint with [W U V| <logn, and anyi ¢ W U V, we have

3 (elTR(VU”l) < F(Cxw)®, (133)
T:TCW

where w = |W| + 1, x = (logn)*t%%¢//d, and § = C+/d(logn)~'=%. We will
verify this claim at the end of the proof. Assuming this claim, we apply it above with
V =iS\ U andeither W = U or W = U \ {k}. Then setting u = |[U| + 1 > w, we
have on & that

o] < ¥(Cxw)Y!, Bl < F(Cxuw)VITL (134)

Let r be any even integer withr < p < (logn) — 1. As ok, B are independent of row
a; of A by definition, we have for the partial expectation E; over a; that

5 [us1 |27
() '
=E | &) |D awox + Y aibr

keU k
< I{jox| < ¥(Cxw)!Y and |Bi| < F(Cxu)'V*! for all k}

iS) "

Ei | Y ainaw + Y ainpr
keU k
We apply (24) for the conditional expectation E;, with v having entries vy = oy for
ke U, v, = B fork ¢ iS, and vp = 0 otherwise. Recall that w < |[U| < |S]| < logn.
Since Cxw < 1 and |U|(Cxw)?Y! « (n — |U|)(Cxw)?Y1*2 by the definition of x
and d < n, the bounds (134) imply
oo < F(Cx)V, ol < V2n - F(Cxw) VI

Then for a constant C’ > 0, (24) gives
— s,ul” /o~ u\r
E; [ll{a} ’zl. ) ] < (C'r¥(Cxu)"y .

Then, taking the full expectation and setting y = C’(logn)y > C'ry (sincer < p <
log n) yields condition (ii).

FolCT
H_ A
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For condition (iii), we have

=z 22

— S
SZ‘U\ Z E[]l{:‘l}lzll( \U)UT]|2]

T:TCU
(ES\U)UT)
— 2lU] Z Z Elaixair |E []I{Ei}(e;'R((tS\U)UT)1)(e;:R((tS\U)UT)1)]
T:TCU kK
(ES\U)UT) _ )
=2 Y Y EWE [11{5,-} ef RS\ } ,
T:TCU  k

where the second line applies the independence of a; and A, Note that on 5;, we have
A9 < 2.5. Then, applying |U| < logn, the norm bound || R(S\DUD) || < (log n)*
on &;, and E[a?k] < Cz/n, we get (iii). For (iv), we apply the condition |a;;| < 1 by
definition of Z, together with the bound || R?Y)| < (logn)® on &. Finally, (v) holds
by the probability bound of 1 — e=¢1°2™"** egtablished for (33), (34), (35), (22), and
in Lemma 3.

It remains to establish the claim (133). For W = @, this follows from (35). Assume
then that w > 1, and write W = {1, ..., jw—1} (in any order). For a function f :
R"™" — C and any index j € [n], define Q; f : R**"* — Cby

(Q; )(A) = f(A) — f(AD).

Note that if f is in fact a function of A®, ie., f(A) = f(A) for every matrix
A € R™" then Q; f(A) = f(A®) — f(AUD). Fix i and V, and define f(A) =
e RY)1. This satisfies f(A) = f(A")) for every A. Then by inclusion—exclusion,
the quantity to be bounded is equivalently written as

> DT RVDL) = (0,1 - 001 f) (A).

T:TCW

We apply Schur complement identities to iteratively to expand Q;, ... Qj f:
First applying (110), we get

. v 1
0 f(A) =] RVT— ] RIVI = RV . Lol RV,

Jii

Then applying (110), (111), and (112) to the three factors on the right side above, and
using the identity

xyz —=XyZ2 =xy(z—=2) +x(y — )T+ & — x)Z,
Elol:;ﬂ
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we get

V)
0O _ pM 1 2 T p(V) V)
QJ2Q11f(A)—Rij1 ") ( V) e R +Rij1'
Jiji J2J2
2
(R(.V,))
] ) TRV
R(./'zV)R(V) R(V) J1
Juiv it
V) p(V)

N / 1 )

ip it CoT p(2V)

+ RV RV e; R2TL
22 Jij1

Applying (112), (111), and (110) to each factor of each summand above, and
repeating iteratively, an induction argument verifies the following claims for each
te{l,...,w—1}:

- Qj,...Qj f(A) is a sum of at most ]_[2;11 4s summands (with the convention
]—[gzl 4s = 1), where

— Each summand is a product of at most 4¢ factors, where

— Each factor is one of the following three forms, foraset S € V U W: R;i) for

j. k ¢ S distinct, or 1/ R;f) for j ¢ S, or e]TR(S)l for j ¢ S. Furthermore,
— Each summand of Q;, ... O}, f(A) satisfies: (a) It has exactly one factor of the
form e]TR(S)l. (b) The number of factors of the form 1/ R;f) is less than or equal

to the number of factors of the form R;i) for j # k. (c) There are at least ¢ factors
S .
of the form R;. k) for j # k.
Finally, we apply this with # = w — 1 and use the bound

t—1

1_[4s < (dw)".

s=1

By Lemma 17, since |W U V| < logn, we have IREi)I < C(logn)?t2eta ) /d,

|R;.f.)| > |mol/2, and |e}—R<S)1| < C(logn)'*#+ on the event Z. Thus, we get
C(logn)2+2€+a
Vd

for x = (logn)>*%+4//d and § = C+/d(logn)~'~¢, as claimed. m|

We now show (36) holds for z € D with probability 1 — e~c(ogmoglogn) ‘The
diagonal bound (34) implies

w—1
1Qj,1 -+ Qi (A= @w)" - ( > - C(logn)' T+ <5(C'xw)”

Cn(log n)2+28+3a/2

Vd

[TrR —n-mg| < (135)
EOE';W
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To bound the sum of off-diagonal elements of R, we apply (109) to write
Y Riu=-) RiZi=-mgy Zi—Y (Ri—moZ. (136)
i#k i i i

Applying (34) and (126) yields

Cn(log n)3+38+5a/2

Vd

> IR —mo)Zi| < (137)

Then applying Lemma 16 with x, y, Z as defined in Lemma 18 and with p being the
largest even integer less than (logn) — 1, we have

C(lOg I’l) 16+3e+2a

< C(logn)"? - Vd(logn)~* - (logn)*T4+2 14 < Wi

1{5}

n_l ZZ,'

l

(138)

with probability 1 — e—¢(logmloglogn) gince 1TR1 = Tr R + > 4k Rik, multiplying
(138) by n - mo and combining with (135)—(137) yields (36).
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