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Abstract
Graph matching aims at finding the vertex correspondence between two unlabeled
graphs that maximizes the total edge weight correlation. This amounts to solving a
computationally intractable quadratic assignment problem. In this paper, we propose
a new spectral method, graph matching by pairwise eigen-alignments (GRAMPA).
Departing from prior spectral approaches that only compare top eigenvectors, or eigen-
vectors of the same order, GRAMPA first constructs a similarity matrix as a weighted
sum of outer products between all pairs of eigenvectors of the two graphs, with weights
given by a Cauchy kernel applied to the separation of the corresponding eigenvalues,
then outputs a matching by a simple rounding procedure. The similarity matrix can also
be interpreted as the solution to a regularized quadratic programming relaxation of the
quadratic assignment problem. For the Gaussian Wigner model in which two complete
graphs on n vertices have Gaussian edge weights with correlation coefficient 1 − σ 2,
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we show that GRAMPA exactly recovers the correct vertex correspondence with high
probability when σ = O( 1

log n ). This matches the state of the art of polynomial-time
algorithms and significantly improves over existing spectral methods which require
σ to be polynomially small in n. The superiority of GRAMPA is also demonstrated
on a variety of synthetic and real datasets, in terms of both statistical accuracy and
computational efficiency. Universality results, including similar guarantees for dense
and sparse Erdős–Rényi graphs, are deferred to a companion paper.

Keywords Graph matching · Quadratic assignment problem · Spectral methods ·
Convex relaxations · Quadratic programming · Random matrix theory

Mathematics Subject Classification Primary 90C25 · Secondary 68Q87

1 Introduction

Given a pair of graphs, the problem of graph matching or network alignment refers to
finding a bijection between the vertex sets so that the edge sets are maximally aligned
[13, 22, 43]. This is a ubiquitous problem arising in a variety of applications, including
network de-anonymization [51, 52], pattern recognition [13, 60], and computational
biology [37, 63]. Finding the best matching between two graphs with adjacency matri-
ces A and B may be formalized as the following combinatorial optimization problem
over the set of permutations Sn on {1, . . . , n}:

max
π∈Sn

n∑

i, j=1

Ai j Bπ(i),π( j). (1)

This is an instance of the notoriously difficult quadratic assignment problem (QAP)
[11, 53], which is NP-hard to solve or to approximate within a growing factor [47].

As the worst-case computational hardness of the QAP (1) may not be representative
of typical graphs, various average-case models have been studied. For example, when
the two graphs are isomorphic, the resulting graph isomorphism problem can be solved
for Erdős–Rényi random graphs in linear time whenever information-theoretically
possible [9, 17], but remains open to be solved in polynomial time for arbitrary graphs.

In “noisy” settings where the graphs are not exactly isomorphic, there is a recent
surge of interest in computer science, information theory, and statistics for studying
random graph matching. Algorithmic approaches have been developed based around
ideas of linear and convex relaxation [1, 2, 27, 67, 71], message passing and Bayesian
inference [7, 54, 57], matching subgraphs and subtrees [6, 30], matching vertex signa-
tures constructed from vertex degrees [19, 20, 48, 49], and spectral analyses [25, 63,
64]. A theoretically oriented subset of this literature seeks to understand guarantees
for recovery of a true latent matching in a random graph model, as initiated in [55]. We
review below several such results that are most comparable to our current work. In this
context, information-theoretic lower bounds and fundamental limits for recovery were
studied in [14–16, 28, 31, 58, 68]. Variations of this problem with an initial known set
of “seed” matches have also been studied in [38, 46, 50, 52, 62, 70].
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1.1 RandomWeighted GraphMatching

In this work, we study the following random weighted graph matching problem: Con-
sider two weighted graphs with n vertices, and a latent permutation π∗ on {1, . . . , n}
such that vertex i of the first graph corresponds to vertex π∗(i) of the second.
Denoting by A and B their (symmetric) weighted adjacency matrices, suppose that
{(Ai j , Bπ∗(i),π∗( j)) : 1 ≤ i < j ≤ n} are independent pairs of positively correlated
random variables. We wish to recover π∗ from A and B.

Notable special cases of this model include the following:

– Erdős–Rényi graph model: (Ai j , Bπ∗(i),π∗( j)) is a pair of correlated Bernoulli
random variables. Then, A and B are Erdős–Rényi graphs with correlated edges.
This model has been extensively studied in [6, 14, 16, 19, 20, 39, 44, 46, 56].

– Gaussian Wigner model: (Ai j , Bπ∗(i),π∗( j)) is a pair of correlated Gaussian vari-
ables, for example, Bπ∗(i),π∗( j) = Ai j + σ Zi j where σ ≥ 0 and Ai j , Zi j are
independent standard Gaussians. Then, A and B are complete graphs with cor-
related Gaussian edge weights. This model was proposed in [20,Section 2] as a
prototype of random graph matching due to its simplicity, and certain results in
the Gaussian model may be expected to carry over to dense Erdős–Rényi graphs.

Spectral methods have a long history in testing graph isomorphism [4] and the graph
matching problem [64]. In this paper, we introduce a new spectral method for graph
matching, which is described in Sect. 1.2. The algorithm may also be interpreted as a
regularized convex relaxation of the QAP program (1), and we discuss this connection
in Sect. 1.3. The following result gives sufficient conditions for our algorithm to
achieve exact recovery in the Gaussian setting.

Theorem (Informal statement) Under the Gaussian Wigner model, if σ ≤ c/ log n for
a sufficiently small constant c > 0, then a spectral algorithm recovers π∗ exactly with
high probability.

This noise tolerance of σ ≤ c/ log n matches the guarantee of the degree pro-
file method proposed in [20], which is the state of the art among polynomial-time
algorithms for Gaussian models. It improves over the noise tolerance of several sim-
pler spectral matching algorithms, discussed in more detail below, which require
σ = O( 1

poly(n)
) (see [29], for example) as opposed to σ = O( 1

log n ) for our pro-
posal.

In a companion paper [24], we apply resolvent-based universality techniques to
establish similar guarantees for our spectral method on non-Gaussian models, includ-
ing dense and sparse Erdős–Rényi graphs. For example, we show in [24] that this
same spectral method achieves exact recovery of π∗ for correlated Erdős–Rényi
graphs with any marginal edge probability p ≥ polylog(n)/n and edge correla-
tion s ≥ 1 − 1/ polylog(n). This is similar to a guarantee for a polynomial-time
degree profile method of [20] which requires p ≥ (log n)2/n and s ≥ 1 − 1/(log n)2,
and may be contrasted with the nO(log n)-time guarantee of [6] for edge probabilities
p ∈ [n−1+o(1), n−1+ε] ∪ [n−1/3, n−ε] under a much weaker correlation assump-
tion s ≥ (1/ log n)o(1). Polynomial-time methods for achieving exact recovery when
s ≥ 1−1/poly(log log n) were proposed for sufficiently sparse graphs in [20] and both
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sparse and dense graphs in [49]. Since the initial posting of our work, a polynomial-
time algorithm (which is more related to the degree profile method [20] than the present
spectral method) has been developed in [48] for a range of graph sparsities under the
correlation condition s ≥ s0, for a constant s0 sufficiently close to 1.

The insights of our spectral algorithm are less tailored to specific details of the
Gaussian Wigner or Erdős–Rényi models than some of the alternative algorithmic
ideas developed in this line of work. We provide numerical evidence in Sect. 4 that
our method performs well on other random graph models and on more realistic graph
matching applications. Our proofs here in the Gaussian model are more direct and
transparent than the techniques we apply in [24], using instead the rotational invariance
of A and B, and yielding stronger guarantees in terms of precise logarithmic factors.
A variant of our method may also be applied to match two bipartite random graphs,
which we discuss in Sect. 2.3. This is an extension of the analysis in the non-bipartite
setting, which is our primary focus.

1.2 A New Spectral Method

Write the spectral decompositions of the weighted adjacency matrices A and B as

A =
n∑

i=1

λi ui u
�
i and B =

n∑

j=1

µ jv jv
�
j (2)

where the eigenvalues are ordered1 such that

λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn .

Our new spectral method is given in Algorithm 1, which we refer to as graph
matching by pairwise eigen-alignments (GRAMPA). Therein, the linear assignment
problem (5) may be cast as a linear program (LP) over doubly stochastic matrices, i.e.,
the Birkhoff polytope (see (13)), or solved efficiently using the Hungarian algorithm
[40]. We advocate this rounding approach in practice, although our theoretical results
apply equally to the simpler rounding procedure matching each i to

π̂(i) = argmax
j

X̂i j . (6)

We discuss the choice of the tuning parameter η further in Sect. 4, and find in practice
that the performance is not too sensitive to this choice.

Let us remark that Algorithm 1 exhibits the following two elementary but desirable
properties.

– Our spectral method is insensitive to the choices of signs for individual eigenvec-
tors ui and v j in (2). More generally, it does not depend on the specific choice
of eigenvectors if certain eigenvalues have multiplicity greater than one. This is

1 This is in fact not needed for computing the similarity matrix (3).
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Algorithm 1 GRAMPA (graph matching by pairwise eigen-alignments)
1: Input: Weighted adjacency matrices A and B on n vertices, a tuning parameter

η > 0.
2: Output: A permutation π̂ ∈ Sn .
3: Construct the similarity matrix

X̂ =
n∑

i, j=1

w(λi , µ j ) · ui u
�
i Jv jv

�
j ∈ Rn×n (3)

where J ∈ Rn×n denotes the all-one matrix andw is the Cauchy kernel of bandwidth
η:

w(λ,µ) = 1

(λ − µ)2 + η2 . (4)

4: Output the permutation estimate π̂ by “rounding” X̂ to a permutation, for example,
by solving the linear assignment problem (LAP)

π̂ = argmax
π∈Sn

n∑

i=1

X̂i,π(i). (5)

because the similarity matrix (3) depends on the eigenvectors of A and B only
through the projections onto their distinct eigenspaces.

– Let π̂(A, B) denote the output of Algorithm 1 with inputs A and B. For any fixed
permutation π , denote by Bπ the matrix with entries Bπ

i j = Bπ(i),π( j), and by
π ◦ π̂ the composition (π ◦ π̂)(i) = π(π̂(i)). Then, we have the equivariance
property

π ◦ π̂(A, Bπ ) = π̂(A, B) (7)

and similarly for Aπ . That is, the outputs given (A, Bπ ) and given (A, B) represent
the same matching of the underlying graphs. This may be verified from (3) as a
consequence of the identity J = JΠ = ΠJ for any permutation matrix Π .

To further motivate the construction (3), we note that Algorithm 1 follows the same
general paradigm as several existing spectral methods for graph matching, which seek
to recover π∗ by rounding a similarity matrix X̂ constructed to leverage correlations
between eigenvectors of A and B. These methods include:

– Low-rank methods that use a small number of eigenvectors of A and B. The
simplest such approach uses only the leading eigenvectors, taking as the similarity
matrix

X̂ = u1v
�
1 . (8)
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Then, π̂ which solves (5) sorts the entries of v1 in the order of u1. Other rank-
1 spectral methods and low-rank generalizations have also been proposed and
studied in [25, 36].

– Full-rank methods that use all eigenvectors of A and B. A notable example is the
popular method of Umeyama [64], which sets

X̂ =
n∑

i=1

si uiv
�
i (9)

where si ∈ {−1, 1}; see also the related approach of [69]. The motivation is that
(9) is the solution to the orthogonal relaxation of the QAP (1), where the feasible
set is relaxed to the set the orthogonal matrices [26]. As the correct choice of signs
in (9) may be difficult to determine in practice, [64] suggests also an alternative
construction

X̂ =
n∑

i=1

|ui ||vi |� (10)

where |ui | denotes the entrywise absolute value of ui .

Compared with these constructions, the proposed new spectral method has two
important features that we elaborate below:
“All pairs matter.” Departing from existing approaches, our proposal X̂ in (3) uses
a combination of uiv

�
j for all n2 pairs i, j ∈ {1, . . . , n}, rather than only i = j .

This renders our method significantly more resilient to noise. Indeed, while all of the
above methods can succeed in recovering π∗ in the noiseless case, methods based
only on pairs (ui , vi ) with i = j are brittle to noise if ui and vi quickly decorrelate as
the amount of noise increases—this may happen when λi is not separated from other
eigenvalues by a large spectral gap. When this decorrelation occurs, ui becomes par-
tially correlated with v j for neighboring indices j , and the construction (3) leverages
these partial correlations in a weighted manner to provide a more robust estimate of
π∗.

The eigenvector alignment is quantitatively understood in certain regimes for the
Gaussian Wigner model B = A + σ Z when A, Z are GOE or GUE: It is known
that E[〈ui , vi 〉2] = o(1) for the leading eigenvector i = 1 as soon as σ 2 � n−1/3

[12,Theorem 3.8], and for i in the bulk of the Wigner semicircle spectrum as soon
as σ 2 � n−1 [8, 10]. For i in the bulk, and the noise regime n−1+ε � σ 2 � n−ε,
[8,Theorem 1.3] further implies that 〈ui , v j 〉 is approximately Gaussian for each index
j sufficiently close to i , with zero mean and variance

E[〈ui , v j 〉2] ≈ σ 2/n

(λi − µ j )2 + Cσ 4 . (11)

Here, the value of C � 1 depends on the Wigner semicircle density near λi ≈ µ j .
Thus, for this range of noise, the eigenvector ui of A is most aligned with O(nσ 2)

eigenvectors v j of B for which |λi − µ j | � σ 2, and each such alignment is of typical
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size E[〈ui , v j 〉2] � 1/(nσ 2) � 1. The signal for π∗ in our proposal (3) arises from a
weighted average of these alignments.

As a result, our method can tolerate noise levels up to σ = O( 1
log n ), which reflects

an exponential improvement over other simpler spectral approaches that only tolerate
noise levels up to σ = O( 1

poly(n)
). For example, a recent result [29] shows that the

rank-one method (8) based on the top eigenvector pairs only correctly matches o(n)

vertices with high probability if the noise level σ exceeds n−7/6+ε for any constant
ε > 0. Moreover, for the Umeyama method (10), our experiments suggest that it fails
when σ � n−1/4; cf. Fig. 3(b) in Sect. 4.2.

Cauchy spectral weights. The performance of the spectral method depends crucially on
the choice of the weight function w in (3). In fact, there are other methods that are also
of the form (3) but do not work equally well. For example, if we choose w(λ,µ) = λµ,
then (3) simply reduces to X̂ = AJB = ab�, where a = A1 and b = B1 are the
vectors of “degrees.” Rounding such a similarity matrix is equivalent to matching by
sorting the degree of the vertices, which is known to fail when σ = Ω(n−1) due to
the small spacing of the order statistics (cf. [20,Remark 1]).

The Cauchy spectral weight (4) is a particular instance of the more general form
w(λ,µ) = K (

|λ−µ|
η

), where K is a monotonically decreasing kernel function and
η is a bandwidth parameter. Such a choice upweights the eigenvector pairs whose
eigenvalues are close and significantly penalizes those whose eigenvalues are separated
more than η. The specific choice of the Cauchy kernel matches the form of E[〈ui , v j 〉2]
in (11), and is in a sense optimal as explained by a heuristic signal-to-noise calculation
in Appendix C. In addition, the Cauchy kernel has its genesis as a regularization term
in the associated convex relaxation, which we explain next.

1.3 Connections to Regularized Quadratic Programming

Our new spectral method is also rooted in optimization, as the similarity matrix X̂ in
(3) corresponds to the solution to a convex relaxation of the QAP (1), regularized by
an added ridge penalty.

Denote the set of permutation matrices in Rn×n by Sn . Then, (1) may be written
in matrix notation as one of the three equivalent optimization problems

max
Π∈Sn

〈A,Π BΠ�〉 ⇐⇒ min
Π∈Sn

‖A − Π BΠ�‖2
F ⇐⇒ min

Π∈Sn
‖AΠ − Π B‖2

F .

(12)

Note that the third objective ‖AΠ −Π B‖2
F above is a convex function in Π . Relaxing

the set of permutations to its convex hull (the Birkhoff polytope of doubly stochastic
matrices)

Bn � {X ∈ Rn×n : X1 = 1, X�1 = 1, Xi j ≥ 0 for all i, j}, (13)
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we arrive at the quadratic programming (QP) relaxation

min
X∈Bn

‖AX − X B‖2
F , (14)

which was proposed in [1, 71], following an earlier LP relaxation using the �1-objective
proposed in [2]. Although this QP relaxation has achieved empirical success [1, 21,
45, 67], understanding its performance theoretically is a challenging task yet to be
accomplished.

Our spectral method can be viewed as the solution of a regularized further relaxation
of the doubly stochastic QP (14). Indeed, we show in Corollary 1 that the matrix X̂ in
(3) is the minimizer of

min
X∈Rn×n

1

2
‖AX − X B‖2

F + η2

2
‖X‖2

F − 1� X1. (15)

Equivalently, X̂ is a positive scalar multiple of the solution X̃ to

min
X∈Rn×n

‖AX − X B‖2
F + η2‖X‖2

F

s.t. 1� X1 = n (16)

which further relaxes (14) and adds a ridge penalty term η2‖X‖2
F . Note that X̂ and X̃

are equivalent as far as the rounding step (5) or (6) is concerned. In contrast to (14),
for which there is currently limited theoretical understanding, we are able to provide
an exact recovery analysis for the rounded solutions to (15) and (16).

Note that the total-sum constraint in (16) is a significant relaxation of the double
stochasticity in (14). To make this further relaxed program work, the regularization
term plays a key role. If η were zero, the similarity matrix X̂ in (3) would involve the
eigengap |λi −µ j | in the denominator which can be polynomially small in n. Hence, the
regularization is crucial for reducing the variance of the estimate and making X̂ stable, a
rationale reminiscent of the ridge regularization in high-dimensional linear regression.
In a companion paper [24], we analyze a tighter relaxation than (16) which replaces
1� X1 = n by the row-sum constraint X1 = 1, and there the ridge penalty is still
indispensable for achieving exact recovery up to noise level σ = O(1/ polylog(n)).

Viewing X̂ as the minimizer of (15) provides not only an optimization perspec-
tive, but also an associated gradient descent algorithm to compute X̂ . More precisely,
starting from the initial point X (0) = 0 and fixing a step size γ > 0, a straightfor-
ward computation verifies that gradient descent for optimizing (15) is given by the
dynamics

X (t+1) = X (t) − γ
(

A2 X (t) + X (t)B2 − 2AX (t) B + η2 X (t) − J
)
. (17)

Corollary 1 shows that running gradient descent for t = O
(
(log n)3

)
iterations suffices

to produce a similarity matrix, which, upon rounding, exactly recovers π∗ with high
probability, using X (t) in place of X̂ in (5). Each iteration involves several matrix
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multiplication operations with A and B, which may be more efficient and parallelizable
than performing spectral decompositions when the graphs are large and/or sparse.

1.4 Diagonal Dominance of the Similarity Matrix

Equipped with this optimization point of view, we now explain the typical structure
of solutions to the above quadratic programs including the spectral similarity matrix
(3). It is well known that even the solution to the most stringent relaxation (14) is
not the latent permutation matrix, which has been shown in [45] by proving that the
KKT conditions cannot be fulfilled with high probability. In fact, a heuristic calculation
explains why the solution to (14) is far from any permutation matrix: Let us consider the
“population version” of (14), where the objective function is replaced by its expectation
over the random instances A and B. Consider π∗ = id and the Gaussian Wigner model
B = A+σ Z , where A and Z are independent GOE matrices with N (0, 1

n ) off-diagonal
entries and N (0, 2

n ) diagonal entries. Then, the expectation of the objective function
is

E‖AX − X B‖2
F = E‖AX‖2

F + E‖X B‖2
F − 2E〈AX , X A〉

= (2 + σ 2)
n + 1

n
‖X‖2

F − 2

n
Tr(X)2 − 2

n
〈X , X�〉.

Hence, the population version of the quadratic program (14) is

min
X∈Bn

(2 + σ 2)(n + 1)‖X‖2
F − 2 Tr(X)2 − 2〈X , X�〉, (18)

whose solution2 is

X � εI + (1 − ε)F, ε = 2

2 + (n + 1)σ 2 ≈ 2

nσ 2 . (19)

This is a convex combination of the true permutation matrix and the center of the
Birkhoff polytope F = 1

n J. Therefore, the population solution X is in fact a very “flat”
matrix, with each entry on the order of 1

n , and is close to the center of the Birkhoff
polytope and far from any of its vertices.

This calculation nevertheless provides us with important structural information
about the solution to such a QP relaxation: X is diagonally dominant for small σ , in
the sense that Xii > max j 
=i |Xi j | for all i . Indeed, the above shows that diagonal
entries of X are about 2/σ 2 times the off-diagonals. Although the actual solution of the
relaxed program (14) or (15) is not equal to the population solution X in expectation, it
is reasonable to expect that it inherits the diagonal dominance property, which enables
rounding procedures such as (5) to succeed.

With this intuition in mind, let us revisit the regularized quadratic program
(15) whose solution is the spectral similarity matrix (3). By a similar calcula-
tion, the solution to the population version of (15) is given by αI + βJ, with

2 In fact, (19) is the solution to (18) even if the constraint is relaxed to 1� X1 = n.
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Fig. 1 Diagonal dominance of the similarity matrix X̂ defined by (3) or (15) for the Gaussian Wigner model
B = A + σ Z with n = 200, σ = 0.05 and η = 0.01

α = 2n2

(n(η2+σ 2)+σ 2)(n(η2+σ 2+2)+σ 2)
≈ 2

(η2+σ 2)(η2+σ 2+2)
and β = n

n(η2+σ 2+2)+σ 2 ≈
1

η2+σ 2+2
, which is diagonally dominant for small σ and η. In turn, the basis of our

theoretical guarantee is to establish the diagonal dominance of the actual solution X̂ ;
see Fig. 1 for an empirical illustration.

Although the ridge penalty η2‖X‖2
F guarantees the stability of the solution as

discussed in Sect. 1.3, it may seem counterintuitive since it moves the solution closer
to the center of the Birkhoff polytope and further away from the vertices (permutation
matrices). In fact, several works in the literature [21, 27] advocate adding a negative
ridge penalty, in order to make the solution closer to a permutation at the price of
potentially making the optimization non-convex. This consideration, however, is not
necessary, as the ensuing rounding step can automatically map the solution to the
correct permutation, even if they are far away in the Euclidean distance.

It is worth noting that, in contrast to the prevalent analysis of convex relaxations
in statistics and machine learning (where the goal is to show that the relaxed solution
is close to the ground truth in a certain distance) or optimization (where the goal
is to bound the gap of the objective value to the optimum), here our goal is not
to show that the optimal solution per se constitutes a good estimator, but to show
that it exhibits a diagonal dominance structure, which guarantees the success of the
subsequent rounding procedure. For this reason, it is unclear from first principles that
the guarantees obtained for one program, such as (16), automatically carry over to
a tighter program, such as (14). In the companion paper [24], we analyze a tighter
relaxation than (16), where the constraint is tightened to X1 = 1, and show that this
has a similar performance guarantee; however, this requires a different analysis.

1.5 Notation

Let [n] � {1, . . . , n}. We use C and c to denote universal constants that may change
from line to line. For two sequences {an}∞n=1 and {bn}∞n=1 of positive real numbers, we
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write an � bn if there is a universal constant C such that an ≤ Cbn for all n ≥ 1. The
relation an � bn is defined analogously. We write an � bn if both the relations an � bn

and an � bn hold. Let x ∨ y = max(x, y). Let id denote the identity permutation,
i.e., id(i) = i for every i . In a Euclidean space Rn or Cn , let ei be the i-th standard basis
vector, 1 = 1n the all-ones vector, J = Jn the n×n all-ones matrix, and I = In the n×n
identity matrix. We omit the subscripts when there is no ambiguity. Let ‖ · ‖ = ‖ · ‖2
denote the Euclidean vector norm on Rn or Cn . Let ‖M‖ = maxv 
=0 ‖Mv‖2/‖v‖2
denote the Euclidean operator norm, ‖M‖F = (Tr M∗M)1/2 the Frobenius norm, and
‖M‖∞ = maxi j |Mi j | the elementwise �∞ norm of a matrix M . An eigenvector is

always a unit column vector by convention. Denote by X
(d)=Y if random variables X

and Y are equal in law.

2 Main Results

In this section, we formulate the models, state more precisely our main results, provide
an outline of the proof, and discuss the extension to bipartite graphs.

2.1 GaussianWigner Model

We say that A ∈ Rn×n is from the Gaussian Orthogonal Ensemble, or simply A ∼
GOE(n), if A is symmetric, {Ai j : i ≤ j} are independent, and Ai j ∼ N (0, 1

n ) for
i 
= j and N (0, 2

n ) for i = j . We say that the pair A, B ∈ Rn×n follows the Gaussian
Wigner model for graph matching if

Bπ∗ = A + σ Z , (20)

where π∗ is an unknown permutation (ground truth), Bπ∗
denotes the permuted matrix

Bπ∗
i j = Bπ∗(i),π∗( j), the matrices A, Z ∼ GOE(n) are independent, and σ ≥ 0 is the

noise level. Our goal is to recover the latent permutation π∗ from (A, B).
We may also consider the rescaled definition Bπ∗ =

√
1 − σ 2 A+σ Z , so that A and

B have the same marginal law with correlation coefficient 1−σ 2. Our proofs are easily
adapted to this setup, and we assume (20) for simplicity and a cleaner presentation.

We now formalize the exact recovery guarantee for Algorithm 1.

Theorem 1 Consider the model (20). There exist constants c, c′ > 0 such that if

1/n0.1 ≤ η ≤ c/ log n and σ ≤ c′η,

then with probability at least 1 − n−4 for all large n, the matrix X̂ in (3) satisfies

min
i∈[n]

X̂i,π∗(i) > max
i, j∈[n]: j 
=π∗(i)

X̂i j (21)

and hence, Algorithm 1 recovers π̂ = π∗.
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Choosing η � 1/ log n in Algorithm 1, we thus obtain exact recovery for σ �
1/ log n. The same exact recovery guarantee clearly also holds if rounding were per-
formed by the simple scheme (6), instead of solving the linear assignment (5). The
probability n−4 is arbitrary and may be strengthened to n−D for any constant D > 0,
where c, c′ above depend on D.

Consider next the gradient descent iterates X (t) defined by (17). We verify that
these iterates converge to X̂ , and that the same guarantee holds for X (t) for sufficiently
large t .

Corollary 1 Let X (0) = 0, define recursively X (t) by the gradient descent dynamics
(17), and let X̂ be the similarity matrix (3).

(a) The matrix X̂ is the minimizer of the unconstrained program (15), and α X̂ is the
minimizer of the constrained program (16) for some (random) scalar multiplier
α > 0.

(b) In terms of the spectral decompositions of A and B in (2), each iterate X (t) is
given by

X (t) =
n∑

i, j=1

1 − [1 − γ η2 − γ (λi − µ j )
2]t

η2 + (λi − µ j )2 ui u
�
i Jv jv

�
j .

In particular, if the step size satisfies γ < 1/(η2 + (λi − µ j )
2) for all i, j , then

X (t) → X̂ as t → ∞.
(c) In the setting of Theorem 1, for some constants C, c > 0, if γ < c and

t >
C log n

γ η2 ,

then the guarantees of Theorem 1 also hold with probability at least 1 − n−4 with
X (t) in place of X̂ .

In particular, setting γ to be a small constant and η � 1/ log n, we obtain the same
diagonal dominance property for X (t) as long as t � (log n)3, and consequently either
one of the rounding schemes (5) or (6) applied to X (t) recovers the true matching π∗.

2.2 Proof Outline for Theorem 1

We give an outline of the proof for Theorem 1. By the permutation invariance property
(7) of the algorithm, we may assume without loss of generality that π∗ = id, the
identity permutation. Then, we must show in (21) that every diagonal entry of X̂ is
larger than every off-diagonal entry.

Denote the similarity matrix in (3) by

X = X̂(A, B) =
n∑

i, j=1

1

(λi − µ j )2 + η2 ui u
�
i Jv jv

�
j (22)
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and introduce X∗ as the similarity matrix constructed in the noiseless setting with A
in place of B. That is,

X∗ = X̂(A, A) =
n∑

i, j=1

1

(λi − λ j )2 + η2 ui u
�
i Ju j u

�
j . (23)

We divide the proof into establishing the diagonal dominance of X∗, and then bounding
the entrywise difference X − X∗.

Lemma 1 For some constants C, c > 0, if 1/n0.1 < η < c/ log n, then with probability
at least 1 − 5n−5 for large n,

min
i∈[n]

(X∗)i i > 1/(3η2)

and

max
i, j∈[n]:i 
= j

(X∗)i j < C

(√
log n

η3/2 + log n

η

)
. (24)

Lemma 2 If η > 1/n0.1, then for a constant C > 0, with probability at least 1 − 2n−5

for large n,

max
i, j∈[n]

|Xi j − (X∗)i j | < Cσ

(
1

η3 + log n

η2

(
1 + σ

η

))
. (25)

Proof of Theorem 1 Assuming these lemmas, for some c, c′ > 0 sufficiently small,
setting η < c/ log n and σ < c′η ensures that the right sides of both (24) and (25) are
at most 1/(12η2). Then, when π∗ = id, these lemmas combine to imply

min
i∈[n]

Xii >
1

4η2 >
1

6η2 > max
i, j∈[n]:i 
= j

Xi j

with probability at least 1 − n−4. On this event, by definition, both the LAP rounding
procedure (5) and the simple greedy rounding (6) output π̂ = id. The result for general
π∗ follows from the equivariance of the algorithm, applying this result to the inputs
A and Bπ with π = (π∗)−1. ��

A large portion of the technical work will lie in establishing Lemma 1 for the
noiseless setting. We give here a short sketch of the intuition for this lemma, ignoring
momentarily any factors that are logarithmic in n and are hidden by the notations ≈
and � below. Let us write

X∗ =
n∑

i=1

1

η2 (u�
i Jui )ui u

�
i +

∑

i 
= j

1

η2 + (λi − λ j )2 (u�
i Ju j )ui u

�
j . (26)
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We explain why the first term is diagonally dominant, while the second term is a pertur-
bation of smaller order. Central to our proof is the fact that A ∼ GOE(n) is rotationally
invariant in law, so that U = (u1, . . . , un) is uniformly distributed on the orthogo-
nal group and independent of λ1, . . . , λn . The coordinates of U are approximately
independent with distribution N (0, 1

n ).
For the first term in (26), with high probability u�

i Jui = 〈ui , 1〉2 ≈ 1 for every i .
Then, for each k, the kth diagonal entry of the first term satisfies

n∑

i=1

1

η2 (u�
i Jui )(ui )

2
k ≈

n∑

i=1

1

η2 (ui )
2
k ≈ 1

η2 . (27)

Applying the heuristic (ui )k ∼ N (0, 1
n ), each (k, �)th off-diagonal entry satisfies

n∑

i=1

1

η2 (u�
i Jui )(ui )k(ui )� � 1

η2
√

n
. (28)

For the second term in (26), each (k, �)th entry is

∑

i 
= j

1

η2 + (λi − λ j )2 (u�
i Ju j )(ui )k(u j )� = g�Qh,

where Q is defined by Qii = 0 and Qi j = 1
η2+(λi −λ j )

2 (u�
i Ju j ) for i 
= j , and the

vectors g and h are defined by gi = (ui )k and h j = (u j )�. Applying the heuristic that
g, h are approximately iid N (0, 1

n I) and approximately independent of Q, we have a
Hanson–Wright type bound

g�Qh � 1

n
‖Q‖F .

As n → ∞, the empirical spectral distribution n−1 ∑n
i=1 δλi of A converges to the

Wigner semicircle law with density ρ. Then, applying also u�
i Ju j = 〈ui , 1〉〈u j , 1〉 �

1, we obtain

1

n2 ‖Q‖2
F � 1

n2

∑

i 
= j

( 1

η2 + (λi − λ j )2

)2

≈
∫∫ ( 1

η2 + (x − y)2

)2
ρ(x)ρ(y)dxdy � 1

η3 ,

where the last step is an elementary computation that holds for any bounded density
ρ with bounded support. As a result, each entry of the second term of (26) satisfies

∑

i 
= j

1

η2 + (λi − λ j )2 (u�
i Ju j )(ui )k(u j )� � 1

η3/2 . (29)
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Combining (27)–(29) shows that the noiseless solution X∗ in (26) is indeed diagonally
dominant, with diagonals approximately η−2 and off-diagonals at most of the order
η−3/2, omitting logarithmic factors. We carry out this proof more rigorously in Sect. 3.1
to establish Lemma 1.

2.3 Gaussian Bipartite Model

Consider the following asymmetric variant of this problem: Let F, G ∈ Rn×m be
adjacency matrices of two weighted bipartite graphs on n left vertices and m right
vertices, where m ≥ n is assumed without loss of generality. Suppose, for latent
permutations π∗

1 on [n] and π∗
2 on [m], that {(Fi j , Gπ∗

1 (i),π∗
2 ( j)) : 1 ≤ i ≤ n, 1 ≤ j ≤

m} are i.i.d. pairs of correlated random variables. We wish to recover (π∗
1 , π∗

2 ) from
F and G.

We propose to apply Algorithm 1 on the left singular values and singular vectors
of F and G to first recover the (smaller) row permutation π∗

1 , and then solve a second
LAP to recover the (bigger) column permutation π∗

2 . This is summarized as follows:

Algorithm 2 Bi-GRAMPA (bipartite graph matching by pairwise eigen-alignments)

1: Input: F, G ∈ Rn×m , a tuning parameter η > 0.
2: Output: Row permutation π̂1 ∈ Sn and column permutation π̂2 ∈ Sm .
3: Construct the similarity matrix X̂ as in (3), where now λ1 ≥ . . . ≥ λn and µ1 ≥

. . . ≥ µn are the singular values of F and G, and ui and v j are the corresponding
left singular vectors.

4: Let π̂1 be the estimate in (5), and denote by Gπ̂1,id ∈ Rn×m the matrix Gπ̂1,id
i j =

Gπ̂1(i), j .
5: Find π̂2 by solving the linear assignment problem

π̂2 = argmax
π∈Sm

m∑

j=1

(F�Gπ̂1,id) j,π( j). (30)

We also establish an exact recovery guarantee for this method in a Gaussian setting:
We say that the pair F, G ∈ Rn×m follows the Gaussian bipartite model for graph
matching if

Gπ∗
1 ,π∗

2 = F + σ W , (31)

where Gπ∗
1 ,π∗

2 denotes the permuted matrix G
π∗

1 ,π∗
2

i j = Gπ∗
1 (i),π∗

2 ( j), the matrices F

and W are independent with i.i.d. N (0, 1
m ) entries, and σ ≥ 0 is the noise level. We

assume the asymptotic regime

m = m(n) and n/m → κ ∈ (0, 1] as n → ∞. (32)
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Theorem 2 Consider the model (31), where n/m → κ ∈ (0, 1]. There exist κ-
dependent constants c, c′ > 0 such that if

1/n0.1 ≤ η ≤ c/ log n and σ log(1/σ) ≤ c′η/ log n,

then with probability at least 1 − n−4 for all large n, Algorithm 2 recovers (π̂1, π̂2) =
(π∗

1 , π∗
2 ).

Setting η � 1/ log n, we obtain exact recovery under the condition σ �
(log n)−2(log log n)−1.

The proof is an extension of that of Theorem 1: Note that the first step of Algorithm
2 is equivalent to applying Algorithm 1 on the symmetric polar parts A =

√
F F� and

B =
√

GG�, where
√· denotes the symmetric matrix square root. In the Gaussian

setting, A is still rotationally invariant, and Lemma 1 will extend directly to X∗ con-
structed from this A. We will show a simpler and slightly weaker version of Lemma 2
to establish exact recovery of the left permutation π∗

1 , under the stronger requirement
for σ above. We will then analyze separately the linear assignment for recovering π∗

2 .
Details of the argument are provided in Sect. 3.3.

We conclude this section by discussing the assumption (32). The condition n → ∞
is information-theoretically necessary to recover the right permutation π∗

2 , unless σ

is as small as 1/poly(n). This can be seen by considering the oracle setting when
π∗

1 is given, in which case the necessary and sufficient condition for the maximal

likelihood (linear assignment) to succeed is given by n log
(

1 + 1
σ 2

)
− 4 log m → ∞

[18]. The condition of finite aspect ratio n = Θ(m) is assumed for the analysis of
the Bi-GRAMPA algorithm; otherwise, if n = o(m), then the empirical distribution
of singular values of F converges to a point mass at 1, and it is unclear whether the
spectral similarity matrix in (22) or (23) continues to be diagonally dominant. We
note that such a condition is not information-theoretically necessary. In fact, as long
as n and m are polynomially related, running the degree profile matching algorithm
[20,Section 2] on the row-wise and column-wise empirical distributions succeeds for
σ = O( 1

log n ).

3 Proofs

We prove our main results in this section. Section 3.1 proves Lemma 1, which shows
the diagonal dominance of X∗ in the noiseless setting of A = B. Sect. 3.2 proves
Lemma 2, which bounds the difference X − X∗. Together with the argument in Sect.
2.2, these yield Theorem 1 on the exact recovery in the Gaussian Wigner model.

Section 3.3 extends this analysis to establish Theorem 2 for the bipartite model.
Finally, Sect. 3.4 (which may be read independently) proves Corollary 1 relating X̂ to
the gradient descent dynamics (17) and the optimization problems (15) and (16).
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3.1 Analysis in the Noiseless Setting

We first prove Lemma 1, showing diagonal dominance in the noiseless setting.
Throughout, we write the spectral decomposition

A = UΛU� where U = [u1 · · · un] and Λ = diag(λ1, . . . , λn). (33)

3.1.1 Properties of A and Rotation by U

In the proof, we will in fact only use the properties of the matrix A ∼ GOE(n)

recorded in the following proposition. The same proof will then apply to the bipartite
case wherein the suitably defined A satisfies the same properties.

Proposition 1 Suppose A ∼ GOE(n). Then, for constants C, c > 0,

(a) U is a uniform random orthogonal matrix independent of Λ.
(b) The empirical spectral distribution ρn = 1

n

∑n
i=1 δλi of A converges to a limiting

law ρ, which has a density function bounded by C and support contained in
[−C, C]. Moreover, for all large n,

P
{

sup
x

|Fn(x) − F(x)| > Cn−1(log n)5
}

< n−c log log n,

where Fn and F are the cumulative distribution functions of ρn and ρ, respectively.
(c) For all large n, P

{
‖A‖ > C} < e−cn.

Proof Parts (a) and (c) are well known, see for example [3,Corollary 2.5.4 and Lemma
2.6.7]. For (b), ρ is the Wigner semicircle law on [−2, 2], and the rate of convergence
follows from [33,Theorem 1.1]. ��

Recall the definition

X∗ =
n∑

i, j=1

1

η2 + (λi − λ j )2 ui u
�
i Ju j u

�
j .

Our goal is to exhibit the diagonal dominance of this matrix. Without loss of generality,
we analyze (X∗)11 = e�

1 X∗e1 and (X∗)12 = e�
1 X∗e2.

Applying Proposition 1 (a), let us rotate by U to write the quantities of interest in
a more convenient form. Namely, we set

ϕ = U�e1, ψ = U�e2, and ξ = U�1. (34)

These vectors satisfy

‖ϕ‖2 = ‖ψ‖2 = 1, ‖ξ‖2 = √
n, 〈ϕ, ξ 〉 = 1, 〈ψ, ξ〉 = 1, and 〈ϕ,ψ〉 = 0,

(35)
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and are otherwise “uniformly random.” By this, we mean that (ϕ, ψ, ξ) is equal in
law to (Oϕ, Oψ, Oξ) for any orthogonal matrix O ∈ Rn×n , which follows from
Proposition 1(a).

Define a symmetric matrix L ∈ Rn×n by

Li j = 1

η2 + (λi − λ j )2 , (36)

and define L̃ ∈ Rn×n such that L̃ii = 0 and L̃i j = Li j for i 
= j . Then,

(X∗)12 =
n∑

i, j=1

Li jϕiψ jξiξ j , (37)

and

(X∗)11 = 1

η2

n∑

i=1

ϕ2
i ξ2

i +
n∑

i, j=1

L̃i jϕiϕ jξiξ j . (38)

Importantly, by Proposition 1(a), the triple (ϕ, ψ, ξ) is independent of L and L̃ . We
will establish the following technical lemmas.

Lemma 3 With probability at least 1 − 3n−7 for large n,

n∑

i=1

ϕ2
i ξ2

i >
1

2
.

Lemma 4 For some constants C, c > 0, if 1/n0.1 < η < c, then with probability at
least 1 − 2n−7 for large n,

∣∣∣
n∑

i, j=1

Li jϕiψ jξiξ j

∣∣∣ ∨
∣∣∣

n∑

i, j=1

L̃i jϕiϕ jξiξ j

∣∣∣ < C

(√
log n

η3/2 + log n

η

)
. (39)

Lemma 1 follows immediately from these results. Indeed, for η < c/ log n and
sufficiently small c > 0, these results and the forms (37–38) combine to yield (X∗)11 >

1/(3η2) and (X∗)12 < C(
√

log n/η3/2 +(log n)/η) with probability at least 1−5n−7.
By symmetry, the same result holds for all (X∗)i i and (X∗)i j , and Lemma 1 follows
from taking a union bound over i and j .

It remains to show Lemmas 3 and 4. The general strategy is to approximate the law
of (ϕ, ψ, ξ) by suitably defined Gaussian random vectors, and then to apply Gaussian
tail bounds and concentration inequalities which are collected in Appendix A. As an
intermediate step, we will show the following estimates for the matrix L , using the
convergence of the empirical spectral distribution in Proposition 1(b).
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Lemma 5 For constants C, c > 0, with probability at least 1 − n−10 for large n,

min
i, j∈[n]

Li j ≥ c, max
i, j∈[n]

Li j ≤ 1

η2 ,
1

n
‖L‖F ≤ C

η3/2 ,

1

n
max
i∈[n]

n∑

j=1

L2
i j ≤ C

η3 and
1

n
max
i∈[n]

n∑

j=1

Li j ≤ C

η
.

3.1.2 Proof of Lemma 3

Let z be a standard Gaussian vector in Rn independent of ϕ. First, we note that
marginally ϕ is equal to z/‖z‖2 in law. By standard bounds on max j |z j | and ‖z‖2
(see Lemmas 13 and 15), we have that with probability at least 1 − 2n−7,

max
i∈[n]

∣∣ϕi
∣∣ ≤ 5

(
log n

n

)1/2

. (40)

Next, the random vectors ϕ and ξ satisfy that ‖ϕ‖2 = 1, ‖ξ‖2 = √
n and 〈ϕ, ξ 〉 = 1,

and are otherwise uniformly random. Hence, if we let z be a standard Gaussian vector
in Rn and define

ξ̃ �
√

n − 1
z − (ϕ�z)ϕ∥∥z − (ϕ�z)ϕ

∥∥
2

+ ϕ,

then (ϕ, ξ)
(d)=(ϕ, ξ̃ ). Note that we can write ξ̃ = αz+βϕ, where α and β = 1−α(ϕ�z)

are random variables satisfying 0.9 ≤ α ≤ 1.1 and |β| ≤ 4
√

log n with probability at
least 1 − 4n−8 by concentration of ‖z‖2 and ϕ�z (Lemmas 13 and 15). Therefore, we
obtain

n∑

i=1

ϕ2
i ξ̃2

i =
n∑

i=1

ϕ2
i

(
α2z2

i + β2ϕ2
i + 2αβziϕi

)

≥ 0.8
n∑

i=1

ϕ2
i z2

i − 9
√

log n

∣∣∣∣∣

n∑

i=1

ϕ3
i zi

∣∣∣∣∣ . (41)

For the first term of (41), applying Lemma 15 and then (40) yields

n∑

i=1

ϕ2
i z2

i ≥ 1 − 22(log n)

(
n∑

i=1

ϕ4
i

)1/2

≥ 1 − 22(log n)

(
n∑

i=1

54
(

log n

n

)2
)1/2

≥ 0.9
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with probability at least 1 − 3n−7. For the second term of (41), we once again apply
Lemma 13 and then (40) to obtain

9
√

log n
∣∣∣

n∑

i=1

ϕ3
i zi

∣∣∣ ≤ 20 log n

(
n∑

i=1

ϕ6
i

) 1
2

≤ 0.1

with probability at least 1 − 3n−7. Combining the three terms finishes the proof.

3.1.3 Proof of Lemma 5

Let ρn be the empirical spectral distribution of A. For a large enough constant C1 > 0
where [−C1, C1] contains the support of ρ, let E be the event where it also contains
the support of ρn , and

sup
x

|Fn(x) − F(x)| < n−0.5. (42)

By Proposition 1, E holds with probability at least 1 − n−10.
The bound Li j ≤ 1/η2 holds by the definition (36). The bound n−1‖L‖F ≤ Cη−3/2

follows from summing n−1 ∑
j L2

i j ≤ Cη−3 also over i and taking a square root. The
bound c ≤ Li j also holds on E by the definition of L . It remains to prove the last two
bounds on the rows of L .

For this, fix a = 1 or a = 2. For each λ ∈ [−C1, C1], define a function

gλ(r) �
(

1

η2 + (r − λ)2

)a

.

Then, for each i ,

1

n

n∑

j=1

La
i j = 1

n

n∑

j=1

gλi (λ j ) =
∫ C1

−C1

gλi (r)dρn(r). (43)

For some constants C, C ′ > 0 and every λ ∈ [−C1, C1], replacing ρn by the limiting
density ρ, we have

∫ C1

−C1

gλ(r)dρ(r) ≤ C
∫ C1

−C1

(
1

η2 + (r − λ)2

)a

dr

≤ C

(∫

|r−λ|≤η

1

η2a
dr +

∫

η≤|r−λ|≤2C1

1

(r − λ)2a
dr

)
≤ C ′η1−2a .

(44)

To bound the difference between ρn and ρ, note that gλ(r) ≥ y for y ≥ 0 if and
only if |r − λ| ≤ b for some b = b(y) ≥ 0. Consider random variables Rn ∼ ρn and
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R ∼ ρ. Since gλ ≤ η−2a , we have

∣∣∣
∫ C1

−C1

gλ(r)dρn(r) −
∫ C1

−C1

gλ(r)dρ(r)

∣∣∣

=
∣∣∣
∫ η−2a

0

(
P
{
gλ(Rn) ≥ y

}
− P

{
gλ(R) ≥ y

})
dy

∣∣∣

≤
∫ η−2a

0

∣∣∣P
{
|Rn − λ| ≤ b(y)

}
− P

{
|R − λ| ≤ b(y)

}∣∣∣dy

≤
∫ η−2a

0
2n−0.5dy = 2η−2an−0.5,

where the last inequality holds on the event E by (42). Combining the last display with
(44), we get that (43) is at most Cη1−2a for η > n−0.1. This gives the desired bounds
for a = 1 and a = 2.

3.1.4 Proof of Lemma 4

We now use Lemma 5 to prove Lemma 4. Recall L defined in (36), and L̃ which sets
its diagonal to 0. We need to bound the quantities

(I) :
n∑

i, j=1

Li jϕiψ jξiξ j and (II) :
n∑

i, j=1

L̃i jϕiϕ jξiξ j . (45)

The proof for (II) is almost the same as that for (I), so we focus on (I) and briefly
discuss the differences for (II). Let us define a matrix K ∈ Rn×n by setting

Ki j = Li jϕiψ j . (46)

Estimates for K . We translate the estimates for L in Lemma 5 to ones for K . Note
that since ϕ and ψ are independent of L and uniform over the sphere with entries on
the order of 1√

n
, it is reasonable to expect that ‖K‖F � 1

n ‖L‖F and ‖K‖ � 1
n ‖L‖

with high probability; however, neither statement is true in general, as shown by the
counterexamples L = e1e�

1 and L = I. Fortunately, both statements hold for L defined
by (36) thanks to the structural properties established in Lemma 5.

Lemma 6 In the setting of Lemma 4, for the matrix K ∈ Rn×n defined by (46), we
have ‖K‖F � 1

η3/2 with probability at least 1 − 2n−8.

Proof It suffices to prove that conditional on L , with probability at least 1 − n−8, we
have

‖K‖F � 1

n
‖L‖F + log n

n1/4 ‖L‖∞.
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This together with Lemma 5 yields that

‖K‖F � 1

η3/2 + log n

n1/4η2 � 1

η3/2 ,

where the last inequality holds since we choose η � n−0.1.
Note that we have

‖K‖2
F =

n∑

i, j=1

ϕ2
i ψ2

j L2
i j ≤ 1

2

n∑

i, j=1

ϕ4
i L2

i j + 1

2

n∑

i, j=1

ψ4
j L2

i j .

It suffices to bound the first term, as the second term has the same distribution. Let z

be a standard Gaussian vector in Rn . Then, z/‖z‖2
(d)=ϕ. By the concentration of ‖z‖2

around
√

n (Lemma 15), it remains to prove that with probability at least 1 − n−10,

n∑

i, j=1

z4
i L2

i j =
n∑

i=1

z4
i αi � ‖L‖2

F + ‖L‖2
∞n3/2(log n)2

where αi �
∑n

j=1 L2
i j .

To this end, we compute

E

[
n∑

i=1

z4
i αi

]

= 3‖L‖2
F

and moreover

Var

(
n∑

i=1

z4
i αi

)

=
n∑

i=1

Var(z4
i )α

2
i = 105

n∑

i=1

α2
i � n3‖L‖4

∞.

Therefore, applying Theorem 4 with d = 4 we obtain

∣∣∣∣∣

n∑

i=1

z4
i α

2
i − 3‖L‖2

F

∣∣∣∣∣ � ‖L‖2
∞n3/2(log n)2

with probability at least 1 − n−10, which completes the proof. ��

Lemma 7 It holds with probability at least 1 − n−8 that for all j, k ∈ [n],

n∑

i=1

ϕ2
i Li j Lik � 1

n

n∑

i=1

Li j Lik and
n∑

i=1

ψ2
i Li j � 1

η
.
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Proof Since z/‖z‖2 has the same distribution as ϕ or ψ . By the concentration of ‖z‖2
around

√
n (Lemma 15) and a union bound, it remains to prove that with probability

at least 1 − n−10,

n∑

i=1

z2
i Li j Lik �

n∑

i=1

Li j Lik and
n∑

i=1

z2
i Li j � n

η
. (47)

For the first inequality, Lemma 15 gives that with probability at least 1 − n−11,

n∑

i=1

z2
i Li j Lik �

n∑

i=1

Li j Lik +
(

n∑

i=1

L2
i j L2

ik log n

)1/2

+
(

max
i∈[n]

Li j Lik

)
log n.

Note that 1 � Li j ≤ 1/η2 by Lemma 5, so

n∑

i=1

Li j Lik � n and

(
n∑

i=1

L2
i j L2

ik log n

)1/2

+
(

max
i∈[n]

Li j Lik

)
log n

�
√

n log n

η4 + log n

η4 .

Therefore, if η � n−0.1, then
∑n

i=1 Li j Lik is the dominating term. Hence, the first
bound in (47) is established.

The same argument also works to yield

n∑

i=1

z2
i Li j �

n∑

i=1

Li j .

Combining this with Lemma 5, we obtain the second bound in (47). ��

Lemma 8 For the matrix K ∈ Rn×n defined by (46), we have ‖K‖ � 1/η with
probability at least 1 − 2n−8.

Proof Consider the event where the estimates of Lemmas 5 and 7 hold. Fix a unit
vector x ∈ Rn . We have

‖K x‖2
2 =

n∑

i=1




n∑

j=1

ϕiψ j Li j x j




2

=
n∑

j,k=1

(
n∑

i=1

ϕ2
i Li j Lik

)

ψ jψk x j xk .
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The first bound in Lemma 7 then yields that

‖K x‖2
2 � 1

n

n∑

j,k=1

(
n∑

i=1

Li j Lik

)

|ψ jψk x j xk |

= 1

n

n∑

i=1




n∑

j=1

|ψ j |Li j |x j |




2

= 1

n

∥∥M |x |
∥∥2

2 ≤ 1

n
‖M‖2, (48)

where |x | denotes the vector whose i-th entry is |xi |, and the matrix M is defined by

Mi j = |ψ j |Li j .

Moreover, we have that

‖M�x‖2
2 =

n∑

i=1

ψ2
i




n∑

j=1

Li j x j




2

≤
n∑

i=1

ψ2
i




n∑

j=1

Li j








n∑

j=1

Li j x2
j





� n

η

n∑

j=1

(
n∑

i=1

ψ2
i Li j

)

x2
j ,

where the first inequality follows from the Cauchy–Schwarz inequality, and the second
inequality follows from the row-sum bound in Lemma 5. In addition, by the second
inequality in Lemma 7,

‖M�x‖2
2 � n

η2

n∑

j=1

x2
j = n

η2 .

It follows that ‖M‖2 = ‖M�‖2 � n/η2 which, combined with (48), yields ‖K x‖2
2 �

1/η2. Therefore, we conclude that ‖K‖ � 1/η. ��

Bounding (I). We now bound
∑n

i, j=1 Li jϕiψ jξiξ j . Recall that the vectors ϕ,ψ and
ξ satisfy the relations (35) and are otherwise uniform random. Let z be a standard
Gaussian vector in Rn independent of (ϕ, ψ) and define

ξ̃ �
√

n − 2
z − (ϕ�z)ϕ − (ψ�z)ψ∥∥z − (ϕ�z)ϕ − (ψ�z)ψ

∥∥
2

+ ϕ + ψ. (49)
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Then, the tuple (ϕ, ψ, ξ̃ ) is equal to (ϕ, ψ, ξ) in law. Thus, it suffices to study

n∑

i, j=1

Li jϕiψ j ξ̃i ξ̃ j .

Note that we can write ξ̃ = αz + β1ϕ + β2ψ for random variables α, β1, β2 ∈ R,
where β1 = 1−α(ϕ�z) and β2 = 1−α(ψ�z). By concentration inequalities for ‖z‖2
and ϕ�z (Lemmas 13 and 15), we have 0.9 ≤ α ≤ 1.1 and |β1| ∨ |β2| ≤ 5

√
log n

with probability at least 1 − 4n−8. Therefore, we obtain

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiψ j ξ̃i ξ̃ j

∣∣∣∣∣∣
�

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiψ j zi z j

∣∣∣∣∣∣

+
√

log n

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiϕ jψ j zi

∣∣∣∣∣∣
+

√
log n

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiψ
2
j zi

∣∣∣∣∣∣

+
√

log n

∣∣∣∣∣∣

n∑

i, j=1

Li jϕ
2
i ψ j z j

∣∣∣∣∣∣
+

√
log n

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiψiψ j z j

∣∣∣∣∣∣

+ (log n)

∣∣∣∣∣∣

n∑

i, j=1

Li jϕ
2
i ϕ jψ j

∣∣∣∣∣∣

+ (log n)

∣∣∣∣∣∣

n∑

i, j=1

Li jϕ
2
i ψ2

j

∣∣∣∣∣∣
+ (log n)

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiϕ jψiψ j

∣∣∣∣∣∣

+ (log n)

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiψiψ
2
j

∣∣∣∣∣∣
. (50)

By the symmetry of ϕ and ψ , it suffices to study the following quantities

(i) :
n∑

i, j=1

Li jϕiψ j zi z j , (ii) :
n∑

i, j=1

Li jϕiϕ jψ j zi , (iii) :
n∑

i, j=1

Li jϕiψ
2
j zi ,

(iv) :
n∑

i, j=1

Li jϕ
2
i ϕ jψ j , (v) :

n∑

i, j=1

Li jϕ
2
i ψ2

j , (vi) :
n∑

i, j=1

Li jϕiϕ jψiψ j . (51)

We now bound each of these sums.
Bounding (i). For the matrix K defined by (46), Lemma 14 yields that

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiψ j zi z j

∣∣∣∣∣∣
= |z�K z| � | Tr(K )| + ‖K‖F

√
log n + ‖K‖ log n,
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with probability at least 1 − n−10. The trace vanishes because

Tr(K ) =
n∑

i=1

Liiϕiψi = 1

η2 〈ϕ,ψ〉 = 1

η2 〈U�e1, U�e2〉 = 0.

Moreover, Lemmas 6 and 8 imply that with probability at least 1 − 4n−8, we have
‖K‖F � 1/η3/2 and ‖K‖ � 1/η. Therefore, we conclude that

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiψ j zi z j

∣∣∣∣∣∣
�

√
log n

η3/2 + log n

η
.

Bounding (ii) and (iii). For (ii) in (51), Lemma 13 gives that with probability at
least 1 − n−10,

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiϕ jψ j zi

∣∣∣∣∣∣
�




n∑

i=1

ϕ2
i




n∑

j=1

Li jϕ jψ j




2




1/2

√
log n.

Applying Lemmas 7 and 5, we obtain that with probability at least 1 − 3n−8,

∣∣∣∣∣∣

n∑

j=1

Li jϕ jψ j

∣∣∣∣∣∣
≤ 1

2

n∑

j=1

Li jϕ
2
j + 1

2

n∑

j=1

Li jψ
2
j � 1

n

n∑

j=1

Li j � 1

η
.

Combining the above two bounds yields

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiϕ jψ j zi

∣∣∣∣∣∣
� 1

η

(
n∑

i=1

ϕ2
i

)1/2 √
log n =

√
log n

η
.

The same argument also gives the same upper bound on (iii) in (51).
Bounding (iv), (v) and (vi). The proofs for quantities (iv), (v) and (vi) in (51) are

similar, so we only present a bound on (vi). Since ϕiϕ jψiψ j ≤ 1
2 (ϕ2

i + ψ2
i )|ϕ jψ j |, it

holds that
∣∣∣∣∣∣

n∑

i, j=1

Li jϕiϕ jψiψ j

∣∣∣∣∣∣
≤ 1

2

n∑

j=1

(
n∑

i=1

Li jϕ
2
i

)

|ϕ jψ j | + 1

2

n∑

j=1

(
n∑

i=1

Li jψ
2
i

)

|ϕ jψ j |.

By the second bound in Lemma 7 and the symmetry of ϕ and ψ , we then obtain that
with probability at least 1 − 2n−8,

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiϕ jψiψ j

∣∣∣∣∣∣
� 1

η

n∑

j=1

|ϕ jψ j | ≤ 1

η
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where the last step is by Cauchy–Schwarz. Similar arguments yield the same bound
on (iv) and (v) in (51).

Substituting the bounds on (i)–(vi) into (50), we obtain that with probability at least
1 − n−7,

∣∣∣∣∣∣

n∑

i, j=1

Li jϕiψ j ξ̃i ξ̃ j

∣∣∣∣∣∣
�

√
log n

η3/2 + log n

η
,

which is the desired bound for quantity (I).
Bounding (II). The argument for establishing the same bound on

∑n
i, j=1 L̃i jϕiϕ jξiξ j

is similar, so we briefly sketch the proof. Analogous to (50), we may use a (simpler)
Gaussian approximation argument to obtain

∣∣∣∣∣∣

n∑

i, j=1

L̃i jϕiϕ jξiξ j

∣∣∣∣∣∣
�

∣∣∣∣∣∣

n∑

i, j=1

L̃i jϕiϕ j zi z j

∣∣∣∣∣∣
+

√
log n

∣∣∣∣∣∣

n∑

i, j=1

L̃i jϕ
2
i ϕ j z j

∣∣∣∣∣∣

+
√

log n

∣∣∣∣∣∣

n∑

i, j=1

L̃i jϕiϕ
2
j zi

∣∣∣∣∣∣

+ (log n)

∣∣∣∣∣∣

n∑

i, j=1

L̃i jϕ
2
i ϕ2

j

∣∣∣∣∣∣
, (52)

where z is a standard Gaussian vector independent of ϕ and L̃ . Note that the matrix L̃
is the same as L except that its diagonal entries are set to zero. Hence, the last three
terms on the right-hand side can be bounded in the same way as before.

For the first term on the right-hand side of (52), we again apply Lemma 14 to obtain

∣∣∣∣∣∣

n∑

i, j=1

L̃i jϕiϕ j zi z j

∣∣∣∣∣∣
� |z� K̃ z| � | Tr(K̃ )| + ‖K̃‖F

√
log n + ‖K̃‖ log n,

where K̃ is defined by K̃i j = L̃i jϕiϕ j . The trace term vanishes because the diagonal
of L̃ is zero by definition. The proofs of Lemmas 6, 7 and 8 continue to hold with K̃
and L̃ in place of K and L , respectively, and hence the norms ‖K̃‖F and ‖K̃‖ admit
the same bounds as ‖K‖F and ‖K‖.

Combining the bounds on (I) and (II) completes the proof of Lemma 4, and hence
also of Lemma 1.

3.2 Bounding the Effect of the Noise

We now prove Lemma 2, bounding the difference X − X∗ between the noisy and
noiseless settings. Again, π∗ = id is assumed without loss of generality.
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3.2.1 Vectorization and Rotation by U

Without loss of generality, we consider the entries X11 − (X∗)11 and X21 − (X∗)21.
Writing the spectral decomposition A = UΛU�, we apply a vectorization followed
by a rotation by U to first put these differences in a more convenient form.

Recall the notation

ϕ = U�e1, ψ = U�e2, and ξ = U�1,

where this triple (ϕ, ψ, ξ) satisfies (35). Set

Z̃ = U�ZU , L∗ = In ⊗ Λ − Λ ⊗ In, L = In ⊗ Λ − (Λ + σ Z̃) ⊗ In,

and introduce

H = (L − iη In2)−1 − (L∗ − iη In2)−1 ∈ Cn2×n2
(53)

where i = √−1. We review relevant Kronecker product identities in Appendix B.
We formalize the vectorization and rotation operations as the following lemma.

Lemma 9 When π∗ = id,

X11 − (X∗)11 = 1

η
Im(ϕ ⊗ ϕ)� H(ξ ⊗ ξ), (54)

X21 − (X∗)21 = 1

η
Im(ϕ ⊗ ψ)� H(ξ ⊗ ξ), (55)

where Im denotes the imaginary part. Furthermore, the triple (ϕ, ψ, ξ) is independent
of H.

Proof From the definitions, X∗ and X can be written in vectorized form as

x∗ � vec(X∗) =
∑

i j

1

(λi − λ j )2 + η2 (u j ⊗ ui )(u j ⊗ ui )
�1n2 ∈ Rn2

x � vec(X) =
∑

i j

1

(λi − µ j )2 + η2 (v j ⊗ ui )(v j ⊗ ui )
�1n2 ∈ Rn2

.

Since ui , v j , λi , µ j , η are all real-valued, we may further write

x∗ = 1

η
Im

∑

i j

1

λi − λ j − iη
(u j ⊗ ui )(u j ⊗ ui )

�1n2

x = 1

η
Im

∑

i j

1

λi − µ j − iη
(v j ⊗ ui )(v j ⊗ ui )

�1n2 .
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Recall the spectral decomposition (2). Note that In ⊗ A − A ⊗ In is a real symmetric
matrix with orthonormal eigenvectors {u j ⊗ ui }i, j∈[n] and corresponding eigenvalues
λi −λ j . Similarly, In ⊗ A− B ⊗In is real symmetric with eigenvectors {v j ⊗ui }i, j∈[n]
and eigenvalues λi − µ j . Thus, using U� AU = Λ, we have

x∗ = 1

η
Im(In ⊗ A − A ⊗ In − iη In2)−11n2

= 1

η
Im(U ⊗ U )(In ⊗ Λ − Λ ⊗ In − iη In2)−1(U� ⊗ U�)(1n ⊗ 1n)

= 1

η
Im(U ⊗ U )(L∗ − iη In2)−1(ξ ⊗ ξ).

Similarly, using U�BU = U�(A + σ Z)U = Λ + σ Z̃ , we have

x = 1

η
Im(In ⊗ A − B ⊗ In − iη In2)−11n2 = 1

η
Im(U ⊗ U )(L − iη In2)−1(ξ ⊗ ξ).

Therefore, for both (k, �) = (1, 1) and (2, 1),

Xk� − (X∗)k� = e�
k (X − X∗)e� = (e� ⊗ ek)

�(x − x∗)

= 1

η
Im((U�e�) ⊗ (U�ek))H(ξ ⊗ ξ)

which gives the desired (54) and (55).
For the independence claim, note that H is a function of (Λ, Z̃), while (ϕ, ψ, ξ)

is a function of U . Crucially, since Z ∼ GOE(n), Proposition 1(a) implies that Z̃ =
U�ZU ∼ GOE(n) also for every fixed orthogonal matrix U . This distribution does
not depend on U , so Z̃ is independent of U , and hence (ϕ, ψ, ξ) is independent of H .

��

We divide the remainder of the proof into the following two results.

Lemma 10 For some constant C > 0 and any deterministic matrix H ∈ Cn2⊗n2
, with

probability at least 1 − n−7 over (ϕ, ψ, ξ),

|(ϕ ⊗ ϕ)� H(ξ ⊗ ξ)| ∨ |(ϕ ⊗ ψ)�H(ξ ⊗ ξ)| ≤ C

(
‖H‖ + ‖H‖F

log n

n

)
.

Lemma 11 In the setting of Lemma 2, for some constant C > 0 and for H defined by
(53), with probability at least 1 − n−7,

‖H‖ ≤ Cσ

η2 and ‖H‖F ≤ Cσn

η

(
1 + σ

η

)
.
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Lemma 2 follows immediately from these results. Indeed, applying Lemma 10
conditional on H , followed by the estimates for H in Lemma 11, we get for both
(k, �) = (1, 1) and (2, 1) that

|Xk� − (X∗)k�| <
C

η

(
σ

η2 + σ log n

η

(
1 + σ

η

))

with probability at least 1 − 2n−7. By symmetry, the same result also holds for all
pairs (k, �), and Lemma 2 follows from a union bound over (k, �).

3.2.2 Proof of Lemma 10

Introduce S, S̃ ∈ Cn×n such that

vec(S)� = (ϕ ⊗ ϕ)� H and vec(S̃)� = (ϕ ⊗ ψ)�H .

Then, the quantities to be bounded are

(ϕ ⊗ ϕ)� H(ξ ⊗ ξ) = ξ�Sξ and (ϕ ⊗ ψ)� H(ξ ⊗ ξ) = ξ� S̃ξ. (56)

We bound these in three steps: First, we bound ‖S‖F and ‖S̃‖F . Second, we bound
| Tr S| and | Tr S̃|. Finally, we make a Gaussian approximation for ξ and apply the
Hanson–Wright inequality to bound the quantities in (56).
Estimates for ‖S‖F and ‖S̃‖F . We show that with probability at least 1 − 5n−8,

‖S‖F ∨ ‖S̃‖F � 1

n
‖H‖F +

(
log n

n

)1/4

‖H‖. (57)

Note that H� = H , and

‖S‖F = ‖H(ϕ ⊗ ϕ)‖2 and ‖S̃‖F = ‖H(ϕ ⊗ ψ)‖2.

We give the argument for Gaussian vectors, and then apply a Gaussian approximation
for (ϕ, ψ).

Lemma 12 Let x, y ∈ Rn be independent with N(0, 1) entries. Then, for a constant
C > 0 and any deterministic H ∈ Cn2×n2

, with probability at least 1 − 2n−10,

‖H(x ⊗ x)‖2 ∨ ‖H(x ⊗ y)‖2 ≤ C
[
‖H‖F + (n3 log n)1/4‖H‖

]
.

Proof Let M = H∗ H . Then, ‖H(x ⊗ x)‖2 = (x ⊗ x)�M(x ⊗ x). We bound the
mean and then apply Gaussian concentration of measure. Recall the Wick formula for
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Gaussian expectations: For any numbers ai jk� ∈ C,

∑

i, j,k,�

E[xi x j xk x�]ai jk�

=
∑

i, j,k,�

(
1{i = j, k = l} + 1{i = k, j = l} + 1{i = l, j = k}

)
ai jk�.

Denoting the entry Mi j,k� = (ei ⊗e j )
�M(ek ⊗e�) and applying this to ai jk� = Mi j,k�,

we get

E[(x ⊗ x)�M(x ⊗ x)] =
∑

i j

(Mii, j j + Mi j,i j + Mi j, j i ).

Introduce the involution Q ∈ Rn2×n2
defined by Q(ei ⊗ e j ) = e j ⊗ ei , and note also

that
∑

i (ei ⊗ ei ) = vec(In). Then, the above yields

∣∣∣E[(x ⊗ x)�M(x ⊗ x)]
∣∣∣ =

∣∣∣ vec(In)
�M vec(In) + Tr M + Tr M Q

∣∣∣

≤ ‖M‖ · ‖ vec(In)‖2
2 + ‖H‖2

F + ‖H‖F‖H Q‖F

= n‖H‖2 + 2‖H‖2
F . (58)

To establish the concentration of F(x) � (x ⊗ x)�M(x ⊗ x) around its mean, we
aim to apply Lemma 16 by bounding the Lipschitz constant of F on the ball

B = {x ∈ Rn : ‖x‖2 ≤ 2n}.

Note that for each i ∈ [n],

∂

∂xi
[(x ⊗ x)�M(x ⊗ x)]

= (ei ⊗ x)�M(x ⊗ x)

+ (x ⊗ ei )
�M(x ⊗ x) + (x ⊗ x)�M(ei ⊗ x) + (x ⊗ x)�M(x ⊗ ei ). (59)

For x ∈ B, using
∑

i ei e�
i = In and M = M∗, we have

n∑

i=1

|(ei ⊗ x)�M(x ⊗ x)|2 =
n∑

i=1

(x ⊗ x)�M(ei ⊗ x)(ei ⊗ x)�M(x ⊗ x)

= (x ⊗ x)�M(In ⊗ xx�)M(x ⊗ x)

≤ ‖x ⊗ x‖2
2 · ‖M‖2 · ‖I ⊗ xx�‖ = ‖x‖6

2‖M‖2

≤ (2n)3‖M‖2 = 8n3‖H‖4.
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The same bound holds for the other three terms in (59). Thus, for all x ∈ B and
some constant C0 > 0, ‖∇F(x) ≤ C0n3‖H‖4. Thus, x �→ (x ⊗ x)�M(x ⊗ x)

is L0-Lipschitz on B, where L0 �
√

C0n3‖H‖2. Finally, note that F(0) = 0 and
P {x /∈ B} ≤ e−cn by the χ2 tail bound of Lemma 15. Applying Lemma 16 with
t � √

log n, we conclude that

|(x ⊗ x)�M(x ⊗ x)| ≤ |E[(x ⊗ x)�M(x ⊗ x)]|

+ Cn2e−cn/2‖H‖2 + C ′
√

n3 log n‖H‖2

(58)
≤ C ′′(‖H‖2

F +
√

n3 log n‖H‖2)

holds with probability at least 1−n−10, where C, C ′, C ′′ are absolute constants. Taking
the square root gives the desired result for ‖H(x ⊗ x)‖2.

The bound for H(x ⊗ y) is similar: We have

E[‖H(x ⊗ y)‖2
2] = E[(x ⊗ y)�M(x ⊗ y)] =

∑

i j

Mi j,i j = Tr M = ‖H‖2
F .

On B2 = {(x, y) ∈ R2n : ‖x‖2
2 ≤ 2n, ‖y‖2

2 ≤ 2n}, we obtain ‖∇x,y[(x ⊗ y)�M(x ⊗
y)]‖2 ≤ L2

0 ≡ Cn3‖H‖2 as above. Applying Lemma 16 as above yields the desired
bound on ‖H(x ⊗ y)‖2. ��

We now apply this and a Gaussian approximation to show (57). For ‖S‖F , let x
be a standard Gaussian vector in Rn , so that x/‖x‖2 is equal to ϕ in law. Lemma 15
shows with probability 1 − n−10 that ‖x‖2

2 ≥ n/2, so

‖S‖F = ‖H(ϕ ⊗ ϕ)‖2 ≤ 2

n
‖H(x ⊗ x)‖2,

and the result follows from Lemma 12. For ‖S̃‖F , let x, y be independent standard
Gaussian vectors in Rn . Since ϕ�ψ = 0 and (ϕ, ψ) is rotationally invariant in law,
this pair is equal in law to

( x

‖x‖2
,

y − (y�x/‖x‖2
2)x

‖y − (y�x/‖x‖2
2)x‖2

)
.

Standard concentration inequalities of Lemmas 13 and 15 then yield

‖S̃‖F = ‖H(ϕ ⊗ ψ)‖2 ≤ 2

n
‖H(x ⊗ y)‖2 + 5

√
log n

n3/2 ‖H(x ⊗ x)‖2 (60)

with probability at least 1 − 4n−8, so the result also follows from Lemma 12.
Estimates for Tr S and Tr S̃. Next, we show that with probability at least 1 − 5n−8,

| Tr S| ∨ | Tr S̃| ≤ 2‖H‖. (61)
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Note that

Tr S = Tr SIn = (ϕ ⊗ ϕ)� H vec(In),

and similarly

Tr S̃ = (ϕ ⊗ ψ)�H vec(In).

We apply a Gaussian approximation. To bound Tr S, let x be a standard Gaussian
vector, so x/‖x‖2 is equal to ϕ in law. Define G ∈ Cn×n by vec(G) = H vec(In).
Then, it follows from Lemmas 15 and 14 that

| Tr S| = |ϕ�Gϕ| = |x�Gx |
‖x‖2

2

≤ 1

0.9n

(
| Tr G| + C‖G‖F log n

)
(62)

with probability at least 1 − n−10. We apply

| Tr G| = | Tr GIn| = | vec(In)�H vec(In)| ≤ ‖H‖‖In‖2
F = n‖H‖,

and

‖G‖F = ‖H vec(In)‖2 ≤ ‖H‖‖In‖F = √
n ‖H‖.

Combining these yields | Tr S| ≤ 2‖H‖ for large n. For Tr S̃, introducing independent
standard Gaussian vectors x, y, the same arguments as leading to (60) give

|(ϕ ⊗ ψ)� H vec(In)| ≤ 2

n

∣∣(x ⊗ y)� H vec(In)
∣∣ + 5

√
log n

n3/2

∣∣(x ⊗ x)� H vec(In)
∣∣

= 2

n
|x�Gy| + 5

√
log n

n3/2 |x�Gx |

with probability at least 1 − 4n−8. Then, | Tr S̃| ≤ 2‖H‖ follows from the same
arguments as above by invoking Lemma 14.
Quadratic form bounds. We now use (57) and (61) to bound the quadratic forms (56)
in ξ . Note that ξ is dependent on (ϕ, ψ) and hence on S and S̃, thus tools such as
the Hanson–Wright inequality is not directly applicable; nevertheless, thanks to the
uniformity of U on the orthogonal group, (ξ, ϕ, ψ) = U T (1, e1, e2) are only weakly
dependent and well approximated by Gaussians. Below we make this intuition precise.

Consider ξ� S̃ξ . Let z be a standard Gaussian vector in Rn independent of
(ϕ, ψ) (and hence of S̃), and recall the Gaussian representation (49) so that

(ϕ, ψ, ξ̃ )
(d)=(ϕ, ψ, ξ). Write (49) as ξ̃ = αz + ϕ̃, where ϕ̃ = (1 − α(ϕ�z))ϕ +

(1 − α(ψ�z))ψ is a linear combination of ϕ and ψ . By concentration inequalities for
‖z‖2 and ϕ�z in Lemmas 13 and 15, we have 0.9 ≤ α ≤ 1.1 and ‖ϕ̃‖2 ≤ 8

√
log n

with probability 1 − 4n−8. On this event,

|ξ� S̃ξ | ≤ 1.21|z� S̃z| + |ϕ̃� S̃ϕ̃| + 1.1|z� S̃ϕ̃| + 1.1|ϕ̃� S̃z|.
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We bound these four terms separately conditional on (ϕ, ψ).
For the first term, applying the Hanson–Wright inequality of Lemma 14, we have

|z� S̃z| ≤ | Tr S̃| + C‖S̃‖F log n

with probability at least 1 − n−10. For the second term, applying ‖ϕ̃‖2 ≤ 8
√

log n,

|ϕ̃� S̃ϕ̃| ≤ ‖S̃‖‖ϕ̃‖2
2 ≤ 64‖S̃‖F log n.

For the third term,

|ϕ̃� S̃z| ≤ ‖ϕ̃‖2‖S̃z‖2.

Applying again Lemma 14, with probability at least 1 − n−10,

‖S̃z‖2
2 ≤ Tr S̃∗ S̃ + C‖S̃∗ S̃‖F log n ≤ (C + 1)‖S̃‖2

F log n,

so

|ϕ̃� S̃z| � ‖S̃‖F log n.

The fourth term is bounded similarly to the third, and combining these gives |ξ� S̃ξ | �
| Tr S̃| + ‖S̃‖F log n with probability at least 1 − 6n−8. Applying (57) and (61), we
get

|(ϕ ⊗ ψ)�H(ξ ⊗ ξ)| = |ξ� S̃ξ | � ‖H‖ + log n

n
‖H‖F

as desired.
The Gaussian approximation argument for (ϕ ⊗ ϕ)� H(ξ ⊗ ξ) = ξ�Sξ is simpler

and omitted for brevity. This concludes the proof of Lemma 10.

3.2.3 Proof of Lemma 11

Recalling the definition of H in (53) and applying

A−1 − B−1 = A−1(B − A)B−1, (63)

we get

− H = (L∗ − iη In2)−1(σ Z̃ ⊗ In)(L − iη In2)−1. (64)

As L∗ − iη In2 is diagonal with each entry at least η in magnitude, we have the
deterministic bound ‖(L∗ − iη In2)−1‖ ≤ 1/η, and similarly ‖(L− iη In2)−1‖ ≤ 1/η.
Applying Proposition 1(c), ‖Z̃‖ ≤ C with probability at least 1 − n−10 for a constant
C > 0. On this event, ‖H‖ ≤ Cσ/η2.
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To bound ‖H‖F , let us apply (63) again to (L − iη In2)−1 in (64), to write

−H = (L∗ − iηI)−1(σ Z̃ ⊗ I)(L∗ − iηI)−1
(

I − (σ Z̃ ⊗ I)(L − iηI)−1
)
.

Applying

‖AB‖F ≤ ‖A‖F‖B‖, (65)

we get with probability at least 1 − n−10 that

‖H‖F ≤ ‖(L∗ − iηI)−1(σ Z̃ ⊗ I)(L∗ − iηI)−1‖F (1 + Cσ/η). (66)

Note that here, L∗ is diagonal, and Z̃ is independent of L∗. Let w ∈ Cn2
consist

of the diagonal entries of (L∗ − iηI)−1, indexed by the pair (i, k) ∈ [n]2, i.e., wik =
1

λi −λk−iη . Let us also desymmetrize Z̃ and write

Z̃ = 1√
2n

(W + W �),

where W ∈ Rn×n has n2 independent N (0, 1) entries. Then,

‖(L∗ − iηI)−1(σ Z̃ ⊗ I)(L∗ − iηI)−1‖2
F

= σ 2

2n

∥∥∥(L∗ − iηI)−1((W + W �) ⊗ I
)
(L∗ − iηI)−1

∥∥∥
2

F

= σ 2

2n

n∑

i, j,k=1

(Wi j + W ji )
2|wik |2|w jk |2.

Recall the symmetric matrix L ∈ Rn×n defined by (36). We have

n∑

k=1

|wik |2|w jk |2 =
n∑

k=1

1

(λi − λk)2 + η2 · 1

(λ j − λk)2 + η2 =
n∑

k=1

Lik L jk = (L2)i j .

Introducing v = vec(L2) ∈ Rn2

+ indexed by (i, j), and applying Lemma 15 condi-
tional on v, we get

‖(L∗ − iηI)−1(σ Z̃ ⊗ I)(L∗ − iηI)−1‖2
F ≤ 2σ 2

n

n∑

i, j=1

W 2
i jvi j

≤ 2σ 2

n
(‖v‖1 + C‖v‖2 log n) (67)

with probability at least 1 − n−10.
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Finally, we apply Lemma 5 to bound ‖v‖1 and ‖v‖2. Note that ‖v‖1 = 1L21 =
‖L1‖2

2. Applying maxi (L1)i ≤ Cn/η from Lemma 5, we get with probability at least
1 − n−8 that

‖v‖1 � n3/η2.

By (65), we also have ‖v‖2
2 = ‖L2‖2

F ≤ ‖L‖2 · ‖L‖2
F . Applying ‖L‖ ≤ maxi (L1)i ≤

Cn/η and ‖L‖2
F ≤ Cn2/η3 from Lemma 5, we get

‖v‖2
2 � n4/η5.

Applying this to (67) and then back to (66) yields

‖H‖2
F � σ 2

n

(
n3

η2 + n2 log n

η5/2

) (
1 + σ

η

)2

� σ 2n2

η2

(
1 + σ

η

)2

,

where the second inequality holds for η > n−0.1. This is the desired bound on ‖H‖F .
This concludes the proof of Lemma 11, and hence of Lemma 2.

3.3 Proof for the Bipartite Model

We now prove Theorem 2 for exact recovery in the bipartite model. We first show
that Algorithm 2 successfully recovers π∗

1 . This extends the preceding argument in
the symmetric case. We then show that the linear assignment subroutine recovers π∗

2
if π̂1 = π∗

1 .

3.3.1 Recovery of�∗
1 by Spectral Method

The argument is a minor extension of that in the Gaussian Wigner model. Let us write
A =

√
F F�, and introduce its spectral decomposition A = UΛU�. Note that Λ and

U then consist of the singular values and left singular vectors of F .
To analyze the noiseless solution X∗ = X̂(A, A), note that all three claims of

Proposition 1 hold for A, where the constants C, C ′, c may depend on κ = lim n/m.
Indeed, here,ρ is the law of

√
λwhenλ is distributed according to the Marcenko–Pastur

distribution with density g(x) =
√

(λ+−x)(x−λ−)

2πκx 1{λ−≤x≤λ+} and λ± � (1 ± √
κ)2.

Then, the density of ρ is 2xg(x2) (In the case of κ = 1, ρ is the quarter-circle law.)
Therefore, for any κ ∈ (0, 1], the density of ρ is supported on [1 − √

κ, 1 + √
κ]

and bounded by some κ-dependent constant C . The rate of convergence in (b) follows
from [32,Theorem 1.1], and the claims in (a) and (c) are well known. Thus, the proof
of Lemma 1 applies, and we obtain with probability 1 − 5n−5 that

min
i∈[n]

(X∗)i i > η2/2, max
i, j∈[n]:i 
= j

(X∗)i j < C

(√
log n

η3/2 + log n

η

)
. (68)
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Next, we analyze the noisy solution X � X̂(A, B). Set B =
√

GG�, and define
H by (53) but replacing Λ + σ Z̃ in L with the general definition

L = In ⊗ Λ − U� BU ⊗ In .

Then, the representations (54) and (55) of Lemma 9 continue to hold. Furthermore,
write the singular value decomposition F = UΛV �, set W̃ = U�W , and note that
U is uniformly random and independent of (Λ, V , W̃ ). Then,

U�BU = U�√
(F + σ W )(F + σ W )�U =

√
(ΛV � + σ W̃ )(ΛV � + σ W̃ )�

which is independent of U , so that (ϕ, ψ, ξ) is still independent of H . Then, applying
Lemma 10 conditional on H , we get with probability at least 1 − n−7 that

|Xk� − (X∗)k�| � 1

η

(
‖H‖ + ‖H‖F

log n

n

)

for both (k, �) = (1, 1) and (2, 1).
To conclude the proof, we need a counterpart of Lemma 11 bounding the norms of

H . Let us simply use the fact that H has dimension n2 ×n2 to bound ‖H‖F ≤ n‖H‖,
and apply

‖H‖ ≤ ‖(L − iηI)−1‖ · ‖L − L∗‖ · ‖(L∗ − iηI)−1‖ ≤ ‖L − L∗‖/η2.

Then,

‖L − L∗‖ = ‖U�(A − B)U ⊗ In‖ = ‖A − B‖

≤ 2

π
‖F − G‖

(
2 + log

‖F‖ + ‖G‖
‖F − G‖

)

where the last inequality follows from [35,Proposition 1]. For a constant C > 0, this is
at most Cσ log(1/σ) with probability at least 1−n−10 by the analogue of Proposition
1(c) applied to the noise W = (G − F)/σ in this model. Combining these bounds
yields for (k, �) = (1, 1) and (2, 1) that with probability 1 − 2n−7,

|Xk� − (X∗)k�| ≤ Cσ log(1/σ) log n

η3 .

This holds for all pairs (k, �) with probability at least 1−2n−5 by a union bound. Thus,
for η < c/ log n, σ log(1/σ) < c′η/ log n, and sufficiently small constants c, c′ > 0,
we get from (68) that

min
i∈[n]

Xii > max
i, j∈[n]:i 
= j

Xi j .

So Algorithm 2 recovers π̂1 = π∗
1 with probability at least 1 − 7n−5 when π∗

1 = id.
By equivariance of the algorithm, this also holds for any π∗

1 .
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3.3.2 Recovery of�∗
2 by Linear Assignment

We now show that on the event where π̂1 = π∗
1 , as long as n � log m

log(1+ 1
4σ2 )

, the linear

assignment step of Algorithm 2 recovers π̂2 = π∗
2 with high probability. Without

loss of generality, let us take π∗
1 = id, and denote more simply π∗ = π∗

2 . We then
formalize this claim as follows.

Theorem 3 Consider the single permutation model G id,π∗ = F +σ W where G id,π∗
i j =

Gi,π∗( j), and F and W are as in Theorem 2. Let

π̂ = argmax
π∈Sm

m∑

j=1

(F�G) j,π( j).

If n ≥ 24 log m
log(1+ 1

4σ2 )
, then π̂ = π∗ with probability at least 1 − 2m−4.

Proof Without loss of generality, assume that π∗ = id. Let us also rescale and consider
G = F +σ W , where F and W are n × m random matrices with i.i.d. N (0, 1) entries.
Our goal is to show that

Π̂ = argmax
Π∈Sm

〈FΠ, G〉

coincides with the identity with probability at least 1 − m−4.
For any Π 
= I, we have 〈FΠ, G〉−〈F, G〉 = σ 〈F(Π − I), W 〉−〈F(I −Π), F〉,

where 〈F(I − Π), F〉 = 1
2‖F(I − Π)‖2

F . Then,

P {〈FΠ, G〉 > 〈F, G〉} = P
{〈

W ,
F(Π − I)

‖F(I − Π)‖F

〉
≥ ‖F(I − Π)‖F

2σ

}

= E
[

Q

(‖F(I − Π)‖F

2σ

)]

(a)
≤ E

[

exp

(

−‖F(I − Π)‖2
F

8σ 2

)]

(b)=
{

E

[

exp

(

−‖z�(I − Π)‖2
F

8σ 2

)]}n

,

where (a) follows from the Gaussian tail bound Q(x) �
∫ ∞

x
1√
2π

e−t2/2dt ≤ e−x2/2

for x > 0; (b) is because the n rows of F are i.i.d. copies of z ∼ N (0, Im).
Denote the number of non-fixed points of Π by k ≥ 2, which is also the rank of

I − Π . Denote its singular values by σ1, . . . , σk . Then, we have
∑k

i=1 σ 2
i = ‖I −

Π‖2
F = 2k and maxi∈[k] σi ≤ ‖I − Π‖ ≤ 2. By rotational invariance, we have
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‖z�(I − Π)‖2
F

(d)= ∑k
i=1 σ 2

i w2
i , where w1, . . . , wk

i.i.d.∼ N (0, 1). Then,

E

[

exp

(

−‖z�(I − Π)‖2
F

8σ 2

)]

=
k∏

i=1

E

[

exp

(

− σ 2
i

8σ 2 w2
i

)]

= exp

{

−1

2

k∑

i=1

log

(

1 + σ 2
i

4σ 2

)}

≤ exp

{
−k

8
log

(
1 + 1

4σ 2

)}
, (69)

where the last step is due to
∑k

i=1 1{
σ 2

i ≥1
} ≥ k/4.3 Combining the last two displays

and applying the union bound over Π 
= I, we have

P
{
Π̂ 
= I

}
≤

∑

Π 
=I

P {〈FΠ, G〉 > 〈F, G〉}

≤
m∑

k=2

(
m

k

)
k!

(
1 + 1

4σ 2

)−nk/8

≤
m∑

k=2

mk
(

1 + 1

4σ 2

)−nk/8

≤ 2m−4,

provided that m ≥ 2 and m
(

1 + 1
4σ 2

)−n/8
≤ m−2. ��

3.4 Convex Relaxation and Gradient Descent Dynamics

Finally, we prove Corollary 1, which connects X̂ in (3) to the optimization problems
(15) and (16) and the gradient descent dynamics (17).

To show that X̂ solves (15), note that the objective function in (15) is quadratic,
with first-order optimality condition

A2 X + X B2 − 2AX B + η2 X = J.

Setting x = vec(X) and writing this in vectorized form

[
(In ⊗ A − B ⊗ In)

2 + η2In2
]
x = 1n2 ,

we see that the vectorized solution to (15) is

x̂ =
[
(In ⊗ A − B ⊗ In)

2 + η2In2
]−11n2 ∈ Rn2

.

3 The sharp condition n log
(

1 + 1
σ2

)
−4 log m → +∞ can be obtained by computing the singular values

in (69) exactly; cf. [18].

123



Foundations of Computational Mathematics

Applying the spectral decomposition (2), we get

x̂ =
∑

i j

1

(λi − µ j )2 + η2 (v j ⊗ ui )(v j ⊗ ui )
�1n2

=
∑

i j

u�
i Jnv j

(λi − µ j )2 + η2 vec(uiv
�
j ), (70)

which is exactly the vectorization of X̂ in (22).
Recall that X̃ denotes the minimizer of (16). Introducing a Lagrange multiplier

2α ∈ R for the constraint,
the first-order stationarity condition is A2 X + X B2 − 2AX B + η2 X = αJ, and

hence X̃ = α X̂ . To find α, note that 1� X̃1 = α1� X̂1 = n. Furthermore, from (3) we
have

1� X̂1 =
∑

i j

〈ui , 1〉2〈v j , 1〉2

(λi − µ j )2 + η2 > 0.

Hence, α > 0. These claims together establish part (a).
For (b), let us consider the gradient descent dynamics also in its vectorized form.

Namely, define x(t) � vec(X (t)). Then, (17) can be written as

x(t+1) =
[
(1 − γ η2)In2 − γ (In ⊗ A − B ⊗ In)

2]x(t) + γ 1n2 .

For the initialization x(0) = 0, this gives

x(t) = γ

t−1∑

s=0

[
(1 − γ η2)In2 − γ (In ⊗ A − B ⊗ In)2]s1n2

= γ

n∑

i, j=1

t−1∑

s=0

[
1 − γ η2 − γ (λi − µ j )

2]s
(v j ⊗ ui )(v j ⊗ ui )

�1n2

=
n∑

i, j=1

1 − [1 − γ η2 − γ (λi − µ j )
2]t

η2 + (λi − µ j )2 (v j ⊗ ui )(v j ⊗ ui )
�1n2 . (71)

Undoing the vectorization yields part (b).
For (c), note that η2 + (λi − µ j )

2 < C with probability at least 1 − n−10 by
Proposition 1(c), so that the convergence in part (b) holds provided that the step size
γ ≤ c for some sufficiently small constant c. On this event, for all pairs (k, �) we may
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apply the simple bound

|X (t)
k� − X̂k�| ≤

∑

i j

(1 − γ (λi − µ j )
2 − γ η2)t

(λi − µ j )2 + η2 |(u�
i ek)(v

�
j e�)(u

�
i Jv j )|

≤ (1 − γ η2)t

η2 · n2 max
i j

|(u�
i ek)(v

�
j e�)(u

�
i Jv j )|

≤ (1 − γ η2)t

η2 · n3.

In particular, for t ≥ (C log n)/(γ η2) and a sufficiently large constant C > 0, this is
at most 1/n. Then, the conclusion of Theorem 1 with X (t) in place of X̂ still follows
from Lemmas 1 and 2.

4 Numerical Experiments

This section is devoted to comparing our spectral method to various methods for
graph matching, using both synthetic examples and real datasets. Let us first make a
few remarks regarding implementation of graph matching algorithms.

Similar to the last step of Algorithm 1, many algorithms we compare to also involve
rounding a similarity matrix to produce a matching in the final step. Throughout the
experiments, for the sake of comparison we always use the linear assignment (5) for
rounding, which typically yields noticeably better outcomes than the simple greedy
rounding (6).

For GRAMPA, Theorem 1 suggests that the regularization parameter η needs to be
chosen so that σ ∨ n−0.1 � η � 1/ log n. In practice, one may compute estimates
π̂η for different values of η and select the one with the minimum objective value
‖A − Bπ̂η‖2

F . We find in simulations that the performance of GRAMPA is in fact not
very sensitive to the choice of η, unless η is extremely close to zero or larger than
one. For simplicity and consistency, we apply GRAMPA to centered and normalized
adjacency matrices and fix η = 0.2 for all synthetic experiments.

4.1 Universality of GRAMPA

Although the main theoretical result of this work, Theorem 1, is only proved for the
Gaussian Wigner model, the proposed spectral method in Algorithm 1 (denoted by
GRAMPA) can in fact be used to match any pair of weighted graphs. Particularly, in view
of the universality results in the companion paper [24], the performance of GRAMPA
for the Gaussian Wigner model is comparable to that for the suitably calibrated Erdős–
Rényi model. This is verified numerically in Fig. 2 which we now explain.

Given the latent permutation π∗, an edge density p ∈ (0, 1), and a noise param-
eter σ ∈ [0, 1], we generate two correlated Erdős–Rényi graphs on n vertices with
adjacency matrices A and B, such that (Ai j , Bπ∗(i),π∗( j)) are i.i.d. pairs of correlated
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Fig. 2 Universality of the performance of GRAMPA on three random graph models with 1000 vertices

Bernoulli random variables with marginal distribution Bern(p). Conditional on A,

Bπ∗(i),π∗( j) ∼
{

Bern
(
1 − σ 2(1 − p)

)
if Ai j = 1,

Bern
(
σ 2 p

)
if Ai j = 0.

(72)

Here the operational meaning of the parameter σ is that the fraction of edges which
differ between the two graphs is approximately 2σ 2(1 − p) ≈ 2σ 2 for sparse graphs.
In particular, the extreme cases of σ = 0 and σ = 1 correspond to A and B which are
perfectly correlated and independent, respectively.

Furthermore, the model parameters in (72) are calibrated to be directly compa-
rable with the Gaussian model, so that it is convenient to verify experimentally the
universality of our spectral algorithm.

Indeed, denote the centered and normalized adjacency matrices by

A � (p(1 − p)n)−1/2(A − E[A]) and B � (p(1 − p)n)−1/2(B − E[B]). (73)

Then, it is easy to check that Ai j and Bi j both have mean zero and variance 1/n, and
moreover,

E[(Ai j − Bπ∗(i),π∗( j))
2] = 2σ 2/n. (74)

Note that Eq. (74) also holds for the off-diagonal entries of the Gaussian Wigner model
B = A +

√
2σ Z , where A and Z are independent GOE(n) matrices. In Fig. 2, we

implement GRAMPA to match pairs of Gaussian Wigner, dense Erdős–Rényi (p = 0.5)
and sparse Erdős–Rényi (p = 0.01) graphs with 1000 vertices, and plot the fraction
of correctly matched pairs of vertices against the noise level σ , averaged over 10
independent repetitions. The performance of GRAMPA on the three models is indeed
similar, agreeing with the universality results proved in the companion paper [24].
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Fig. 3 Comparison of six spectral methods for matching Erdős–Rényi graphs with expected edge density
0.5 and 100 vertices

For this reason, in the sequel we primarily consider the Erdős–Rényi model for
synthetic experiments. In addition, whileGRAMPA is applicable for matching weighted
graphs, many algorithms in the literature were proposed specifically for unweighted
graphs, so using the Erdős–Rényi model allows us to compare more methods in a
consistent setup.

4.2 Comparison of Spectral Methods

We now compare the performance of GRAMPA to several existing spectral methods
in the literature. Besides the rank-1 method of rounding the outer product of top
eigenvectors (8) (denoted by TopEigenVec), we consider the IsoRank algorithm
of [63], theEigenAlign andLowRankAlign4 algorithms of [25], and Umeyama’s
method [64] which rounds the similarity matrix (10). In Fig. 3(a), we apply these
algorithms to match Erdős–Rényi graphs with 100 vertices5 and edge density 0.5. For
each spectral method, we plot the fraction of correctly matched pairs of vertices of the
two graphs versus the noise level σ , averaged over 10 independent repetitions. While
all estimators recover the exact matching in the noiseless case, it is clear that GRAMPA
is more robust to noise than all previous spectral methods by a wide margin.

A more precise comparison of GRAMPA with its closest competitor, Umeyama’s
method, is given in Fig. 3(b), which shows that Umeyama’s method is only robust to
noise up to σ = 1

poly(n)
, whereas we prove in [24] that GRAMPA yields exact recovery

up to σ = 1
polylog(n)

. Specifically, we test these two methods on Erdős–Rényi graphs
with edge density 0.5 and sizes n = 400, 800 and 1600. The noise parameter σ is set to
Cn−0.25 with varying values of C , where the exponent −0.25 is empirically found to
be the critical exponent above which Umeyama’s method fails. Out of 100 independent

4 We implement the rank-2 version of LowRankAlign here because a higher rank does not appear to
improve its performance in the experiments.
5 This experiment is not run on larger graphs because IsoRank and EigenAlign involve taking Kro-
necker products of graphs and are thus not as scalable as the other methods.
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Fig. 4 Comparison of three competitive methods for matching Erdős–Rényi graphs with expected edge
density 0.5

trials, we record the fraction of times when the algorithm exactly recovers the matching
between the two graphs, and plot this quantity against C . From the linesU 400,U 800,
and U 1600 corresponding to Umeyama’s method on the three respective graph sizes,
we see that the performance of Umeyama’s method does not vary with n, supporting
that σ � n−0.25 is the critical threshold for exact recovery by this method. Conversely,
as n increases, the failure of GRAMPA occurs at a larger value of C , as seen in the
curves G 400, G 800, and G 1600. This aligns with the theoretical result in [24] that
GRAMPA succeeds for σ = 1

polylog(n)
.

4.3 Comparison with Quadratic Programming and Degree Profile

Next, we consider more competitive graph matching algorithms outside the spectral
class. Since our method admits an interpretation through the regularized QP (15)
or (16), it is of interest to compare its performance to (the algorithm that rounds
the solution to) the full QP (14) with full doubly stochastic constraints, denoted by
QP-DS. Another recently proposed method for graph matching is Degree Profile [20],
for which theoretical guarantees comparable to our results have been established for
the Gaussian Wigner and Erdős–Rényi models.

Figure 4(a) plots the fraction of correctly matched vertex pairs by the three algo-
rithms, on Erdős–Rényi graphs with 500 vertices and edge density 0.5, averaged over
10 independent repetitions. GRAMPA outperforms DegreeProfile, while QP-DS
is clearly the most robust, albeit at a much higher computational cost. Since off-the-
shelf QP solvers are extremely slow on instances with n larger than several hundred,
we resort to an alternating direction method of multipliers (ADMM) procedure used
in [20]. Still, solving (14) is more than 350 times slower than computing the similarity
matrix (3) for the instances in Fig. 4(a). Moreover, DegreeProfile is about 15
times slower. We argue that GRAMPA achieves a desirable balance between speed and
robustness when implemented on large networks.
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A closer inspection of the exact recovery threshold of GRAMPA and
DegreeProfile is done in Fig. 4(b), in a similar way as Fig. 3(b). Since The-
orem 1 suggests that GRAMPA is robust to noise up to σ � 1

log n , we set the noise level
to be σ = C/ log n, and plot the fraction of exact recovery against C . The results for
Erdős–Rényi graphs of size n = 400, 800, 1600 and for the two methodsGRAMPA and
DegreeProfile are represented by the curves G 400, G 800, G 1600 and D 400,
D 800, D 1600, respectively. These results suggest that GRAMPA is more robust than
DegreeProfile by at least a constant factor.

4.4 More Graph Ensembles

To demonstrate the performance of GRAMPA on other models, we turn to sparser
regimes of the Erdős–Rényi model, as well as other random graph ensembles. In
Fig. 5, we compare the performance of GRAMPA and DegreeProfile (the two
fast and robust methods from the preceding experiments) on correlated pairs of sparse
Erdős–Rényi graphs, stochastic blockmodels, and power-law graphs. Following [56],
we generate these pairs by sampling a “mother graph” according to such a model with
edge density p/s for 0 < p < s ≤ 1, and then generating A and B by deleting each
edge independently with probability 1 − s. This yields marginal edge density p in
both A and B. We apply GRAMPA with the centered and normalized matrices A and B
from (73) as input, with p being the marginal edge density. In each figure, the fraction
of correctly matched pairs of vertices is plotted against the effective noise level

σ =
√

1 − s

1 − p
,

for graphs with 1000 vertices, averaged over 10 independent repetitions. One may
verify that the above procedure of generating (A, B) and the definition of σ both agree
with the previous definition (72) in the Erdős–Rényi setting.

In Fig. 5(a) and (b), we consider Erdős–Rényi graphs with edge density p = 0.01
and 0.005. Note that the sharp threshold of p for the connectedness of an Erdős–Rényi
graph with 1000 vertices is log n

n ≈ 0.0069 [23], below which the graphs contain
isolated vertices whose matching is non-identifiable. We see that the performance of
GRAMPA is better than DegreeProfile in both settings, and particularly in the
sparser regime.

In Fig. 5(c) and (d), we consider the stochastic blockmodel [34] with two com-
munities each of size 500. The probability of an edge between vertices in the same
(resp. different) community is denoted by pin (resp. pout). The values of pin and pout
are chosen so that the overall expected edge densities are p = 0.01 and 0.005 as in
the Erdős–Rényi case. We observe a similar comparison of the two methods as in the
Erdős–Rényi setting.

Finally, in Fig. 5(e) and (f), we consider power-law graphs that are generated accord-
ing to the following version of the Barabási–Albert preferential attachment model
[5]: We start with two vertices connected by one edge. Then, at each step, denot-
ing the degrees of the existing k vertices by d1, . . . dk , we attach a new vertex to

123



Foundations of Computational Mathematics

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p = 0.01

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)Erdős-Rényi graph with p = 0.005
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Fig. 5 Comparison of GRAMPA and DegreeProfile on synthetic networks

the graph by connecting it to the j-th existing vertex independently with probability
max(Cd j/(

∑k
i=1 di ), 1) for each j = 1, . . . , k.6 This process is iterated until the

graph has n vertices. Here, C is a parameter that determines the final edge density.
As shown in Fig. 5(e), for matching correlated power-law graphs with over-

all expected edge density p = 0.01, GRAMPA is more noise resilient than
DegreeProfile in terms of exact recovery. As the noise grows, the performance
of GRAMPA decays faster than DegreeProfile in terms of the fraction of correctly
matched pairs. In Fig. 5(f), for sparser power-law graphs with expected edge density
p = 0.005, we again observe that GRAMPA has significantly better performance than
DegreeProfile. Note that in this sparse regime, neither method can achieve exact
recovery even in the noiseless case due to the non-trivial symmetry of the graph arising
from, for example, multiple leaf vertices incident to a common parent. We revisit the
issue of non-identifiability when studying the real dataset in the next subsection.

4.5 Networks of Autonomous Systems

We corroborate the improvement of GRAMPA over DegreeProfile using quan-
titative benchmarks on a time-evolving real-world network of n = 10000 vertices.
Here, for simplicity, we apply both methods to the unnormalized adjacency matrices,
and set η = 1 for GRAMPA. We find that the results are not very sensitive to this choice
of η. Although QP-DS yields better performance in Fig. 4, it is extremely slow to run
on such a large network, so we omit it from the comparison here.

6 Since a preferential attachment graph is connected by convention, we may repeat this step until the new
vertex is connected to at least one existing vertex.
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Fig. 6 Comparison of GRAMPA and DegreeProfile for matching networks of autonomous systems on
nine days to that on the first day

We use a subset of the Autonomous Systems dataset from the University of Oregon
Route Views Project [65], available as part of the Stanford Network Analysis Project
[41, 42]. The data consists of instances of a network of autonomous systems observed
on nine days between March 31, 2001, and May 26, 2001. Edges and (a small fraction
of) vertices of the network were added and deleted over time. In particular, the number
of vertices of the network on the nine days ranges from 10,670 to 11,174 and the number
of edges from 22,002 to 23,409. The labels of the vertices are known.

To test the graph matching methods, we consider 10,000 vertices of the network
that are present on all nine days. The resulting nine graphs can be seen as noisy
versions of each other, with correlation decaying over time. We apply GRAMPA and
DegreeProfile to match each graph to that on the first day of March 31, with
vertices randomly permuted.

In Fig. 6(a), we plot the fraction of correctly matched pairs of vertices against
the chronologically ordered dates. GRAMPA correctly matches many more pairs of
vertices than DegreeProfile for all nine days. As expected, the performance of
both methods degrades over time as the network becomes less correlated with the
original one.

For the same reason as in the power-law graphs in Fig. 5(f), even the matching of the
graph on the first day to itself is not exact. In fact, there are over 3,000 degree-one ver-
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tices in this graph, and some of them are attached to the same high-degree vertices, so
the exact matching is non-identifiable. Thus, for a given matching π̂ , an arguably more
relevant figure of merit is the number of common edges, i.e., the (rescaled) objective
value 〈A, Bπ̂ 〉/2. We plot this in Fig. 6(b) together with the value for the ground-truth
matching. The values of GRAMPA and of the ground-truth matching are the same
on the first day, indicating that GRAMPA successfully finds an automorphism of this
graph, while DegreeProfile fails. Furthermore, GRAMPA consistently recovers a
matching with more common edges over the nine days.

As in many real-world networks, high-degree vertices here are hubs in the network
of autonomous systems and play a more important role. Therefore, we further evaluate
the two methods by comparing their performance on subgraphs induced by high-
degree vertices. More precisely, we consider the 1000 vertices that have the highest
degrees in the graph on the first day, March 31. In Fig. 6(c) and (d), we still use the
matchings between the entire networks that generated Fig. 6(a) and (b), but evaluate
the correctness only on those top 1,000 high-degree vertices. We observe that both
methods succeed in exactly matching the subgraph from the first day to itself, and in
general yield much better matchings for the high-degree vertices than for the remainder
of the graph. Again,GRAMPA produces better results than DegreeProfile on these
subgraphs over the nine days, in both measures of performance.

5 Conclusion

We have proposed a highly practical spectral method, GRAMPA, for matching a pair
of edge-correlated graphs. By using a similarity matrix that is a weighted combination
of outer products uiv

�
j across all pairs of eigenvectors of the two adjacency matri-

ces, GRAMPA exhibits significantly improved noise resilience over previous spectral
approaches. We showed in this work that GRAMPA achieves exact recovery of the
latent matching in a correlated Gaussian Wigner model, up to a noise level σ � 1

log n .
In the companion paper [24], we establish a similar universal guarantee for Erdős–
Rényi graphs and other correlated Wigner matrices, up to a noise level σ � 1

polylog n .
GRAMPA exhibits improved recovery accuracy over previous spectral methods as
well as the state-of-the-art degree profile algorithm in [20], on a variety of synthetic
graphs and also on a real network example.

The similarity matrix (3) in GRAMPA can be interpreted as a ridge-regularized
further relaxation of the well-known quadratic relaxation (14) of the QAP, where the
doubly stochastic constraint is replaced by 1� X1 = n. In the companion paper [24], we
also analyze a tighter relaxation with constraints X1 = 1, and establish similar guaran-
tees. In synthetic experiments on small graphs, we found that solving the full quadratic
program (14), followed by the same rounding procedure as used in GRAMPA, yields
better recovery accuracy in noisy settings. However, unlike GRAMPA, solving (14)
does not scale to large networks, and the properties of its solution currently lack
theoretical understanding. We leave these as open problems for future work.

Acknowledgements Y. Wu and J. Xu are deeply indebted to Zongming Ma for many fruitful discussions
on the QP relaxation (14) in the early stage of the project. Y. Wu and J. Xu thank Yuxin Chen for suggesting
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the gradient descent dynamics which led to the initial version of the proof. Y. Wu is grateful to Daniel
Sussman for pointing out [45] and Joel Tropp for [1].

A Concentration Inequalities for Gaussians

We collect auxiliary results on concentration of polynomials of Gaussian variables.

Lemma 13 Let z be a standard Gaussian vector in Rn. For any fixed v ∈ Rn and
δ > 0, it holds with probability at least 1 − δ that

|v�z| ≤ ‖v‖2
√

2 log(1/δ).

Lemma 14 (Hanson–Wright inequality) Let z be a sub-Gaussian vector in Rn, and
let M be a fixed matrix in Cn×n. Then, we have with probability at least 1 − δ that

|z�Mz − Tr M | ≤ C‖z‖2
ψ2

(
‖M‖F

√
log(1/δ) + ‖M‖ log(1/δ)

)

≤ 2C‖z‖2
ψ2

‖M‖F log(1/δ), (75)

where C is a universal constant and ‖z‖ψ2 is the sub-Gaussian norm of z.

See [59,Section 3.1] for the complex-valued version of the Hanson–Wright inequal-
ity. The following lemma is a direct consequence of (75), by taking M to be a diagonal
matrix.

Lemma 15 Let z be a standard Gaussian vector in Rn. For an entrywise nonnegative
vector v ∈ Rn, it holds with probability at least 1 − δ that

∣∣∣
n∑

i=1

vi z
2
i −

n∑

i=1

vi

∣∣∣ ≤ C
(
‖v‖2

√
log(1/δ) + ‖v‖∞ log(1/δ)

)
.

In particular, it holds with probability at least 1 − δ that

∣∣‖z‖2
2 − n

∣∣ ≤ C
(√

n log(1/δ) + log(1/δ)
)
.

Theorem 4 (Hypercontractivity concentration [61,Theorem 1.9]) Let z be a standard
Gaussian vector in Rn, and let f (z1, . . . , zn) be a degree-d polynomial of z. Then, it
holds that

P
{∣∣ f (z) − E[ f (z)]

∣∣ > t
}

≤ e2 exp

[
−

( t2

C Var[ f (z)]
)1/d

]
,

where Var[ f (z)] denotes the variance of f (z) and C > 0 is a universal constant.

Finally, the following result gives a concentration inequality in terms of the
restricted Lipschitz constants, obtained from the usual Gaussian concentration of mea-
sure plus a Lipschitz extension argument.
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Lemma 16 Let B ⊂ Rn be an arbitrary measurable subset. Let F : Rn → R such
that F is L-Lipschitz on B. Let X ∼ N (0, In). Then, for any t > 0,

P {|F(X) − EF(X)| ≥ t + δ} ≤ exp

(
−ct2

L2

)
+ ε,

where c is a universal constant, ε =P {X /∈ B} and δ=2
√

ε(nL2+F(0)2+E[F(X)2]).

Proof Let F̃ : Rn → R be an L-Lipschitz extension of F , e.g., F̃(x) = inf y∈B F(y)+
L‖x − y‖. Then, by the Gaussian concentration inequality (cf., e.g., [66,Theorem
5.2.2]), we have

P
{
|F̃(X) − EF̃(X)| ≥ t

}
≤ exp

(
−ct2

L2

)
.

It remains to show that |EF(X) − EF̃(X)| ≤ δ. Indeed, by Cauchy–Schwarz,
|EF(X) − EF̃(X)| ≤ E|F(X − F̃(X)|1{X /∈B} ≤

√
εE[|F(X − F̃(X)|2]. Finally,

noting that |F̃(X)| ≤ F(0) + L‖X‖2 and E‖X‖2
2 = n completes the proof. ��

B Kronecker Gymnastics

Given A, B ∈ Cn×n , the Kronecker product A ⊗ B ∈ Cn2×n2
is defined

as

[
a11 B ... a1n B
...

...
...

an1 B ... ann B

]

. The vectorized form of A = [a1, . . . , an] is vec(A) =

[a�
1 , . . . , a�

n ]� ∈ Cn⊗n . It is convenient to identify [n2] with by [n]2 ordered as
{(1, 1), . . . , (1, n), . . . , (n, n)}, in which case we have (A ⊗ B)i j,k� = Aik B j� and
vec(A)i j = Ai j .

We collect some identities for Kronecker products and vectorizations of matrices
used throughout this paper:

〈A ⊗ A, B ⊗ B〉 = 〈A, B〉2,

(A ⊗ B)(U ⊗ V ) = AU ⊗ BV ,

vec(AU B) = (B� ⊗ A) vec(U ),

(X ⊗ Y ) vec(U ) = vec(YU X�),

(A ⊗ B)� = A� ⊗ B�.

The third equality implies that

〈A ⊗ B, vec(U ) vec(V )�〉 = 〈 vec(U ), (A ⊗ B) vec(V )〉
= 〈 vec(U ), vec(BV A�)〉
= 〈U , BV A�〉 = 〈B, U AV �〉
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and hence

vec(U )�(A ⊗ B) vec(V ) = 〈A ⊗ B, vec(U ) vec(V )�〉 = 〈B, U AV �〉
= 〈A, U� BV 〉 = 〈U A, BV 〉.

Applying the third equality to column vector z and noting that vec(z�) = vec(z) =
z, we have

(X ⊗ y)z = vec(yz� X�),

(y ⊗ X)z = vec(Xzy�).

In particular, it holds that

(I ⊗ y)z = vec(yz�) = z ⊗ y,

(y ⊗ I)z = vec(zy�) = y ⊗ z.

C Signal-to-Noise Heuristics

We justify the choice of the Cauchy weight kernel in (4) by a heuristic signal-to-
noise calculation for X̂ . We assume without loss of generality that π∗ is the identity,
so that diagonal entries of X̂ indicate similarity between matching vertices of A
and B. Then, for the rounding procedure in (5), we may interpret n−1 Tr X̂ and
(n−2 ∑

i, j : i 
= j X̂2
i j )

1/2 ≈ n−1‖X̂‖F as the average signal strength and noise level

in X̂ . Let us define a corresponding signal-to-noise ratio as

SNR = E[Tr X̂ ]
E[‖X̂‖2

F ]1/2

and compute this quantity in the Gaussian Wigner model.
We abbreviate the spectral weights w(λi , µ j ) as wi j . For X̂ defined by (3) with any

weight kernel w(x, y), we have

Tr X̂ =
∑

i j

wi j · u�
i Jv j · u�

i v j .

Applying that (A, B) is equal in law to (O AO�, O B O�) for a rotation O such that
O1 = √

nek , we obtain for every k that

E[Tr X̂ ] =
∑

i j

n · E[wi j · u�
i (eke�

k )v j · u�
i v j ].
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Then, averaging over k = 1, . . . , n and applying
∑

k eke�
k = I yield that

E[Tr X̂ ] =
∑

i j

E[wi j (u
�
i v j )

2].

For the noise, we have

‖X̂‖2
F = Tr X̂ X̂� =

∑

i, j,k,l

wi jwkl(u
�
i Jv j )(u

�
k Jv�) Tr(uiv

�
j · v�u�

k )

=
∑

i j

w2
i j (u

�
i Jv j )

2.

Applying the equality in law of (A, B) and (O AO�, O B O�) for a uniform random
orthogonal matrix O , and writing r = O1/

√
n, we get

E[‖X̂‖2
F ] =

∑

i j

n2 · E[w2
i j (u

�
i r)2(v�

j r)2].

Here, r = (r1, . . . , rn) is a uniform random vector on the unit sphere, independent
of (A, B). For any deterministic unit vectors u, v with u�v = α, we may rotate to
u = e1 and v = αe1 +

√
1 − α2e2 to get

E[(u�r)2(v�r)2] = E[r2
1 · (αr1 +

√
1 − α2r2)

2]

= α2E[r4
1 ] + (1 − α2)E[r2

1 r2
2 ] = 1 + 2α2

n(n + 2)
,

where the last equality applies an elementary computation. Bounding 1+2α2 ∈ [1, 3]
and applying this conditional on (A, B) above, we obtain

E[‖X̂‖2
F ] = cn

n + 2

∑

i j

E[w2
i j ]

for some value c ∈ [1, 3].
To summarize,

SNR �
∑

i j E[w(λi , µ j )(u�
i v j )

2]
√∑

i j E[w(λi , µ j )2]
.

The choice of weights which maximizes this SNR would satisfy w(λi , µ j ) ∝ (u�
i v j )

2.
Recall that for n−1+ε � σ 2 � n−ε and i, j in the bulk of the spectrum, we have the
approximation (11). Thus, this optimal choice of weights takes a Cauchy form, which
motivates our choice in (4).

We note that this discussion is only heuristic, and maximizing this definition of
SNR does not automatically imply any rigorous guarantee for exact recovery of π∗.
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Our proposal in (4) is a bit simpler than the optimal choice suggested by (11): The
constant C in (11) depends on the semicircle density near λi , but we do not incorporate
this dependence in our definition. Also, while (11) depends on the noise level σ , our
main result in Theorem 1 shows that η need not be set based on σ , which is usually
unknown in practice. Instead, our result shows that the simpler choice η = c/ log n is
sufficient for exact recovery of π∗ over a range of noise levels σ � η.
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