

Spectral Graph Matching and Regularized Quadratic Relaxations I Algorithm and Gaussian Analysis

Zhou Fan¹ · Cheng Mao² · Yihong Wu¹ · Jiaming Xu³

Received: 16 August 2019 / Revised: 12 March 2022 / Accepted: 15 March 2022 © SFoCM 2022

Abstract

Graph matching aims at finding the vertex correspondence between two unlabeled graphs that maximizes the total edge weight correlation. This amounts to solving a computationally intractable quadratic assignment problem. In this paper, we propose a new spectral method, graph matching by pairwise eigen-alignments (GRAMPA). Departing from prior spectral approaches that only compare top eigenvectors, or eigenvectors of the same order, GRAMPA first constructs a similarity matrix as a weighted sum of outer products between *all* pairs of eigenvectors of the two graphs, with weights given by a Cauchy kernel applied to the separation of the corresponding eigenvalues, then outputs a matching by a simple rounding procedure. The similarity matrix can also be interpreted as the solution to a regularized quadratic programming relaxation of the quadratic assignment problem. For the Gaussian Wigner model in which two complete graphs on n vertices have Gaussian edge weights with correlation coefficient $1 - \sigma^2$,

Communicated by Francis Bach.

Z. Fan is supported in part by NSF Grant DMS-1916198. C. Mao is supported in part by NSF Grant DMS-2053333. Y. Wu is supported in part by the NSF Grants CCF-1527105, CCF-1900507, an NSF CAREER award CCF-1651588, and an Alfred Sloan fellowship. J. Xu is supported by the NSF Grants IIS-1838124, CCF-1850743, and CCF-1856424.

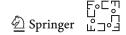
Yihong Wu yihong.wu@yale.edu
Zhou Fan zhou.fan@yale.edu

Cheng Mao cheng.mao@math.gatech.edu

Published online: 10 June 2022

Jiaming Xu jx77@duke.edu

- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- School of Mathematics, Georgia Institute of Technology, Atlanta, USA
- Fuqua School of Business, Duke University, Durham, NC, USA



we show that GRAMPA exactly recovers the correct vertex correspondence with high probability when $\sigma = O(\frac{1}{\log n})$. This matches the state of the art of polynomial-time algorithms and significantly improves over existing spectral methods which require σ to be polynomially small in n. The superiority of GRAMPA is also demonstrated on a variety of synthetic and real datasets, in terms of both statistical accuracy and computational efficiency. Universality results, including similar guarantees for dense and sparse Erdős–Rényi graphs, are deferred to a companion paper.

Keywords Graph matching \cdot Quadratic assignment problem \cdot Spectral methods \cdot Convex relaxations \cdot Quadratic programming \cdot Random matrix theory

Mathematics Subject Classification Primary 90C25 · Secondary 68Q87

1 Introduction

Given a pair of graphs, the problem of *graph matching* or *network alignment* refers to finding a bijection between the vertex sets so that the edge sets are maximally aligned [13, 22, 43]. This is a ubiquitous problem arising in a variety of applications, including network de-anonymization [51, 52], pattern recognition [13, 60], and computational biology [37, 63]. Finding the best matching between two graphs with adjacency matrices A and B may be formalized as the following combinatorial optimization problem over the set of permutations S_n on $\{1, \ldots, n\}$:

$$\max_{\pi \in S_n} \sum_{i, j=1}^n A_{ij} B_{\pi(i), \pi(j)}.$$
 (1)

This is an instance of the notoriously difficult *quadratic assignment problem* (QAP) [11, 53], which is NP-hard to solve or to approximate within a growing factor [47].

As the worst-case computational hardness of the QAP (1) may not be representative of typical graphs, various average-case models have been studied. For example, when the two graphs are isomorphic, the resulting *graph isomorphism* problem can be solved for Erdős–Rényi random graphs in linear time whenever information-theoretically possible [9, 17], but remains open to be solved in polynomial time for arbitrary graphs.

In "noisy" settings where the graphs are not exactly isomorphic, there is a recent surge of interest in computer science, information theory, and statistics for studying random graph matching. Algorithmic approaches have been developed based around ideas of linear and convex relaxation [1, 2, 27, 67, 71], message passing and Bayesian inference [7, 54, 57], matching subgraphs and subtrees [6, 30], matching vertex signatures constructed from vertex degrees [19, 20, 48, 49], and spectral analyses [25, 63, 64]. A theoretically oriented subset of this literature seeks to understand guarantees for recovery of a true latent matching in a random graph model, as initiated in [55]. We review below several such results that are most comparable to our current work. In this context, information-theoretic lower bounds and fundamental limits for recovery were studied in [14–16, 28, 31, 58, 68]. Variations of this problem with an initial known set of "seed" matches have also been studied in [38, 46, 50, 52, 62, 70].

1.1 Random Weighted Graph Matching

In this work, we study the following random weighted graph matching problem: Consider two weighted graphs with n vertices, and a latent permutation π^* on $\{1, \ldots, n\}$ such that vertex i of the first graph corresponds to vertex $\pi^*(i)$ of the second. Denoting by A and B their (symmetric) weighted adjacency matrices, suppose that $\{(A_{ij}, B_{\pi^*(i), \pi^*(j)}) : 1 \le i < j \le n\}$ are independent pairs of positively correlated random variables. We wish to recover π^* from A and B.

Notable special cases of this model include the following:

- Erdős–Rényi graph model: $(A_{ij}, B_{\pi^*(i),\pi^*(j)})$ is a pair of correlated Bernoulli random variables. Then, A and B are Erdős–Rényi graphs with correlated edges. This model has been extensively studied in [6, 14, 16, 19, 20, 39, 44, 46, 56].
- Gaussian Wigner model: $(A_{ij}, B_{\pi^*(i),\pi^*(j)})$ is a pair of correlated Gaussian variables, for example, $B_{\pi^*(i),\pi^*(j)} = A_{ij} + \sigma Z_{ij}$ where $\sigma \geq 0$ and A_{ij}, Z_{ij} are independent standard Gaussians. Then, A and B are complete graphs with correlated Gaussian edge weights. This model was proposed in [20,Section 2] as a prototype of random graph matching due to its simplicity, and certain results in the Gaussian model may be expected to carry over to dense Erdős–Rényi graphs.

Spectral methods have a long history in testing graph isomorphism [4] and the graph matching problem [64]. In this paper, we introduce a new spectral method for graph matching, which is described in Sect. 1.2. The algorithm may also be interpreted as a regularized convex relaxation of the QAP program (1), and we discuss this connection in Sect. 1.3. The following result gives sufficient conditions for our algorithm to achieve exact recovery in the Gaussian setting.

Theorem (Informal statement) Under the Gaussian Wigner model, if $\sigma \le c/\log n$ for a sufficiently small constant c > 0, then a spectral algorithm recovers π^* exactly with high probability.

This noise tolerance of $\sigma \leq c/\log n$ matches the guarantee of the degree profile method proposed in [20], which is the state of the art among polynomial-time algorithms for Gaussian models. It improves over the noise tolerance of several simpler spectral matching algorithms, discussed in more detail below, which require $\sigma = O(\frac{1}{\text{poly}(n)})$ (see [29], for example) as opposed to $\sigma = O(\frac{1}{\log n})$ for our proposal.

In a companion paper [24], we apply resolvent-based universality techniques to establish similar guarantees for our spectral method on non-Gaussian models, including dense and sparse Erdős–Rényi graphs. For example, we show in [24] that this same spectral method achieves exact recovery of π^* for correlated Erdős–Rényi graphs with any marginal edge probability $p \ge \operatorname{polylog}(n)/n$ and edge correlation $s \ge 1 - 1/\operatorname{polylog}(n)$. This is similar to a guarantee for a polynomial-time degree profile method of [20] which requires $p \ge (\log n)^2/n$ and $s \ge 1 - 1/(\log n)^2$, and may be contrasted with the $n^{O(\log n)}$ -time guarantee of [6] for edge probabilities $p \in [n^{-1+o(1)}, n^{-1+\varepsilon}] \cup [n^{-1/3}, n^{-\varepsilon}]$ under a much weaker correlation assumption $s \ge (1/\log n)^{o(1)}$. Polynomial-time methods for achieving exact recovery when $s \ge 1 - 1/\operatorname{poly}(\log \log n)$ were proposed for sufficiently sparse graphs in [20] and both

sparse and dense graphs in [49]. Since the initial posting of our work, a polynomial-time algorithm (which is more related to the degree profile method [20] than the present spectral method) has been developed in [48] for a range of graph sparsities under the correlation condition $s \ge s_0$, for a constant s_0 sufficiently close to 1.

The insights of our spectral algorithm are less tailored to specific details of the Gaussian Wigner or Erdős–Rényi models than some of the alternative algorithmic ideas developed in this line of work. We provide numerical evidence in Sect. 4 that our method performs well on other random graph models and on more realistic graph matching applications. Our proofs here in the Gaussian model are more direct and transparent than the techniques we apply in [24], using instead the rotational invariance of *A* and *B*, and yielding stronger guarantees in terms of precise logarithmic factors. A variant of our method may also be applied to match two bipartite random graphs, which we discuss in Sect. 2.3. This is an extension of the analysis in the non-bipartite setting, which is our primary focus.

1.2 A New Spectral Method

Write the spectral decompositions of the weighted adjacency matrices A and B as

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top} \quad \text{and} \quad B = \sum_{i=1}^{n} \mu_j v_j v_j^{\top}$$
 (2)

where the eigenvalues are ordered¹ such that

$$\lambda_1 \geq \cdots \geq \lambda_n$$
 and $\mu_1 \geq \cdots \geq \mu_n$.

Our new spectral method is given in Algorithm 1, which we refer to as *graph matching by pairwise eigen-alignments* (GRAMPA). Therein, the linear assignment problem (5) may be cast as a linear program (LP) over doubly stochastic matrices, i.e., the Birkhoff polytope (see (13)), or solved efficiently using the Hungarian algorithm [40]. We advocate this rounding approach in practice, although our theoretical results apply equally to the simpler rounding procedure matching each i to

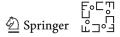
$$\widehat{\pi}(i) = \underset{j}{\operatorname{argmax}} \widehat{X}_{ij}. \tag{6}$$

We discuss the choice of the tuning parameter η further in Sect. 4, and find in practice that the performance is not too sensitive to this choice.

Let us remark that Algorithm 1 exhibits the following two elementary but desirable properties.

- Our spectral method is insensitive to the choices of signs for individual eigenvectors u_i and v_j in (2). More generally, it does not depend on the specific choice of eigenvectors if certain eigenvalues have multiplicity greater than one. This is

¹ This is in fact not needed for computing the similarity matrix (3).



Algorithm 1 GRAMPA (graph matching by pairwise eigen-alignments)

- 1: **Input:** Weighted adjacency matrices A and B on n vertices, a tuning parameter $\eta > 0$.
- 2: **Output:** A permutation $\widehat{\pi} \in \mathcal{S}_n$.
- 3: Construct the similarity matrix

$$\widehat{X} = \sum_{i,j=1}^{n} w(\lambda_i, \mu_j) \cdot u_i u_i^{\top} \mathbf{J} v_j v_j^{\top} \in \mathbb{R}^{n \times n}$$
(3)

where $\mathbf{J} \in \mathbb{R}^{n \times n}$ denotes the all-one matrix and w is the Cauchy kernel of bandwidth η :

$$w(\lambda, \mu) = \frac{1}{(\lambda - \mu)^2 + \eta^2}.$$
 (4)

4: Output the permutation estimate $\widehat{\pi}$ by "rounding" \widehat{X} to a permutation, for example, by solving the *linear assignment problem* (LAP)

$$\widehat{\pi} = \underset{\pi \in \mathcal{S}_n}{\operatorname{argmax}} \sum_{i=1}^{n} \widehat{X}_{i,\pi(i)}.$$
(5)

because the similarity matrix (3) depends on the eigenvectors of A and B only through the projections onto their distinct eigenspaces.

- Let $\widehat{\pi}(A, B)$ denote the output of Algorithm 1 with inputs A and B. For any fixed permutation π , denote by B^{π} the matrix with entries $B^{\pi}_{ij} = B_{\pi(i),\pi(j)}$, and by $\pi \circ \widehat{\pi}$ the composition $(\pi \circ \widehat{\pi})(i) = \pi(\widehat{\pi}(i))$. Then, we have the *equivariance* property

$$\pi \circ \widehat{\pi}(A, B^{\pi}) = \widehat{\pi}(A, B) \tag{7}$$

and similarly for A^{π} . That is, the outputs given (A, B^{π}) and given (A, B) represent the same matching of the underlying graphs. This may be verified from (3) as a consequence of the identity $\mathbf{J} = \mathbf{J}\Pi = \Pi \mathbf{J}$ for any permutation matrix Π .

To further motivate the construction (3), we note that Algorithm 1 follows the same general paradigm as several existing spectral methods for graph matching, which seek to recover π^* by rounding a similarity matrix \widehat{X} constructed to leverage correlations between eigenvectors of A and B. These methods include:

 Low-rank methods that use a small number of eigenvectors of A and B. The simplest such approach uses only the leading eigenvectors, taking as the similarity matrix

$$\widehat{X} = u_1 v_1^{\top}. \tag{8}$$

$$\widehat{\mathbb{Q}} \text{ Springer} \quad \widehat{\mathbb{Q}} \quad \widehat{\mathbb{$$

Then, $\widehat{\pi}$ which solves (5) sorts the entries of v_1 in the order of u_1 . Other rank-1 spectral methods and low-rank generalizations have also been proposed and studied in [25, 36].

 Full-rank methods that use all eigenvectors of A and B. A notable example is the popular method of Umeyama [64], which sets

$$\widehat{X} = \sum_{i=1}^{n} s_i u_i v_i^{\top} \tag{9}$$

where $s_i \in \{-1, 1\}$; see also the related approach of [69]. The motivation is that (9) is the solution to the *orthogonal relaxation* of the QAP (1), where the feasible set is relaxed to the set the orthogonal matrices [26]. As the correct choice of signs in (9) may be difficult to determine in practice, [64] suggests also an alternative construction

$$\widehat{X} = \sum_{i=1}^{n} |u_i| |v_i|^{\top} \tag{10}$$

where $|u_i|$ denotes the entrywise absolute value of u_i .

Compared with these constructions, the proposed new spectral method has two important features that we elaborate below:

"All pairs matter." Departing from existing approaches, our proposal \widehat{X} in (3) uses a combination of $u_iv_j^{\top}$ for all n^2 pairs $i,j \in \{1,\ldots,n\}$, rather than only i=j. This renders our method significantly more resilient to noise. Indeed, while all of the above methods can succeed in recovering π^* in the noiseless case, methods based only on pairs (u_i,v_i) with i=j are brittle to noise if u_i and v_i quickly decorrelate as the amount of noise increases—this may happen when λ_i is not separated from other eigenvalues by a large spectral gap. When this decorrelation occurs, u_i becomes partially correlated with v_j for neighboring indices j, and the construction (3) leverages these partial correlations in a weighted manner to provide a more robust estimate of π^* .

The eigenvector alignment is quantitatively understood in certain regimes for the Gaussian Wigner model $B = A + \sigma Z$ when A, Z are GOE or GUE: It is known that $\mathbb{E}[\langle u_i, v_i \rangle^2] = o(1)$ for the leading eigenvector i = 1 as soon as $\sigma^2 \gg n^{-1/3}$ [12,Theorem 3.8], and for i in the bulk of the Wigner semicircle spectrum as soon as $\sigma^2 \gg n^{-1}$ [8, 10]. For i in the bulk, and the noise regime $n^{-1+\varepsilon} \ll \sigma^2 \ll n^{-\varepsilon}$, [8,Theorem 1.3] further implies that $\langle u_i, v_j \rangle$ is approximately Gaussian for each index j sufficiently close to i, with zero mean and variance

$$\mathbb{E}[\langle u_i, v_j \rangle^2] \approx \frac{\sigma^2/n}{(\lambda_i - \mu_j)^2 + C\sigma^4}.$$
 (11)

Here, the value of $C \approx 1$ depends on the Wigner semicircle density near $\lambda_i \approx \mu_j$. Thus, for this range of noise, the eigenvector u_i of A is most aligned with $O(n\sigma^2)$ eigenvectors v_i of B for which $|\lambda_i - \mu_i| \lesssim \sigma^2$, and each such alignment is of typical

size $\mathbb{E}[\langle u_i, v_j \rangle^2] \approx 1/(n\sigma^2) \ll 1$. The signal for π^* in our proposal (3) arises from a weighted average of these alignments.

As a result, our method can tolerate noise levels up to $\sigma = O(\frac{1}{\log n})$, which reflects an exponential improvement over other simpler spectral approaches that only tolerate noise levels up to $\sigma = O(\frac{1}{\text{poly}(n)})$. For example, a recent result [29] shows that the rank-one method (8) based on the top eigenvector pairs only correctly matches o(n) vertices with high probability if the noise level σ exceeds $n^{-7/6+\varepsilon}$ for any constant $\varepsilon > 0$. Moreover, for the Umeyama method (10), our experiments suggest that it fails when $\sigma \gg n^{-1/4}$; cf. Fig. 3(b) in Sect. 4.2.

Cauchy spectral weights. The performance of the spectral method depends crucially on the choice of the weight function w in (3). In fact, there are other methods that are also of the form (3) but do not work equally well. For example, if we choose $w(\lambda, \mu) = \lambda \mu$, then (3) simply reduces to $\widehat{X} = A\mathbf{J}B = ab^{\top}$, where $a = A\mathbf{1}$ and $b = B\mathbf{1}$ are the vectors of "degrees." Rounding such a similarity matrix is equivalent to matching by sorting the degree of the vertices, which is known to fail when $\sigma = \Omega(n^{-1})$ due to the small spacing of the order statistics (cf. [20,Remark 1]).

The Cauchy spectral weight (4) is a particular instance of the more general form $w(\lambda,\mu)=K(\frac{|\lambda-\mu|}{\eta})$, where K is a monotonically decreasing kernel function and η is a bandwidth parameter. Such a choice upweights the eigenvector pairs whose eigenvalues are close and significantly penalizes those whose eigenvalues are separated more than η . The specific choice of the Cauchy kernel matches the form of $\mathbb{E}[\langle u_i,v_j\rangle^2]$ in (11), and is in a sense optimal as explained by a heuristic signal-to-noise calculation in Appendix C. In addition, the Cauchy kernel has its genesis as a regularization term in the associated convex relaxation, which we explain next.

1.3 Connections to Regularized Quadratic Programming

Our new spectral method is also rooted in optimization, as the similarity matrix \widehat{X} in (3) corresponds to the solution to a convex relaxation of the QAP (1), regularized by an added ridge penalty.

Denote the set of permutation matrices in $\mathbb{R}^{n \times n}$ by \mathfrak{S}_n . Then, (1) may be written in matrix notation as one of the three equivalent optimization problems

$$\max_{\Pi \in \mathfrak{S}_n} \langle A, \Pi B \Pi^\top \rangle \iff \min_{\Pi \in \mathfrak{S}_n} \|A - \Pi B \Pi^\top\|_F^2 \iff \min_{\Pi \in \mathfrak{S}_n} \|A \Pi - \Pi B\|_F^2.$$
(12)

Note that the third objective $||A\Pi - \Pi B||_F^2$ above is a convex function in Π . Relaxing the set of permutations to its convex hull (the Birkhoff polytope of doubly stochastic matrices)

$$\mathcal{B}_{n} \triangleq \{X \in \mathbb{R}^{n \times n} : X\mathbf{1} = \mathbf{1}, \ X^{\top}\mathbf{1} = \mathbf{1}, \ X_{ij} \geq 0 \text{ for all } i, j\},$$

$$\underbrace{\mathbb{Q}}_{\mathbf{n}} \text{ Springer}$$

$$\underbrace{\mathbb{Q}}_{\mathbf{n}} \text{ Springer}$$

we arrive at the quadratic programming (QP) relaxation

$$\min_{X \in \mathcal{B}_n} \|AX - XB\|_F^2,\tag{14}$$

which was proposed in [1,71], following an earlier LP relaxation using the ℓ_1 -objective proposed in [2]. Although this QP relaxation has achieved empirical success [1, 21, 45, 67], understanding its performance theoretically is a challenging task yet to be accomplished.

Our spectral method can be viewed as the solution of a *regularized* further relaxation of the doubly stochastic QP (14). Indeed, we show in Corollary 1 that the matrix \widehat{X} in (3) is the minimizer of

$$\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2} \|AX - XB\|_F^2 + \frac{\eta^2}{2} \|X\|_F^2 - \mathbf{1}^\top X \mathbf{1}. \tag{15}$$

Equivalently, \widehat{X} is a positive scalar multiple of the solution \widetilde{X} to

$$\min_{X \in \mathbb{R}^{n \times n}} \|AX - XB\|_F^2 + \eta^2 \|X\|_F^2$$
s.t. $\mathbf{1}^\top X \mathbf{1} = n$ (16)

which further relaxes (14) and adds a ridge penalty term $\eta^2 \|X\|_F^2$. Note that \widehat{X} and \widetilde{X} are equivalent as far as the rounding step (5) or (6) is concerned. In contrast to (14), for which there is currently limited theoretical understanding, we are able to provide an exact recovery analysis for the rounded solutions to (15) and (16).

Note that the total-sum constraint in (16) is a significant relaxation of the double stochasticity in (14). To make this further relaxed program work, the regularization term plays a key role. If η were zero, the similarity matrix \widehat{X} in (3) would involve the eigengap $|\lambda_i - \mu_j|$ in the denominator which can be polynomially small in n. Hence, the regularization is crucial for reducing the variance of the estimate and making \widehat{X} stable, a rationale reminiscent of the ridge regularization in high-dimensional linear regression. In a companion paper [24], we analyze a tighter relaxation than (16) which replaces $\mathbf{1}^{\top}X\mathbf{1} = n$ by the row-sum constraint $X\mathbf{1} = \mathbf{1}$, and there the ridge penalty is still indispensable for achieving exact recovery up to noise level $\sigma = O(1/\operatorname{polylog}(n))$.

Viewing \widehat{X} as the minimizer of (15) provides not only an optimization perspective, but also an associated gradient descent algorithm to compute \widehat{X} . More precisely, starting from the initial point $X^{(0)} = 0$ and fixing a step size $\gamma > 0$, a straightforward computation verifies that gradient descent for optimizing (15) is given by the dynamics

$$X^{(t+1)} = X^{(t)} - \gamma \left(A^2 X^{(t)} + X^{(t)} B^2 - 2A X^{(t)} B + \eta^2 X^{(t)} - \mathbf{J} \right). \tag{17}$$

Corollary 1 shows that running gradient descent for $t = O((\log n)^3)$ iterations suffices to produce a similarity matrix, which, upon rounding, exactly recovers π^* with high probability, using $X^{(t)}$ in place of \widehat{X} in (5). Each iteration involves several matrix

multiplication operations with A and B, which may be more efficient and parallelizable than performing spectral decompositions when the graphs are large and/or sparse.

1.4 Diagonal Dominance of the Similarity Matrix

Equipped with this optimization point of view, we now explain the typical structure of solutions to the above quadratic programs including the spectral similarity matrix (3). It is well known that even the solution to the most stringent relaxation (14) is *not* the latent permutation matrix, which has been shown in [45] by proving that the KKT conditions cannot be fulfilled with high probability. In fact, a heuristic calculation explains why the solution to (14) is far from any permutation matrix: Let us consider the "population version" of (14), where the objective function is replaced by its expectation over the random instances A and B. Consider $\pi^* = \operatorname{id}$ and the Gaussian Wigner model $B = A + \sigma Z$, where A and Z are independent GOE matrices with $N(0, \frac{1}{n})$ off-diagonal entries and $N(0, \frac{2}{n})$ diagonal entries. Then, the expectation of the objective function is

$$\begin{split} \mathbb{E} \|AX - XB\|_F^2 &= \mathbb{E} \|AX\|_F^2 + \mathbb{E} \|XB\|_F^2 - 2\mathbb{E} \langle AX, XA \rangle \\ &= (2 + \sigma^2) \frac{n+1}{n} \|X\|_F^2 - \frac{2}{n} \operatorname{Tr}(X)^2 - \frac{2}{n} \langle X, X^\top \rangle. \end{split}$$

Hence, the population version of the quadratic program (14) is

$$\min_{X \in \mathcal{B}_n} (2 + \sigma^2)(n+1) \|X\|_F^2 - 2\operatorname{Tr}(X)^2 - 2\langle X, X^\top \rangle, \tag{18}$$

whose solution² is

$$\overline{X} \triangleq \epsilon \mathbf{I} + (1 - \epsilon) \mathbf{F}, \qquad \epsilon = \frac{2}{2 + (n+1)\sigma^2} \approx \frac{2}{n\sigma^2}.$$
 (19)

This is a convex combination of the true permutation matrix and the center of the Birkhoff polytope $\mathbf{F} = \frac{1}{n}\mathbf{J}$. Therefore, the population solution \overline{X} is in fact a very "flat" matrix, with each entry on the order of $\frac{1}{n}$, and is close to the center of the Birkhoff polytope and far from any of its vertices.

This calculation nevertheless provides us with important structural information about the solution to such a QP relaxation: \overline{X} is *diagonally dominant* for small σ , in the sense that $\overline{X}_{ii} > \max_{j \neq i} |\overline{X}_{ij}|$ for all i. Indeed, the above shows that diagonal entries of \overline{X} are about $2/\sigma^2$ times the off-diagonals. Although the actual solution of the relaxed program (14) or (15) is not equal to the population solution \overline{X} in expectation, it is reasonable to expect that it inherits the diagonal dominance property, which enables rounding procedures such as (5) to succeed.

With this intuition in mind, let us revisit the regularized quadratic program (15) whose solution is the spectral similarity matrix (3). By a similar calculation, the solution to the population version of (15) is given by $\alpha \mathbf{I} + \beta \mathbf{J}$, with

 $[\]frac{1}{2}$ In fact, (19) is the solution to (18) even if the constraint is relaxed to $\mathbf{1}^{\top}X\mathbf{1}=n$.

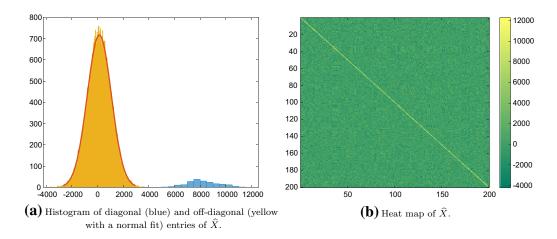


Fig. 1 Diagonal dominance of the similarity matrix \widehat{X} defined by (3) or (15) for the Gaussian Wigner model $B = A + \sigma Z$ with n = 200, $\sigma = 0.05$ and $\eta = 0.01$

$$\alpha = \frac{2n^2}{(n(\eta^2 + \sigma^2) + \sigma^2)(n(\eta^2 + \sigma^2 + 2) + \sigma^2)} \approx \frac{2}{(\eta^2 + \sigma^2)(\eta^2 + \sigma^2 + 2)} \text{ and } \beta = \frac{n}{n(\eta^2 + \sigma^2 + 2) + \sigma^2} \approx \frac{1}{\eta^2 + \sigma^2 + 2}, \text{ which is diagonally dominant for small } \sigma \text{ and } \eta. \text{ In turn, the basis of our theoretical guarantee is to establish the diagonal dominance of the actual solution } \widehat{X};$$
 see Fig. 1 for an empirical illustration.

Although the ridge penalty $\eta^2 \|X\|_F^2$ guarantees the stability of the solution as discussed in Sect. 1.3, it may seem counterintuitive since it moves the solution closer to the center of the Birkhoff polytope and further away from the vertices (permutation matrices). In fact, several works in the literature [21, 27] advocate adding a negative ridge penalty, in order to make the solution closer to a permutation at the price of potentially making the optimization non-convex. This consideration, however, is not necessary, as the ensuing rounding step can automatically map the solution to the correct permutation, even if they are far away in the Euclidean distance.

It is worth noting that, in contrast to the prevalent analysis of convex relaxations in statistics and machine learning (where the goal is to show that the relaxed solution is close to the ground truth in a certain distance) or optimization (where the goal is to bound the gap of the objective value to the optimum), here our goal is not to show that the optimal solution *per se* constitutes a good estimator, but to show that it exhibits a diagonal dominance structure, which guarantees the success of the subsequent rounding procedure. For this reason, it is unclear from first principles that the guarantees obtained for one program, such as (16), automatically carry over to a tighter program, such as (14). In the companion paper [24], we analyze a tighter relaxation than (16), where the constraint is tightened to X1 = 1, and show that this has a similar performance guarantee; however, this requires a different analysis.

1.5 Notation

Let $[n] \triangleq \{1, ..., n\}$. We use C and c to denote universal constants that may change from line to line. For two sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ of positive real numbers, we

write $a_n \lesssim b_n$ if there is a universal constant C such that $a_n \leq Cb_n$ for all $n \geq 1$. The relation $a_n \gtrsim b_n$ is defined analogously. We write $a_n \asymp b_n$ if both the relations $a_n \lesssim b_n$ and $a_n \gtrsim b_n$ hold. Let $x \vee y = \max(x, y)$. Let id denote the identity permutation, i.e., $\mathrm{id}(i) = i$ for every i. In a Euclidean space \mathbb{R}^n or \mathbb{C}^n , let \mathbf{e}_i be the i-th standard basis vector, $\mathbf{1} = \mathbf{1}_n$ the all-ones vector, $\mathbf{J} = \mathbf{J}_n$ the $n \times n$ all-ones matrix, and $\mathbf{I} = \mathbf{I}_n$ the $n \times n$ identity matrix. We omit the subscripts when there is no ambiguity. Let $\|\cdot\| = \|\cdot\|_2$ denote the Euclidean vector norm on \mathbb{R}^n or \mathbb{C}^n . Let $\|M\| = \max_{v \neq 0} \|Mv\|_2 / \|v\|_2$ denote the Euclidean operator norm, $\|M\|_F = (\operatorname{Tr} M^*M)^{1/2}$ the Frobenius norm, and $\|M\|_{\infty} = \max_{i,j} |M_{ij}|$ the elementwise ℓ_{∞} norm of a matrix M. An eigenvector is always a unit column vector by convention. Denote by $X \stackrel{\text{(d)}}{=} Y$ if random variables X and Y are equal in law.

2 Main Results

In this section, we formulate the models, state more precisely our main results, provide an outline of the proof, and discuss the extension to bipartite graphs.

2.1 Gaussian Wigner Model

We say that $A \in \mathbb{R}^{n \times n}$ is from the Gaussian Orthogonal Ensemble, or simply $A \sim \mathsf{GOE}(n)$, if A is symmetric, $\{A_{ij}: i \leq j\}$ are independent, and $A_{ij} \sim N(0, \frac{1}{n})$ for $i \neq j$ and $N(0, \frac{2}{n})$ for i = j. We say that the pair $A, B \in \mathbb{R}^{n \times n}$ follows the *Gaussian Wigner model* for graph matching if

$$B^{\pi^*} = A + \sigma Z, \tag{20}$$

where π^* is an unknown permutation (ground truth), B^{π^*} denotes the permuted matrix $B^{\pi^*}_{ij} = B_{\pi^*(i),\pi^*(j)}$, the matrices $A, Z \sim \mathsf{GOE}(n)$ are independent, and $\sigma \geq 0$ is the noise level. Our goal is to recover the latent permutation π^* from (A, B).

We may also consider the rescaled definition $B^{\pi^*} = \sqrt{1 - \sigma^2} A + \sigma Z$, so that A and B have the same marginal law with correlation coefficient $1 - \sigma^2$. Our proofs are easily adapted to this setup, and we assume (20) for simplicity and a cleaner presentation.

We now formalize the exact recovery guarantee for Algorithm 1.

Theorem 1 Consider the model (20). There exist constants c, c' > 0 such that if

$$1/n^{0.1} \le \eta \le c/\log n$$
 and $\sigma \le c'\eta$,

then with probability at least $1 - n^{-4}$ for all large n, the matrix \widehat{X} in (3) satisfies

$$\min_{i \in [n]} \widehat{X}_{i,\pi^*(i)} > \max_{i,j \in [n]: j \neq \pi^*(i)} \widehat{X}_{ij}$$
(21)

and hence, Algorithm 1 recovers $\widehat{\pi} = \pi^*$.

Choosing $\eta \approx 1/\log n$ in Algorithm 1, we thus obtain exact recovery for $\sigma \lesssim 1/\log n$. The same exact recovery guarantee clearly also holds if rounding were performed by the simple scheme (6), instead of solving the linear assignment (5). The probability n^{-4} is arbitrary and may be strengthened to n^{-D} for any constant D > 0, where c, c' above depend on D.

Consider next the gradient descent iterates $X^{(t)}$ defined by (17). We verify that these iterates converge to \widehat{X} , and that the same guarantee holds for $X^{(t)}$ for sufficiently large t.

Corollary 1 Let $X^{(0)} = 0$, define recursively $X^{(t)}$ by the gradient descent dynamics (17), and let \widehat{X} be the similarity matrix (3).

- (a) The matrix \widehat{X} is the minimizer of the unconstrained program (15), and $\alpha \widehat{X}$ is the minimizer of the constrained program (16) for some (random) scalar multiplier $\alpha > 0$.
- (b) In terms of the spectral decompositions of A and B in (2), each iterate $X^{(t)}$ is given by

$$X^{(t)} = \sum_{i,j=1}^{n} \frac{1 - [1 - \gamma \eta^2 - \gamma (\lambda_i - \mu_j)^2]^t}{\eta^2 + (\lambda_i - \mu_j)^2} u_i u_i^{\top} \mathbf{J} v_j v_j^{\top}.$$

In particular, if the step size satisfies $\gamma < 1/(\eta^2 + (\lambda_i - \mu_j)^2)$ for all i, j, then $X^{(t)} \to \widehat{X}$ as $t \to \infty$.

(c) In the setting of Theorem 1, for some constants C, c > 0, if $\gamma < c$ and

$$t > \frac{C \log n}{\gamma \eta^2},$$

then the guarantees of Theorem 1 also hold with probability at least $1 - n^{-4}$ with $X^{(t)}$ in place of \widehat{X} .

In particular, setting γ to be a small constant and $\eta \approx 1/\log n$, we obtain the same diagonal dominance property for $X^{(t)}$ as long as $t \gtrsim (\log n)^3$, and consequently either one of the rounding schemes (5) or (6) applied to $X^{(t)}$ recovers the true matching π^* .

2.2 Proof Outline for Theorem 1

We give an outline of the proof for Theorem 1. By the permutation invariance property (7) of the algorithm, we may assume without loss of generality that $\pi^* = \mathrm{id}$, the identity permutation. Then, we must show in (21) that every diagonal entry of \widehat{X} is larger than every off-diagonal entry.

Denote the similarity matrix in (3) by

$$X = \widehat{X}(A, B) = \sum_{i,j=1}^{n} \frac{1}{(\lambda_i - \mu_j)^2 + \eta^2} u_i u_i^{\top} \mathbf{J} v_j v_j^{\top}$$
(22)

and introduce X_* as the similarity matrix constructed in the noiseless setting with A in place of B. That is,

$$X_* = \widehat{X}(A, A) = \sum_{i,j=1}^n \frac{1}{(\lambda_i - \lambda_j)^2 + \eta^2} u_i u_i^\top \mathbf{J} u_j u_j^\top.$$
 (23)

We divide the proof into establishing the diagonal dominance of X_* , and then bounding the entrywise difference $X - X_*$.

Lemma 1 For some constants C, c > 0, if $1/n^{0.1} < \eta < c/\log n$, then with probability at least $1 - 5n^{-5}$ for large n,

$$\min_{i \in [n]} (X_*)_{ii} > 1/(3\eta^2)$$

and

$$\max_{i,j\in[n]:i\neq j} (X_*)_{ij} < C\left(\frac{\sqrt{\log n}}{\eta^{3/2}} + \frac{\log n}{\eta}\right). \tag{24}$$

Lemma 2 If $\eta > 1/n^{0.1}$, then for a constant C > 0, with probability at least $1 - 2n^{-5}$ for large n,

$$\max_{i,j\in[n]}|X_{ij}-(X_*)_{ij}| < C\sigma\left(\frac{1}{\eta^3} + \frac{\log n}{\eta^2}\left(1 + \frac{\sigma}{\eta}\right)\right). \tag{25}$$

Proof of Theorem 1 Assuming these lemmas, for some c, c' > 0 sufficiently small, setting $\eta < c/\log n$ and $\sigma < c'\eta$ ensures that the right sides of both (24) and (25) are at most $1/(12\eta^2)$. Then, when $\pi^* = \mathrm{id}$, these lemmas combine to imply

$$\min_{i \in [n]} X_{ii} > \frac{1}{4\eta^2} > \frac{1}{6\eta^2} > \max_{i, j \in [n]: i \neq j} X_{ij}$$

with probability at least $1 - n^{-4}$. On this event, by definition, both the LAP rounding procedure (5) and the simple greedy rounding (6) output $\widehat{\pi} = id$. The result for general π^* follows from the equivariance of the algorithm, applying this result to the inputs A and B^{π} with $\pi = (\pi^*)^{-1}$.

A large portion of the technical work will lie in establishing Lemma 1 for the noiseless setting. We give here a short sketch of the intuition for this lemma, ignoring momentarily any factors that are logarithmic in n and are hidden by the notations \approx and \lesssim below. Let us write

$$X_* = \sum_{i=1}^n \frac{1}{\eta^2} (u_i^{\top} \mathbf{J} u_i) u_i u_i^{\top} + \sum_{i \neq j} \frac{1}{\eta^2 + (\lambda_i - \lambda_j)^2} (u_i^{\top} \mathbf{J} u_j) u_i u_j^{\top}.$$
 (26)

We explain why the first term is diagonally dominant, while the second term is a perturbation of smaller order. Central to our proof is the fact that $A \sim \mathsf{GOE}(n)$ is rotationally invariant in law, so that $U = (u_1, \ldots, u_n)$ is uniformly distributed on the orthogonal group and independent of $\lambda_1, \ldots, \lambda_n$. The coordinates of U are approximately independent with distribution $N(0, \frac{1}{n})$.

For the first term in (26), with high probability $u_i^{\top} \mathbf{J} u_i = \langle u_i, \mathbf{1} \rangle^2 \approx 1$ for every i. Then, for each k, the k^{th} diagonal entry of the first term satisfies

$$\sum_{i=1}^{n} \frac{1}{\eta^2} (u_i^{\top} \mathbf{J} u_i) (u_i)_k^2 \approx \sum_{i=1}^{n} \frac{1}{\eta^2} (u_i)_k^2 \approx \frac{1}{\eta^2}.$$
 (27)

Applying the heuristic $(u_i)_k \sim N(0, \frac{1}{n})$, each $(k, \ell)^{\text{th}}$ off-diagonal entry satisfies

$$\sum_{i=1}^{n} \frac{1}{\eta^2} (u_i^{\top} \mathbf{J} u_i)(u_i)_k(u_i)_{\ell} \lesssim \frac{1}{\eta^2 \sqrt{n}}.$$
 (28)

For the second term in (26), each $(k, \ell)^{th}$ entry is

$$\sum_{i \neq j} \frac{1}{\eta^2 + (\lambda_i - \lambda_j)^2} (u_i^\top \mathbf{J} u_j) (u_i)_k (u_j)_\ell = g^\top Q h,$$

where Q is defined by $Q_{ii} = 0$ and $Q_{ij} = \frac{1}{\eta^2 + (\lambda_i - \lambda_j)^2} (u_i^\top \mathbf{J} u_j)$ for $i \neq j$, and the vectors g and h are defined by $g_i = (u_i)_k$ and $h_j = (u_j)_\ell$. Applying the heuristic that g, h are approximately iid $N(0, \frac{1}{n}\mathbf{I})$ and approximately independent of Q, we have a Hanson–Wright type bound

$$g^{\top}Qh \lessapprox \frac{1}{n} \|Q\|_F.$$

As $n \to \infty$, the empirical spectral distribution $n^{-1} \sum_{i=1}^{n} \delta_{\lambda_i}$ of A converges to the Wigner semicircle law with density ρ . Then, applying also $u_i^{\top} \mathbf{J} u_j = \langle u_i, \mathbf{1} \rangle \langle u_j, \mathbf{1} \rangle \lesssim 1$, we obtain

$$\begin{split} \frac{1}{n^2} \|Q\|_F^2 &\lesssim \frac{1}{n^2} \sum_{i \neq j} \left(\frac{1}{\eta^2 + (\lambda_i - \lambda_j)^2} \right)^2 \\ &\approx \iint \left(\frac{1}{\eta^2 + (x - y)^2} \right)^2 \rho(x) \rho(y) dx dy \lesssim \frac{1}{\eta^3}, \end{split}$$

where the last step is an elementary computation that holds for any bounded density ρ with bounded support. As a result, each entry of the second term of (26) satisfies

$$\sum_{i \neq j} \frac{1}{\eta^2 + (\lambda_i - \lambda_j)^2} (u_i^\top \mathbf{J} u_j) (u_i)_k (u_j)_\ell \lessapprox \frac{1}{\eta^{3/2}}.$$
 (29)

Combining (27)–(29) shows that the noiseless solution X_* in (26) is indeed diagonally dominant, with diagonals approximately η^{-2} and off-diagonals at most of the order $\eta^{-3/2}$, omitting logarithmic factors. We carry out this proof more rigorously in Sect. 3.1 to establish Lemma 1.

2.3 Gaussian Bipartite Model

Consider the following asymmetric variant of this problem: Let $F, G \in \mathbb{R}^{n \times m}$ be adjacency matrices of two weighted bipartite graphs on n left vertices and m right vertices, where $m \geq n$ is assumed without loss of generality. Suppose, for latent permutations π_1^* on [n] and π_2^* on [m], that $\{(F_{ij}, G_{\pi_1^*(i), \pi_2^*(j)}): 1 \leq i \leq n, 1 \leq j \leq m\}$ are i.i.d. pairs of correlated random variables. We wish to recover (π_1^*, π_2^*) from F and G.

We propose to apply Algorithm 1 on the left singular values and singular vectors of F and G to first recover the (smaller) row permutation π_1^* , and then solve a second LAP to recover the (bigger) column permutation π_2^* . This is summarized as follows:

Algorithm 2 Bi-GRAMPA (bipartite graph matching by pairwise eigen-alignments)

- 1: **Input:** $F, G \in \mathbb{R}^{n \times m}$, a tuning parameter $\eta > 0$.
- 2: **Output:** Row permutation $\widehat{\pi}_1 \in \mathcal{S}_n$ and column permutation $\widehat{\pi}_2 \in \mathcal{S}_m$.
- 3: Construct the similarity matrix X as in (3), where now $\lambda_1 \geq \ldots \geq \lambda_n$ and $\mu_1 \geq \ldots \geq \mu_n$ are the singular values of F and G, and u_i and v_j are the corresponding left singular vectors.
- 4: Let $\widehat{\pi}_1$ be the estimate in (5), and denote by $G^{\widehat{\pi}_1, \text{id}} \in \mathbb{R}^{n \times m}$ the matrix $G_{ij}^{\widehat{\pi}_1, \text{id}} = G_{\widehat{\pi}_1(i), j}$.
- 5: Find $\hat{\pi}_2$ by solving the linear assignment problem

$$\widehat{\pi}_2 = \underset{\pi \in \mathcal{S}_m}{\operatorname{argmax}} \sum_{j=1}^m (F^\top G^{\widehat{\pi}_1, \mathsf{id}})_{j, \pi(j)}. \tag{30}$$

We also establish an exact recovery guarantee for this method in a Gaussian setting: We say that the pair $F, G \in \mathbb{R}^{n \times m}$ follows the Gaussian bipartite model for graph matching if

$$G^{\pi_1^*, \pi_2^*} = F + \sigma W, \tag{31}$$

where $G^{\pi_1^*,\pi_2^*}$ denotes the permuted matrix $G^{\pi_1^*,\pi_2^*}_{ij}=G_{\pi_1^*(i),\pi_2^*(j)}$, the matrices F and W are independent with i.i.d. $N(0,\frac{1}{m})$ entries, and $\sigma\geq 0$ is the noise level. We assume the asymptotic regime

$$m = m(n)$$
 and $n/m \to \kappa \in (0, 1]$ as $n \to \infty$. (32)

Theorem 2 Consider the model (31), where $n/m \to \kappa \in (0, 1]$. There exist κ -dependent constants c, c' > 0 such that if

$$1/n^{0.1} \le \eta \le c/\log n$$
 and $\sigma \log(1/\sigma) \le c'\eta/\log n$,

then with probability at least $1 - n^{-4}$ for all large n, Algorithm 2 recovers $(\widehat{\pi}_1, \widehat{\pi}_2) = (\pi_1^*, \pi_2^*)$.

Setting $\eta \approx 1/\log n$, we obtain exact recovery under the condition $\sigma \lesssim (\log n)^{-2} (\log \log n)^{-1}$.

The proof is an extension of that of Theorem 1: Note that the first step of Algorithm 2 is equivalent to applying Algorithm 1 on the symmetric polar parts $A = \sqrt{FF^{\top}}$ and $B = \sqrt{GG^{\top}}$, where $\sqrt{\cdot}$ denotes the symmetric matrix square root. In the Gaussian setting, A is still rotationally invariant, and Lemma 1 will extend directly to X_* constructed from this A. We will show a simpler and slightly weaker version of Lemma 2 to establish exact recovery of the left permutation π_1^* , under the stronger requirement for σ above. We will then analyze separately the linear assignment for recovering π_2^* . Details of the argument are provided in Sect. 3.3.

We conclude this section by discussing the assumption (32). The condition $n \to \infty$ is information-theoretically necessary to recover the right permutation π_2^* , unless σ is as small as 1/poly(n). This can be seen by considering the oracle setting when π_1^* is given, in which case the necessary and sufficient condition for the maximal likelihood (linear assignment) to succeed is given by $n \log \left(1 + \frac{1}{\sigma^2}\right) - 4 \log m \to \infty$ [18]. The condition of finite aspect ratio $n = \Theta(m)$ is assumed for the analysis of the Bi-GRAMPA algorithm; otherwise, if n = o(m), then the empirical distribution of singular values of F converges to a point mass at 1, and it is unclear whether the spectral similarity matrix in (22) or (23) continues to be diagonally dominant. We note that such a condition is not information-theoretically necessary. In fact, as long as n and m are polynomially related, running the degree profile matching algorithm [20,Section 2] on the row-wise and column-wise empirical distributions succeeds for $\sigma = O(\frac{1}{\log n})$.

3 Proofs

We prove our main results in this section. Section 3.1 proves Lemma 1, which shows the diagonal dominance of X_* in the noiseless setting of A = B. Sect. 3.2 proves Lemma 2, which bounds the difference $X - X_*$. Together with the argument in Sect. 2.2, these yield Theorem 1 on the exact recovery in the Gaussian Wigner model.

Section 3.3 extends this analysis to establish Theorem 2 for the bipartite model. Finally, Sect. 3.4 (which may be read independently) proves Corollary 1 relating \widehat{X} to the gradient descent dynamics (17) and the optimization problems (15) and (16).

3.1 Analysis in the Noiseless Setting

We first prove Lemma 1, showing diagonal dominance in the noiseless setting. Throughout, we write the spectral decomposition

$$A = U \Lambda U^{\top}$$
 where $U = [u_1 \cdots u_n]$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. (33)

3.1.1 Properties of A and Rotation by U

In the proof, we will in fact only use the properties of the matrix $A \sim \mathsf{GOE}(n)$ recorded in the following proposition. The same proof will then apply to the bipartite case wherein the suitably defined A satisfies the same properties.

Proposition 1 Suppose $A \sim GOE(n)$. Then, for constants C, c > 0,

- (a) U is a uniform random orthogonal matrix independent of Λ .
- (b) The empirical spectral distribution $\rho_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$ of A converges to a limiting law ρ , which has a density function bounded by C and support contained in [-C, C]. Moreover, for all large n,

$$\mathbb{P}\Big\{\sup_{x}|F_{n}(x)-F(x)|>Cn^{-1}(\log n)^{5}\Big\}< n^{-c\log\log n},$$

where F_n and F are the cumulative distribution functions of ρ_n and ρ , respectively. (c) For all large n, $\mathbb{P}\{\|A\| > C\} < e^{-cn}$.

Proof Parts (a) and (c) are well known, see for example [3,Corollary 2.5.4 and Lemma 2.6.7]. For (b), ρ is the Wigner semicircle law on [-2, 2], and the rate of convergence follows from [33,Theorem 1.1].

Recall the definition

$$X_* = \sum_{i,j=1}^n \frac{1}{\eta^2 + (\lambda_i - \lambda_j)^2} u_i u_i^\top \mathbf{J} u_j u_j^\top.$$

Our goal is to exhibit the diagonal dominance of this matrix. Without loss of generality, we analyze $(X_*)_{11} = \mathbf{e}_1^\top X_* \mathbf{e}_1$ and $(X_*)_{12} = \mathbf{e}_1^\top X_* \mathbf{e}_2$.

Applying Proposition 1 (a), let us rotate by U to write the quantities of interest in a more convenient form. Namely, we set

$$\varphi = U^{\mathsf{T}} \mathbf{e}_1, \quad \psi = U^{\mathsf{T}} \mathbf{e}_2, \quad \text{and} \quad \xi = U^{\mathsf{T}} \mathbf{1}.$$
 (34)

These vectors satisfy

$$\|\varphi\|_2 = \|\psi\|_2 = 1$$
, $\|\xi\|_2 = \sqrt{n}$, $\langle \varphi, \xi \rangle = 1$, $\langle \psi, \xi \rangle = 1$, and $\langle \varphi, \psi \rangle = 0$, (35)

and are otherwise "uniformly random." By this, we mean that (φ, ψ, ξ) is equal in law to $(O\varphi, O\psi, O\xi)$ for any orthogonal matrix $O \in \mathbb{R}^{n \times n}$, which follows from Proposition 1(a).

Define a symmetric matrix $L \in \mathbb{R}^{n \times n}$ by

$$L_{ij} = \frac{1}{\eta^2 + (\lambda_i - \lambda_j)^2},\tag{36}$$

and define $\widetilde{L} \in \mathbb{R}^{n \times n}$ such that $\widetilde{L}_{ii} = 0$ and $\widetilde{L}_{ij} = L_{ij}$ for $i \neq j$. Then,

$$(X_*)_{12} = \sum_{i,j=1}^{n} L_{ij} \varphi_i \psi_j \xi_i \xi_j,$$
 (37)

and

$$(X_*)_{11} = \frac{1}{\eta^2} \sum_{i=1}^n \varphi_i^2 \xi_i^2 + \sum_{i,j=1}^n \widetilde{L}_{ij} \varphi_i \varphi_j \xi_i \xi_j.$$
 (38)

Importantly, by Proposition 1(a), the triple (φ, ψ, ξ) is independent of L and \widetilde{L} . We will establish the following technical lemmas.

Lemma 3 With probability at least $1 - 3n^{-7}$ for large n,

$$\sum_{i=1}^{n} \varphi_i^2 \xi_i^2 > \frac{1}{2}.$$

Lemma 4 For some constants C, c > 0, if $1/n^{0.1} < \eta < c$, then with probability at least $1 - 2n^{-7}$ for large n,

$$\left| \sum_{i,j=1}^{n} L_{ij} \varphi_i \psi_j \xi_i \xi_j \right| \vee \left| \sum_{i,j=1}^{n} \widetilde{L}_{ij} \varphi_i \varphi_j \xi_i \xi_j \right| < C \left(\frac{\sqrt{\log n}}{\eta^{3/2}} + \frac{\log n}{\eta} \right). \tag{39}$$

Lemma 1 follows immediately from these results. Indeed, for $\eta < c/\log n$ and sufficiently small c>0, these results and the forms (37–38) combine to yield $(X_*)_{11}>1/(3\eta^2)$ and $(X_*)_{12}< C(\sqrt{\log n}/\eta^{3/2}+(\log n)/\eta)$ with probability at least $1-5n^{-7}$. By symmetry, the same result holds for all $(X_*)_{ii}$ and $(X_*)_{ij}$, and Lemma 1 follows from taking a union bound over i and j.

It remains to show Lemmas 3 and 4. The general strategy is to approximate the law of (φ, ψ, ξ) by suitably defined Gaussian random vectors, and then to apply Gaussian tail bounds and concentration inequalities which are collected in Appendix A. As an intermediate step, we will show the following estimates for the matrix L, using the convergence of the empirical spectral distribution in Proposition 1(b).

Lemma 5 For constants C, c > 0, with probability at least $1 - n^{-10}$ for large n,

$$\min_{i,j\in[n]} L_{ij} \ge c, \quad \max_{i,j\in[n]} L_{ij} \le \frac{1}{\eta^2}, \quad \frac{1}{n} ||L||_F \le \frac{C}{\eta^{3/2}},$$

$$\frac{1}{n} \max_{i\in[n]} \sum_{j=1}^n L_{ij}^2 \le \frac{C}{\eta^3} \quad and \quad \frac{1}{n} \max_{i\in[n]} \sum_{j=1}^n L_{ij} \le \frac{C}{\eta}.$$

3.1.2 Proof of Lemma 3

Let z be a standard Gaussian vector in \mathbb{R}^n independent of φ . First, we note that marginally φ is equal to $z/\|z\|_2$ in law. By standard bounds on $\max_j |z_j|$ and $\|z\|_2$ (see Lemmas 13 and 15), we have that with probability at least $1-2n^{-7}$,

$$\max_{i \in [n]} \left| \varphi_i \right| \le 5 \left(\frac{\log n}{n} \right)^{1/2}. \tag{40}$$

Next, the random vectors φ and ξ satisfy that $\|\varphi\|_2 = 1$, $\|\xi\|_2 = \sqrt{n}$ and $\langle \varphi, \xi \rangle = 1$, and are otherwise uniformly random. Hence, if we let z be a standard Gaussian vector in \mathbb{R}^n and define

$$\widetilde{\xi} \triangleq \sqrt{n-1} \frac{z - (\varphi^{\top} z) \varphi}{\|z - (\varphi^{\top} z) \varphi\|_2} + \varphi,$$

then $(\varphi, \xi) \stackrel{\text{(d)}}{=} (\varphi, \widetilde{\xi})$. Note that we can write $\widetilde{\xi} = \alpha z + \beta \varphi$, where α and $\beta = 1 - \alpha (\varphi^\top z)$ are random variables satisfying $0.9 \le \alpha \le 1.1$ and $|\beta| \le 4\sqrt{\log n}$ with probability at least $1 - 4n^{-8}$ by concentration of $||z||_2$ and $\varphi^\top z$ (Lemmas 13 and 15). Therefore, we obtain

$$\sum_{i=1}^{n} \varphi_i^2 \widetilde{\xi}_i^2 = \sum_{i=1}^{n} \varphi_i^2 \left(\alpha^2 z_i^2 + \beta^2 \varphi_i^2 + 2\alpha \beta z_i \varphi_i \right)$$

$$\geq 0.8 \sum_{i=1}^{n} \varphi_i^2 z_i^2 - 9\sqrt{\log n} \left| \sum_{i=1}^{n} \varphi_i^3 z_i \right|. \tag{41}$$

For the first term of (41), applying Lemma 15 and then (40) yields

$$\begin{split} \sum_{i=1}^n \varphi_i^2 z_i^2 &\geq 1 - 22(\log n) \left(\sum_{i=1}^n \varphi_i^4\right)^{1/2} \\ &\geq 1 - 22(\log n) \left(\sum_{i=1}^n 5^4 \left(\frac{\log n}{n}\right)^2\right)^{1/2} \geq 0.9 \end{split}$$

$$\underbrace{\triangleright \bigcap_{i=1}^n 5^4 \left(\frac{\log n}{n}\right)^2}_{\text{Springer}} \underbrace{\triangleright \bigcap_{i=1}^n 5^4 \bigcap_{i=1}^n 5^4}_{\text{Springer}} \underbrace{\triangleright \bigcap_{i=1}^n 5^4 \bigcap_{i=1}^n 5^4}_{\text{Springer}} \underbrace{\triangleright \bigcap_{i=1}^n 5^4}_{$$

with probability at least $1 - 3n^{-7}$. For the second term of (41), we once again apply Lemma 13 and then (40) to obtain

$$9\sqrt{\log n} \Big| \sum_{i=1}^{n} \varphi_i^3 z_i \Big| \le 20 \log n \left(\sum_{i=1}^{n} \varphi_i^6 \right)^{\frac{1}{2}} \le 0.1$$

with probability at least $1 - 3n^{-7}$. Combining the three terms finishes the proof.

3.1.3 Proof of Lemma 5

Let ρ_n be the empirical spectral distribution of A. For a large enough constant $C_1 > 0$ where $[-C_1, C_1]$ contains the support of ρ , let \mathcal{E} be the event where it also contains the support of ρ_n , and

$$\sup_{x} |F_n(x) - F(x)| < n^{-0.5}. \tag{42}$$

By Proposition 1, \mathcal{E} holds with probability at least $1-n^{-10}$. The bound $L_{ij} \leq 1/\eta^2$ holds by the definition (36). The bound $n^{-1}\|L\|_F \leq C\eta^{-3/2}$ follows from summing $n^{-1}\sum_j L_{ij}^2 \leq C\eta^{-3}$ also over i and taking a square root. The bound $c \leq L_{ij}$ also holds on \mathcal{E} by the definition of L. It remains to prove the last two bounds on the rows of L.

For this, fix a = 1 or a = 2. For each $\lambda \in [-C_1, C_1]$, define a function

$$g_{\lambda}(r) \triangleq \left(\frac{1}{\eta^2 + (r - \lambda)^2}\right)^a.$$

Then, for each i,

$$\frac{1}{n} \sum_{j=1}^{n} L_{ij}^{a} = \frac{1}{n} \sum_{j=1}^{n} g_{\lambda_i}(\lambda_j) = \int_{-C_1}^{C_1} g_{\lambda_i}(r) d\rho_n(r).$$
 (43)

For some constants C, C' > 0 and every $\lambda \in [-C_1, C_1]$, replacing ρ_n by the limiting density ρ , we have

$$\int_{-C_{1}}^{C_{1}} g_{\lambda}(r) d\rho(r) \leq C \int_{-C_{1}}^{C_{1}} \left(\frac{1}{\eta^{2} + (r - \lambda)^{2}} \right)^{a} dr$$

$$\leq C \left(\int_{|r - \lambda| \leq \eta} \frac{1}{\eta^{2a}} dr + \int_{\eta \leq |r - \lambda| \leq 2C_{1}} \frac{1}{(r - \lambda)^{2a}} dr \right) \leq C' \eta^{1 - 2a}.$$
(44)

To bound the difference between ρ_n and ρ , note that $g_{\lambda}(r) \geq y$ for $y \geq 0$ if and only if $|r - \lambda| \le b$ for some $b = b(y) \ge 0$. Consider random variables $R_n \sim \rho_n$ and

 $R \sim \rho$. Since $g_{\lambda} \leq \eta^{-2a}$, we have

$$\left| \int_{-C_{1}}^{C_{1}} g_{\lambda}(r) d\rho_{n}(r) - \int_{-C_{1}}^{C_{1}} g_{\lambda}(r) d\rho(r) \right|$$

$$= \left| \int_{0}^{\eta^{-2a}} \left(\mathbb{P} \left\{ g_{\lambda}(R_{n}) \geq y \right\} - \mathbb{P} \left\{ g_{\lambda}(R) \geq y \right\} \right) dy \right|$$

$$\leq \int_{0}^{\eta^{-2a}} \left| \mathbb{P} \left\{ |R_{n} - \lambda| \leq b(y) \right\} - \mathbb{P} \left\{ |R - \lambda| \leq b(y) \right\} \right| dy$$

$$\leq \int_{0}^{\eta^{-2a}} 2n^{-0.5} dy = 2\eta^{-2a} n^{-0.5},$$

where the last inequality holds on the event \mathcal{E} by (42). Combining the last display with (44), we get that (43) is at most $C\eta^{1-2a}$ for $\eta > n^{-0.1}$. This gives the desired bounds for a=1 and a=2.

3.1.4 Proof of Lemma 4

We now use Lemma 5 to prove Lemma 4. Recall L defined in (36), and \widetilde{L} which sets its diagonal to 0. We need to bound the quantities

(I):
$$\sum_{i,j=1}^{n} L_{ij}\varphi_i\psi_j\xi_i\xi_j \quad \text{and} \quad (II): \sum_{i,j=1}^{n} \widetilde{L}_{ij}\varphi_i\varphi_j\xi_i\xi_j. \tag{45}$$

The proof for (II) is almost the same as that for (I), so we focus on (I) and briefly discuss the differences for (II). Let us define a matrix $K \in \mathbb{R}^{n \times n}$ by setting

$$K_{ij} = L_{ij}\varphi_i\psi_j. \tag{46}$$

Estimates for K. We translate the estimates for L in Lemma 5 to ones for K. Note that since φ and ψ are independent of L and uniform over the sphere with entries on the order of $\frac{1}{\sqrt{n}}$, it is reasonable to expect that $\|K\|_F \lesssim \frac{1}{n}\|L\|_F$ and $\|K\| \lesssim \frac{1}{n}\|L\|$ with high probability; however, neither statement is true in general, as shown by the counterexamples $L = \mathbf{e}_1 \mathbf{e}_1^\top$ and $L = \mathbf{I}$. Fortunately, both statements hold for L defined by (36) thanks to the structural properties established in Lemma 5.

Lemma 6 In the setting of Lemma 4, for the matrix $K \in \mathbb{R}^{n \times n}$ defined by (46), we have $||K||_F \lesssim \frac{1}{n^{3/2}}$ with probability at least $1 - 2n^{-8}$.

Proof It suffices to prove that conditional on L, with probability at least $1 - n^{-8}$, we have

$$\|K\|_F \lesssim \frac{1}{n} \|L\|_F + \frac{\log n}{n^{1/4}} \|L\|_{\infty}.$$
 Springer

This together with Lemma 5 yields that

$$||K||_F \lesssim \frac{1}{\eta^{3/2}} + \frac{\log n}{n^{1/4}\eta^2} \lesssim \frac{1}{\eta^{3/2}},$$

where the last inequality holds since we choose $\eta \gtrsim n^{-0.1}$ Note that we have

$$||K||_F^2 = \sum_{i,j=1}^n \varphi_i^2 \psi_j^2 L_{ij}^2 \le \frac{1}{2} \sum_{i,j=1}^n \varphi_i^4 L_{ij}^2 + \frac{1}{2} \sum_{i,j=1}^n \psi_j^4 L_{ij}^2.$$

It suffices to bound the first term, as the second term has the same distribution. Let z be a standard Gaussian vector in \mathbb{R}^n . Then, $z/\|z\|_2 \stackrel{\text{(d)}}{=} \varphi$. By the concentration of $\|z\|_2$ around \sqrt{n} (Lemma 15), it remains to prove that with probability at least $1 - n^{-10}$,

$$\sum_{i,j=1}^{n} z_i^4 L_{ij}^2 = \sum_{i=1}^{n} z_i^4 \alpha_i \lesssim \|L\|_F^2 + \|L\|_{\infty}^2 n^{3/2} (\log n)^2$$

where $\alpha_i \triangleq \sum_{j=1}^n L_{ij}^2$. To this end, we compute

$$\mathbb{E}\left[\sum_{i=1}^n z_i^4 \alpha_i\right] = 3\|L\|_F^2$$

and moreover

$$\operatorname{Var}\left(\sum_{i=1}^{n} z_{i}^{4} \alpha_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(z_{i}^{4}) \alpha_{i}^{2} = 105 \sum_{i=1}^{n} \alpha_{i}^{2} \lesssim n^{3} \|L\|_{\infty}^{4}.$$

Therefore, applying Theorem 4 with d = 4 we obtain

$$\left| \sum_{i=1}^{n} z_i^4 \alpha_i^2 - 3 \|L\|_F^2 \right| \lesssim \|L\|_{\infty}^2 n^{3/2} (\log n)^2$$

with probability at least $1 - n^{-10}$, which completes the proof.

Lemma 7 It holds with probability at least $1 - n^{-8}$ that for all $j, k \in [n]$,

$$\sum_{i=1}^n \varphi_i^2 L_{ij} L_{ik} \lesssim \frac{1}{n} \sum_{i=1}^n L_{ij} L_{ik} \quad and \quad \sum_{i=1}^n \psi_i^2 L_{ij} \lesssim \frac{1}{\eta}.$$

Proof Since $z/\|z\|_2$ has the same distribution as φ or ψ . By the concentration of $\|z\|_2$ around \sqrt{n} (Lemma 15) and a union bound, it remains to prove that with probability at least $1 - n^{-10}$,

$$\sum_{i=1}^{n} z_i^2 L_{ij} L_{ik} \lesssim \sum_{i=1}^{n} L_{ij} L_{ik} \quad \text{and} \quad \sum_{i=1}^{n} z_i^2 L_{ij} \lesssim \frac{n}{\eta}.$$
 (47)

For the first inequality, Lemma 15 gives that with probability at least $1 - n^{-11}$,

$$\sum_{i=1}^{n} z_i^2 L_{ij} L_{ik} \lesssim \sum_{i=1}^{n} L_{ij} L_{ik} + \left(\sum_{i=1}^{n} L_{ij}^2 L_{ik}^2 \log n\right)^{1/2} + \left(\max_{i \in [n]} L_{ij} L_{ik}\right) \log n.$$

Note that $1 \lesssim L_{ij} \leq 1/\eta^2$ by Lemma 5, so

$$\sum_{i=1}^{n} L_{ij} L_{ik} \gtrsim n \quad \text{and} \quad \left(\sum_{i=1}^{n} L_{ij}^2 L_{ik}^2 \log n\right)^{1/2} + \left(\max_{i \in [n]} L_{ij} L_{ik}\right) \log n$$
$$\lesssim \frac{\sqrt{n \log n}}{\eta^4} + \frac{\log n}{\eta^4}.$$

Therefore, if $\eta \gtrsim n^{-0.1}$, then $\sum_{i=1}^{n} L_{ij}L_{ik}$ is the dominating term. Hence, the first bound in (47) is established.

The same argument also works to yield

$$\sum_{i=1}^n z_i^2 L_{ij} \lesssim \sum_{i=1}^n L_{ij}.$$

Combining this with Lemma 5, we obtain the second bound in (47).

Lemma 8 For the matrix $K \in \mathbb{R}^{n \times n}$ defined by (46), we have $||K|| \lesssim 1/\eta$ with probability at least $1 - 2n^{-8}$.

Proof Consider the event where the estimates of Lemmas 5 and 7 hold. Fix a unit vector $x \in \mathbb{R}^n$. We have

$$||Kx||_2^2 = \sum_{i=1}^n \left(\sum_{j=1}^n \varphi_i \psi_j L_{ij} x_j \right)^2 = \sum_{j,k=1}^n \left(\sum_{i=1}^n \varphi_i^2 L_{ij} L_{ik} \right) \psi_j \psi_k x_j x_k.$$

The first bound in Lemma 7 then yields that

$$||Kx||_{2}^{2} \lesssim \frac{1}{n} \sum_{j,k=1}^{n} \left(\sum_{i=1}^{n} L_{ij} L_{ik} \right) |\psi_{j} \psi_{k} x_{j} x_{k}|$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |\psi_{j}| L_{ij} |x_{j}| \right)^{2}$$

$$= \frac{1}{n} ||M|x||_{2}^{2} \leq \frac{1}{n} ||M||^{2}, \tag{48}$$

where |x| denotes the vector whose i-th entry is $|x_i|$, and the matrix M is defined by

$$M_{ij} = |\psi_j| L_{ij}$$
.

Moreover, we have that

$$||M^{\top}x||_{2}^{2} = \sum_{i=1}^{n} \psi_{i}^{2} \left(\sum_{j=1}^{n} L_{ij} x_{j}\right)^{2}$$

$$\leq \sum_{i=1}^{n} \psi_{i}^{2} \left(\sum_{j=1}^{n} L_{ij}\right) \left(\sum_{j=1}^{n} L_{ij} x_{j}^{2}\right)$$

$$\lesssim \frac{n}{\eta} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \psi_{i}^{2} L_{ij}\right) x_{j}^{2},$$

where the first inequality follows from the Cauchy–Schwarz inequality, and the second inequality follows from the row-sum bound in Lemma 5. In addition, by the second inequality in Lemma 7,

$$||M^{\top}x||_2^2 \lesssim \frac{n}{\eta^2} \sum_{i=1}^n x_i^2 = \frac{n}{\eta^2}.$$

It follows that $||M||^2 = ||M^\top||^2 \lesssim n/\eta^2$ which, combined with (48), yields $||Kx||_2^2 \lesssim 1/\eta^2$. Therefore, we conclude that $||K|| \lesssim 1/\eta$.

Bounding (I). We now bound $\sum_{i,j=1}^{n} L_{ij}\varphi_i\psi_j\xi_i\xi_j$. Recall that the vectors φ , ψ and ξ satisfy the relations (35) and are otherwise uniform random. Let z be a standard Gaussian vector in \mathbb{R}^n independent of (φ, ψ) and define

$$\widetilde{\xi} \triangleq \sqrt{n-2} \frac{z - (\varphi^{\top} z)\varphi - (\psi^{\top} z)\psi}{\|z - (\varphi^{\top} z)\varphi - (\psi^{\top} z)\psi\|_2} + \varphi + \psi. \tag{49}$$

Then, the tuple $(\varphi, \psi, \widetilde{\xi})$ is equal to (φ, ψ, ξ) in law. Thus, it suffices to study

$$\sum_{i,j=1}^{n} L_{ij} \varphi_i \psi_j \widetilde{\xi}_i \widetilde{\xi}_j.$$

Note that we can write $\widetilde{\xi} = \alpha z + \beta_1 \varphi + \beta_2 \psi$ for random variables α , β_1 , $\beta_2 \in \mathbb{R}$, where $\beta_1 = 1 - \alpha(\varphi^\top z)$ and $\beta_2 = 1 - \alpha(\psi^\top z)$. By concentration inequalities for $\|z\|_2$ and $\varphi^\top z$ (Lemmas 13 and 15), we have $0.9 \le \alpha \le 1.1$ and $|\beta_1| \lor |\beta_2| \le 5\sqrt{\log n}$ with probability at least $1 - 4n^{-8}$. Therefore, we obtain

$$\left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i} \psi_{j} \widetilde{\xi}_{i} \widetilde{\xi}_{j} \right| \lesssim \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i} \psi_{j} z_{i} z_{j} \right|$$

$$+ \sqrt{\log n} \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i} \varphi_{j} \psi_{j} z_{i} \right| + \sqrt{\log n} \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i} \psi_{j}^{2} z_{i} \right|$$

$$+ \sqrt{\log n} \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i}^{2} \psi_{j} z_{j} \right| + \sqrt{\log n} \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i} \psi_{i} \psi_{j} z_{j} \right|$$

$$+ (\log n) \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i}^{2} \varphi_{j} \psi_{j} \right|$$

$$+ (\log n) \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i}^{2} \psi_{j}^{2} \right| + (\log n) \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i} \varphi_{j} \psi_{i} \psi_{j} \right|$$

$$+ (\log n) \left| \sum_{i,j=1}^{n} L_{ij} \varphi_{i} \psi_{i} \psi_{j}^{2} \right| .$$

$$(50)$$

By the symmetry of φ and ψ , it suffices to study the following quantities

(i) :
$$\sum_{i,j=1}^{n} L_{ij} \varphi_{i} \psi_{j} z_{i} z_{j}$$
, (ii) : $\sum_{i,j=1}^{n} L_{ij} \varphi_{i} \varphi_{j} \psi_{j} z_{i}$, (iii) : $\sum_{i,j=1}^{n} L_{ij} \varphi_{i} \psi_{j}^{2} z_{i}$, (iv) : $\sum_{i,j=1}^{n} L_{ij} \varphi_{i}^{2} \varphi_{j} \psi_{j}$, (v) : $\sum_{i,j=1}^{n} L_{ij} \varphi_{i}^{2} \psi_{j}^{2}$, (vi) : $\sum_{i,j=1}^{n} L_{ij} \varphi_{i} \varphi_{j} \psi_{i} \psi_{j}$. (51)

We now bound each of these sums.

Bounding (i). For the matrix K defined by (46), Lemma 14 yields that

$$\left| \sum_{i,j=1}^{n} L_{ij} \varphi_i \psi_j z_i z_j \right| = |z^\top K z| \lesssim |\operatorname{Tr}(K)| + \|K\|_F \sqrt{\log n} + \|K\| \log n,$$

$$\stackrel{\text{E-C-T}}{\underline{\Diamond}} \operatorname{Springer}$$

with probability at least $1 - n^{-10}$. The trace vanishes because

$$\operatorname{Tr}(K) = \sum_{i=1}^{n} L_{ii} \varphi_i \psi_i = \frac{1}{\eta^2} \langle \varphi, \psi \rangle = \frac{1}{\eta^2} \langle U^{\top} \mathbf{e}_1, U^{\top} \mathbf{e}_2 \rangle = 0.$$

Moreover, Lemmas 6 and 8 imply that with probability at least $1-4n^{-8}$, we have $||K||_F \lesssim 1/\eta^{3/2}$ and $||K|| \lesssim 1/\eta$. Therefore, we conclude that

$$\left| \sum_{i,j=1}^n L_{ij} \varphi_i \psi_j z_i z_j \right| \lesssim \frac{\sqrt{\log n}}{\eta^{3/2}} + \frac{\log n}{\eta}.$$

Bounding (ii) and (iii). For (ii) in (51), Lemma 13 gives that with probability at least $1 - n^{-10}$,

$$\left|\sum_{i,j=1}^n L_{ij}\varphi_i\varphi_j\psi_jz_i\right| \lesssim \left[\sum_{i=1}^n \varphi_i^2 \left(\sum_{j=1}^n L_{ij}\varphi_j\psi_j\right)^2\right]^{1/2} \sqrt{\log n}.$$

Applying Lemmas 7 and 5, we obtain that with probability at least $1 - 3n^{-8}$,

$$\left|\sum_{j=1}^n L_{ij}\varphi_j\psi_j\right| \leq \frac{1}{2}\sum_{j=1}^n L_{ij}\varphi_j^2 + \frac{1}{2}\sum_{j=1}^n L_{ij}\psi_j^2 \lesssim \frac{1}{n}\sum_{j=1}^n L_{ij} \lesssim \frac{1}{\eta}.$$

Combining the above two bounds yields

$$\left| \sum_{i,j=1}^{n} L_{ij} \varphi_i \varphi_j \psi_j z_i \right| \lesssim \frac{1}{\eta} \left(\sum_{i=1}^{n} \varphi_i^2 \right)^{1/2} \sqrt{\log n} = \frac{\sqrt{\log n}}{\eta}.$$

The same argument also gives the same upper bound on (iii) in (51).

Bounding (iv), (v) and (vi). The proofs for quantities (iv), (v) and (vi) in (51) are similar, so we only present a bound on (vi). Since $\varphi_i \varphi_j \psi_i \psi_j \leq \frac{1}{2} (\varphi_i^2 + \psi_i^2) |\varphi_j \psi_j|$, it holds that

$$\left| \sum_{i,j=1}^n L_{ij} \varphi_i \varphi_j \psi_i \psi_j \right| \leq \frac{1}{2} \sum_{j=1}^n \left(\sum_{i=1}^n L_{ij} \varphi_i^2 \right) |\varphi_j \psi_j| + \frac{1}{2} \sum_{j=1}^n \left(\sum_{i=1}^n L_{ij} \psi_i^2 \right) |\varphi_j \psi_j|.$$

By the second bound in Lemma 7 and the symmetry of φ and ψ , we then obtain that with probability at least $1 - 2n^{-8}$,

$$\left| \sum_{i,j=1}^n L_{ij} \varphi_i \varphi_j \psi_i \psi_j \right| \lesssim \frac{1}{\eta} \sum_{j=1}^n |\varphi_j \psi_j| \leq \frac{1}{\eta}$$

where the last step is by Cauchy–Schwarz. Similar arguments yield the same bound on (iv) and (v) in (51).

Substituting the bounds on (i)–(vi) into (50), we obtain that with probability at least $1 - n^{-7}$,

$$\left| \sum_{i,j=1}^n L_{ij} \varphi_i \psi_j \widetilde{\xi}_i \widetilde{\xi}_j \right| \lesssim \frac{\sqrt{\log n}}{\eta^{3/2}} + \frac{\log n}{\eta},$$

which is the desired bound for quantity (I).

Bounding (II). The argument for establishing the same bound on $\sum_{i,j=1}^{n} \widetilde{L}_{ij} \varphi_i \varphi_j \xi_i \xi_j$ is similar, so we briefly sketch the proof. Analogous to (50), we may use a (simpler) Gaussian approximation argument to obtain

$$\left| \sum_{i,j=1}^{n} \widetilde{L}_{ij} \varphi_{i} \varphi_{j} \xi_{i} \xi_{j} \right| \lesssim \left| \sum_{i,j=1}^{n} \widetilde{L}_{ij} \varphi_{i} \varphi_{j} z_{i} z_{j} \right| + \sqrt{\log n} \left| \sum_{i,j=1}^{n} \widetilde{L}_{ij} \varphi_{i}^{2} \varphi_{j} z_{j} \right| + \sqrt{\log n} \left| \sum_{i,j=1}^{n} \widetilde{L}_{ij} \varphi_{i} \varphi_{j}^{2} z_{i} \right| + (\log n) \left| \sum_{i,j=1}^{n} \widetilde{L}_{ij} \varphi_{i}^{2} \varphi_{j}^{2} \right|,$$

$$(52)$$

where z is a standard Gaussian vector independent of φ and \widetilde{L} . Note that the matrix \widetilde{L} is the same as L except that its diagonal entries are set to zero. Hence, the last three terms on the right-hand side can be bounded in the same way as before.

For the first term on the right-hand side of (52), we again apply Lemma 14 to obtain

$$\left| \sum_{i,j=1}^{n} \widetilde{L}_{ij} \varphi_{i} \varphi_{j} z_{i} z_{j} \right| \lesssim |z^{\top} \widetilde{K} z| \lesssim |\operatorname{Tr}(\widetilde{K})| + \|\widetilde{K}\|_{F} \sqrt{\log n} + \|\widetilde{K}\| \log n,$$

where \widetilde{K} is defined by $\widetilde{K}_{ij} = \widetilde{L}_{ij} \varphi_i \varphi_j$. The trace term vanishes because the diagonal of \widetilde{L} is zero by definition. The proofs of Lemmas 6, 7 and 8 continue to hold with \widetilde{K} and \widetilde{L} in place of K and L, respectively, and hence the norms $\|\widetilde{K}\|_F$ and $\|\widetilde{K}\|$ admit the same bounds as $\|K\|_F$ and $\|K\|$.

Combining the bounds on (I) and (II) completes the proof of Lemma 4, and hence also of Lemma 1.

3.2 Bounding the Effect of the Noise

We now prove Lemma 2, bounding the difference $X - X_*$ between the noisy and noiseless settings. Again, $\pi^* = id$ is assumed without loss of generality.

3.2.1 Vectorization and Rotation by U

Without loss of generality, we consider the entries $X_{11} - (X_*)_{11}$ and $X_{21} - (X_*)_{21}$. Writing the spectral decomposition $A = U \Lambda U^{\top}$, we apply a vectorization followed by a rotation by U to first put these differences in a more convenient form.

Recall the notation

$$\varphi = U^{\top} \mathbf{e}_1, \quad \psi = U^{\top} \mathbf{e}_2, \quad \text{and} \quad \xi = U^{\top} \mathbf{1},$$

where this triple (φ, ψ, ξ) satisfies (35). Set

$$\widetilde{Z} = U^{\top} Z U, \qquad \mathcal{L}_* = \mathbf{I}_n \otimes \Lambda - \Lambda \otimes \mathbf{I}_n, \qquad \mathcal{L} = \mathbf{I}_n \otimes \Lambda - (\Lambda + \sigma \widetilde{Z}) \otimes \mathbf{I}_n,$$

and introduce

$$H = (\mathcal{L} - \mathbf{i}\eta \mathbf{I}_{n^2})^{-1} - (\mathcal{L}_* - \mathbf{i}\eta \mathbf{I}_{n^2})^{-1} \in \mathbb{C}^{n^2 \times n^2}$$

$$\tag{53}$$

where $\mathbf{i} = \sqrt{-1}$. We review relevant Kronecker product identities in Appendix B. We formalize the vectorization and rotation operations as the following lemma.

Lemma 9 When $\pi^* = id$,

$$X_{11} - (X_*)_{11} = \frac{1}{\eta} \operatorname{Im}(\varphi \otimes \varphi)^{\top} H(\xi \otimes \xi), \tag{54}$$

$$X_{21} - (X_*)_{21} = \frac{1}{\eta} \text{Im}(\varphi \otimes \psi)^{\top} H(\xi \otimes \xi),$$
 (55)

where Im denotes the imaginary part. Furthermore, the triple (φ, ψ, ξ) is independent of H.

Proof From the definitions, X_* and X can be written in vectorized form as

$$\mathbf{x}_* \triangleq \text{vec}(X_*) = \sum_{ij} \frac{1}{(\lambda_i - \lambda_j)^2 + \eta^2} (u_j \otimes u_i) (u_j \otimes u_i)^\top \mathbf{1}_{n^2} \in \mathbb{R}^{n^2}$$

$$\mathbf{x} \triangleq \operatorname{vec}(X) = \sum_{ij} \frac{1}{(\lambda_i - \mu_j)^2 + \eta^2} (v_j \otimes u_i) (v_j \otimes u_i)^{\top} \mathbf{1}_{n^2} \in \mathbb{R}^{n^2}.$$

Since u_i , v_j , λ_i , μ_j , η are all real-valued, we may further write

$$\mathbf{x}_* = \frac{1}{\eta} \operatorname{Im} \sum_{ij} \frac{1}{\lambda_i - \lambda_j - \mathbf{i}\eta} (u_j \otimes u_i) (u_j \otimes u_i)^{\top} \mathbf{1}_{n^2}$$

$$\mathbf{x} = \frac{1}{\eta} \operatorname{Im} \sum_{ij} \frac{1}{\lambda_i - \mu_j - \mathbf{i}\eta} (v_j \otimes u_i) (v_j \otimes u_i)^{\top} \mathbf{1}_{n^2}.$$

Recall the spectral decomposition (2). Note that $\mathbf{I}_n \otimes A - A \otimes \mathbf{I}_n$ is a real symmetric matrix with orthonormal eigenvectors $\{u_j \otimes u_i\}_{i,j \in [n]}$ and corresponding eigenvalues $\lambda_i - \lambda_j$. Similarly, $\mathbf{I}_n \otimes A - B \otimes \mathbf{I}_n$ is real symmetric with eigenvectors $\{v_j \otimes u_i\}_{i,j \in [n]}$ and eigenvalues $\lambda_i - \mu_j$. Thus, using $U^{\top}AU = \Lambda$, we have

$$\mathbf{x}_{*} = \frac{1}{\eta} \operatorname{Im}(\mathbf{I}_{n} \otimes A - A \otimes \mathbf{I}_{n} - \mathbf{i}\eta \, \mathbf{I}_{n^{2}})^{-1} \mathbf{1}_{n^{2}}$$

$$= \frac{1}{\eta} \operatorname{Im}(U \otimes U)(\mathbf{I}_{n} \otimes A - A \otimes \mathbf{I}_{n} - \mathbf{i}\eta \, \mathbf{I}_{n^{2}})^{-1}(U^{\top} \otimes U^{\top})(\mathbf{1}_{n} \otimes \mathbf{1}_{n})$$

$$= \frac{1}{\eta} \operatorname{Im}(U \otimes U)(\mathcal{L}_{*} - \mathbf{i}\eta \, \mathbf{I}_{n^{2}})^{-1}(\xi \otimes \xi).$$

Similarly, using $U^{\top}BU = U^{\top}(A + \sigma Z)U = \Lambda + \sigma \widetilde{Z}$, we have

$$\mathbf{x} = \frac{1}{\eta} \operatorname{Im}(\mathbf{I}_n \otimes A - B \otimes \mathbf{I}_n - \mathbf{i}\eta \, \mathbf{I}_{n^2})^{-1} \mathbf{1}_{n^2} = \frac{1}{\eta} \operatorname{Im}(U \otimes U) (\mathcal{L} - \mathbf{i}\eta \, \mathbf{I}_{n^2})^{-1} (\xi \otimes \xi).$$

Therefore, for both $(k, \ell) = (1, 1)$ and (2, 1),

$$X_{k\ell} - (X_*)_{k\ell} = \mathbf{e}_k^{\top} (X - X_*) \mathbf{e}_{\ell} = (\mathbf{e}_{\ell} \otimes \mathbf{e}_k)^{\top} (\mathbf{x} - \mathbf{x}_*)$$
$$= \frac{1}{\eta} \operatorname{Im}((U^{\top} \mathbf{e}_{\ell}) \otimes (U^{\top} \mathbf{e}_k)) H(\xi \otimes \xi)$$

which gives the desired (54) and (55).

For the independence claim, note that H is a function of (Λ, \widetilde{Z}) , while (φ, ψ, ξ) is a function of U. Crucially, since $Z \sim \mathsf{GOE}(n)$, Proposition 1(a) implies that $\widetilde{Z} = U^\top ZU \sim \mathsf{GOE}(n)$ also for every fixed orthogonal matrix U. This distribution does not depend on U, so \widetilde{Z} is independent of U, and hence (φ, ψ, ξ) is independent of H.

We divide the remainder of the proof into the following two results.

Lemma 10 For some constant C > 0 and any deterministic matrix $H \in \mathbb{C}^{n^2 \otimes n^2}$, with probability at least $1 - n^{-7}$ over (φ, ψ, ξ) ,

$$|(\varphi \otimes \varphi)^{\top} H(\xi \otimes \xi)| \vee |(\varphi \otimes \psi)^{\top} H(\xi \otimes \xi)| \leq C \left(\|H\| + \|H\|_F \frac{\log n}{n} \right).$$

Lemma 11 In the setting of Lemma 2, for some constant C > 0 and for H defined by (53), with probability at least $1 - n^{-7}$,

$$\|H\| \leq \frac{C\sigma}{\eta^2} \quad and \quad \|H\|_F \leq \frac{C\sigma n}{\eta} \left(1 + \frac{\sigma}{\eta}\right).$$
 Springer in Total

Lemma 2 follows immediately from these results. Indeed, applying Lemma 10 conditional on H, followed by the estimates for H in Lemma 11, we get for both $(k, \ell) = (1, 1)$ and (2, 1) that

$$|X_{k\ell} - (X_*)_{k\ell}| < \frac{C}{\eta} \left(\frac{\sigma}{\eta^2} + \frac{\sigma \log n}{\eta} \left(1 + \frac{\sigma}{\eta} \right) \right)$$

with probability at least $1 - 2n^{-7}$. By symmetry, the same result also holds for all pairs (k, ℓ) , and Lemma 2 follows from a union bound over (k, ℓ) .

3.2.2 Proof of Lemma 10

Introduce S, $\widetilde{S} \in \mathbb{C}^{n \times n}$ such that

$$\operatorname{vec}(S)^{\top} = (\varphi \otimes \varphi)^{\top} H$$
 and $\operatorname{vec}(\widetilde{S})^{\top} = (\varphi \otimes \psi)^{\top} H$.

Then, the quantities to be bounded are

$$(\varphi \otimes \varphi)^{\top} H(\xi \otimes \xi) = \xi^{\top} S \xi \quad \text{and} \quad (\varphi \otimes \psi)^{\top} H(\xi \otimes \xi) = \xi^{\top} \widetilde{S} \xi.$$
 (56)

We bound these in three steps: First, we bound $||S||_F$ and $||\widetilde{S}||_F$. Second, we bound $|\operatorname{Tr} S|$ and $|\operatorname{Tr} \widetilde{S}|$. Finally, we make a Gaussian approximation for ξ and apply the Hanson–Wright inequality to bound the quantities in (56).

Estimates for $||S||_F$ and $||\widetilde{S}||_F$. We show that with probability at least $1 - 5n^{-8}$,

$$||S||_F \vee ||\widetilde{S}||_F \lesssim \frac{1}{n} ||H||_F + \left(\frac{\log n}{n}\right)^{1/4} ||H||.$$
 (57)

Note that $H^{\top} = H$, and

$$||S||_F = ||H(\varphi \otimes \varphi)||_2$$
 and $||\widetilde{S}||_F = ||H(\varphi \otimes \psi)||_2$.

We give the argument for Gaussian vectors, and then apply a Gaussian approximation for (φ, ψ) .

Lemma 12 Let $x, y \in \mathbb{R}^n$ be independent with N(0, 1) entries. Then, for a constant C > 0 and any deterministic $H \in \mathbb{C}^{n^2 \times n^2}$, with probability at least $1 - 2n^{-10}$,

$$||H(x \otimes x)||_2 \vee ||H(x \otimes y)||_2 \leq C[||H||_F + (n^3 \log n)^{1/4}||H||].$$

Proof Let $M = H^*H$. Then, $||H(x \otimes x)||^2 = (x \otimes x)^\top M(x \otimes x)$. We bound the mean and then apply Gaussian concentration of measure. Recall the Wick formula for

Gaussian expectations: For any numbers $a_{ijk\ell} \in \mathbb{C}$,

$$\sum_{i,j,k,\ell} \mathbb{E}[x_i x_j x_k x_\ell] a_{ijk\ell}$$

$$= \sum_{i,j,k,\ell} \left(\mathbb{1}\{i = j, k = l\} + \mathbb{1}\{i = k, j = l\} + \mathbb{1}\{i = l, j = k\} \right) a_{ijk\ell}.$$

Denoting the entry $M_{ij,k\ell} = (\mathbf{e}_i \otimes \mathbf{e}_j)^\top M(\mathbf{e}_k \otimes \mathbf{e}_\ell)$ and applying this to $a_{ijk\ell} = M_{ij,k\ell}$, we get

$$\mathbb{E}[(x \otimes x)^{\top} M(x \otimes x)] = \sum_{ij} (M_{ii,jj} + M_{ij,ij} + M_{ij,ji}).$$

Introduce the involution $Q \in \mathbb{R}^{n^2 \times n^2}$ defined by $Q(\mathbf{e}_i \otimes \mathbf{e}_j) = \mathbf{e}_j \otimes \mathbf{e}_i$, and note also that $\sum_i (\mathbf{e}_i \otimes \mathbf{e}_i) = \text{vec}(\mathbf{I}_n)$. Then, the above yields

$$\left| \mathbb{E}[(x \otimes x)^{\top} M(x \otimes x)] \right| = \left| \operatorname{vec}(\mathbf{I}_n)^{\top} M \operatorname{vec}(\mathbf{I}_n) + \operatorname{Tr} M + \operatorname{Tr} M Q \right|$$

$$\leq \|M\| \cdot \| \operatorname{vec}(\mathbf{I}_n)\|_2^2 + \|H\|_F^2 + \|H\|_F \|HQ\|_F$$

$$= n\|H\|^2 + 2\|H\|_F^2. \tag{58}$$

To establish the concentration of $F(x) \triangleq (x \otimes x)^{\top} M(x \otimes x)$ around its mean, we aim to apply Lemma 16 by bounding the Lipschitz constant of F on the ball

$$B = \{ x \in \mathbb{R}^n : ||x||^2 \le 2n \}.$$

Note that for each $i \in [n]$,

$$\frac{\partial}{\partial x_i} [(x \otimes x)^\top M(x \otimes x)]
= (\mathbf{e}_i \otimes x)^\top M(x \otimes x)
+ (x \otimes \mathbf{e}_i)^\top M(x \otimes x) + (x \otimes x)^\top M(\mathbf{e}_i \otimes x) + (x \otimes x)^\top M(x \otimes \mathbf{e}_i).$$
(59)

For $x \in B$, using $\sum_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{\top} = \mathbf{I}_{n}$ and $M = M^{*}$, we have

$$\sum_{i=1}^{n} |(\mathbf{e}_{i} \otimes x)^{\top} M(x \otimes x)|^{2} = \sum_{i=1}^{n} (x \otimes x)^{\top} M(\mathbf{e}_{i} \otimes x) (\mathbf{e}_{i} \otimes x)^{\top} M(x \otimes x)$$

$$= (x \otimes x)^{\top} M(\mathbf{I}_{n} \otimes xx^{\top}) M(x \otimes x)$$

$$\leq \|x \otimes x\|_{2}^{2} \cdot \|M\|^{2} \cdot \|I \otimes xx^{\top}\| = \|x\|_{2}^{6} \|M\|^{2}$$

$$< (2n)^{3} \|M\|^{2} = 8n^{3} \|H\|^{4}.$$

The same bound holds for the other three terms in (59). Thus, for all $x \in B$ and some constant $C_0 > 0$, $\|\nabla F(x)\| \le C_0 n^3 \|H\|^4$. Thus, $x \mapsto (x \otimes x)^\top M(x \otimes x)$ is L_0 -Lipschitz on B, where $L_0 \triangleq \sqrt{C_0 n^3} \|H\|^2$. Finally, note that F(0) = 0 and $\mathbb{P}\{x \notin B\} \le e^{-cn}$ by the χ^2 tail bound of Lemma 15. Applying Lemma 16 with $t \asymp \sqrt{\log n}$, we conclude that

$$|(x \otimes x)^{\top} M(x \otimes x)| \leq |\mathbb{E}[(x \otimes x)^{\top} M(x \otimes x)]| + Cn^{2} e^{-cn/2} ||H||^{2} + C' \sqrt{n^{3} \log n} ||H||^{2}$$

$$\stackrel{(58)}{\leq} C''(||H||_{F}^{2} + \sqrt{n^{3} \log n} ||H||^{2})$$

holds with probability at least $1-n^{-10}$, where C, C', C'' are absolute constants. Taking the square root gives the desired result for $||H(x \otimes x)||_2$.

The bound for $H(x \otimes y)$ is similar: We have

$$\mathbb{E}[\|H(x \otimes y)\|_{2}^{2}] = \mathbb{E}[(x \otimes y)^{\top} M(x \otimes y)] = \sum_{ij} M_{ij,ij} = \text{Tr } M = \|H\|_{F}^{2}.$$

On $B^2 = \{(x, y) \in \mathbb{R}^{2n} : ||x||_2^2 \le 2n, ||y||_2^2 \le 2n\}$, we obtain $||\nabla_{x,y}[(x \otimes y)^T M(x \otimes y)]||^2 \le L_0^2 = Cn^3 ||H||^2$ as above. Applying Lemma 16 as above yields the desired bound on $||H(x \otimes y)||_2$.

We now apply this and a Gaussian approximation to show (57). For $||S||_F$, let x be a standard Gaussian vector in \mathbb{R}^n , so that $x/||x||_2$ is equal to φ in law. Lemma 15 shows with probability $1 - n^{-10}$ that $||x||_2^2 \ge n/2$, so

$$||S||_F = ||H(\varphi \otimes \varphi)||_2 \le \frac{2}{n} ||H(x \otimes x)||_2,$$

and the result follows from Lemma 12. For $\|\widetilde{S}\|_F$, let x, y be independent standard Gaussian vectors in \mathbb{R}^n . Since $\varphi^\top \psi = 0$ and (φ, ψ) is rotationally invariant in law, this pair is equal in law to

$$\left(\frac{x}{\|x\|_2}, \frac{y - (y^\top x/\|x\|_2^2)x}{\|y - (y^\top x/\|x\|_2^2)x\|_2}\right).$$

Standard concentration inequalities of Lemmas 13 and 15 then yield

$$\|\widetilde{S}\|_{F} = \|H(\varphi \otimes \psi)\|_{2} \le \frac{2}{n} \|H(x \otimes y)\|_{2} + \frac{5\sqrt{\log n}}{n^{3/2}} \|H(x \otimes x)\|_{2}$$
 (60)

with probability at least $1 - 4n^{-8}$, so the result also follows from Lemma 12. *Estimates for* Tr *S and* Tr \widetilde{S} . Next, we show that with probability at least $1 - 5n^{-8}$,

$$|\operatorname{Tr} S| \vee |\operatorname{Tr} \widetilde{S}| \le 2\|H\|.$$
 (61)

Note that

$$\operatorname{Tr} S = \operatorname{Tr} S \mathbf{I}_n = (\varphi \otimes \varphi)^{\top} H \operatorname{vec}(\mathbf{I}_n),$$

and similarly

Tr
$$\widetilde{S} = (\varphi \otimes \psi)^{\top} H \operatorname{vec}(\mathbf{I}_n)$$
.

We apply a Gaussian approximation. To bound $\operatorname{Tr} S$, let x be a standard Gaussian vector, so $x/\|x\|_2$ is equal to φ in law. Define $G \in \mathbb{C}^{n \times n}$ by $\operatorname{vec}(G) = H \operatorname{vec}(\mathbf{I}_n)$. Then, it follows from Lemmas 15 and 14 that

$$|\operatorname{Tr} S| = |\varphi^{\top} G \varphi| = \frac{|x^{\top} G x|}{\|x\|_{2}^{2}} \le \frac{1}{0.9n} (|\operatorname{Tr} G| + C \|G\|_{F} \log n)$$
 (62)

with probability at least $1 - n^{-10}$. We apply

$$|\operatorname{Tr} G| = |\operatorname{Tr} G \mathbf{I}_n| = |\operatorname{vec}(\mathbf{I}_n)^{\top} H \operatorname{vec}(\mathbf{I}_n)| \le ||H| ||\mathbf{I}_n||_F^2 = n ||H||,$$

and

$$||G||_F = ||H \operatorname{vec}(\mathbf{I}_n)||_2 \le ||H|| ||\mathbf{I}_n||_F = \sqrt{n} ||H||.$$

Combining these yields $|\operatorname{Tr} S| \le 2\|H\|$ for large n. For $\operatorname{Tr} \widetilde{S}$, introducing independent standard Gaussian vectors x, y, the same arguments as leading to (60) give

$$|(\varphi \otimes \psi)^{\top} H \operatorname{vec}(\mathbf{I}_n)| \leq \frac{2}{n} |(x \otimes y)^{\top} H \operatorname{vec}(\mathbf{I}_n)| + \frac{5\sqrt{\log n}}{n^{3/2}} |(x \otimes x)^{\top} H \operatorname{vec}(\mathbf{I}_n)|$$
$$= \frac{2}{n} |x^{\top} G y| + \frac{5\sqrt{\log n}}{n^{3/2}} |x^{\top} G x|$$

with probability at least $1 - 4n^{-8}$. Then, $|\operatorname{Tr} \widetilde{S}| \le 2\|H\|$ follows from the same arguments as above by invoking Lemma 14.

Quadratic form bounds. We now use (57) and (61) to bound the quadratic forms (56) in ξ . Note that ξ is dependent on (φ, ψ) and hence on S and \widetilde{S} , thus tools such as the Hanson–Wright inequality is not directly applicable; nevertheless, thanks to the uniformity of U on the orthogonal group, $(\xi, \varphi, \psi) = U^T(\mathbf{1}, \mathbf{e}_1, \mathbf{e}_2)$ are only weakly dependent and well approximated by Gaussians. Below we make this intuition precise.

Consider $\xi^{\top} \widetilde{S} \xi$. Let z be a standard Gaussian vector in \mathbb{R}^n independent of (φ, ψ) (and hence of \widetilde{S}), and recall the Gaussian representation (49) so that $(\varphi, \psi, \widetilde{\xi}) \stackrel{\text{(d)}}{=} (\varphi, \psi, \xi)$. Write (49) as $\widetilde{\xi} = \alpha z + \widetilde{\varphi}$, where $\widetilde{\varphi} = (1 - \alpha(\varphi^{\top} z))\varphi + (1 - \alpha(\psi^{\top} z))\psi$ is a linear combination of φ and ψ . By concentration inequalities for $\|z\|_2$ and $\varphi^{\top} z$ in Lemmas 13 and 15, we have $0.9 \le \alpha \le 1.1$ and $\|\widetilde{\varphi}\|_2 \le 8\sqrt{\log n}$ with probability $1 - 4n^{-8}$. On this event,

$$\begin{split} |\xi^{\top}\widetilde{S}\xi| &\leq 1.21|z^{\top}\widetilde{S}z| + |\widetilde{\varphi}^{\top}\widetilde{S}\widetilde{\varphi}| + 1.1|z^{\top}\widetilde{S}\widetilde{\varphi}| + 1.1|\widetilde{\varphi}^{\top}\widetilde{S}z|. \\ & \qquad \qquad \underbrace{\text{ Springer}} \end{split}$$

We bound these four terms separately conditional on (φ, ψ) .

For the first term, applying the Hanson-Wright inequality of Lemma 14, we have

$$|z^{\top}\widetilde{S}z| \le |\operatorname{Tr}\widetilde{S}| + C \|\widetilde{S}\|_F \log n$$

with probability at least $1 - n^{-10}$. For the second term, applying $\|\widetilde{\varphi}\|_2 \leq 8\sqrt{\log n}$,

$$|\widetilde{\varphi}^{\top} \widetilde{S} \widetilde{\varphi}| \le \|\widetilde{S}\| \|\widetilde{\varphi}\|_{2}^{2} \le 64 \|\widetilde{S}\|_{F} \log n.$$

For the third term,

$$|\widetilde{\varphi}^{\top}\widetilde{S}z| \leq \|\widetilde{\varphi}\|_2 \|\widetilde{S}z\|_2.$$

Applying again Lemma 14, with probability at least $1 - n^{-10}$,

$$\|\widetilde{S}z\|_2^2 \le \operatorname{Tr} \widetilde{S}^* \widetilde{S} + C \|\widetilde{S}^* \widetilde{S}\|_F \log n \le (C+1) \|\widetilde{S}\|_F^2 \log n,$$

SO

$$|\widetilde{\varphi}^{\top}\widetilde{S}z| \lesssim ||\widetilde{S}||_F \log n.$$

The fourth term is bounded similarly to the third, and combining these gives $|\xi^{\top} \widetilde{S} \xi| \lesssim |\operatorname{Tr} \widetilde{S}| + ||\widetilde{S}||_F \log n$ with probability at least $1 - 6n^{-8}$. Applying (57) and (61), we get

$$|(\varphi \otimes \psi)^{\top} H(\xi \otimes \xi)| = |\xi^{\top} \widetilde{S} \xi| \lesssim ||H|| + \frac{\log n}{n} ||H||_F$$

as desired.

The Gaussian approximation argument for $(\varphi \otimes \varphi)^{\top} H(\xi \otimes \xi) = \xi^{\top} S \xi$ is simpler and omitted for brevity. This concludes the proof of Lemma 10.

3.2.3 Proof of Lemma 11

Recalling the definition of H in (53) and applying

$$A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}, (63)$$

we get

$$-H = (\mathcal{L}_* - \mathbf{i}\eta \,\mathbf{I}_{n^2})^{-1} (\sigma \,\widetilde{Z} \otimes \mathbf{I}_n) (\mathcal{L} - \mathbf{i}\eta \,\mathbf{I}_{n^2})^{-1}. \tag{64}$$

As $\mathcal{L}_* - \mathbf{i}\eta \, \mathbf{I}_{n^2}$ is diagonal with each entry at least η in magnitude, we have the deterministic bound $\|(\mathcal{L}_* - \mathbf{i}\eta \, \mathbf{I}_{n^2})^{-1}\| \le 1/\eta$, and similarly $\|(\mathcal{L} - \mathbf{i}\eta \, \mathbf{I}_{n^2})^{-1}\| \le 1/\eta$. Applying Proposition 1(c), $\|\widetilde{Z}\| \le C$ with probability at least $1 - n^{-10}$ for a constant C > 0. On this event, $\|H\| \le C\sigma/\eta^2$.

To bound $||H||_F$, let us apply (63) again to $(\mathcal{L} - \mathbf{i}\eta \mathbf{I}_{n^2})^{-1}$ in (64), to write

$$-H = (\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1} (\sigma \widetilde{Z} \otimes \mathbf{I}) (\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1} \Big(\mathbf{I} - (\sigma \widetilde{Z} \otimes \mathbf{I}) (\mathcal{L} - \mathbf{i}\eta \mathbf{I})^{-1} \Big).$$

Applying

$$||AB||_F \le ||A||_F ||B||,\tag{65}$$

we get with probability at least $1 - n^{-10}$ that

$$||H||_F \le ||(\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1}(\sigma \widetilde{Z} \otimes \mathbf{I})(\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1}||_F (1 + C\sigma/\eta).$$
(66)

Note that here, \mathcal{L}_* is diagonal, and \widetilde{Z} is independent of \mathcal{L}_* . Let $w \in \mathbb{C}^{n^2}$ consist of the diagonal entries of $(\mathcal{L}_* - \mathbf{i}\eta\mathbf{I})^{-1}$, indexed by the pair $(i,k) \in [n]^2$, i.e., $w_{ik} = \frac{1}{\lambda_i - \lambda_k - \mathbf{i}\eta}$. Let us also desymmetrize \widetilde{Z} and write

$$\widetilde{Z} = \frac{1}{\sqrt{2n}} (W + W^{\top}),$$

where $W \in \mathbb{R}^{n \times n}$ has n^2 independent N(0, 1) entries. Then,

$$\|(\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1} (\sigma \widetilde{Z} \otimes \mathbf{I}) (\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1}\|_F^2$$

$$= \frac{\sigma^2}{2n} \|(\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1} ((W + W^\top) \otimes \mathbf{I}) (\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1}\|_F^2$$

$$= \frac{\sigma^2}{2n} \sum_{i,j,k=1}^n (W_{ij} + W_{ji})^2 |w_{ik}|^2 |w_{jk}|^2.$$

Recall the symmetric matrix $L \in \mathbb{R}^{n \times n}$ defined by (36). We have

$$\sum_{k=1}^{n} |w_{ik}|^2 |w_{jk}|^2 = \sum_{k=1}^{n} \frac{1}{(\lambda_i - \lambda_k)^2 + \eta^2} \cdot \frac{1}{(\lambda_j - \lambda_k)^2 + \eta^2} = \sum_{k=1}^{n} L_{ik} L_{jk} = (L^2)_{ij}.$$

Introducing $v = \text{vec}(L^2) \in \mathbb{R}^{n^2}_+$ indexed by (i, j), and applying Lemma 15 conditional on v, we get

$$\|(\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1} (\sigma \widetilde{Z} \otimes \mathbf{I}) (\mathcal{L}_* - \mathbf{i}\eta \mathbf{I})^{-1}\|_F^2 \le \frac{2\sigma^2}{n} \sum_{i,j=1}^n W_{ij}^2 v_{ij}$$

$$\le \frac{2\sigma^2}{n} (\|v\|_1 + C\|v\|_2 \log n) \tag{67}$$

with probability at least $1 - n^{-10}$.

Finally, we apply Lemma 5 to bound $\|v\|_1$ and $\|v\|_2$. Note that $\|v\|_1 = \mathbf{1}L^2\mathbf{1} = \|L\mathbf{1}\|_2^2$. Applying $\max_i (L\mathbf{1})_i \leq Cn/\eta$ from Lemma 5, we get with probability at least $1 - n^{-8}$ that

$$||v||_1 \lesssim n^3/\eta^2$$
.

By (65), we also have $||v||_2^2 = ||L^2||_F^2 \le ||L||^2 \cdot ||L||_F^2$. Applying $||L|| \le \max_i (L\mathbf{1})_i \le Cn/\eta$ and $||L||_F^2 \le Cn^2/\eta^3$ from Lemma 5, we get

$$||v||_2^2 \lesssim n^4/\eta^5.$$

Applying this to (67) and then back to (66) yields

$$\|H\|_F^2 \lesssim \frac{\sigma^2}{n} \left(\frac{n^3}{\eta^2} + \frac{n^2 \log n}{\eta^{5/2}}\right) \left(1 + \frac{\sigma}{\eta}\right)^2 \lesssim \frac{\sigma^2 n^2}{\eta^2} \left(1 + \frac{\sigma}{\eta}\right)^2,$$

where the second inequality holds for $\eta > n^{-0.1}$. This is the desired bound on $||H||_F$. This concludes the proof of Lemma 11, and hence of Lemma 2.

3.3 Proof for the Bipartite Model

We now prove Theorem 2 for exact recovery in the bipartite model. We first show that Algorithm 2 successfully recovers π_1^* . This extends the preceding argument in the symmetric case. We then show that the linear assignment subroutine recovers π_2^* if $\widehat{\pi}_1 = \pi_1^*$.

3.3.1 Recovery of π_1^* by Spectral Method

The argument is a minor extension of that in the Gaussian Wigner model. Let us write $A = \sqrt{FF^{\top}}$, and introduce its spectral decomposition $A = U\Lambda U^{\top}$. Note that Λ and U then consist of the singular values and left singular vectors of F.

To analyze the noiseless solution $X_* = \widehat{X}(A,A)$, note that all three claims of Proposition 1 hold for A, where the constants C,C',c may depend on $\kappa = \lim n/m$. Indeed, here, ρ is the law of $\sqrt{\lambda}$ when λ is distributed according to the Marcenko–Pastur distribution with density $g(x) = \frac{\sqrt{(\lambda_+ - x)(x - \lambda_-)}}{2\pi \kappa x} \mathbf{1}_{\{\lambda_- \le x \le \lambda_+\}}$ and $\lambda_\pm \triangleq (1 \pm \sqrt{\kappa})^2$. Then, the density of ρ is $2xg(x^2)$ (In the case of $\kappa = 1$, ρ is the quarter-circle law.) Therefore, for any $\kappa \in (0, 1]$, the density of ρ is supported on $[1 - \sqrt{\kappa}, 1 + \sqrt{\kappa}]$ and bounded by some κ -dependent constant C. The rate of convergence in (b) follows from [32,Theorem 1.1], and the claims in (a) and (c) are well known. Thus, the proof of Lemma 1 applies, and we obtain with probability $1 - 5n^{-5}$ that

Next, we analyze the noisy solution $X \triangleq \widehat{X}(A, B)$. Set $B = \sqrt{GG^{\top}}$, and define H by (53) but replacing $\Lambda + \sigma \widetilde{Z}$ in \mathcal{L} with the general definition

$$\mathcal{L} = \mathbf{I}_n \otimes \Lambda - U^{\top} B U \otimes \mathbf{I}_n.$$

Then, the representations (54) and (55) of Lemma 9 continue to hold. Furthermore, write the singular value decomposition $F = U\Lambda V^{\top}$, set $\widetilde{W} = U^{\top}W$, and note that U is uniformly random and independent of $(\Lambda, V, \widetilde{W})$. Then,

$$U^{\top}BU = U^{\top}\sqrt{(F + \sigma W)(F + \sigma W)^{\top}}U = \sqrt{(\Lambda V^{\top} + \sigma \widetilde{W})(\Lambda V^{\top} + \sigma \widetilde{W})^{\top}}$$

which is independent of U, so that (φ, ψ, ξ) is still independent of H. Then, applying Lemma 10 conditional on H, we get with probability at least $1 - n^{-7}$ that

$$|X_{k\ell} - (X_*)_{k\ell}| \lesssim \frac{1}{\eta} \left(\|H\| + \|H\|_F \frac{\log n}{n} \right)$$

for both $(k, \ell) = (1, 1)$ and (2, 1).

To conclude the proof, we need a counterpart of Lemma 11 bounding the norms of H. Let us simply use the fact that H has dimension $n^2 \times n^2$ to bound $||H||_F \le n||H||$, and apply

$$||H|| \leq ||(\mathcal{L} - \mathbf{i}\eta\mathbf{I})^{-1}|| \cdot ||\mathcal{L} - \mathcal{L}_*|| \cdot ||(\mathcal{L}_* - \mathbf{i}\eta\mathbf{I})^{-1}|| \leq ||\mathcal{L} - \mathcal{L}_*||/\eta^2.$$

Then,

$$\|\mathcal{L} - \mathcal{L}_*\| = \|U^{\top}(A - B)U \otimes \mathbf{I}_n\| = \|A - B\|$$

$$\leq \frac{2}{\pi} \|F - G\| \left(2 + \log \frac{\|F\| + \|G\|}{\|F - G\|} \right)$$

where the last inequality follows from [35,Proposition 1]. For a constant C > 0, this is at most $C\sigma \log(1/\sigma)$ with probability at least $1 - n^{-10}$ by the analogue of Proposition 1(c) applied to the noise $W = (G - F)/\sigma$ in this model. Combining these bounds yields for $(k, \ell) = (1, 1)$ and (2, 1) that with probability $1 - 2n^{-7}$,

$$|X_{k\ell} - (X_*)_{k\ell}| \le \frac{C\sigma \log(1/\sigma) \log n}{\eta^3}.$$

This holds for all pairs (k, ℓ) with probability at least $1 - 2n^{-5}$ by a union bound. Thus, for $\eta < c/\log n$, $\sigma \log(1/\sigma) < c'\eta/\log n$, and sufficiently small constants c, c' > 0, we get from (68) that

$$\min_{i\in[n]}X_{ii} > \max_{i,j\in[n]:i\neq j}X_{ij}.$$

So Algorithm 2 recovers $\widehat{\pi}_1 = \pi_1^*$ with probability at least $1 - 7n^{-5}$ when $\pi_1^* = id$. By equivariance of the algorithm, this also holds for any π_1^* .

3.3.2 Recovery of π_2^* by Linear Assignment

We now show that on the event where $\widehat{\pi}_1 = \pi_1^*$, as long as $n \gtrsim \frac{\log m}{\log(1 + \frac{1}{4\sigma^2})}$, the linear assignment step of Algorithm 2 recovers $\widehat{\pi}_2 = \pi_2^*$ with high probability. Without loss of generality, let us take $\pi_1^* = \mathrm{id}$, and denote more simply $\pi^* = \pi_2^*$. We then formalize this claim as follows.

Theorem 3 Consider the single permutation model $G^{id,\pi^*} = F + \sigma W$ where $G^{id,\pi^*}_{ij} = G_{i,\pi^*(j)}$, and F and W are as in Theorem 2. Let

$$\widehat{\pi} = \underset{\pi \in \mathcal{S}_m}{\operatorname{argmax}} \sum_{j=1}^m (F^\top G)_{j,\pi(j)}.$$

If $n \geq \frac{24 \log m}{\log(1 + \frac{1}{4\pi^2})}$, then $\widehat{\pi} = \pi^*$ with probability at least $1 - 2m^{-4}$.

Proof Without loss of generality, assume that $\pi^* = \text{id}$. Let us also rescale and consider $G = F + \sigma W$, where F and W are $n \times m$ random matrices with i.i.d. N(0, 1) entries. Our goal is to show that

$$\widehat{\Pi} = \underset{\Pi \in \mathfrak{S}_m}{\operatorname{argmax}} \langle F\Pi, G \rangle$$

coincides with the identity with probability at least $1 - m^{-4}$.

For any $\Pi \neq \mathbf{I}$, we have $\langle F\Pi, G \rangle - \langle F, G \rangle = \sigma \langle F(\Pi - \mathbf{I}), W \rangle - \langle F(\mathbf{I} - \Pi), F \rangle$, where $\langle F(\mathbf{I} - \Pi), F \rangle = \frac{1}{2} \|F(\mathbf{I} - \Pi)\|_F^2$. Then,

$$\begin{split} \mathbb{P}\left\{ \left\langle F\Pi,G\right\rangle >\left\langle F,G\right\rangle \right\} &= \mathbb{P}\left\{ \left\langle W,\frac{F(\Pi-\mathbf{I})}{\|F(\mathbf{I}-\Pi)\|_F}\right\rangle \geq \frac{\|F(\mathbf{I}-\Pi)\|_F}{2\sigma}\right\} \\ &= \mathbb{E}\left[\mathcal{Q}\left(\frac{\|F(\mathbf{I}-\Pi)\|_F}{2\sigma}\right)\right] \\ &\overset{(a)}{\leq} \mathbb{E}\left[\exp\left(-\frac{\|F(\mathbf{I}-\Pi)\|_F^2}{8\sigma^2}\right)\right] \\ &\overset{(b)}{=} \left\{ \mathbb{E}\left[\exp\left(-\frac{\|z^\top(\mathbf{I}-\Pi)\|_F^2}{8\sigma^2}\right)\right]\right\}^n, \end{split}$$

where (a) follows from the Gaussian tail bound $Q(x) \triangleq \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \le e^{-x^2/2}$ for x > 0; (b) is because the *n* rows of *F* are i.i.d. copies of $z \sim N(0, \mathbf{I}_m)$.

Denote the number of non-fixed points of Π by $k \geq 2$, which is also the rank of $\mathbf{I} - \Pi$. Denote its singular values by $\sigma_1, \ldots, \sigma_k$. Then, we have $\sum_{i=1}^k \sigma_i^2 = \|\mathbf{I} - \Pi\|_F^2 = 2k$ and $\max_{i \in [k]} \sigma_i \leq \|\mathbf{I} - \Pi\| \leq 2$. By rotational invariance, we have

 $||z^{\top}(\mathbf{I} - \Pi)||_F^2 \stackrel{\text{(d)}}{=} \sum_{i=1}^k \sigma_i^2 w_i^2$, where $w_1, \dots, w_k \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$. Then,

$$\mathbb{E}\left[\exp\left(-\frac{\|z^{\top}(\mathbf{I}-\Pi)\|_{F}^{2}}{8\sigma^{2}}\right)\right] = \prod_{i=1}^{k} \mathbb{E}\left[\exp\left(-\frac{\sigma_{i}^{2}}{8\sigma^{2}}w_{i}^{2}\right)\right]$$

$$= \exp\left\{-\frac{1}{2}\sum_{i=1}^{k}\log\left(1+\frac{\sigma_{i}^{2}}{4\sigma^{2}}\right)\right\}$$

$$\leq \exp\left\{-\frac{k}{8}\log\left(1+\frac{1}{4\sigma^{2}}\right)\right\}, \tag{69}$$

where the last step is due to $\sum_{i=1}^{k} \mathbf{1}_{\{\sigma_i^2 \geq 1\}} \geq k/4$. Combining the last two displays and applying the union bound over $\Pi \neq \mathbf{I}$, we have

$$\begin{split} \mathbb{P}\left\{\widehat{\Pi} \neq \mathbf{I}\right\} &\leq \sum_{\Pi \neq \mathbf{I}} \mathbb{P}\left\{\langle F\Pi, G \rangle > \langle F, G \rangle\right\} \\ &\leq \sum_{k=2}^{m} \binom{m}{k} k! \left(1 + \frac{1}{4\sigma^2}\right)^{-nk/8} \leq \sum_{k=2}^{m} m^k \left(1 + \frac{1}{4\sigma^2}\right)^{-nk/8} \leq 2m^{-4}, \end{split}$$

provided that
$$m \ge 2$$
 and $m \left(1 + \frac{1}{4\sigma^2}\right)^{-n/8} \le m^{-2}$.

3.4 Convex Relaxation and Gradient Descent Dynamics

Finally, we prove Corollary 1, which connects \widehat{X} in (3) to the optimization problems (15) and (16) and the gradient descent dynamics (17).

To show that \widehat{X} solves (15), note that the objective function in (15) is quadratic, with first-order optimality condition

$$A^2X + XB^2 - 2AXB + \eta^2X = \mathbf{J}.$$

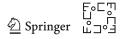
Setting $\mathbf{x} = \text{vec}(X)$ and writing this in vectorized form

$$[(\mathbf{I}_n \otimes A - B \otimes \mathbf{I}_n)^2 + \eta^2 \mathbf{I}_{n^2}]\mathbf{x} = \mathbf{1}_{n^2},$$

we see that the vectorized solution to (15) is

$$\widehat{\mathbf{x}} = \left[(\mathbf{I}_n \otimes A - B \otimes \mathbf{I}_n)^2 + \eta^2 \mathbf{I}_{n^2} \right]^{-1} \mathbf{1}_{n^2} \in \mathbb{R}^{n^2}.$$

The sharp condition $n \log \left(1 + \frac{1}{\sigma^2}\right) - 4 \log m \to +\infty$ can be obtained by computing the singular values in (69) exactly; cf. [18].



Applying the spectral decomposition (2), we get

$$\widehat{\mathbf{x}} = \sum_{ij} \frac{1}{(\lambda_i - \mu_j)^2 + \eta^2} (v_j \otimes u_i) (v_j \otimes u_i)^\top \mathbf{1}_{n^2}$$

$$= \sum_{ij} \frac{u_i^\top \mathbf{J}_n v_j}{(\lambda_i - \mu_j)^2 + \eta^2} \operatorname{vec}(u_i v_j^\top), \tag{70}$$

which is exactly the vectorization of \widehat{X} in (22).

Recall that \widetilde{X} denotes the minimizer of (16). Introducing a Lagrange multiplier $2\alpha \in \mathbb{R}$ for the constraint,

the first-order stationarity condition is $A^2X + XB^2 - 2AXB + \eta^2X = \alpha \mathbf{J}$, and hence $\widetilde{X} = \alpha \widehat{X}$. To find α , note that $\mathbf{1}^{\top} \widetilde{X} \mathbf{1} = \alpha \mathbf{1}^{\top} \widehat{X} \mathbf{1} = n$. Furthermore, from (3) we have

$$\mathbf{1}^{\top}\widehat{X}\mathbf{1} = \sum_{ij} \frac{\langle u_i, \mathbf{1} \rangle^2 \langle v_j, \mathbf{1} \rangle^2}{(\lambda_i - \mu_j)^2 + \eta^2} > 0.$$

Hence, $\alpha > 0$. These claims together establish part (a).

For (b), let us consider the gradient descent dynamics also in its vectorized form. Namely, define $\mathbf{x}^{(t)} \triangleq \mathsf{vec}(X^{(t)})$. Then, (17) can be written as

$$\mathbf{x}^{(t+1)} = \left[(1 - \gamma \eta^2) \mathbf{I}_{n^2} - \gamma (\mathbf{I}_n \otimes A - B \otimes \mathbf{I}_n)^2 \right] \mathbf{x}^{(t)} + \gamma \mathbf{1}_{n^2}.$$

For the initialization $\mathbf{x}^{(0)} = 0$, this gives

$$\mathbf{x}^{(t)} = \gamma \sum_{s=0}^{t-1} \left[(1 - \gamma \eta^2) \mathbf{I}_{n^2} - \gamma (\mathbf{I}_n \otimes A - B \otimes \mathbf{I}_n)^2 \right]^s \mathbf{1}_{n^2}$$

$$= \gamma \sum_{i,j=1}^n \sum_{s=0}^{t-1} \left[1 - \gamma \eta^2 - \gamma (\lambda_i - \mu_j)^2 \right]^s (v_j \otimes u_i) (v_j \otimes u_i)^\top \mathbf{1}_{n^2}$$

$$= \sum_{i,j=1}^n \frac{1 - \left[1 - \gamma \eta^2 - \gamma (\lambda_i - \mu_j)^2 \right]^t}{\eta^2 + (\lambda_i - \mu_j)^2} (v_j \otimes u_i) (v_j \otimes u_i)^\top \mathbf{1}_{n^2}. \tag{71}$$

Undoing the vectorization yields part (b).

For (c), note that $\eta^2 + (\lambda_i - \mu_j)^2 < C$ with probability at least $1 - n^{-10}$ by Proposition 1(c), so that the convergence in part (b) holds provided that the step size $\gamma \le c$ for some sufficiently small constant c. On this event, for all pairs (k, ℓ) we may

apply the simple bound

$$|X_{k\ell}^{(t)} - \widehat{X}_{k\ell}| \leq \sum_{ij} \frac{(1 - \gamma(\lambda_i - \mu_j)^2 - \gamma\eta^2)^t}{(\lambda_i - \mu_j)^2 + \eta^2} |(u_i^\top \mathbf{e}_k)(v_j^\top \mathbf{e}_\ell)(u_i^\top \mathbf{J}v_j)|$$

$$\leq \frac{(1 - \gamma\eta^2)^t}{\eta^2} \cdot n^2 \max_{ij} |(u_i^\top \mathbf{e}_k)(v_j^\top \mathbf{e}_\ell)(u_i^\top \mathbf{J}v_j)|$$

$$\leq \frac{(1 - \gamma\eta^2)^t}{\eta^2} \cdot n^3.$$

In particular, for $t \ge (C \log n)/(\gamma \eta^2)$ and a sufficiently large constant C > 0, this is at most 1/n. Then, the conclusion of Theorem 1 with $X^{(t)}$ in place of \widehat{X} still follows from Lemmas 1 and 2.

4 Numerical Experiments

This section is devoted to comparing our spectral method to various methods for graph matching, using both synthetic examples and real datasets. Let us first make a few remarks regarding implementation of graph matching algorithms.

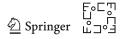
Similar to the last step of Algorithm 1, many algorithms we compare to also involve rounding a similarity matrix to produce a matching in the final step. Throughout the experiments, for the sake of comparison we always use the linear assignment (5) for rounding, which typically yields noticeably better outcomes than the simple greedy rounding (6).

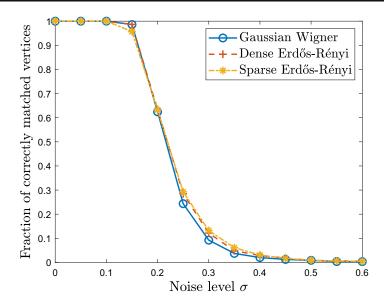
For GRAMPA, Theorem 1 suggests that the regularization parameter η needs to be chosen so that $\sigma \vee n^{-0.1} \lesssim \eta \lesssim 1/\log n$. In practice, one may compute estimates $\widehat{\pi}^{\eta}$ for different values of η and select the one with the minimum objective value $\|A - B^{\widehat{\pi}^{\eta}}\|_F^2$. We find in simulations that the performance of GRAMPA is in fact not very sensitive to the choice of η , unless η is extremely close to zero or larger than one. For simplicity and consistency, we apply GRAMPA to centered and normalized adjacency matrices and fix $\eta = 0.2$ for all synthetic experiments.

4.1 Universality of GRAMPA

Although the main theoretical result of this work, Theorem 1, is only proved for the Gaussian Wigner model, the proposed spectral method in Algorithm 1 (denoted by GRAMPA) can in fact be used to match any pair of weighted graphs. Particularly, in view of the universality results in the companion paper [24], the performance of GRAMPA for the Gaussian Wigner model is comparable to that for the suitably calibrated Erdős–Rényi model. This is verified numerically in Fig. 2 which we now explain.

Given the latent permutation π^* , an edge density $p \in (0, 1)$, and a noise parameter $\sigma \in [0, 1]$, we generate two correlated Erdős–Rényi graphs on n vertices with adjacency matrices **A** and **B**, such that $(\mathbf{A}_{ij}, \mathbf{B}_{\pi^*(i), \pi^*(j)})$ are i.i.d. pairs of correlated





 $\textbf{Fig. 2} \quad \text{Universality of the performance of GRAMPA on three random graph models with } 1000 \text{ vertices}$

Bernoulli random variables with marginal distribution Bern(p). Conditional on A,

$$\mathbf{B}_{\pi^*(i),\pi^*(j)} \sim \begin{cases} \operatorname{Bern}(1 - \sigma^2(1 - p)) & \text{if } \mathbf{A}_{ij} = 1, \\ \operatorname{Bern}(\sigma^2 p) & \text{if } \mathbf{A}_{ij} = 0. \end{cases}$$
(72)

Here the operational meaning of the parameter σ is that the fraction of edges which differ between the two graphs is approximately $2\sigma^2(1-p)\approx 2\sigma^2$ for sparse graphs. In particular, the extreme cases of $\sigma=0$ and $\sigma=1$ correspond to A and B which are perfectly correlated and independent, respectively.

Furthermore, the model parameters in (72) are calibrated to be directly comparable with the Gaussian model, so that it is convenient to verify experimentally the universality of our spectral algorithm.

Indeed, denote the centered and normalized adjacency matrices by

$$A \triangleq (p(1-p)n)^{-1/2}(\mathbf{A} - \mathbb{E}[\mathbf{A}])$$
 and $B \triangleq (p(1-p)n)^{-1/2}(\mathbf{B} - \mathbb{E}[\mathbf{B}]).$ (73)

Then, it is easy to check that A_{ij} and B_{ij} both have mean zero and variance 1/n, and moreover,

$$\mathbb{E}[(A_{ij} - B_{\pi^*(i),\pi^*(j)})^2] = 2\sigma^2/n. \tag{74}$$

Note that Eq. (74) also holds for the off-diagonal entries of the Gaussian Wigner model $B=A+\sqrt{2}\sigma Z$, where A and Z are independent GOE(n) matrices. In Fig. 2, we implement GRAMPA to match pairs of Gaussian Wigner, dense Erdős–Rényi (p=0.5) and sparse Erdős–Rényi (p=0.01) graphs with 1000 vertices, and plot the fraction of correctly matched pairs of vertices against the noise level σ , averaged over 10 independent repetitions. The performance of GRAMPA on the three models is indeed similar, agreeing with the universality results proved in the companion paper [24].

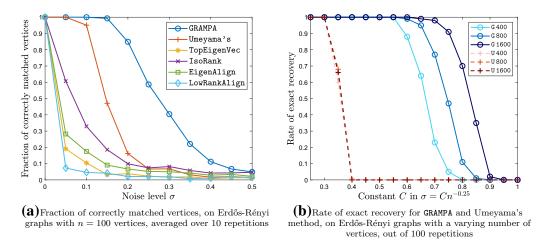


Fig. 3 Comparison of six spectral methods for matching Erdős–Rényi graphs with expected edge density 0.5 and 100 vertices

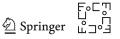
For this reason, in the sequel we primarily consider the Erdős–Rényi model for synthetic experiments. In addition, while GRAMPA is applicable for matching weighted graphs, many algorithms in the literature were proposed specifically for unweighted graphs, so using the Erdős–Rényi model allows us to compare more methods in a consistent setup.

4.2 Comparison of Spectral Methods

We now compare the performance of GRAMPA to several existing spectral methods in the literature. Besides the rank-1 method of rounding the outer product of top eigenvectors (8) (denoted by TopEigenVec), we consider the IsoRank algorithm of [63], the EigenAlign and LowRankAlign⁴ algorithms of [25], and Umeyama's method [64] which rounds the similarity matrix (10). In Fig. 3(a), we apply these algorithms to match Erdős–Rényi graphs with 100 vertices⁵ and edge density 0.5. For each spectral method, we plot the fraction of correctly matched pairs of vertices of the two graphs versus the noise level σ , averaged over 10 independent repetitions. While all estimators recover the exact matching in the noiseless case, it is clear that GRAMPA is more robust to noise than all previous spectral methods by a wide margin.

A more precise comparison of GRAMPA with its closest competitor, Umeyama's method, is given in Fig. 3(b), which shows that Umeyama's method is only robust to noise up to $\sigma = \frac{1}{\text{poly}(n)}$, whereas we prove in [24] that GRAMPA yields exact recovery up to $\sigma = \frac{1}{\text{polylog}(n)}$. Specifically, we test these two methods on Erdős–Rényi graphs with edge density 0.5 and sizes n = 400, 800 and 1600. The noise parameter σ is set to $Cn^{-0.25}$ with varying values of C, where the exponent -0.25 is empirically found to be the critical exponent above which Umeyama's method fails. Out of 100 independent

⁵ This experiment is not run on larger graphs because IsoRank and EigenAlign involve taking Kronecker products of graphs and are thus not as scalable as the other methods.



⁴ We implement the rank-2 version of LowRankAlign here because a higher rank does not appear to improve its performance in the experiments.

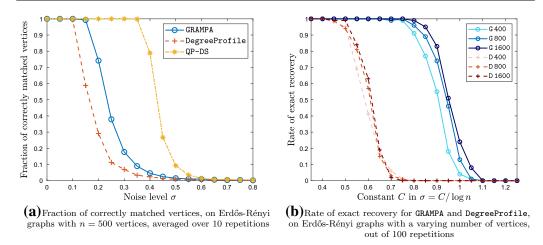


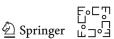
Fig. 4 Comparison of three competitive methods for matching $Erd\Hos-R\'enyi$ graphs with expected edge density 0.5

trials, we record the fraction of times when the algorithm exactly recovers the matching between the two graphs, and plot this quantity against C. From the lines U 400, U 800, and U 1600 corresponding to Umeyama's method on the three respective graph sizes, we see that the performance of Umeyama's method does not vary with n, supporting that $\sigma \approx n^{-0.25}$ is the critical threshold for exact recovery by this method. Conversely, as n increases, the failure of GRAMPA occurs at a larger value of C, as seen in the curves G 400, G 800, and G 1600. This aligns with the theoretical result in [24] that GRAMPA succeeds for $\sigma = \frac{1}{\text{polylog}(n)}$.

4.3 Comparison with Quadratic Programming and Degree Profile

Next, we consider more competitive graph matching algorithms outside the spectral class. Since our method admits an interpretation through the regularized QP (15) or (16), it is of interest to compare its performance to (the algorithm that rounds the solution to) the full QP (14) with full doubly stochastic constraints, denoted by QP-DS. Another recently proposed method for graph matching is Degree Profile [20], for which theoretical guarantees comparable to our results have been established for the Gaussian Wigner and Erdős–Rényi models.

Figure 4(a) plots the fraction of correctly matched vertex pairs by the three algorithms, on Erdős–Rényi graphs with 500 vertices and edge density 0.5, averaged over 10 independent repetitions. GRAMPA outperforms DegreeProfile, while QP-DS is clearly the most robust, albeit at a much higher computational cost. Since off-the-shelf QP solvers are extremely slow on instances with *n* larger than several hundred, we resort to an alternating direction method of multipliers (ADMM) procedure used in [20]. Still, solving (14) is more than 350 times slower than computing the similarity matrix (3) for the instances in Fig. 4(a). Moreover, DegreeProfile is about 15 times slower. We argue that GRAMPA achieves a desirable balance between speed and robustness when implemented on large networks.



A closer inspection of the exact recovery threshold of GRAMPA and DegreeProfile is done in Fig. 4(b), in a similar way as Fig. 3(b). Since Theorem 1 suggests that GRAMPA is robust to noise up to $\sigma \lesssim \frac{1}{\log n}$, we set the noise level to be $\sigma = C/\log n$, and plot the fraction of exact recovery against C. The results for Erdős–Rényi graphs of size n=400, 800, 1600 and for the two methods GRAMPA and DegreeProfile are represented by the curves G 400, G 800, G 1600 and D 400, D 800, D 1600, respectively. These results suggest that GRAMPA is more robust than DegreeProfile by at least a constant factor.

4.4 More Graph Ensembles

To demonstrate the performance of GRAMPA on other models, we turn to sparser regimes of the Erdős–Rényi model, as well as other random graph ensembles. In Fig. 5, we compare the performance of GRAMPA and DegreeProfile (the two fast and robust methods from the preceding experiments) on correlated pairs of sparse Erdős–Rényi graphs, stochastic blockmodels, and power-law graphs. Following [56], we generate these pairs by sampling a "mother graph" according to such a model with edge density p/s for 0 , and then generating**A**and**B**by deleting each edge independently with probability <math>1 - s. This yields marginal edge density p in both **A** and **B**. We apply GRAMPA with the centered and normalized matrices A and B from (73) as input, with p being the marginal edge density. In each figure, the fraction of correctly matched pairs of vertices is plotted against the effective noise level

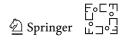
$$\sigma = \sqrt{\frac{1-s}{1-p}},$$

for graphs with 1000 vertices, averaged over 10 independent repetitions. One may verify that the above procedure of generating (\mathbf{A} , \mathbf{B}) and the definition of σ both agree with the previous definition (72) in the Erdős–Rényi setting.

In Fig. 5(a) and (b), we consider Erdős-Rényi graphs with edge density p=0.01 and 0.005. Note that the sharp threshold of p for the connectedness of an Erdős-Rényi graph with 1000 vertices is $\frac{\log n}{n} \approx 0.0069$ [23], below which the graphs contain isolated vertices whose matching is non-identifiable. We see that the performance of GRAMPA is better than DegreeProfile in both settings, and particularly in the sparser regime.

In Fig. 5(c) and (d), we consider the stochastic blockmodel [34] with two communities each of size 500. The probability of an edge between vertices in the same (resp. different) community is denoted by $p_{\rm in}$ (resp. $p_{\rm out}$). The values of $p_{\rm in}$ and $p_{\rm out}$ are chosen so that the overall expected edge densities are p=0.01 and 0.005 as in the Erdős–Rényi case. We observe a similar comparison of the two methods as in the Erdős–Rényi setting.

Finally, in Fig. 5(e) and (f), we consider power-law graphs that are generated according to the following version of the Barabási-Albert preferential attachment model [5]: We start with two vertices connected by one edge. Then, at each step, denoting the degrees of the existing k vertices by $d_1, \ldots d_k$, we attach a new vertex to



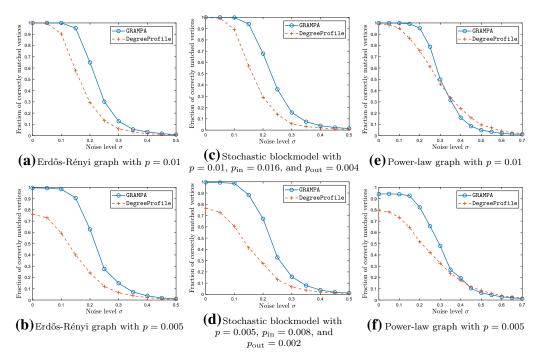


Fig. 5 Comparison of GRAMPA and DegreeProfile on synthetic networks

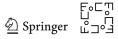
the graph by connecting it to the j-th existing vertex independently with probability $\max(Cd_j/(\sum_{i=1}^k d_i), 1)$ for each $j=1,\ldots,k.^6$ This process is iterated until the graph has n vertices. Here, C is a parameter that determines the final edge density.

As shown in Fig. 5(e), for matching correlated power-law graphs with overall expected edge density p=0.01, GRAMPA is more noise resilient than DegreeProfile in terms of exact recovery. As the noise grows, the performance of GRAMPA decays faster than DegreeProfile in terms of the fraction of correctly matched pairs. In Fig. 5(f), for sparser power-law graphs with expected edge density p=0.005, we again observe that GRAMPA has significantly better performance than DegreeProfile. Note that in this sparse regime, neither method can achieve exact recovery even in the noiseless case due to the non-trivial symmetry of the graph arising from, for example, multiple leaf vertices incident to a common parent. We revisit the issue of non-identifiability when studying the real dataset in the next subsection.

4.5 Networks of Autonomous Systems

We corroborate the improvement of GRAMPA over DegreeProfile using quantitative benchmarks on a time-evolving real-world network of n=10000 vertices. Here, for simplicity, we apply both methods to the *unnormalized* adjacency matrices, and set $\eta=1$ for GRAMPA. We find that the results are not very sensitive to this choice of η . Although QP-DS yields better performance in Fig. 4, it is extremely slow to run on such a large network, so we omit it from the comparison here.

⁶ Since a preferential attachment graph is connected by convention, we may repeat this step until the new vertex is connected to at least one existing vertex.



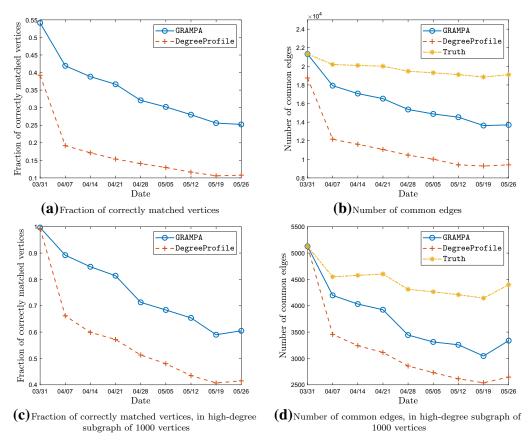


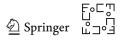
Fig. 6 Comparison of GRAMPA and DegreeProfile for matching networks of autonomous systems on nine days to that on the first day

We use a subset of the Autonomous Systems dataset from the University of Oregon Route Views Project [65], available as part of the Stanford Network Analysis Project [41, 42]. The data consists of instances of a network of autonomous systems observed on nine days between March 31, 2001, and May 26, 2001. Edges and (a small fraction of) vertices of the network were added and deleted over time. In particular, the number of vertices of the network on the nine days ranges from 10,670 to 11,174 and the number of edges from 22,002 to 23,409. The labels of the vertices are known.

To test the graph matching methods, we consider 10,000 vertices of the network that are present on all nine days. The resulting nine graphs can be seen as noisy versions of each other, with correlation decaying over time. We apply GRAMPA and DegreeProfile to match each graph to that on the first day of March 31, with vertices randomly permuted.

In Fig. 6(a), we plot the fraction of correctly matched pairs of vertices against the chronologically ordered dates. GRAMPA correctly matches many more pairs of vertices than DegreeProfile for all nine days. As expected, the performance of both methods degrades over time as the network becomes less correlated with the original one.

For the same reason as in the power-law graphs in Fig. 5(f), even the matching of the graph on the first day to itself is not exact. In fact, there are over 3,000 degree-one ver-



tices in this graph, and some of them are attached to the same high-degree vertices, so the exact matching is non-identifiable. Thus, for a given matching $\widehat{\pi}$, an arguably more relevant figure of merit is the number of common edges, i.e., the (rescaled) objective value $\langle A, B^{\widehat{\pi}} \rangle / 2$. We plot this in Fig. 6(b) together with the value for the ground-truth matching. The values of GRAMPA and of the ground-truth matching are the same on the first day, indicating that GRAMPA successfully finds an automorphism of this graph, while DegreeProfile fails. Furthermore, GRAMPA consistently recovers a matching with more common edges over the nine days.

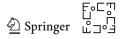
As in many real-world networks, high-degree vertices here are hubs in the network of autonomous systems and play a more important role. Therefore, we further evaluate the two methods by comparing their performance on subgraphs induced by high-degree vertices. More precisely, we consider the 1000 vertices that have the highest degrees in the graph on the first day, March 31. In Fig. 6(c) and (d), we still use the matchings between the entire networks that generated Fig. 6(a) and (b), but evaluate the correctness only on those top 1,000 high-degree vertices. We observe that both methods succeed in exactly matching the subgraph from the first day to itself, and in general yield much better matchings for the high-degree vertices than for the remainder of the graph. Again, GRAMPA produces better results than DegreeProfile on these subgraphs over the nine days, in both measures of performance.

5 Conclusion

We have proposed a highly practical spectral method, GRAMPA, for matching a pair of edge-correlated graphs. By using a similarity matrix that is a weighted combination of outer products $u_i v_j^{\top}$ across all pairs of eigenvectors of the two adjacency matrices, GRAMPA exhibits significantly improved noise resilience over previous spectral approaches. We showed in this work that GRAMPA achieves exact recovery of the latent matching in a correlated Gaussian Wigner model, up to a noise level $\sigma \lesssim \frac{1}{\log n}$. In the companion paper [24], we establish a similar universal guarantee for Erdős–Rényi graphs and other correlated Wigner matrices, up to a noise level $\sigma \lesssim \frac{1}{\text{polylog}\,n}$. GRAMPA exhibits improved recovery accuracy over previous spectral methods as well as the state-of-the-art degree profile algorithm in [20], on a variety of synthetic graphs and also on a real network example.

The similarity matrix (3) in GRAMPA can be interpreted as a ridge-regularized further relaxation of the well-known quadratic relaxation (14) of the QAP, where the doubly stochastic constraint is replaced by $\mathbf{1}^{\top}X\mathbf{1}=n$. In the companion paper [24], we also analyze a tighter relaxation with constraints $X\mathbf{1}=\mathbf{1}$, and establish similar guarantees. In synthetic experiments on small graphs, we found that solving the full quadratic program (14), followed by the same rounding procedure as used in GRAMPA, yields better recovery accuracy in noisy settings. However, unlike GRAMPA, solving (14) does not scale to large networks, and the properties of its solution currently lack theoretical understanding. We leave these as open problems for future work.

Acknowledgements Y. Wu and J. Xu are deeply indebted to Zongming Ma for many fruitful discussions on the QP relaxation (14) in the early stage of the project. Y. Wu and J. Xu thank Yuxin Chen for suggesting



the gradient descent dynamics which led to the initial version of the proof. Y. Wu is grateful to Daniel Sussman for pointing out [45] and Joel Tropp for [1].

A Concentration Inequalities for Gaussians

We collect auxiliary results on concentration of polynomials of Gaussian variables.

Lemma 13 Let z be a standard Gaussian vector in \mathbb{R}^n . For any fixed $v \in \mathbb{R}^n$ and $\delta > 0$, it holds with probability at least $1 - \delta$ that

$$|v^{\top}z| \le ||v||_2 \sqrt{2\log(1/\delta)}.$$

Lemma 14 (Hanson–Wright inequality) Let z be a sub-Gaussian vector in \mathbb{R}^n , and let M be a fixed matrix in $\mathbb{C}^{n \times n}$. Then, we have with probability at least $1 - \delta$ that

$$|z^{\top} M z - \operatorname{Tr} M| \le C \|z\|_{\psi_2}^2 \Big(\|M\|_F \sqrt{\log(1/\delta)} + \|M\| \log(1/\delta) \Big)$$

$$\le 2C \|z\|_{\psi_2}^2 \|M\|_F \log(1/\delta), \tag{75}$$

where C is a universal constant and $||z||_{\psi_2}$ is the sub-Gaussian norm of z.

See [59,Section 3.1] for the complex-valued version of the Hanson–Wright inequality. The following lemma is a direct consequence of (75), by taking M to be a diagonal matrix.

Lemma 15 Let z be a standard Gaussian vector in \mathbb{R}^n . For an entrywise nonnegative vector $v \in \mathbb{R}^n$, it holds with probability at least $1 - \delta$ that

$$\Big| \sum_{i=1}^{n} v_{i} z_{i}^{2} - \sum_{i=1}^{n} v_{i} \Big| \leq C \Big(\|v\|_{2} \sqrt{\log(1/\delta)} + \|v\|_{\infty} \log(1/\delta) \Big).$$

In particular, it holds with probability at least $1 - \delta$ *that*

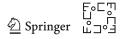
$$\left| \|z\|_2^2 - n \right| \le C \left(\sqrt{n \log(1/\delta)} + \log(1/\delta) \right).$$

Theorem 4 (Hypercontractivity concentration [61,Theorem 1.9]) Let z be a standard Gaussian vector in \mathbb{R}^n , and let $f(z_1, \ldots, z_n)$ be a degree-d polynomial of z. Then, it holds that

$$\mathbb{P}\Big\{ \Big| f(z) - \mathbb{E}[f(z)] \Big| > t \Big\} \le e^2 \exp\bigg[- \bigg(\frac{t^2}{C \operatorname{Var}[f(z)]} \bigg)^{1/d} \bigg],$$

where Var[f(z)] denotes the variance of f(z) and C > 0 is a universal constant.

Finally, the following result gives a concentration inequality in terms of the restricted Lipschitz constants, obtained from the usual Gaussian concentration of measure plus a Lipschitz extension argument.



Lemma 16 Let $B \subset \mathbb{R}^n$ be an arbitrary measurable subset. Let $F : \mathbb{R}^n \to \mathbb{R}$ such that F is L-Lipschitz on B. Let $X \sim N(0, \mathbf{I}_n)$. Then, for any t > 0,

$$\mathbb{P}\{|F(X) - \mathbb{E}F(X)| \ge t + \delta\} \le \exp\left(-\frac{ct^2}{L^2}\right) + \epsilon,$$

where c is a universal constant, $\epsilon = \mathbb{P}\{X \notin B\}$ and $\delta = 2\sqrt{\epsilon(nL^2 + F(0)^2 + \mathbb{E}[F(X)^2])}$.

Proof Let $\widetilde{F}: \mathbb{R}^n \to \mathbb{R}$ be an L-Lipschitz extension of F, e.g., $\widetilde{F}(x) = \inf_{y \in B} F(y) + L\|x - y\|$. Then, by the Gaussian concentration inequality (cf., e.g., [66,Theorem 5.2.2]), we have

$$\mathbb{P}\left\{|\widetilde{F}(X) - \mathbb{E}\widetilde{F}(X)| \ge t\right\} \le \exp\left(-\frac{ct^2}{L^2}\right).$$

It remains to show that $|\mathbb{E}F(X) - \mathbb{E}\widetilde{F}(X)| \leq \delta$. Indeed, by Cauchy–Schwarz, $|\mathbb{E}F(X) - \mathbb{E}\widetilde{F}(X)| \leq \mathbb{E}|F(X - \widetilde{F}(X)|\mathbf{1}_{\{X \notin B\}} \leq \sqrt{\epsilon \mathbb{E}[|F(X - \widetilde{F}(X)|^2]]}$. Finally, noting that $|\widetilde{F}(X)| \leq F(0) + L\|X\|_2$ and $\mathbb{E}\|X\|_2^2 = n$ completes the proof.

B Kronecker Gymnastics

Given $A, B \in \mathbb{C}^{n \times n}$, the Kronecker product $A \otimes B \in \mathbb{C}^{n^2 \times n^2}$ is defined as $\begin{bmatrix} a_{11}B \dots a_{1n}B \\ \vdots & \vdots \\ a_{n1}B \dots a_{nn}B \end{bmatrix}$. The vectorized form of $A = [a_1, \dots, a_n]$ is $\text{vec}(A) = [a_1^\top, \dots, a_n^\top]^\top \in \mathbb{C}^{n \otimes n}$. It is convenient to identify $[n^2]$ with by $[n]^2$ ordered as $\{(1, 1), \dots, (1, n), \dots, (n, n)\}$, in which case we have $(A \otimes B)_{ij,k\ell} = A_{ik}B_{j\ell}$ and $\text{vec}(A)_{ij} = A_{ij}$.

We collect some identities for Kronecker products and vectorizations of matrices used throughout this paper:

$$\langle A \otimes A, B \otimes B \rangle = \langle A, B \rangle^2,$$

 $(A \otimes B)(U \otimes V) = AU \otimes BV,$
 $\operatorname{vec}(AUB) = (B^\top \otimes A)\operatorname{vec}(U),$
 $(X \otimes Y)\operatorname{vec}(U) = \operatorname{vec}(YUX^\top),$
 $(A \otimes B)^\top = A^\top \otimes B^\top.$

The third equality implies that

$$\begin{split} \langle A \otimes B, \ \mathsf{vec}(U) \, \mathsf{vec}(V)^\top \rangle &= \langle \, \mathsf{vec}(U), \, (A \otimes B) \, \mathsf{vec}(V) \rangle \\ &= \langle \, \mathsf{vec}(U), \, \, \mathsf{vec}(BVA^\top) \rangle \\ &= \langle U, BVA^\top \rangle = \langle B, UAV^\top \rangle \end{split}$$

and hence

$$\operatorname{\mathsf{vec}}(U)^\top (A \otimes B) \operatorname{\mathsf{vec}}(V) = \langle A \otimes B, \operatorname{\mathsf{vec}}(U) \operatorname{\mathsf{vec}}(V)^\top \rangle = \langle B, UAV^\top \rangle$$
$$= \langle A, U^\top BV \rangle = \langle UA, BV \rangle.$$

Applying the third equality to column vector z and noting that $vec(z^{\top}) = vec(z) = z$, we have

$$(X \otimes y)z = \text{vec}(yz^{\top}X^{\top}),$$

 $(y \otimes X)z = \text{vec}(Xzy^{\top}).$

In particular, it holds that

$$(\mathbf{I} \otimes y)z = \text{vec}(yz^{\top}) = z \otimes y,$$

 $(y \otimes \mathbf{I})z = \text{vec}(zy^{\top}) = y \otimes z.$

C Signal-to-Noise Heuristics

We justify the choice of the Cauchy weight kernel in (4) by a heuristic signal-to-noise calculation for \widehat{X} . We assume without loss of generality that π^* is the identity, so that diagonal entries of \widehat{X} indicate similarity between matching vertices of A and B. Then, for the rounding procedure in (5), we may interpret $n^{-1}\operatorname{Tr}\widehat{X}$ and $(n^{-2}\sum_{i,j:i\neq j}\widehat{X}_{ij}^2)^{1/2}\approx n^{-1}\|\widehat{X}\|_F$ as the average signal strength and noise level in \widehat{X} . Let us define a corresponding signal-to-noise ratio as

$$SNR = \frac{\mathbb{E}[\operatorname{Tr} \widehat{X}]}{\mathbb{E}[\|\widehat{X}\|_F^2]^{1/2}}$$

and compute this quantity in the Gaussian Wigner model.

We abbreviate the spectral weights $w(\lambda_i, \mu_j)$ as w_{ij} . For \widehat{X} defined by (3) with any weight kernel w(x, y), we have

$$\operatorname{Tr} \widehat{X} = \sum_{ij} w_{ij} \cdot u_i^{\top} \mathbf{J} v_j \cdot u_i^{\top} v_j.$$

Applying that (A, B) is equal in law to (OAO^{\top}, OBO^{\top}) for a rotation O such that $O\mathbf{1} = \sqrt{n}\mathbf{e}_k$, we obtain for every k that

$$\mathbb{E}[\operatorname{Tr}\widehat{X}] = \sum_{ij} n \cdot \mathbb{E}[w_{ij} \cdot u_i^{\top}(\mathbf{e}_k \mathbf{e}_k^{\top}) v_j \cdot u_i^{\top} v_j].$$

Then, averaging over k = 1, ..., n and applying $\sum_{k} \mathbf{e}_{k} \mathbf{e}_{k}^{\top} = \mathbf{I}$ yield that

$$\mathbb{E}[\operatorname{Tr} \widehat{X}] = \sum_{ij} \mathbb{E}[w_{ij}(u_i^\top v_j)^2].$$

For the noise, we have

$$\|\widehat{X}\|_F^2 = \operatorname{Tr} \widehat{X} \widehat{X}^\top = \sum_{i,j,k,l} w_{ij} w_{kl} (u_i^\top \mathbf{J} v_j) (u_k^\top \mathbf{J} v_\ell) \operatorname{Tr} (u_i v_j^\top \cdot v_\ell u_k^\top)$$

$$= \sum_{ij} w_{ij}^2 (u_i^\top \mathbf{J} v_j)^2.$$

Applying the equality in law of (A, B) and (OAO^{\top}, OBO^{\top}) for a uniform random orthogonal matrix O, and writing $r = O1/\sqrt{n}$, we get

$$\mathbb{E}[\|\widehat{X}\|_F^2] = \sum_{ij} n^2 \cdot \mathbb{E}[w_{ij}^2(u_i^\top r)^2 (v_j^\top r)^2].$$

Here, $r = (r_1, \ldots, r_n)$ is a uniform random vector on the unit sphere, independent of (A, B). For any deterministic unit vectors u, v with $u^{\top}v = \alpha$, we may rotate to $u = \mathbf{e}_1$ and $v = \alpha \mathbf{e}_1 + \sqrt{1 - \alpha^2} \mathbf{e}_2$ to get

$$\mathbb{E}[(u^{\top}r)^{2}(v^{\top}r)^{2}] = \mathbb{E}[r_{1}^{2} \cdot (\alpha r_{1} + \sqrt{1 - \alpha^{2}}r_{2})^{2}]$$
$$= \alpha^{2}\mathbb{E}[r_{1}^{4}] + (1 - \alpha^{2})\mathbb{E}[r_{1}^{2}r_{2}^{2}] = \frac{1 + 2\alpha^{2}}{n(n+2)},$$

where the last equality applies an elementary computation. Bounding $1 + 2\alpha^2 \in [1, 3]$ and applying this conditional on (A, B) above, we obtain

$$\mathbb{E}[\|\widehat{X}\|_F^2] = \frac{cn}{n+2} \sum_{ij} \mathbb{E}[w_{ij}^2]$$

for some value $c \in [1, 3]$.

To summarize,

$$SNR \approx \frac{\sum_{ij} \mathbb{E}[w(\lambda_i, \mu_j)(u_i^{\top} v_j)^2]}{\sqrt{\sum_{ij} \mathbb{E}[w(\lambda_i, \mu_j)^2]}}.$$

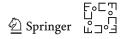
The choice of weights which maximizes this SNR would satisfy $w(\lambda_i, \mu_j) \propto (u_i^\top v_j)^2$. Recall that for $n^{-1+\varepsilon} \ll \sigma^2 \ll n^{-\varepsilon}$ and i, j in the bulk of the spectrum, we have the approximation (11). Thus, this optimal choice of weights takes a Cauchy form, which motivates our choice in (4).

We note that this discussion is only heuristic, and maximizing this definition of SNR does not automatically imply any rigorous guarantee for exact recovery of π^* .

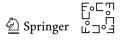
Our proposal in (4) is a bit simpler than the optimal choice suggested by (11): The constant C in (11) depends on the semicircle density near λ_i , but we do not incorporate this dependence in our definition. Also, while (11) depends on the noise level σ , our main result in Theorem 1 shows that η need not be set based on σ , which is usually unknown in practice. Instead, our result shows that the simpler choice $\eta = c/\log n$ is sufficient for exact recovery of π^* over a range of noise levels $\sigma \lesssim \eta$.

References

- Y. Aflalo, A. Bronstein, and R. Kimmel. On convex relaxation of graph isomorphism. *Proceedings of the National Academy of Sciences*, 112(10):2942–2947, 2015.
- 2. H. Almohamad and S. O. Duffuaa. A linear programming approach for the weighted graph matching problem. *IEEE Transactions on pattern analysis and machine intelligence*, 15(5):522–525, 1993.
- 3. G. W. Anderson, A. Guionnet, and O. Zeitouni. *An introduction to random matrices*, volume 118. Cambridge university press, 2010.
- L. Babai, D. Y. Grigoryev, and D. M. Mount. Isomorphism of graphs with bounded eigenvalue multiplicity. In *Proceedings of the fourteenth annual ACM symposium on Theory of computing*, pages 310–324. ACM, 1982.
- A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999
- B. Barak, C.-N. Chou, Z. Lei, T. Schramm, and Y. Sheng. (Nearly) efficient algorithms for the graph matching problem on correlated random graphs. arXiv preprint arXiv:1805.02349, 2018.
- 7. M. Bayati, D. F. Gleich, A. Saberi, and Y. Wang. Message-passing algorithms for sparse network alignment. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 7(1):1–31, 2013.
- 8. L. Benigni. Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices. *arXiv preprint* arXiv:1711.07103, 2017.
- B. Bollobás. Distinguishing vertices of random graphs. North-Holland Mathematics Studies, 62:33–49, 1982.
- 10. P. Bourgade and H.-T. Yau. The eigenvector moment flow and local quantum unique ergodicity. *Communications in Mathematical Physics*, 350(1):231–278, 2017.
- 11. R. E. Burkard, E. Cela, P. M. Pardalos, and L. S. Pitsoulis. The quadratic assignment problem. In *Handbook of combinatorial optimization*, pages 1713–1809. Springer, 1998.
- 12. S. Chatterjee. Superconcentration and related topics, volume 15. Springer, 2014.
- 13. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern recognition. *International journal of pattern recognition and artificial intelligence*, 18(03):265–298, 2004.
- 14. D. Cullina and N. Kiyavash. Improved achievability and converse bounds for Erdös-Rényi graph matching. In *Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science*, pages 63–72. ACM, 2016.
- 15. D. Cullina and N. Kiyavash. Exact alignment recovery for correlated Erdös-Rényi graphs. *arXiv* preprint arXiv:1711.06783, 2017.
- 16. D. Cullina, N. Kiyavash, P. Mittal, and H. V. Poor. Partial recovery of Erdős-Rényi graph alignment via *k*-core alignment. *arXiv preprint* arXiv:1809.03553, Nov. 2018.
- 17. T. Czajka and G. Pandurangan. Improved random graph isomorphism. *Journal of Discrete Algorithms*, 6(1):85–92, 2008.
- 18. O. E. Dai, D. Cullina, and N. Kiyavash. Database alignment with gaussian features. *arXiv preprint* arXiv:1903.01422, 2019.
- 19. O. E. Dai, D. Cullina, N. Kiyavash, and M. Grossglauser. On the performance of a canonical labeling for matching correlated Erdős-Rényi graphs. *arXiv preprint* arXiv:1804.09758, 2018.
- 20. J. Ding, Z. Ma, Y. Wu, and J. Xu. Efficient random graph matching via degree profiles. *Probability Theory and Related Fields*, pages 1–87, Sep 2020.
- 21. N. Dym, H. Maron, and Y. Lipman. DS++: a flexible, scalable and provably tight relaxation for matching problems. *ACM Transactions on Graphics (TOG)*, 36(6):184, 2017.
- 22. F. Emmert-Streib, M. Dehmer, and Y. Shi. Fifty years of graph matching, network alignment and network comparison. *Information Sciences*, 346:180–197, 2016.



- 23. P. Erdös and A. Rényi. On the evolution of random graphs. *Publ. Math. Inst. Hungar. Acad. Sci*, 5:17–61, 1960.
- 24. Z. Fan, C. Mao, Y. Wu, and J. Xu. Spectral graph matching and regularized quadratic relaxations II: Erdős-Rényi graphs and universality. *Found Comut Math.* https://doi.org/10.1007/s10208-022-09575-7, 2022.
- 25. S. Feizi, G. Quon, M. Recamonde-Mendoza, M. Medard, M. Kellis, and A. Jadbabaie. Spectral alignment of graphs. *IEEE Transactions on Network Science and Engineering*, 7(3):1182–1197, 2019.
- 26. G. Finke, R. E. Burkard, and F. Rendl. Quadratic assignment problems. In *North-Holland Mathematics Studies*, volume 132, pages 61–82. Elsevier, 1987.
- 27. F. Fogel, R. Jenatton, F. Bach, and A. d'Aspremont. Convex relaxations for permutation problems. In *Advances in Neural Information Processing Systems*, pages 1016–1024, 2013.
- 28. L. Ganassali. Sharp threshold for alignment of graph databases with Gaussian weights. *arXiv* preprint arXiv:2010.16295, 2020.
- 29. L. Ganassali, M. Lelarge, and L. Massoulié. Spectral alignment of correlated Gaussian matrices. *Advances in Applied Probability*, pages 1–32.
- 30. L. Ganassali and L. Massoulié. From tree matching to sparse graph alignment. In *Conference on Learning Theory*, pages 1633–1665. PMLR, 2020.
- 31. L. Ganassali, L. Massoulié, and M. Lelarge. Impossibility of partial recovery in the graph alignment problem. In *Conference on Learning Theory*, pages 2080–2102. PMLR, 2021.
- 32. F. Götze and A. Tikhomirov. On the rate of convergence to the Marchenko–Pastur distribution. *arXiv* preprint arXiv:1110.1284, 2011.
- 33. F. Götze and A. Tikhomirov. On the rate of convergence to the semi-circular law. In *High Dimensional Probability VI*, pages 139–165, Basel, 2013. Springer Basel.
- 34. P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. *Social Networks*, 5(2):109–137, 1983.
- 35. T. Kato. Continuity of the map $s \mapsto |s|$ for linear operators. *Proceedings of the Japan Academy*, 49(3):157–160, 1973.
- 36. E. Kazemi and M. Grossglauser. On the structure and efficient computation of isorank node similarities. *arXiv preprint* arXiv:1602.00668, 2016.
- 37. E. Kazemi, H. Hassani, M. Grossglauser, and H. P. Modarres. Proper: global protein interaction network alignment through percolation matching. *BMC bioinformatics*, 17(1):527, 2016.
- 38. E. Kazemi, S. H. Hassani, and M. Grossglauser. Growing a graph matching from a handful of seeds. *Proceedings of the VLDB Endowment*, 8(10):1010–1021, 2015.
- N. Korula and S. Lattanzi. An efficient reconciliation algorithm for social networks. Proceedings of the VLDB Endowment, 7(5):377–388, 2014.
- 40. H. W. Kuhn. The Hungarian method for the assignment problem. *Naval research logistics quarterly*, 2(1-2):83–97, 1955.
- 41. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In *Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining*, pages 177–187. ACM, 2005.
- 42. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- L. Livi and A. Rizzi. The graph matching problem. Pattern Analysis and Applications, 16(3):253–283, 2013.
- 44. J. Lubars and R. Srikant. Correcting the output of approximate graph matching algorithms. In *IEEE INFOCOM 2018-IEEE Conference on Computer Communications*, pages 1745–1753. IEEE, 2018.
- 45. V. Lyzinski, D. Fishkind, M. Fiori, J. Vogelstein, C. Priebe, and G. Sapiro. Graph matching: Relax at your own risk. *IEEE Transactions on Pattern Analysis & Machine Intelligence*, 38(1):60–73, 2016.
- 46. V. Lyzinski, D. E. Fishkind, and C. E. Priebe. Seeded graph matching for correlated Erdös-Rényi graphs. *Journal of Machine Learning Research*, 15(1):3513–3540, 2014.
- 47. K. Makarychev, R. Manokaran, and M. Sviridenko. Maximum quadratic assignment problem: Reduction from maximum label cover and LP-based approximation algorithm. *Automata, Languages and Programming*, pages 594–604, 2010.
- 48. C. Mao, M. Rudelson, and K. Tikhomirov. Exact matching of random graphs with constant correlation. *arXiv preprint* arXiv:2110.05000, 2021.
- 49. C. Mao, M. Rudelson, and K. Tikhomirov. Random graph matching with improved noise robustness. In *Conference on Learning Theory*, pages 3296–3329. PMLR, 2021.



- 50. E. Mossel and J. Xu. Seeded graph matching via large neighborhood statistics. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1005–1014. SIAM, 2019.
- 51. A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In *Security and Privacy*, 2008. SP 2008. IEEE Symposium on, pages 111–125. IEEE, 2008.
- 52. A. Narayanan and V. Shmatikov. De-anonymizing social networks. In *Security and Privacy*, 2009 30th *IEEE Symposium on*, pages 173–187. IEEE, 2009.
- 53. P. M. Pardalos, F. Rendl, and H. Wolkowicz. The quadratic assignment problem: A survey and recent developments. In *In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science*, pages 1–42. American Mathematical Society, 1994.
- 54. P. Pedarsani, D. R. Figueiredo, and M. Grossglauser. A bayesian method for matching two similar graphs without seeds. In *2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pages 1598–1607. IEEE, 2013.
- P. Pedarsani and M. Grossglauser. On the privacy of anonymized networks. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 1235–1243.
 ACM, 2011.
- 56. P. Pedarsani and M. Grossglauser. On the privacy of anonymized networks. In *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1235–1243, 2011.
- 57. G. Piccioli, G. Semerjian, G. Sicuro, and L. Zdeborová. Aligning random graphs with a sub-tree similarity message-passing algorithm. *arXiv preprint* arXiv:2112.13079, 2021.
- 58. M. Racz and A. Sridhar. Correlated stochastic block models: Exact graph matching with applications to recovering communities. *Advances in Neural Information Processing Systems*, 34, 2021.
- 59. M. Rudelson and R. Vershynin. Hanson-Wright inequality and sub-Gaussian concentration. *Electron. Commun. Probab.*, 18:no. 82, 9, 2013.
- 60. C. Schellewald and C. Schnörr. Probabilistic subgraph matching based on convex relaxation. In *International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 171–186. Springer, 2005.
- 61. W. Schudy and M. Sviridenko. Concentration and moment inequalities for polynomials of independent random variables. In *Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 437–446. ACM, New York, 2012.
- 62. F. Shirani, S. Garg, and E. Erkip. Seeded graph matching: Efficient algorithms and theoretical guarantees. In 2017 51st Asilomar Conference on Signals, Systems, and Computers, pages 253–257. IEEE, 2017.
- 63. R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction networks with application to functional orthology detection. *Proceedings of the National Academy of Sciences*, 105(35):12763–12768, 2008.
- 64. S. Umeyama. An eigendecomposition approach to weighted graph matching problems. *IEEE transactions on pattern analysis and machine intelligence*, 10(5):695–703, 1988.
- 65. University of Oregon Route Views Project. Autonomous Systems Peering Networks. *Online data and reports*, http://www.routeviews.org/.
- 66. R. Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018.
- J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley, D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe. Fast approximate quadratic programming for graph matching. *PLOS one*, 10(4):e0121002, 2015.
- 68. Y. Wu, J. Xu, and H. Y. Sophie. Settling the sharp reconstruction thresholds of random graph matching. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 2714–2719. IEEE, 2021.
- 69. L. Xu and I. King. A PCA approach for fast retrieval of structural patterns in attributed graphs. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 31(5):812–817, 2001.
- 70. L. Yartseva and M. Grossglauser. On the performance of percolation graph matching. In *Proceedings* of the first ACM conference on Online social networks, pages 119–130. ACM, 2013.
- 71. M. Zaslavskiy, F. Bach, and J.-P. Vert. A path following algorithm for the graph matching problem. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(12):2227–2242, 2008.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

