
Materials & Design 223 (2022) 111223
Contents lists available at ScienceDirect

Materials & Design

journal homepage: www.elsevier .com/locate /matdes
Harnessing structural stochasticity in the computational discovery and
design of microstructures
https://doi.org/10.1016/j.matdes.2022.111223
0264-1275/� 2022 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: hongyi.3.xu@uconn.edu (H. Xu).
Leidong Xu, Nathaniel Hoffman, Zihan Wang, Hongyi Xu ⇑
Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, United States
h i g h l i g h t s

� Proposed a property-aware deep
generative model to provide a unified
design space for stochastic and
periodic (deterministic)
microstructures.

� Established the first of its kind
microstructure database that includes
various types of stochastic and
periodic structural patterns.

� Proposed a microstructure design
approach that tailors structural
stochasticity and property
simultaneously.

� Created stochastically graded
structure designs using
microstructure designs with
continuously increasing structural
stochasticity.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 28 June 2022
Revised 19 September 2022
Accepted 2 October 2022
Available online 5 October 2022

Keywords:
Microstructure design
Deep generative model
Stochasticity
Design optimization
Stochastically graded structures
a b s t r a c t

This paper presents a deep generative model-based design methodology for tailoring the structural
stochasticity of microstructures. Although numerous methods have been established for designing deter-
ministic (periodic) or stochastic microstructures, a systematic design approach that allows the unified
treatment of both deterministic and stochastic microstructure design domains has yet to be created.
The proposed methodology resolves this issue by learning a unified feature space that embodies diverse
structural patterns with continuously varying stochasticity levels. A highly diverse microstructure data-
base is established to incorporate various types of deterministic and stochastic microstructure patterns. A
property-aware deep generative model is proposed to learn a unified feature space of the structural char-
acteristics, as well as the relationship between structure features and properties of interest. Autoencoder
(AE), Variational Autoencoder (VAE), and Adversarial Autoencoder (AAE) are compared to understand
their relative merits in the property-aware learning of the unified feature space. Microstructural designs
with tailorable stochasticity and properties are obtained by searching the unified feature space. Multiple
design cases are presented to demonstrate the capability of designing microstructures for structural
stochasticity and properties. Furthermore, the proposed method is employed to create stochastically
graded structures, which manipulate the mechanical behaviors by varying the local stochasticity of the
structure.
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1. Introduction

It is known that various levels of stochasticity in structural
characteristics (e.g., geometry and material distribution) can be
achieved in engineered microstructures. Taking battery electrodes
as an example, various fabrication techniques produce microstruc-
tures whose stochasticity ranges from random to quasi-regular,
such as random particle microstructures by calendaring [1],
coral-like quasi-random microstructures by directional ice tem-
plating [2], random fiber microstructures by electrospinning [3],
and periodic lattices by additive manufacturing (AM) [4]. To design
the microstructure of engineered systems, the first step is to define
a proper design space that covers all possible design configurations
(design representation). However, deterministic (periodic) and
stochastic systems lend themselves to distinctively different
design representation approaches. In this paper, the term ‘‘periodic
structure” is used interchangeably with ‘‘deterministic structure”.
The quantitative representation of the deterministic microstruc-
tures has been widely studied in the field of structural optimiza-
tion. Existing representation methods generally fall into two
categories: explicit methods and implicit methods [5]. Explicit
methods include shape boundary parameterization by analytical
functions and splines such as cubic, Akima, Bézier, and NURBS
[6–8]. Implicit methods include pixelated/voxelated density fields
[9–11] and level set functions [12,13]. For stochastic microstruc-
tures, statistical characterization, and stochastic reconstruction
(SCSR) methods have been proposed for design representation.
Traditional SCSR approaches include ad hoc physical descriptors
[14–18], N-point correlation functions [19–22], spectrum density
function [23,24], and random fields [25,26]. In recent years, deep
learning models have attracted great attention in structure/mi-
crostructure design optimization. Autoencoders (AE), Variational
autoencoders (VAEs), generative adversarial networks (GANs),
and their variations have been applied to deterministic structure
modeling and design [27–30]. On the other hand, transfer learning
[31–33], AE/VAE/Vector Quantized Variational Autoencoder
(VQVAE) [34–39], and GANs [40,41] have also been used to gener-
ate low-dimensional representations of stochastic structures.
However, the capability of the deep generative models is limited
by the data diversity in the training set. Previous deep generative
models have only been applied to design deterministic (periodic)
structures [27,28,42–45], or limited types of stochastic structures
[34–36,40,41,46,47]. A unified design representation method for
both deterministic and stochastic structures is still missing. A com-
mon practice is to determine the category of the microstructural
system, deterministic or stochastic, before formulating and solving
the design problem. Another practice, used for the design of
stochastic microstructural systems, is to define ad hoc design vari-
ables based on prior knowledge (e.g., fiber orientation distribution
for chopped fiber composites [14,15] and particle diameter distri-
bution for Li-ion battery cathodes [16–18]). A major limitation of
the aforementioned design methods is their inability to allow a
unified treatment of deterministic and stochastic structures. These
methods cannot be simply combined to allow the unified treat-
ment of both design domains. Therefore, knowledge of the struc-
ture–property relationship is not usually transferrable from one
type of microstructures to the other.

Therefore, the purpose of this research is to bridge the gap
between the deterministic and stochastic microstructures. We
established a highly diverse microstructure database that includes
both deterministic and stochastic structural patterns and proposed
a deep generative model-based methodology that (1) creates a uni-
fied microstructural design space that embodies both deterministic
and stochastic microstructures and (2) enables generative design
of microstructures with a tailorable level of stochasticity and
2

desired properties. The remainders of this paper are organized as
follows. In Section 2, an overview of proposed deep generative
model-based design framework is presented. Section 3, 4, and 5
provide detailed explanations of the three components in the pro-
posed framework. Section 3 introduces the first-of-its-kind high
resolution microstructure database and the data generation meth-
ods. Section 4 introduces the property-aware deep generative
model. Section 5 introduces the approach for design for structural
stochasticity and properties. Section 6 are case studies. Section 7
concludes this paper.
2. Overview of the deep generative model-based design
framework

As shown in Fig. 1, the proposed framework includes three
major components:

(a) A highly diverse microstructure database that includes vari-
ous types of stochastic and deterministic structural patterns.
The methods for generating microstructure samples will also
be introduced in Section 3. Mechanical properties and struc-
tural stochasticity are obtained for each microstructure
sample.

(b) A property-aware deep generative model that provides a
unified feature space that embodies both stochastic and
deterministic structural patterns, as well as a supervised
learning model (regressor) that links the latent features
and the microstructure properties.

(c) A microstructure design approach for discovering and opti-
mizing microstructures to achieve desired structural
stochasticity and properties.

3. Mixed stochasticity microstructure database and data
generation methods

The first contribution of this work is to establish a highly
diverse, high-resolution database for deep generative model train-
ing and validation (Fig. 2). The data generation methods are also
introduced in this section. Most of the existing microstructure
databases only contain deterministic designs or limited types of
stochastic designs, and some of them are bottlenecked in a low res-
olution, where the obliterated details reduce the generative ability
of the deep learning model and thereby, simulation accuracy. The
proposed database includes various categories of deterministic
and stochastic microstructure patterns. Each microstructure image
has a resolution of 128 � 128 pixels. The stochastic microstructural
dataset consists of 20,000 samples of five categories: random fiber,
random particle (circle), random ellipse, Voronoi, amorphous, and
quasi-random patterns. The stochastic microstructural samples are
generated using various stochastic reconstruction algorithms,
including the statistical descriptor-based method [14,48,49], the
space tessellation-based method [50–52], the spectrum density
function (SDF)-based random field method [23,24,53], etc. The
deterministic microstructural dataset includes 20,000 samples
obtained from open access structure libraries [54,55] and our pre-
vious works on topology optimization [56]. In total, we have
40,000 samples, of which 90% are used for training and the remain-
ing 10% are used for model generativity validation.

3.1. Generating stochastic microstructure samples by stochastic
reconstruction

Stochastic reconstruction is a technique that generates random
but statistically equivalent microstructures based on the input



Fig. 1. The proposed deep generative model-based framework for designing microstructures for desired properties and stochasticity. (a) A highly diverse microstructure
database that consists of various types of stochastic and deterministic (periodic) structural patterns. (b) A property-aware deep generative model that generates a unified
feature space as the microstructure design space. (c) A design search approach that explore the unified feature space to find microstructure designs with a desired level of
structural stochasticity and desired properties. The contour plots in (c) are based on the 2D t-SNE representations of the latent space, where the colors correspond to property
values at different locations in the latent space.
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microstructure descriptors [48,66]. For the given input microstruc-
ture statistical descriptors/functions, the stochastic reconstruction
algorithm will generate random but statistically equivalent
stochastic microstructure images. Stochastic reconstruction is
widely used in microstructure material design [67,68], where the
microstructure design is tailored by varying the input microstruc-
ture statistical descriptors/functions to achieve target properties.

This research employs three types of stochastic reconstruction
algorithms to generate four categories of stochastic microstructure
samples. The first is the parametric descriptor-based algorithm
[14,48,51,67], which is used to generate random particle-type
(spherical and ellipsoidal particles) and random fiber-type
microstructures (Fig. 3). The filler centers are firstly generated ran-
domly, then the Simulated annealing (SA) algorithm is employed to
perturb particle centers to match the target distribution of disper-
sion descriptors (e.g., nearest neighbor distances). Lastly, the
geometry of each filler is obtained by sampling on the geometry
descriptor distributions (e.g., diameter, aspect ratio, orientation)
until the target volume fraction is matched.

The second is the spectrum density function (SDF)-based
method [23,24], which is used to generate the amorphous quasi-
random microstructures with coral-like, random channel-like, or
irregular connected clusters-like features. SDF is a spatial fre-
quency function and represents spatial correlations of microstruc-
ture phases in the frequency domain. Representing a bi-phase
microstructure image by function Z rð Þ with pixel locations r and
pixel values of 0 or 1, the Fourier spectrum of the microstructure
image Z rð Þ is written as:
3

F Z rð Þf g ¼
Z
Rn

Z rð Þe�2pir�kdk ¼ Ak � ei/k ð1Þ

where Ak and /k represent the magnitude and phase informa-
tion at each location k of the Fourier spectrum. A microstructure’s
SDF, q kð Þ, is defined as the squared magnitude of its Fourier
transform:

q kð Þ ¼ F Z rð Þf gj j2 ¼ Ak
2 ð2Þ

For an isotropic microstructure, the vector k can be reduced to
its magnitude as k ¼ jkj; for an anisotropic microstructure, it can
be defined as a function of the polar angle. Chatfield has estab-
lished the mathematical connection between SDF and 2-point cor-
relation function [69].

With an input SDF function, the corresponding stochastic
microstructure image can be reconstructed using the Cahn’s
method. The microstructure image Z rð Þ is represented by a Gaus-
sian random field Y rð Þ. Y rð Þ can be fully captured using the field-
field correlation function g r1; r2ð Þ. The relationships between
Y rð Þ, Z rð Þ, and g r1; r2ð Þ are:

g r1; r2ð Þ ¼ E Y r1ð ÞY r2ð Þ½ � ¼
Z 1

0

J n�2ð Þ=2 kDrð Þ
kDrð Þ n�2ð Þ=2 � kn�1 � q kð Þdk ð3Þ

Dr ¼ r1 � r2j j ð4Þ

Z rð Þ ¼ 1; Y rð Þ � a
0; Y rð Þ > a

�
ð5Þ



Fig. 2. Examples of deterministic (periodic) and stochastic microstructure samples in the database: (a)�(e) are deterministic microstructure samples. (k)�(o) are stochastic
microstructure samples and real microstructures images showing similar features. (f) A random fiber microstructure and an FESEM image of NaYF4 using NaF as fluoride
source at pH = 3. Reproduced with permission. [57] Copyright 2015, Elsevier. (g) A random particle microstructure and a SEM image of a commercial NMC cathode.
Reproduced with permission. [58] Copyright 2019, Elsevier. (h) A random ellipse microstructure and a SEM image of the Pennsylvania Green Polystyrene (PS-PG) ellipsoids.
Reproduced with permission. [59] Copyright 2021, American Physical Society. (i) A random cellular microstructure and a microphotograph of green tissue-microstructure in
Eucalyptus globulus. [60] (j) A quasi-random microstructure and a 3D rendering of electrode microstructures made by IIT. Reproduced with permission. [2] Copyright 2018,
Wiley. (k) a random fiber microstructure and a TEM image of b-NaYF4: Yb3+, Er3+ nanocrystals synthesized with 1.25 g NaOH. Reproduced with permission. [61] Copyright
2017, Elsevier. (l) A random particle microstructure and a FESEM image of BaYF5 with RE3+/EDTA. Reproduced with permission [62]. Copyright 2011, Royal Society of
Chemistry. (m) A random ellipse microstructure and a SEM image showing the CBD morphology alongside the secondary NMC particles [63]. (n) A random porous
microstructure and a microscopic image of a bone [64]. (o) An amorphous microstructure and a SEM image of NMC particles. Reproduced with permission. [65] Copyright
2014, Wiley. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where q kð Þ is the SDF. J are Bessel functions. A numerical real-
ization of the GRF for a targeting SDF is constructed using the
wave-form method [70]:
Y rð Þ ¼
ffiffiffiffi
2
N

r
�
XN
i¼1

cos kiki � r þ /ið Þ ð6Þ

where N is the number of terms in the truncated series, /i is
generated by sampling uniform distribution in the range of [0, 2
p], ki is a vector uniformly distributed on a unit sphere, and ki is
a scalar obtained by sampling the probability density function
q kð Þ � k in the range of (0, 1). A realization of the GRF Y rð Þ is a pix-
elated greyscale image, and the corresponding binary microstruc-
ture image can be obtained by setting a greyscale threshold. By
changing the input spectrum density function q kð Þ, a variety of
microstructure patterns can be obtained from Fig. 3(c).

The third is the stochastic Voronoi tessellation-based method,
which is used to generate stochastic cellular-type and network-
type microstructures (Fig. 3(b)). Similar to the descriptor-based
algorithm, this algorithm starts from generating and perturbing
the Voronoi cell centers in a 2D square domain. With a distance
metric, e.g., Euclidean distance or Manhattan distance, the mid-
point of the shortest distance for the nearest pair of cell centers
is calculated, where the isometric perpendicular line is drawn as
the cell boundary. The white pixels are added along the cell bound-
aries until the target volume fraction is reached. By varying the
input statistics, various microstructural images can be obtained.
4

A total of 20,000 stochastic microstructures are included in the
dataset to keep the balance between stochastic and deterministic
samples.

3.2. Generating deterministic (periodic) microstructure samples

The deterministic microstructure samples are either obtained
from open access metamaterial structure libraries [54,55] or gener-
ated in our previous works on topology optimization [56]. The
optimal number of structural units in an image is determined by
matching the spatial correlation length of the structural character-
istics with those of the stochastic structure images. 20,000 deter-
ministic structure images in each 2 � 2, 4 � 4, 6 � 6, and 8 � 8
unit arrangement are tested to find the optimal number of units
(Fig. 4). The test criterion is to match the average spatial correla-
tion length of the structural characteristics observed in the
stochastic structure image samples (20000 samples in total). From
the signal processing point of view, a similar spatial correlation
length indicates a similar frequency of the signal. The spatial corre-
lation length is evaluated using the 2-point correlation function
[71,72], which is defined as:

Sj
2 r1; r2ð Þ ¼ Ij r1ð Þ; Ij r2ð Þ

D E
ð7Þ

where I is an indicator function at location r in the space:

Ij rð Þ ¼ 1;whenrisinphasej

0; otherwise:

�
ð8Þ



Fig. 3. (a) Statistical microstructure parameter-based reconstruction, and (b) Stochastic Voronoi tessellation-based reconstruction, and (c) Generation of various
microstructure samples by varying the input spectrum density function.
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Here we focus on the short-distance correlations (e.g., the 2-
point correlation value when the distance in pixel is in the range
of [0, 10]), which have a higher impact on the structure morphol-
ogy than the long-distance correlations. Obviously, deterministic
images with 4 � 4 structural units have the closest match to the
stochastic structure images.
3.3. Creating the grayscale master image of each microstructure
sample by Euclidean distance transform

The binary microstructure image samples obtained from open
access data sources always have a pre-determined volume fraction,
which is the ratio between white pixels and the total number of
pixels in our case. To provide the flexibility to generate microstruc-
ture samples with a wide range of volume fractions, we create a
5

‘‘greyscale master image” by blurring an original binary sample
image using Euclidean distance transform. For each white/black
pixel in the binary image, we evaluate the Euclidean distance from
this pixel to the nearest boundary. The normalized distance values
are used as the greyscale value of this pixel. By varying the grey-
scale threshold for binarization, binary microstructure images of
different volume fraction values can be generated based on the
corresponding greyscale master image.

In Fig. 5, we show a few examples of the greyscale master
images and the binary microstructure images generated with dif-
ferent volume fractions. It is recommended to use a volume frac-
tion range of [pre-determined volume fraction ± 0.25] in order to
maintain the morphological features, based on our observation.
In this work, we use a volume fraction of 40% for all samples in
order to focus on the effect of structural stochasticity on
microstructure properties.



Fig. 4. Statistics of the 2-point correlation functions for stochastic and deterministic (periodic) microstructures with different arangements of (a) 2� 2, (b) 4 � 4, (c) 6 � 6, (d)
8 � 8 structural units. The mean and 95% prediction intervals of the 2-point correlation functions are obtained based on all 20,000 deterministic/stochastic samples. Only one
microstructure sample is shown in each plot for illustrative purpose.

Fig. 5. Greyscale images created by Euclidean distance and the binary image with volume fraction of 0.3, 0.4, 0.5, and 0.6.
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3.4. Evaluation of microstructure sample properties: Structural
stochasticity and mechanical properties

A quantitative measurement of the ‘‘stochasticity level” is indis-
pensable for describing and tailoring stochastic microstructural
characteristics. We propose a new stochasticity metric based on
spectrum analysis, which is widely employed in analyzing the fre-
quency/stochasticity of 2D images. According to the Wiener-
6

Khinchin Theorem [73], the autocorrelation function C tð Þ of a 2D
image is expressed as

C tð Þ ¼ F�1 H
�
xð ÞH xð Þ

h i
¼ 1

2p

Z 1

�1
H
�
xð ÞH xð Þeixtdx ð9Þ

where theH xð Þ denotes the Fourier transform of the 2D image
h tð Þ in the form of
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H xð Þ ¼ F h tð Þ½ � ¼
Z 1

�1
h tð Þe�ixtdt ð10Þ

and H
�
xð Þ denotes the complex conjugate of the Fourier trans-

form. In a binary 2D image h tð Þ, the phase with higher volume frac-
tion is marked by 0 and the other phase is marked by 1 when
calculating the autocorrelation.

For a two-phase image, the maximum value of its autocorrela-
tion function is equal to the volume fraction. The autocorrelation
function can be normalized by min–max scaling into the range of
[0,1] for a fair comparison among microstructure samples with dif-
ferent levels of volume fractions. The normalized autocorrelation
function C tð Þ of a periodic image has multiple periodic local max-
ima at 1 and local minima at 0. By contrast, the autocorrelation
function of a stochastic image has random oscillations with a
higher frequency and a smaller magnitude. The 3D view of auto-
correlation function for a transition in microstructural patterns
are shown in Fig. 6(b).

The range between maxima and minima of the normalized
autocorrelation function works as an indicator of the structural
stochasticity. Let m1;m2; � � � ;mnf g be a sequence that contains all
local maxima of the normalized autocorrelation function C tð Þ,
where the m1 is the global maximum that is always equal to 1,
and m2 is the second highest local maximum. The global minimum
is always equal to 0 after normalization. Then the proposed metric
P is defined as:

P ¼ m2 ð11Þ
Based on our test presented in Fig. 6(a), we observe that the

proposed metric P provides a continuous measurement of the
structural stochasticity. When P ¼ 1, the image has a perfectly
periodic structural pattern. When P ¼ 0, the image is a white noise
signal. When P > 0:5, a clear periodic pattern can be observed in
the image. To demonstrate the proposed stochasticity metric is
consistent for a wide range of volume fraction values, we binarize
greyscale master images with different levels of volume fraction
and evaluate the metric value for each binary image. The results
demonstrate that the volume fraction has a low impact on the
stochasticity metric value. The results are shown in Fig. S4 in the
Supporting Information.

For the mechanical properties, we choose elasticity as an exam-
ple to test the proposed property-driven microstructure design
approach. A finite element model (FEM) with unified periodical
boundary conditions [74] is established to simulate the homoge-
Fig. 6. A Fourier spectrum-based metric for quantifying the structural stochasticity. (a) C
metric values. Sample (i) is a binary white noise image. The 2D views of the seven sample
autocorrelation functions of samples (i)�(iv).

7

nized stiffness properties for each microstructure, including
Young’s moduli in the x-direction and y-direction (Ex; Ey), shear
modulus (G), and Poisson’s ratio (m). The microstructure has two
phases assigned with different material properties. The elastic
modulus and Poisson’s ratio of the white phase in the microstruc-
ture are EBoron ¼ 379300MPa and cBoron ¼ 0:1, whereas
EAluminum ¼ 68300MPa, cAluminum ¼ 0:3 for the black phase. The
homogenized stiffness properties can be obtained by Eqs. (A1)–
(A3) from the FEM simulation results, and more details regarding
the simulations can be found in the Appendix.
4. Property-aware deep generative modeling: unified feature
space representation and microstructure-property prediction

The key idea is to learn a unified feature space representation of
the stochastic and deterministic microstructure patterns as the
design space, and then to establish the relationship between the
feature variables (microstructure design variables) and the proper-
ties of interest to enable the property-driven microstructure
design. Three deep generative models, AE, VAE, and Adversarial
Autoencoder (AAE) are compared to understand their relative mer-
its. Furthermore, we compare the proposed property-aware deep
generative modeling strategy with the widely used separate mod-
eling strategy, where the deep generative model and the regressor
are trained independently.

4.1. Comparison of three deep generative models for feature learning

The AE is a widely used deep neural network architecture that
essentially performs dimensionality reduction. An autoencoder is
a combination of two neural networks, (1) an encoder that maps
input data into a low-dimensional latent space and (2) a decoder
that reconstructs the corresponding input based on a latent feature
vector. Experimentally, we have discovered that the encoder from
AE can capture the visual features and topology relations, and then
reconstruct input training images accurately. However, the model
will result in poor generality due to the unregularized latent space,
and the decoder cannot generate new designs based on latent sam-
ples drawn from any probability distributions. Moreover, the sim-
ilarity of structural features cannot be measured by the distance in
the latent space. For example, the intermediate point between two
deterministic microstructure samples in the latent space might be
decoded to a stochastic microstructure that does not resemble the
ontinuous transition in microstructural pattern and the corresponding stochasticity
s’ autocorrelation functions are shown under the horizontal axis. (b) The 3D views of
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two original designs, which is shown in Fig. A1 in the Appendix.
Therefore, AE does not provide the capability of morphing
microstructure designs continuously to achieve desired stochastic-
ity/morphological characteristics. To overcome the issue of lack of
generality, VAE, GAN, and their variants, such as AAE, Conditional
Generative Adversarial Network (cGAN), and Wasserstein Genera-
tive Adversarial Network (WGAN), have been employed in genera-
tive design. However, GAN models suffer from diminished
gradient, model collapse, and other training instability issues that
limit their potential to be used as general models for complex
problems [75,76]. Considering the high complexity of microstruc-
tural characteristics and the great diversity of microstructural pat-
Fig. 7. Architecture and two component T-SNE visualization of the latent feature space
between two microstructure designs by conducting linear interpolation between two d

8

terns, we propose to establish property-aware deep generative
models based on VAE and AAE in this work.

Similar to the autoencoder, VAE models contain an encoder and
a decoder, but in VAE models, the latent space Z is regularized
towards a prior distribution such as Gaussian and Gaussian-
mixture. In the proposed VAE architecture (Fig. 7(c)), the encoder
has 4 blocks starting with convolutional layer and ending with a
max-pooling layer, and two fully connected layers (FC layers) fol-
lowing the last block compressing the features into two 100-
dimensional latent vectors that denote the mean and variance.
The architecture of the decoder uses fully connected layers with
fewer neurons to avoid overfitting, and the other layers are almost
for (a) AE (b) the AAE model, (c) VAE. (d) and (e) show the continuous transition
esign points in the latent space. ‘‘FC layer” stands for fully connected layer.
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symmetrical with the encoder. A general loss function of VAE is
expressed as

Li h;/ð Þ ¼ �Ez qh zjxið Þ logp/ xijzð Þ� �þ DKL qh zjxið Þjp zð Þð Þ ð12Þ
where xi is input data, z is the latent vector, and h ;/ denote the

parameters of the decoder and encoder respectively. The first term
is the reconstruction loss that measures the pixel-level error
between the input and reconstruction, where the mean square
error (MSE) is employed commonly for computer vision tasks.
The second term, denoting the KL loss, is calculated from the
sum of the Kullback-Leibler Divergence, which ensures that the
learned distribution q follows the true prior distribution p. Includ-
ing the KL term in the loss function can regularize the latent space
and reduce discontinuities between latent vector clusters. The
standard loss function formulation in Eq. (12) works well in cap-
turing deterministic microstructural patterns [54,77,78], while lit-
erature [35,40,79] and our experiments suggest that the style loss
significantly improves the reconstruction quality for the stochastic
microstructures, and, therefore, reduces the latent vector dimen-
sions. Style loss represents the correlation between feature maps
and was initially introduced for texture synthesis. The style loss
is defined as

LSTYLE ¼
X

l

X
i;j

Gl
i;j � Al

i;j

� �2
l ¼ 1;2;3;4ð Þ ð13Þ

where Gl
i;j and Al

i;j are the Gram-matrix of reconstructed images
and input images. The gram-matrix is obtained by

Gl
ij ¼

X
k

F l
ijF

l
ij ð14Þ
Fig. 8. Comparison of the property prediction accuracies of different modeling strategies
alone DNN regressor trained independently from the deep feature learning. (i)�(m) The s
R2 values on all data in the test set, only the deterministic (periodic) samples in the tes
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where F l
ij is the feature map that is usually extracted from the l

th convolutional layer of a pre-trained VGG-19 model [79–81].
Note that l is selected as 1,2,3,4 empirically, which is the first con-
volution layer at the 1st � 4th ‘‘block” of VGG-19.

The latent vectors extracted by the stand-alone VAE may only
contain information describing the geometries of microstructures
[54]. To improve the accuracy of predicting the structure–property
relationship, we propose a property-aware deep generative model
by attaching a regressor to the VAE model. The regressor is trained
simultaneously with the encoder and decoder to predict the rela-
tionship between the latent variables (microstructure design vari-
ables) and the microstructure properties Cn, e.g., the stochasticity
(P) computed by Eq. (11) and the elastic constants (Ex; Ey;G). In this
way, the knowledge of microstructure properties is embedded in
the learned latent space. The regressor loss defined as

LREGRESSOR¼
1
n
kCn � bC n zð Þk ð15Þ

is added to the VAE loss, where bC n is the predicted microstruc-
ture properties. Therefore, the proposed loss function for the
property-aware deep generative model is written as:

Ltotal ¼ LRECONSTRUCTION þ LKL þ LSTYLE þ LREGRESSOR ð16Þ

Besides VAE, another option is to use AAE to construct the pro-
posed property-aware deep generative model. AAE [82] is an
adversarial model that uses a similar idea to VAE but introduces
additional regularization to the latent vectors with a discriminator.
The general loss function of AAE is defined as
. (a)�(d) Regressor in the property-aware deep generative model. (e)�(h) The stand
tand alone GPR regressor trained independently from the deep feature learning. The
t set, and only the stochastic samples in the test set are provided in each subplot.
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LAAE ¼ Ex Eq zjxð Þ �logp xjzð Þ½ �� �� Ex

X
i

logri xð Þ
" #

þ Eq zð Þ �logp zð Þ½ �

¼ LRECONSTRUCTION � Entropyþ CrossEntropy q zð Þ;p zð Þð Þ; ð17Þ
where we add the style loss term similar to VAE and use a gaus-

sian prior.
The latent feature space is visualized using the t-distributed

stochastic neighbor embedding (t-SNE) [83] method. t-SNE is a
nonlinear dimensionality reduction method that compresses data
into a visualizable lower dimensional space, usually, 2 or 3 dimen-
sions. This method minimizes the Kullback-Leibler divergence
between the joint probabilities of high dimensional and low
dimensional data. We visualize the t-SNE space for AE, VAE, and
AAE, as shown in Fig. 7. The major issue with AE is that different
categories of microstructure samples are widely separated in the
t-SNE space. It indicates that abrupt changes in microstructure
characteristics will be observed when moving the point in the orig-
inal latent feature space, which is not desirable for continuous
microstructure morphing. AAE achieves the same level of recon-
struction quality as VAE, while it has a similar issue as AE that dif-
ferent category of microstructure samples are separated by huge
gaps in the t-SNE space. Therefore, we select the VAE model in
the rest of the study. The model architecture is determined empir-
ically and tuned based on the reconstruction quality and the
regression accuracy. The model specifications are provided in
Table S1 in the Supporting Information. We decide to use a 100-
dimensional latent vector in order to keep a balance between the
reconstruction quality and the optimization efficiency. We also
established a larger synthetic database by decoding latent vector
sampling from the prior distribution, which can fulfill the need
to impove regressor accuracy and train larger generative models
in the future. The latent space provides the capability of morphing
one microstructure design to another in a continuous manner. A
continuous path in the latent feature space can be decoded to
obtain a continuously morphing microstructure series. Two exam-
ples of the continuous transition between a stochastic microstruc-
ture and a deterministic structure obtained by the latent space are
demonstrated in Fig. 7(d) and (e). More examples of generating
new microstructure patterns by sampling the latent space are
shown in Fig. S1 in the Supporting Information.

4.2. Comparison of the property-aware modeling strategy and the
separate modeling strategy

Here we compare two modeling strategies: (i) the property-
aware deep generative modeling strategy that trains the VAE and
the regressor simultaneously, and (ii) the separate modeling strat-
egy, which trains the VAE firstly to obtain the latent feature space
and then trains the regressor to link the latent features to the prop-
erties of interest. For the separate modeling strategy, two widely
used supervised learning models, Gaussian process regression
(GPR) and deep neural network (DNN), are tested. As shown in
Fig. 8, the property-aware generative model achieves the highest
regression accuracy in both stochastic and deterministic
microstructures. By contrast, the separating modeling strategy
has difficulties in predicting the mechanical properties of the
stochastic samples. The R2 values on the test set could be as low
as 0.228 when predicting Ex of the stochastic samples. Despite the
low accuracy in these test cases, we acknowledge the convenience
of the separate modeling strategy. With a pretrained latent feature
space, the designers can easily link it to any material properties of
interest by design-of-experiment and surrogate modeling, without
retraining the deep generative model. But in this work, we select
the property-aware modeling strategy for its higher accuracy.
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5. Design for structural stochasticity and properties

Structure design optimization in a high dimensional space
requires a large number of design evaluations (simulations) in each
iteration to obtain either the numerical gradient used in gradient-
based optimization methods [84,85] or the fitness values of all
newly generated designs for evolutionary optimization methods
[86–88]. Considering the cumulative computational cost of design
evaluations, the regressor introduced in Section 4.1 is used to
replace the high-cost simulations in design search.

New microstructure designs can be generated by conducting
arithmetic operations on the latent feature variables. Properties
of the new designs will be evaluated by the regressor, and the
stochasticity will be evaluated using the stochasticity metrics
discussed in Section 3.4. As structural stochasticity can be
linked to the selection and control of manufacturing processes
[89,90], the proposed stochasticity tailoring method is conducive
for introducing manufacturing capability as the design
constraints.

A new generative design approach is proposed to generate
microstructure designs with (1) continuous transition in structural
stochasticity and (2) target properties. The authors propose to for-
mulate it as a path-planning problem in the latent feature space.
Starting from the original design, the design goal is to find a tran-
sition path r	 in the latent feature space that leads to the desired
properties while satisfying requirements on the searching path,
such as monotonously increasing/decreasing structural
stochasticity.

Gradient-based optimization methods, e.g., gradient descent,
can discover the steepest path in minimizing or maximizing the
stochasticity, however, the explicit analytic gradient expression
is not available, and the numerical gradient may lead the opti-
mizer to saddle points or local optima. Evolutionary optimization
algorithms, e.g., Genetic Algorithm [91,92] and Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [93], suffer less from the
local minima issue and have more flexibility in setting multi-
objective, bounds, and non-penalty constraint, thereby allowing
us more degree of freedom in searching multiple selected proper-
ties in the desired stochasticity range. In the following case stud-
ies, we use the latent vector z of an existing design as the starting
point to search for the optimal design or the Pareto Frontier
under multiple design objectives. In each generation, the two
objective function values are normalized by the ideal and nadir
point, and the best design is selected firstly by the rank (non-
dominated sorting) and finally by crowding distance sorting
(Manhattan distance). The major program of the algorithm is
implemented with PyTorch and the Python module pymoo [94]
and will be available by request.

One application of the proposed design framework is to dis-
cover new deterministic microstructures (e.g., periodic metamate-
rial design) with equivalent or better performances based on a
known stochastic microstructure exemplar, or vice versa. We con-
sider it as a process of increasing/decreasing the structural stochas-
ticity while maintaining/improving the properties. To further
reduce the dimensionality of the design space, feature selection
is conducted to identify latent features that control the structural
stochasticity while having minimal/significant influence on
microstructure properties. ReliefF and RReliefF [95–98] are
employed to rank the latent features based on their contribution
to the structural stochasticity and properties. To find a stochas-
tic/deterministic microstructure design with equivalent properties
of an exemplar, it is formulated as a single objective optimization
problem:

min=max P zð Þ if searching for a stochastic design=adeterministic design
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Subject to:

g zð Þ :¼ jbC0 zð Þ � bC0 z0ð Þj <
< s0tomaintainapropertyfromstartingpoint;

z 2 Z

where z0 is the start latent vector of the search path, which was
encoded from the original design.Z indicate the latent feature
space, and s0 is the tolerance for the property constraint.

To find a stochastic/deterministic microstructure design with
optimal properties, it is formulated as a multiple objective opti-
mization problem:

min=max
P zð Þifsearchingforastochasticdesign=deterministicdesignbC1 zð Þifsearchingforcontrolone

(

Subject to:

g zð Þ :¼ jbC0 zð Þ � bC0 z0ð Þj < s0tomaintainapropertyfromstartingpoint;

f zð Þ :¼ jbC2 zð Þ � bC3 zð Þj
< s23tomaintaindifferencebetweentwoproperties;

where s23 is the tolerance for the constraint between two com-

parative properties bC2 and bC3.
Fig. 9. Design cases on microstructure design. (a) Search a deterministic (periodic)
microstructure [101]. Reproduced with permission, Copyright 2013, SAGE Publications.
point, a deterministic design. SEM photo adapted from Emamian (2011) [99]. (c) Search
modulus in both x- and y-direction. SEM photo adapted from Wu (2021) [102]. (d) Sea
Young’s modulus in both x-direction and y-direction from a porous-silicon-like microstru
shown in this figure are true properties (confirmed by simulations). During the design p
optimization history plots using regressor-predicted properties are shown in Fig. S5 in t
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6. Design cases and validation

Three design cases presented in this section demonstrate the
effectiveness of the proposed design methodology. Case 1 is to
demonstrate the microstructure methodology on single-objective
design problems, where we search for deterministic/stochastic
microstructures that possess equivalent properties as the initial
design that is stochastic/deterministic. In addition to the cases pre-
sented in this section, more test cases can be found in Fig. S3 in the
Supporting Information.

In Case 1 (a), we start from a random network-like stochastic
microstructure to generate a series of microstructure designs with
monotonic decreasing stochasticity while maintaining Young’s
modulus along x-direction Ex with a tolerance of ± 3%
(132127 ± 3964 MPa). The final design is a deterministic pattern,
which is considered as a metamaterial design inspired by the
stochastic microstructure. In Case 1 (b), we start the search from
a deterministic microstructure pattern and our goal is to generate
a series of microstructures with equivalent Ex with a tolerance
of ± 3% (126450 ± 3794 MPa). and monotonic increasing structural
stochasticity. The final design is a random irregular particle-like
microstructure [99] that resembles the particle reinforced metal
composites, which is considered as a low-cost substitute for the
original deterministic metamaterial design that requires multima-
terial additive manufacturing. The obtained design series are
shown in Fig. 9(a) and (b).
microstructure with equivalent Young’s modulus from a nano fibrous web-like
(b) Search a stochastic microstructure with equivalent shear modulus as the start
a stochastic microstructure with maximum shear modulus and equivalent Young’s
rch a deterministic microstructure with maximum shear modulus and equivalent
cture [103]. Copyright 2016, Elsevier. It is to be noted that the material property data
rocess, the regressor-predicted properties are used to guide the optimal search. The
he Supporting Information.



L. Xu, N. Hoffman, Z. Wang et al. Materials & Design 223 (2022) 111223
Case 2 is to evaluate the proposed method on multi-objective
design problems. The two design objectives are to minimize the
structural stochasticity, meanwhile, maximize the shear modulus.
We also impose the constraint of equivalent Young’s modulus
along x- and y-direction on the design, where the tolerance is
defined as jEx � Eyj < 5;000MPa 5%ð Þ: The design search starts from
a deterministic microstructure pattern. The proposed method gen-
erates a series of designs with decreasing structural stochasticity
and increasing shear modulus. As shown in Fig. 9(c), one interest-
ing finding is that the proposed method evolves the microstructure
design into a stochastic pattern that resembles the microstructure
of natural wood [100]. This indicates that our method successfully
finds a natural microstructure as the substitute for the determinis-
tic engineering pattern. We also demonstrate a successful multi-
objective search along the stochastic-to-deterministic direction
with the same objective functions and constraint, which is shown
in Fig. 9(d). A stochastic foam-like microstructure is evolved into a
deterministic structure pattern by the proposed method.

In Case 3, we use the ‘‘microstructure building blocks” obtained
in the Case 1 (b) to construct stochastically graded structures. Case
3 demonstrates the potential of manipulating stress wave propaga-
tion behaviors by varying the local microstructural stochasticity,
while maintaining the stiffness and weight of the structure. A ser-
ies of nine ‘‘microstructure building blocks” with continuously
increasing stochasticity and the same elastic modulus are gener-
ated and assembled into a beam structure. The total length of the
beam is 1000 mm. All the building blocks have the same composi-
Fig. 10. Comparison among three structure designs: stochastic, deterministic, and st
determinisitc-stochastic-deterministic structure. (b) Stress contours of the pure sto
time = 0.485 ms. (c) Time-distance-stress plot for pure stochastic, pure deterministic, d
plot at 800 mm from impact end.
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tion, composition fractions and stiffness, thus the weight and stiff-
ness of the beam structure is invariant regardless which building
blocks are used. Three beam structure designs are compared: (i)
a structure with stochastic microstructure blocks only, (ii) a struc-
ture with deterministic microstructure blocks only, and (iii) a
stochastically graded structure with a continuous transition from
deterministic to stochastic to deterministic, as shown in Fig. 10
(a). More stochastically graded structure designs are tested and
compared in Fig. A3 and Fig. S6. The impact simulations are imple-
mented in LS-DYNA with single precision explicit analysis. The two
material phases are the same as what we use in section 3.4.
Detailed information on material properties used in the simulation
is provided in Table S2 and Fig. S2 in the Supporting Information.
An impact load with an initial force of 10kN is applied to the right
end of the structure, of which the left end is attached to a fixed
rigid plate. Here we investigate the influence of structural stochas-
ticity on the stress wave propagation in the structure. The effective
stress distributions inside each structure when time = 0.485 ms are
shown in Fig. 10(b). The stress wave propagation behavior is cap-
tured by the plot of time-distance-maximum effective stress, as
shown in Fig. 10(c). Fig. 10(d) shows the maximum effective stress
versus time observed at 800 mm from the impact end in the struc-
ture. The stress wave propagation speed is measured by the time
when the observation location reaching the peak of the effective
stress. In this test case, the stress wave propagates the fastest in
the pure deterministic structure and the slowest in the pure
stochastic structure. Among the three designs, the pure
ochastically graded. (a) Structural images of pure stochastic, pure deterministic,
chastic, pure deterministic, deterministic-stochastic-deterministic structures at
eterministic-stochastic-deterministic structure. (d) Time-maximum effective stress
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deterministic structure has the highest effective stress peak, and
the pure stochastic structure has the lowest effective stress peak.
The mixed stochasticity structure design is in-between. We also
observe that a higher structure stochasticity leads to a flatter dis-
tribution of stresses inside the structure, thus reducing the
stress-induced failures in microstructure. As shown in Fig. 10(d)
and Fig. A3(c), we can tailor the gradient of the time-maximum
effective stress curve by arranging the local stochasticity differ-
ently. Potential applications of the stochastically graded structures
include functional structures with tailorable anisotropicity, pro-
grammable metamaterials controlling stress wave propagation,
and bio-compatible metamaterials.
7. Conclusion and future work

We present a deep generative design approach that tailors the
microstructure morphology to achieve desired microstructure
properties and structural stochasticity. We establish a highly
diverse database including various types of deterministic and
stochastic high-resolution microstructure images. A Fourier
spectrum-based metric is proposed to provide a quantitative mea-
surement of the structural stochasticity. A property-aware deep
generative model is proposed to obtain a unified, continuous fea-
ture space that embodies microstructure features ranging from
deterministic to stochastic, as well as an effective predictor of
the microstructure-property relationship. With the unified feature
space as the design space, we propose a novel microstructure
method for stochasticity and property, where we morph a stochas-
tic microstructure (start point) continuously into a deterministic
microstructure with desired properties, or vice versa. We propose
to create stochastically graded structures by assembling the
microstructure building blocks with different structural stochastic-
ity levels. We demonstrate the possibility of manipulating stress
wave propagation behaviors by varying the local stochasticity of
the structure while maintaining the static performances. In the
future work, we will extend the proposed method to 3D
microstructure design and propose a systematic approach for opti-
mizing the stochastically graded microstructures. We will also
improve the deep generative model by incorporating more geo-
metrical constraints, such as the connectivity of a certain material
Fig. A1. Linear interpolation between two deterministic microstructures for AE and VAE.
the latent space might be a stochastic microstructure that does not resemble the tw
microstructure samples are also deterministic or close to deterministic.
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phase, to guarantee a good manufacturability of the microstructure
designs.
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Appendix

Finite element simulation: Simulation of the microstructure’s
elastic properties are implemented in ABAQUS. The 2D microstruc-
tures have the dimension of 128 mm � 128 mm. The pixel mesh
size is 1 mm � 1 mm, and the elastic moduli and Poisson’s ratio
are consistent with the design cases. Unified periodical boundary
conditions are applied to predict all elastic constants of the
microstructure. The stress–strain relation of the 2D microstructure
can be written as:

e
�h i

¼ S½ � r�
h i

ðA1Þ

where S½ � is the compliance matrix,

S½ � ¼
S11 S12 0
S12 S22 0
0 0 S66

264
375 ðA2Þ

S½ � is extracted from the ABAQUS simulation results (Fig. A2).
The relations between the engineering elastic constants and Sij are:

Ex ¼ 1
S11

Ey ¼ 1
S22

m ¼ � S12
S11

G ¼ 1
S66

ðA3Þ
For AE, the intermediate point between two deterministic microstructure samples in
o original designs. For VAE, the intermediate points between two deterministic



Fig. A2. Elasticity property analysis on a heterogeneous microstructure. (a), (d), (g) Maximum In-Plane Strain on x-direction, y-direction, and shearing, (b)(e)(h) Maximum
von Mises stress on x-direction, y-direction, and shearing, (c)(f)(i) Maximum displacement on x-direction, y-direction, and shearing. The deformation scale factor is set as 100
to display the deformation.
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Fig. A3. (a) Stress wave in pure stochastic, stochastic-deterministic-stochastic, deterministic-stochastic-deterministic, deterministic-stochastic, and pure deterministic
structure at time = 0.485 ms. (b) Time-distance-maximum effective stress plot for pure stochastic, stochastic-deterministic-stochastic, deterministic-stochastic-deterministic,
deterministic-stochastic, and pure deterministic structure. (c) Time-maximum effective stress plot at 800 mm from impact end.
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Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.matdes.2022.111223.
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Figure S1. (a) Synthetic microstructures by sampling latent feature values from a standard Normal 
distribution. (b) Examples of smooth transition from a deterministic (periodic) microstructure to a 
stochastic microstructure, or vice versa. 
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Table S1. The dimensionality of each layer in the proposed deep learning model architecture.  

Block Specifications 
Encoder Conv-1 (Conv64 + BatchNorm+ ReLU) ×2 + Max Pooling 
Encoder Conv-2 (Conv128 + BatchNorm+ ReLU) ×3 + Max Pooling 
Encoder Conv-3 (Conv256 + BatchNorm+ ReLU) ×3 + Max Pooling 
Encoder Conv-4 (Conv512 + BatchNorm+ ReLU) ×3  
Encoder FC 2000+ReLU->1000+ReLU->100 
Mean, Variance, Latent vector 100 
Decoder FC 100+ReLU->500+ReLU->2000 
Decoder Conv-1 (Conv512 + BatchNorm+ ReLU) ×3 + UpSampling 
Decoder Conv-2 (Conv256 + BatchNorm+ ReLU) ×3 + UpSampling 
Decoder Conv-3 (Conv128 + BatchNorm+ ReLU) ×3 + UpSampling 
Decoder Conv-4 (Conv64 + BatchNorm+ ReLU) ×2 + Conv1+Sigmoid 
DNN Regressor (1000+BatchNorm+ReLU) ×2+(500+ReLU) ×2+100 

Discriminator(AAE ONLY) 
(1000+BatchNorm+LeakyReLU) ×2 
+(500+BatchNorm+LeakyReLU) ×2 
+(100+BatchNorm+LeakyReLU) ×2+Sigmoid 

 
Table S2. Detailed material properties used in simulations. For the boron phase, *MAT_ELASTIC 
material card is used; for the aluminum phase, *MAT_PIECEWISE_LINEAR_PLASTICITY 
material card is used. 

 Density Young’s 
Modulus 

Yield 
Strength 

Poisson’s 
Ratio 

Boron Phase 2.34g/cm3 379300 
MPa 

/ 0.1 

Aluminum Phase 2.7 g/cm3 68300 MPa 276 MPa 0.3 
 
 

 
Figure S2: Effective stress versus effective plastic strain of aluminum phase used in simulations. 
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Figure S3:  More microstructure design cases. (a) and (b): Search stochastic designs with 
maximum shear modulus and equivalent Young’s modulus along x- and y-direction, using a 
deterministic design as the start point of search. (c) and (d): Search deterministic (periodic) 
designs with maximum shear modulus and equivalent Young’s modulus along x- and y-
direction, using a stochastic design as the start point of search. 
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Figure S4:  Stochasticity metric values of binary microstructure images with different volume 
fraction values. In each subplot, the binary images are obtained from the same greyscale master 
image.  
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Figure S5:  Optimization history plots using the regressor-predicted properties for Design case 1 
and 2. In Figure 9 of the manuscript, the optimization history plots are created using the true 
properties of all designs generated in the design process. In this figure, the optimization history 
plots are created using the properties predicted by the regressors. The subplots in this figure 
corespond to Figure 9 (a), (b), (c), and (d) in the manuscript, respectively. 
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Figure S6: Another example of the stochastically graded structure design. (a) Stress contours of 
the pure stochastic, stochastic-deterministic-stochastic, deterministic-stochastic-deterministic, 
deterministic-stochastic, and pure deterministic structures at time = 0.485 ms. (b) Time-distance-
maximum effective stress plot for pure stochastic, stochastic-deterministic-stochastic, 
deterministic-stochastic-deterministic, deterministic-stochastic, and pure deterministic structure. 
(c) Comparison of the time reaching the first effective stress peak at the location of 800 mm from 
impact end. 
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