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Single Pixel X-ray Transform and Related Inverse Problems*
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Abstract. In this paper, we analyze the nonlinear single pixel X-ray transform K and study the reconstruction
of f from the measurement K f. Different from the well-known X-ray transform, the transform K is a
nonlinear operator and uses a single detector that integrates all rays in the space. We derive stability
estimates and an inversion of the linearization at zero. We also consider the case where we integrate
along geodesics of a Riemannian metric. Moreover, we conduct several numerical experiments to
corroborate the theoretical results.
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1. Introduction. In this paper, we study the single pizel X-ray transform K defined by
(1.1) K f(z):= / e XI@0) g,
S§n—1

whose exterior integral integrates over the entire unit sphere S*~! in R”, n > 2. The inner
function consists of an exponential function and the conventional X-ray transform X defined
by

(1.2) X f(z,0) = /£de = /Rf(as + s6) ds, (z,0) € R™ x S" 1,

where ¢ = x + s is a line passing through a point 2 € R”, in the direction § € S"~!. Notice
that the single pixel X-ray transform K in (1.1) is different from the single pixel imaging. In
the single pixel imaging, weighted integrals of the Radon transform are assumed. However,
from the definition of K f(z) in (1.1) we see that it integrates all lines through the point
x, which results in the collapse of an image into a scalar value. This distinguishes the K
transform from the usual single pixel imaging.
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Inversion of the standard X-ray transform consists of recovering a function supported in
a bounded domain from its integrals along straight lines through this domain. In dimension
two (n = 2), it coincides with the Radon transform [10], which provides the theoretical
underpinning for several medical imaging techniques, such as computed tomography (CT)
and positron emission tomography (PET). The X-ray transform has been extensively studied,
including its uniqueness, stability estimates, and reconstruction formula; see, for example, the
book [8]. Generalizations of the standard X-ray transform include integrals of tensor fields
or along curved lines. We refer the reader to recent survey papers [3, 9] and the references
therein for more details.

A notable difference between the conventional X-ray transform X and the single pixel
X-ray transform K is the nonlinearity due to the exponential function. Another difference
comes from the fact that, for instance, in R3, the X-ray transform X gives a two-dimensional
image X f(z,0), 0 € S?, for a fixed z, while K f(x) gives a scalar value. In this sense, the
available data for the single pixel X-ray transform is much less than that of the conventional
X-ray transform. In practice, it can be used in the scenario when one wants to validate the
structure of an object without revealing much detail. For more details on the applications,
we refer the reader to [5].

The objective of this paper is to recover f from the data K f by establishing a reconstruc-
tion formula and deriving stability estimates. The second author of this paper has previously
demonstrated the global uniqueness of the inverse problem. This proof can be found in the
supporting information of [5] by applying the monotonic property of K and the known in-
jectivity of the X-ray transform X [1, 8]. Due to the special structure of the transform K,
however, it is not clear that the same technique in [5] can be directly applied to the study of
stability estimates and reconstruction formulas.

1.1. Motivation. The single pixel X-ray transform finds applications in the protection of
information in highly sensitive systems. The nonlinearity of the transform K acts as a shield
against the disclosure of such information. Here the exponential function is chosen to be the
nonlinear function in K since attenuation is naturally exponential in space. Specifically, this
nonlinearity ensures that there is no one-to-one correspondence between the density f and
the true mass [q,—. [p f(z + s0)dsdf and, therefore, that f cannot be estimated from a single
projection. This thus protects the detailed information of the system, such as its structure and
composition. For interested readers, we refer them to [5] for more discussions on applications
of the single pixel X-ray transform.

1.2. Main results. The transform K is nonlinear and a monotone decreasing map due
to the exponential function in the definition. In particular, the nonlinearity of the transform
helps secure information; on the other hand, it also introduces difficulties to the mathematical
and practical reconstruction of f. Moreover, the monotonicity of K implies that when f is
increasing the measurement K f becomes decreasing and could be eventually very small, which
makes it challenging to distinguish the true measurement from noise if the noise does exist.

As mentioned earlier, the global uniqueness of K was proved in [5]. However, the inversion
formula, to the best of the authors’ knowledge, has not been derived and a stability estimate
has not yet been investigated. The first result we study here is to establish a reconstruction
formula of the linearization of K at f = 0.
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Let €2 be an open bounded domain in R", n > 2. We define the space
Mp(Q) .= {f € CKR") : f is supported in Q}.

Throughout the paper, we denote by Q the closure of the domain € in R®. When lineariz-
ing around zero, we have the following inversion formula and the stability estimate for the
linearized setting.

Theorem 1.1 (inversion of the linearization at f = 0). Let Q be an open bounded domain
in R™, n > 2, with smooth boundary. For any h € My(2), assume that we know K(gh) for
all € € R sufficiently close to zero; then

h = —cp|D|(0:|e=0 K (¢h)),

where ¢, = (2m|S*2|)~1 with |S" 2| the measure of the unit sphere S"~2, and |D| = (—A)'/?
1s the square Toot of the Laplacian, which is a pseudodifferential operator. Here we define the
first derivative of the function K(eh) with respect to e at € =0 by Oz|c—0K (gh).

Theorem 1.1 states that a function h can be reconstructed through this formula based on
the linearized data. It also immediately implies the estimate for h; see Corollary 1.1. The proof
of Corollary 1.1 follows directly from Proposition 2.2 and the inversion of the linearization of
K at zero.

Corollary 1.1 (stability estimate for the linearized problem).  Let  be an open bounded
domain in R™, n > 2, with smooth boundary, and let Q1 be a larger open and bounded domain
satisfying 0 C 1. There exists a constant C > 0 depending on n, ), and 0y so that

(1.3) C YAl 2(mny < [10:]=0 K (eh) |l 10y

for h € My(Q).

Then we return to the nonlinear problem. We state stability estimate results for small f
in two different settings. Notice that K is nonlinear, and K (0) = [S"~!| # 0.

Theorem 1.2. Let QQ C R™, n > 2, be an open and bounded domain, and let 1 be a larger
open and bounded domain so that Q C Q. Let f € My. For any L > 0, there exists € > 0
such that for any f satisfying

[fllcr@ny <min{e, 1}, [|fllge@ny <L, t>n+2,
one has the conditional stability estimate
(14) 1 fllor@ny < CIECS) = 18" )

for some p € (0,1), where the constant C > 0 depends on K and L only.

In addition, we also study the continuity estimate for K as well as another stability
estimate under suitable assumptions of f;, j =1, 2.
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Theorem 1.3. Let Q C R", n > 2, be an open and bounded domain, and let 2y be a larger
open and bounded domain so that 2 C Q. Then, for any f1, f2 € M1(Q) with || fillcr@ny <
M, j=1,2, for some fized positive constant M , we have the continuity estimate

|K f1 — K fallir1(0,) < C(1+e“M + Me“M)|| f1 — folln2@ny + C (€M = D)V (fi — f2)llL2@n).

where the positive constant C' is independent of M.
Moreover, assume that f1, fo satisfy

(1.5) 1f1 = fallz@ny 2 ellV(fi = f2)ll2@n

for a fixed constant ¢ > 0; if M is sufficiently small, then we have
(1.6) Cllfr = follrerny < 1K f1 — K f2ll o),

where the positive constant C depends on ¢, M .

Notice that Theorems 1.2 and 1.3 hold for n > 2 since their proofs rely on Proposition
2.2, which is valid when n > 2.

The estimates (1.4) and (1.6) imply that the data K f in € is sufficient to give the local
stability estimate. Under the assumption (1.5), the left-hand side of (1.6) can be replaced by
If1 = f2ll g1 (mny With another constant C.

We apply the linearization scheme to investigate this nonlinear inverse problem, namely
reconstructing f from the measurement K f. Indeed, to study nonlinear inverse problems,
it is classical to utilize the linearization scheme and then reduce it to the problem of their
linearization, where the existing results, such as injectivity, are utilized to identify the unknown
property [4]. We would also like to note that a general result is proved in [13] when linearizing
nonlinear inverse problems. It gives Holder-type estimates for the nonlinear problem under
some conditions. In section 2, we linearize the transform K around the zero function. This is
motivated by the following observation. Since the first nonconstant term of Taylor’s expansion
of K f is the normal operator of the X-ray transform X, linearizing K f then reveals this
term while the remaining higher order terms vanish. Additionally, thanks to the previously
established results for the X-ray transform, we can derive a local reconstruction formula of
K and also stability estimates for small enough f. For a general function f (not necessarily
small), however, it would be more challenging to stably recover f since the higher order terms
dominate the behavior of f. We do not consider this issue here.

In this paper, we also study the single pixel X-ray transform K in the Riemannian case.
We establish the uniqueness of K on compact manifolds with boundary, on which the geodesic
X-ray transform X is injective. Our proof is a generalization of the argument for the Euclidean
case [5] by applying Santalo’s formula.

Besides the above theoretical results, we conduct numerical reconstructions for the single
pixel X-ray transform K by an optimization method. These experiments provide numerical
evidence for our stability estimates of K. In particular, if the magnitude of f is small, the
reconstruction of f from K f works quite well, even in the presence of mild noise. However,
in the case of large f, the optimization approach could fail, which suggests that the estimates
(1.4), (1.6) might not hold when M is large.
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2. Inverse problems.

2.1. Preliminary results. We introduce several known results for the X-ray transform.
For a function f € S(R™), the Schwartz space, the X-ray transform

Xf(x,0) = /Rf(erSH) ds

is well-defined and is constant along lines in direction 6, that is, X f(x,6) = X f(x+16,0), and,
moreover, X f(x,0) = X f(z,—0) fort € R, z € R" and § € S*~!. By Fubini’s theorem, X can
be extended to L'(R™). Let ¥ := {(z,0) € R* x S"~1 : 2 € 0}, where 6+ := {z € R" : 2 | 6}
is the orthogonal complement of 8, be the parameter set of straight lines; then

X : CX(R") = (%)

is a continuous map. In particular, X f is compactly supported in X if f is compactly sup-
ported. We denote the adjoint of X, under the L? inner product, by X’ and the normal
operator by X’'X. Then X' : C°(X) — C°°(R™) has the expression

X'(x) == Yz — (z-0)0,0)do.
Snfl
Then we have the following results; see [8, 14] for detailed discussions and proofs.
Lemma 2.1. For f € S(R") (Schwartz space),

X,Xf(x)_/gn1/Rf(x+89)d8d9_2/nmi(;j\)"—ldy'

An inversion formula of the X-ray transform is stated below.
Proposition 2.1. For f € S(R"),

f = Cn’D‘X/Xfa

where ¢, = (2n|S*2)~1, |D| = (=A)'/2 is a nonlocal pseudodifferential operator, and |S" 2|
is the measure of the unit sphere S"~2.

This proposition implies that, up to a positive constant, X’X is the Fourier multiplier
|€]71. Note that the inversion formula of Proposition 2.1 remains true for any distribution f
with compact support.

Throughout this paper, we use C to denote positive constants, which may change from
line to line.

The next proposition shows the stability of the inversion.

Proposition 2.2. Let  be an open bounded domain in R™, n > 2, with smooth boundary,
and let Q1 be a larger open and bounded domain satisfying Q C Q1. For any nonnegative
integer s, there is a constant C > 0 so that

(2.1) CH I fllrsny < 1X X fllzzs+r0) < Clf Nl s em)

for f € H*(R™) supported in Q.
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Similar stability estimates in the Riemannian setting have been established in [12]. Notice
that the estimate (2.1) is associated with the normal operator X’ X, which has strong connec-
tions to the operator K. There also exist stability results regarding the transform X itself;
see, e.g., [8, section I1.5]. Since Proposition 2.2 is crucial in the derivation of our main results
later, we provide the proof here following [14].

Proof of Proposition 2.2. The second inequality of (2.1) follows from the fact that X’X

is the Fourier multiplier c;!|¢|~!, which can be directly derived by applying Proposition 2.1.
To this end, we first estimate

XX Fl 3o @y = I+ 62TV 2R X F) ) 2@ny = llen ' (1+ |E2) D21 L F ()2
<C (H(l + |§|2)5/2f(f)||2L2(\5\>1) + |||§|_1J?(§)||%2(|5|g1)) :

Here we denote the Fourier transform of a function f by f or F(f). It remains to estimate

~

the second term H|§\_1f(§)||%2(|£‘§). We have

Flo)l = ] [e st

< [ f s me) | D¢l 715 (mmy
where ¢¢(z) := e xq(z) with xo € C§°(R™) equals 1 in a neighborhood of €2. Then

—1 7 2 _ —21 7 2
11 FO) 22y = /5 s

< 24 25 - max 275 -
= </£|<1 [3 5) HfHH (R )\§|§1 H‘%HH (R™)

Note that [|¢¢| g—srn) < C, where the constant C' > 0 depends on n, s for each [{] < 1.
Moreover, f\§|§1 |€]72 d¢ < oo for n > 3. Hence, |||§|_1f(§)|]%2(‘5|§) < C||f||§{S(Rn) also holds.
This proves the second inequality of (2.1) by observing that

XX fllss1 () < IX X fllgsri@ny < Cllf s n)-

To show the first inequality of (2.1), we begin by applying Proposition 2.1 to get that
(22) ey < CUX' X fllfors(@ny = C’(||X’Xf||§{s+1(91) + HX/XfHJQLIS-H(Rn\Ql))'

The operator X'X : H§(Q) — H*TH(R™\ Q) (note that f is supported in ) has a smooth
kernel, so it is compact. Together with the fact that X' X : H5(Q) — H**1(€2;) is injective, one
can remove the term || X' X f|| gs+1(rn\q,) from the estimate (2.2); see [14] and [15, Proposition
V 3.1]. This proves the first inequality of (2.1). [ |

Remark 2.1. The proof of Proposition 2.2 shows that the first inequality of (2.1) also
works when n = 2.

To conclude this section, we establish the following mapping properties of the operator K.
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Proposition 2.3. Let Q and Qq be two open bounded domains in R™ with Q C Q C Q.
Then there exists a positive constant C, depending on n, 2, and 1, such that

1K fll i1 gy < CeM e (14 || £l gmy)

for any f € CH(R™) supported in .

This implies that K f is well-defined in the H! norm. Notice that K[0] = |S"~!| and,
therefore, K f # 0 even if f = 0. Due to this fact, it is worth emphasizing that K f in general
is not in L?(R™).

Proof. Since f € C'(R") with support in €2, one can denote M := ||f |comny for some
finite constant M > 0, which implies that [eX/| is bounded by e“™. Then

2
1K f ey = [ [ e X0 do< [ ][ cMag
Ql Snfl Ql Snfl

where the constant C' depends on n, €2, and ;. Moreover, we have

1 i dgz::/Q1 /Snil —e X/ (VI/f(x—i-sQ)ds) do

2
< 20M (/ /|sz(x+89)| dsd&) dxzeQCM/ (X'X|Vf])? da
Q; \Jsn-t h

= VI X(VIDIZ2) < CEMNV S o ery < O i g,

2
dx < Ce?M |

2
dx

Hw(f”iml):/g V””/Sn,le_Xfw)de

where we applied Proposition 2.2 with s = 0 to derive the second-to-last last inequality.
Combining the two estimates for K f together yields the result. |

2.2. A reconstruction formula for linearization of K at f = 0. To study the inverse
problem, we replace e~ X9 in K f by its Taylor expansion and then obtain

Kf(z) = /S (1— X f(z,0) + Rf(z,0)) do

(2.3) =[S" - X' X f(2) ~|—/ Rf(x,0)do,
sn—1

where the higher order terms are denoted by

G (_1)m m
Rf(2,0) =)  ———(Xf)"(x,0)
m=2
and then [g,_, Rf(z,0)df is finite for f € Mo(€).
We linearize the transform K around the zero function so that the problem is reduced to
the inverse problem for the X-ray transform.

Proof of Theorem 1.1. Now we take f = ech € My(Q) and let € > 0 be a sufficiently small
real number. We differentiate K (ch) with respect to ¢ at ¢ = 0, denoted by 0. |-=0K (ch), and
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then obtain

O:|-=0 K (eh)(z) = lim e~ (K (eh)(z) — K(0)(x))

e—0
_ m— 1
= —X'Xh(z +g%/§n 125 Xh) (z,0)do
(2.4) =—-X'Xh(z),

where we used the fact that X and X’X are linear operators and also K(0) = [S"71|.

Applying nonlocal operator ¢,|D| to both sides of (2.4), the reconstruction formula of the
X-ray transform in Proposition 2.1 yields the following reconstruction formula of linearization
at f =0:

(2.5) cn| D|(8:]c—o K (h)) = —c|D| X' Xh = —h.

Hence the proof of Theorem 1.1 is complete. |

Remark 2.2. By Proposition 2.2 with s = 0, the formula (2.5) also leads to the stability
estimate of h € M(2) in Corollary 1.1.

2.3. Stability estimate. We are ready to show that the reconstruction of f from the data
K f is stable under suitable assumptions. Below we show the stability estimates with two
different approaches.

In the first result, we deduce the stability estimate for small f in the trivial background
(fo = 0). To begin, we first note that for a fixed f, fo € M; we have

KU) = K(0) + Kp(F = o)+ [ e 0EDR( = fo)(w.0)

where K/ (f = fo) = = [gu1 e 0@ X(f — fo)(x,0) db.

Proof of Theorem 1.2. We will check the conditions in Theorem 2 in [13] in order to apply
it to deduce the desired stability estimate at fy = 0. To this end, we take the Banach spaces
Bl = HL(R"), By =My, B =L4R"),

and
BY =B, =By = HY(Q).
Then we have BY C By C Bj. Here we define the spaces HS(R") = {u € H*(R") : supp(u) C
a.
By the definition of K’ , we have K{(f) = —X'X f. It is clear that K{ : B — Bj is a
continuous linear map by Proposition 2.2 and the estimate

holds for some constant C' independent of f. Next, to check the conditional stability of
linearization at fo = 0, we apply Proposition 2.2 to derive

1EG(H)llsy = C7 I flls;-

Rf(x,0)do

< CIfIE,
Sn—1

Ba
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Finally, we only need to check the two interpolation estimates. Applying the Sobolev embed-
ding theorem, we have for s > 4 41,

£l < Cllf s -

Moreover, the standard interpolation estimate (see, for instance, Remark 1 in [13]) implies
that

_ S
1Ly < O Mty 11 = 1= 5 > 0.

Hence it follows that
1—
1 £ls, < CILFI 1715

Since BY = Bl = Ba, it is clear that
1—
£l = gy 1 f 11y
for any po € (0,1]. Taking pup = 1. If we choose t > 2s, then pipo = 1 — § > 1/2. Therefore,

all conditions required in Theorem 2 in [13] are satisfied, and the estimate (1.4) follows. M

Then we show the continuity estimate of K together with another conditional stability
estimate.

Proof of Theorem 1.3. Suppose that [ fj||c1®n) < M for some constant M > 0. For any
x € Q, from (2.3), we have

(2.6) Kfi(z) = Kfao(z) = (X' X fo = X'X fi)(2) + X' (Rfi = Rf2) ().
By direct computations, the remainder term X'(Rf; — Rf2)(z) satisfies

2 3
rxmﬁ—mwmm(mw+“M>+WM>+m)wwm—ﬁmm

2! 3!
< (M 1) (X'X| i — fol)(w),

which yields the following two estimates:

K fi(@) = K fa(@)| < [X'X(fi = fo) (@)] + (T = D)X X[ f1 = fol)(2)
and

K fi(z) = K fa(@)| > [ X' X (fi = fo) (@)] = (M = 1)(X'X|f1 = fo])(2).

Here C' is a positive constant depending on Q. Based on these, we can derive the L? norm
estimate

IX'X(f1 = )l 200 — (€ = DIX'X| i = folll 2
<K f1 = K follr20) < e“MIXX|f = folllz2gy)-

Next we estimate ||V(K fi — K f2)|[12(q,) by differentiating (2.6):

(2.7)

(2.8) V(IKfi — Kf)(x) =V(X'Xfo— X'Xf1)(x) + V(X'Rfi — X'Rfo)(x).
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It is sufficient to estimate the remainder term VX'Rf; — VX'Rf,. Note that for any m > 2,

LIV (X A" - X (X))

= ﬁ\X/((Xfl)m_lszﬁ — (X f2)" Vo X fo)]

< G XX A = (™ VX )|+ gy X (X )™ (VX fr = Vo X o)
1 m—1~y/ 1 1 <’

< G O XK = fol + g (CM)" T XXV (fu = o).

It follows that
3
IV(X'Rfi — X'Rfy)(z)] < (C’M + (CM)? + (C;\f) + - ) X'X|f1 = fol(x)

N (cm (o), <c§!4>3 +) XXV - f2)(),

which leads to
IVX'Rfy = VX'Rfs 12,y < CMe“M| X' X[ f1 = filll 2y + (€Y = DI X' X[V 1 = V fol [ 2(0)-
Now, since fi — fo is compactly supported in €, we apply Proposition 2.2 to get
X' X|f1 = felllL2y) < 1X'XIfi = folllar) < Cllfi = fall2@n

and, similarly,
| X' X[V fi = VialllL2) < CIV(fi = fo)ll2@ny-
Thus, the above inequalities imply that
IVX'Rfi = VX'Rfallr20,)
< CMe M| f1 = follp2@ny + C(€M = DIV(fi = f)llr2@n) =: G
Note that Proposition 2.2 yields that
CHA = fellezwny S IX'Xfo = X'X fill o) < Cllifi = fallzn).-
Combining with the second inequality of (2.7) and also (2.8), (2.9), we now have
K f1 — K fall g1y
<eMIX'X|f1 = folllzg) + IV(X' X fo = X'X f1)l1200) + G
< CA+ M+ MM f1 = foll c2ny + O = DIV (1 = fo)ll 2 ).

(2.9)

On the other hand, combining with the first inequality of (2.7) and also (2.8), (2.9), we
obtain the lower bound
(2.10)
IKf1 = K fall ey = 1X'X(fr = f)ll oy — €M = DIX'X|f1 = folllzz@n — G
> (C7 = O™ =1) = MM fr = foll 2@y — CeM = DIV(fi = f2)llL2mny.
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Note that when M is decreasing to zero, so is €“M — 1. Tt implies that C~! — C'(e“M — 1) —
CMe“M is nonnegative if M is small enough. Therefore, if we fix some constant ¢ > 0, given
any fi and fy satisfying || f1 — fal|L2mn) > ||V (f1 = f2)[|L2(®n), then we can derive from (2.10)
that

(2.11) Cllfr = follrerny < 1K f1 — K f2ll i oy,

where the positive constant C' = €~ — C(1 4 1/¢)(e“M — 1) — CMeCM | depending on ¢, M
with M sufficiently small. |

Remark 2.3. We note that the stability estimate improves when the magnitude of f be-
comes smaller. To explain this, we observe from (2.11) that when M is decreasing, the term
C Y f1— foll r2(rny on the right-hand side will dominate. Hence, the whole estimate becomes

slightly stabler since the coefficient C is increasing.

Finally, we make a comment on the connection between the stability estimate (1.3) in
Corollary 1.1 and the lower bound (2.10). Indeed (2.10) implies (1.3) when either one of f; is
zZero. —

More precisely, we take fi =eh € M1(Q) withe, h > 0 and fo = 0 with M := [[eh|c1(gn).
The estimate (2.10) yields that

IK(eh) = K)oy = (€1 = (e = 1) = M) b 2gan) — Ce = D[V (eh)]|p2(sn-
Dividing by ¢ and letting ¢ — 0 (then M — 0), one has
10c|e=0 K (eh) | 1021y = C IRl 2y

2.4. Single pixel transform on Riemannian manifolds. As mentioned in the introduction,
the second author [5] proved the uniqueness of the single pixel X-ray transform K in the
Euclidean space R™. In this section, we show that the proof for the Euclidean case can be
generalized to the case of nontrivial geometries.

Let (M, g) be an n-dimensional, n > 2, compact nontrapping Riemannian manifold with
smooth strictly convex boundary M. Here nontrapping means that every geodesic exits the
manifold in both directions in finite times. Let SM be the unit sphere bundle consisting of all
unit vectors on M, so any (z,v) € SM satisfies ||v]|4;) = 1. Given any (z,v) € SM, let v, ,
be the geodesic with initial conditions 7, ,(0) = , 92,,(0) = v. We define the X-ray transform
of a function f on (M, g) as

Xfa) = [ fomat)dt. (@.0) € S

Since (M, g) is nontrapping, the above integral is indeed over a finite interval. Moreover,
Xf(z,v) = X f(Ya(t), Yau(t)) for all t. Then the single pixel X-ray transform on (M, g) is
defined by

Kf(x):/SMe_Xf(x’”)dv, x e M.

Let C(M) be the space of continuous functions on M.
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Theorem 2.1. Let (M,g) be a compact nontrapping Riemannian manifold with smooth
strictly conver boundary. Assume that the X-ray transform X is injective on C(M). Then
the single pizel X-ray transform K is injective on C(M); in other words, K f = Kh implies
that f = h for f, h € C(M).

Proof. We denote 0;.5M the set of all unit inward pointing vectors on the boundary oM,
Le., (z,v) € 0+ SM, if and only if z € OM, and (v,v(z)), > 0, where v(z) is the unit inward
normal vector at z. Let du(z,v) = (v,v(2)), drdv be a measure on 04 SM which vanishes in
directions tangent to M. Consider

(7 = K f =) = [ (5 = KR)(@)(f = () da

M

= / (e~ XF@v) _ o= Xh@2)y(f _ p)(z) dadv
SM

:/ d‘u(x’ U) /(efxf("/z,v(t)v;yw,v(t)) _ 67Xh(71,v(t)a"7’w,v(t)))(f _ h)(’)/m v(t)) dt.
8. 5M '

The last equality is a direct application of Santalo’s formula; see, e.g., [11, Lemma 3.3.2].
Notice that X f(7Vz4(t), ¥z,0(t)) is invariant with respect to ¢, and thus

(Kf—Kh,f—h)= / (e X w) — e XRE0)) dy(ar,v) / (f = h)(a(t)) dt

8y SM

:/a SM(e_Xf(M) — e XM@Y (X f(2,v) — Xh(z,v)) dp(z,v).

The integrand in the last integral has the form (e™ — e™")(u — v), which is nonpositive, and
it equals zero if and only if u = v. Therefore, if Kf = Kh, then we have that X f(z,v) =
Xh(x,v) for all (z,v) € 9;:SM. By our assumption, the X-ray transform X is injective, and
thus f = h. |

It is known that the X-ray transform is injective on simple manifolds [6, 7], which are com-
pact nontrapping manifolds with strictly convex boundary and free of conjugate points. In
dimension > 3, X is injective on compact nontrapping manifolds with strictly convex bound-
ary, which admit convex foliations [16]. The convex foliation condition allows the existence of
conjugate points.

In the current paper, we only consider the uniqueness of K on Riemannian manifolds. It
is reasonable to expect that stability estimates similar to Theorems 1.2 and 1.3 will hold on
simple manifolds as well. In particular, stability estimates of the normal operator X’X on
simple manifolds can be found in [12].

3. Numerical experiments. In this section, we conduct several numerical experiments to
corroborate our theoretical results above. We use the Shepp—Logan phantom with 101 x 101
pixels for illustrations.

Assume k is the measured data. More precisely, k(z) is the single pixel X-ray transform
of f at the point x. For all the numerical tests below, k£ has the same resolution as f. To
reconstruct f from the data kg, we use the Gauss—Newton method to minimize the following
functional:

1 )
argmfmiHKf — kol 72
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To compute the gradient of the above functional, note that for
Kf(z)= / e Xf@0qp,
Sn—1
one can see that the Fréchet derivative of K at f is given as
K (h)(z) = /S . e XI@N (X h(x,0))d0

for any function h. For computation of the X-ray transform X f, we adapt the code provided
in Carsten Hgilund’s lecture notes [2].

We first reconstruct f when the data k is not noisy. The data k is generated using a finer
grid with 201 x 201 pixels and then downsampled by averaging into 101 x 101 pixels. This

is because using the same discretization would make the inverse problem look less ill posed.
The results are shown in Figure 1. The true image of Shepp—Logan is in the middle. The

image of K f is on the left.
2
1.8
1.6
14
15
1.2
08 ‘
06 05
k/’ . \n_r-/
20 40 60 80 100 ¢ 20 40 60 80 100

Figure 1. Left: true data; middle: true image, right: reconstructed image.

20 40 60 80 100

For the following numerical tests, the data k is generated with the same grid as for the
reconstruction, but the data k is polluted by Gaussian random noise. The noise level is
compared with K f — 27, not K f itself, since when f = 0, K f = 27 in R?. The results are
presented in Figure 2, where the reported error is measured in the L? norm. One can see
that the magnitude of error is almost linearly dependent on the level of noise. This confirms
the Lipschitz stability result in Theorem 1.3. Notice that even if the noise level is low when
compared with K f, real information for small f’s could be completely lost.

Finally, we reconstruct the same Shepp—Logan phantom with different magnitudes of f.
For these numerical experiments, we generate data on a finer mesh to avoid “inverse crimes.”
Although we do not manually add noise, discretization itself generates noise or artifacts. The
results are displayed in Figure 3. One can see that for both 0.1f and 1f the reconstructions
perform quite well. Moreover, Figure 3 shows that the image quality deteriorates if the
magnitude of f becomes larger. For 20f, the reconstruction is already a total failure. This
result suggests that the Lipschitz stability derived for small f’s no longer holds for large ones.
One can also see that some regularization techniques need to be adopted for the reconstruction,
when the ill-posedness becomes worse as the magnitude of f becomes larger.
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(a) reconstruction with no noise (b) reconstruction with 0.1% rel-
ative noise; the error is 0.7289

(¢) reconstruction with 0.5% rel- (d) reconstruction with 1% rela-
ative noise; the error is 3.5906  tive noise; the error is 7.1819

Figure 2. Recovery with different noises.
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Figure 3. Noiseless reconstruction for different magnitudes of f. The errors are scaled to be in the same

range.
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