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Summary. We introduce a method for non-parametric density estimation on geometric net-
works. We define fused density estimators as solutions to a total variation regularized maxi-
mum likelihood density estimation problem. We provide theoretical support for fused density
estimation by proving that the squared Hellinger rate of convergence for the estimator achieves
the minimax bound over univariate densities of log-bounded variation. We reduce the original
variational formulation to transform it into a tractable, finite dimensional quadratic program.
Because random variables on geometric networks are simple generalizations of the univari-
ate case, this method also provides a useful tool for univariate density estimation. Lastly, we
apply this method and assess its performance on examples in the univariate and geometric
network setting. We compare the performance of various optimization techniques to solve the
problem and use these results to inform recommendations for the computation of fused density
estimators.
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1. Introduction

In the pantheon of statistical tools, the histogram remains the primary way to explore uni-

variate empirical distributions. Since its introduction by Karl Pearson in the late 19th century,

the form of the histogram has remained largely unchanged. In practice, the regular histogram,

with its equal bin widths chosen by simple heuristic formulae, remains one of the most ubiq-

uitous statistical methods. Most methodological improvements on the regular histogram have

come from the selection of bin widths—this includes varying bin widths to construct irregular

histograms—motivated by thinking of the histogram as a piecewise constant density estimate.

In this work, we study a piecewise constant density estimation technique based on total varia-

tion penalized maximum likelihood. We call this method fused density estimation (FDE). We

extend FDE from irregular histogram selection to density estimation over geometric networks,

which can be used to model observations on infrastructure networks like road systems and

water supply networks. The use of fusion penalties for density estimation is inspired by recent

advances in theory and algorithms for the fused lasso over graphs (Padilla et al., 2017; Wang

et al., 2016). Our thesis, that FDE is an important algorithmic primitive for statistical modelling,

compression and exploration of stochastic processes, is supported by our development of fast

implementations, minimax statistical theory and experimental results.
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Sturges (1926) provided a heuristic for regular histogram selection where, naturally, the bin

width increases with the range and decreases with the number of points. The regular histogram

is an efficient density estimate when the underlying density is uniformly smooth, but irregular

histograms can ‘zoom in’ on regions where there are more data and better capture the local

smoothness of the density. A simple irregular histogram, which is known as the equal area

histogram, is constructed by partitioning the domain so that each bin has the same number

of points. Denby and Mallows (2009) noted that the equal area histogram can often split bins

unnecessarily when the density is smooth and merge bins when the density is variable, and

proposed a heuristic method to correct this oversight. Recently, Li et al. (2016) proposed the es-

sential histogram, which is an irregular histogram constructed such that it has the fewest number

of bins and lies within a confidence band of the empirical distribution. Although theoretically

attractive, in practice its complex formulation is intractable and requires approximation. If the

underlying density is nearly constant over a region, then the empirical distribution is well ap-

proximated locally by a constant, and hence the essential histogram will tend not to split this

region into multiple bins. Such a method is called locally adaptive, because it adapts to the local

smoothness of the underlying density.

In Fig. 1, we compare FDE with the regular histogram, both of which have 70 bins. Because

FDE can be thought of as a bin selection procedure, in this example we recompute the re-

stricted maximum likelihood estimate after bin selection, which is common practice for model

selection with lasso-type methods. We see that with 70 bins the regular histogram can capture

the variability in the leftmost region of the domain but undersmooths in the rightmost region.

We can compare this with FDE which adapts to the local smoothness of the true density. As a

natural extension of one-dimensional data, we also consider distributions that lie on geometric

networks—graphs where the edges are continuous line segments—such as is common in many

infrastructure networks. Another motivation to use total variation penalties is that they are

easily defined over any geometric network, in contrast with other methods, such as the essential

histogram and multiscale methods. Fig. 2 depicts FDE for data in downtown San Diego. The

geometric network is generated from the road network in the area, and observations on the geo-

metric network are the locations of eateries (data extracted from the OpenStreetMap database:

https://www.openstreetmap.org).

(a) (b)

Fig. 1. Comparison of (a) FDE and (b) the regular histogram of 10000 data points from a density ( )
with varying smoothness—both have 70 bins
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Fig. 2. FDE for the location of eateries in downtown San Diego

Without any constraints, maximum likelihood will select histograms that have high variation

(as in Fig. 1). To regularize the problem, we bias the solution to have low total variation. Total

variation penalization is a popular method for denoising images, time series and signals over

the vertices of a graph, with many modern methods available for computation, such as the

alternating direction method of multipliers (ADMM), projected Newton methods and split

Bregman iteration (Tibshirani et al., 2005; Rudin et al., 1992; Beck and Teboulle, 2009; Wang

et al., 2016). Distributions over geometric networks, which we consider here, are distinguished

from this literature by the fact that observations can occur at any point along an edge of the

network. This leads to a variational density estimation problem, which we reduce to a finite

dimensional formulation.

1.1. Contribution 1

We show that variational FDE is equivalent to a total variation penalized weighted least squares

problem enabling fast optimization.

To justify the use of FDE, we shall analyse the statistical performance of FDE for densities

of log-bounded variation over geometric networks. The majority of statistical guarantees for

density estimates control some notion of divergence between the estimate and the true underlying

density. Several researchers have used the L2-loss (the mean integrated square error) to evaluate

their methods for tuning the bin width for the regular histogram (Scott, 1979; Freedman and

Diaconis, 1981; Birgé and Massart, 1997). Although it is appealing to use L2-loss, it is not

invariant to the choice of base measure, and divergence measures such as L1, Hellinger loss and

the Kullback–Leibler divergence are preferred for maximum likelihood—an idea pioneered by

Le Cam (Le Cam and Yang, 2012) and furthered by Devroye and Györfi (1985) and Hall and

Wand (1988). By appealing to Hellinger loss, Birgé and Rozenholc (2006) proposed a method

for optimal choice of the number of bins in a regular histogram, and we shall similarly focus on

Hellinger loss.
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1.2. Contribution 2

We provide a minimax non-parametric Hellinger distance rate guarantee for FDE in the uni-

variate case, over densities of log-bounded variation.

When the log-density lies in a Sobolev space, an appropriate non-parametric approach to

density estimation is maximum likelihood with a smoothing splines penalty (Silverman, 1982).

The smoothing spline method is not locally adaptive because it does not adjust to the local

smoothness of the density or log-density. Epi-splines (Royset and Wets, 2013) are density esti-

mates that are formed by maximizing the likelihood such that the density, or log-density, has a

representation in a local basis and lies in a prespecified constraint set. Donoho (1996) and Koo

and Kim (1996) studied wavelet thresholding for density estimation and proved Lp-rate and

Kullback–Leibler divergence guarantees respectively. In a related work, Koo and Kooperberg

(2000) considered log-spline density estimation from binned data with stepwise knot selection.

Willett and Nowak (2007) used a recursive partitioning approach to form adaptive polynomial

estimates of the density, which is a similar approach to wavelet decomposition.

Total variation penalization has previously been proposed as a histogram regularization tech-

nique in Koenker and Mizera (2007), Sardy and Tseng (2010) and Padilla and Scott (2015). In

particular, Padilla and Scott (2015) separately studied the variational form of the fused density

estimate and a discrete variant, and provided theoretical guarantees for Lipschitz classes. Our

computational results improve on these works by minimizing a variational objective directly,

instead of separately proposing discrete approximations to the variational problem. Our theoret-

ical analysis improves on previous work by studying total variation classes directly and showing

that FDE achieves the minimax rate for Hellinger risk over all densities of log-bounded varia-

tion. Moreover, we consider density estimation on geometric networks and extend our Hellinger

rate guarantees to this novel setting.

1.3. Contribution 3

We prove that the same Hellinger distance rate guarantee for the univariate case also holds for

any connected geometric network.

1.4. Problem statement

When considering road systems and water networks, we observe that individual roads or pipes

can be modelled as line segments, and the entire network constructed by joining these segments

at nodes of intersection. Mathematically, we model this as a geometric network G, a finite

collection of nodes V and edges E, where each edge is identified with a closed and bounded

interval of the real line (Fig. 3). Each edge in the network has a well-defined notion of length,

inherited from the length of the closed interval. We fix an orientation of G by assigning, for

each edge e={vi, vj}, a bijection between {vi, vj} and the end points of the closed interval that

is associated with e. This corresponds to the intuitive notion of ‘gluing’ edges together to form

a geometric network. Because we discuss only geometric networks in this paper, we often refer

to them as networks.

A point in a geometric network G is an element of one of the closed intervals identified

with edges in G, modulo the equivalence of end points corresponding to the same node. After

assigning an orientation to the network, a point can be viewed as a pair .e, t/, where e is an

edge and t is a real number in the interval that is identified with e. However, because we wish

to emphasize the network as a geometric object in its own right, we shall use this notation only

when our use of univariate theory makes it necessary.

A real-valued function g, defined on a geometric network G, is a collection of univariate
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Fig. 3. Example of a geometric network: this network is formed from bike paths on a university campus;
nodes identify intersections of path; edges are paths connecting these intersections, and the length of each
edge is the length of the corresponding path; in forming the geometric network, we discard all information
related to its embedding in R

2, only preserving the network structure and path lengths

functions {ge}e∈E, defined on the edges of G. We require that the function respects the network

structure, by which we mean that, for any two edges e1 and e2 which are incident at a node v,

ge1
.v/=ge2

.v/. We abuse the notation slightly—by referring to ge.v/, we mean g evaluated at the

end point of the interval identified with v. A geometric network G inherits a measure from its

univariate segments in a natural way, as the sum of the Lebesgue measure along each segment.

With this measure we have a straightforward extension of the Lebesgue measure to G, making

G a measurable space.

For any random variable taking values on the network G, we assume that the measure that

is induced by the random variable is absolutely continuous with respect to the base measure dx

and so has density f. We abuse the notation by using dx to refer to both the Lebesgue measure

and the base measure on a geometric graph; which of these we mean will be clear from its

context. Furthermore, we assume that the density is non-zero everywhere, so that its logarithm

is well defined. Moreover, we assume that the log-density is not arbitrarily variable, and for this
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we use the notion of total variation. Let B ⊆ R. The total variation of a function g : B → R is

defined as

TV.g/= sup
P⊂B

∑
zi∈P

|g.zi/−g.zi+1/|:

The supremum is over all partitions, or finite ordered point subsets P, of B. For a real-valued

function g defined on a network G, we extend the univariate definition to

TV.g/=
∑
e∈E

TV.ge/:

One advantage of the use of the total variation penalty is that it is invariant to the choice of the

segment length in the geometric network, so scaling the edge by a constant multiplier leaves the

total variation unchanged. As a consequence, FDE will be invariant to the choice of edge length.

Let f0 be a density on a geometric network G, and x1, : : : , xn an independent sample identically

distributed according to f0. Let Pn = .1=n/Σδxi be the empirical measure associated with the

sample. We let Pn act on a function, by which we mean that we take the expectation of that

function with respect to Pn. So, for any function f ,

Pn.f/=
∫

f dPn =
1

n

n∑
i=1

f.xi/:

We also use P.f/ to denote
∫

f dP for non-empirical measures P.

Fix λ∈R
+. A fused density estimator of f0 is a density f̂ = exp.ĝ/, such that the log-density

ĝ is the minimizer of the following program:

min −Pn.g/+λTV.g/ subject to

∫
exp.g/dx=1 .1/

where the minimum is taken over all functions g : G→ R for which the expression is finite and

the resulting f is a valid density, i.e. f ∈F and g ∈G where

F ={exp.g/ :g ∈G}, G =
{

g : TV.g/<∞,

∫

G

exp.g/dx=1

}
:

The set F will be referred to as the set of densities with log-bounded variation. Indeed, the

integration constraint on elements of G makes them log-densities. Note that densities in F are

necessarily bounded above and away from zero, as a result of the total variation condition.

Program (1) is variational, because it is a minimizer over an infinite dimensional function

space. It is quite common for variational problems in non-parametric statistics to involve a

reproducing kernel Hilbert space penalty, as opposed to a total variation penalty (Wahba,

1990). In the reproducing kernel Hilbert space setting, the Hilbert space enables us to establish

representer theorems, which reduce the variational program to an equivalent finite dimensional

program, so that it can be solved numerically. The space of functions of bounded variation, in

contrast, is an example of a more general Banach space, so reproducing kernel Hilbert space

results cannot be applied to this setting. In the next section, we discuss representer theorems for

program (1) and further show that it can be solved by using a sparse quadratic program.

2. Computation

In this section we provide results towards the computation of fused density estimators. The key

challenge is the variational formulation of the fused density estimator (1). For this, we prove

that solutions to the variational program can be finitely parameterized. Moreover, we show that,
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after applying this representer theorem, the finite dimensional analogue of program (1) has an

equivalent formulation as a total variation penalized least squares problem. Our main theorem

of this section, which reduces the computation of a fused density estimator to a weighted fused

lasso problem, follows.

Theorem 1 (informal). For λ > 1=.2n/ the fused density estimator exists almost surely. It

can be computed as the minimizer to a finite dimensional convex, sparse and total variation

penalized quadratic program, i.e. fused density estimators are solutions to an optimization

of the form

min
z∈R

d

1
2
zTPz+aTz+‖Dz‖1: .2/

The details of this theorem, by which we mean the constructions of P, D, a and the connection

between the minimizer ẑ of problem (2) and the fused density estimator f̂ , are given later in

this section.

Theorem 1 demonstrates that the fused density estimator (1) can be computed as a specific in-

carnation of the generalized lasso, for which there are well-known fast implementations (Arnold

and Tibshirani, 2016). In practice we solve the dual to this problem, which we discuss in theorem

3 in Section 2.1. Theorem 2 is a precise restatement of theorem 1. To prove it, we proceed through

a series of important lemmas. Lemma 1 in Section 2.1 proves that minimizers of program (1)

exist almost surely for λ > 1=.2n/, below which the solution degenerates to Dirac masses at

observations. The almost surely qualification pertains to the maximum number of observations

which occur at any single point of the network; if observations occur simultaneously then λ must

be increased to overcome degeneracy. Lemma 1 further transforms the FDE problem from con-

strained to unconstrained by removing the integration constraint. From this new formulation,

lemma 2 shows that the search space for the fused density estimator problem can be reduced from

functions of bounded variation to an equivalent, finite dimensional version. Theorem 2 performs

the final step in the proof—demonstrating that the previously derived finite dimensional problem

can be solved using an l1 penalized quadratic program. The last subsection in this section is tan-

gential but sheds further light on the structure of fused density estimators. Proposition 1, which

we refer to as the ordering property, qualifies the local adaptivity of fused density estimators by

describing their local structure. Omitted proofs can be found in the on-line appendix A.

2.1. Main computational results

Our first lemma reduces the FDE formulation (1) to an unconstrained program where the

integral constraint is incorporated in the objective. This result is originally due to Silverman

(1982), who proved the result in the context of univariate density estimation and Sobolev norm

penalties. Minor modifications enable us to extend it to geometric networks and the non-Sobolev

total variation penalty.

Lemma 1. The problem

min
g∈G

−Pn.g/+λTV.g/+
∫

G

exp.g/dx .3/

gives an equivalent formulation of program (1), because minimizers ĝ of problem (3) satisfy∫
G

exp.ĝ/dx=1.

We remark that the objective in lemma 1 is equivalent to a total variation penalized Poisson

process likelihood, where the log-intensity is g, so our computations also apply to that setting.
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Lemma 1 gives that the fused density estimator definition (1) can instead be solved by the

unconstrained problem (3) over all functions g on G of bounded variation. An alternative

interpretation of the lemma is that the Lagrange multiplier that is associated with the constraint

in program (1) is 1. The next lemma reduces the unconstrained problem (3) to an equivalent finite

dimensional version. The proof technique is analogous to similar results in Mammen and van de

Geer (1997). In the context of reproducing kernel Hilbert spaces, results that reduce variational

problem formulations to finite dimensional analogues are referred to as representer theorems,

e.g. Wahba (1990). We shall also use this language to describe our result, even though we are in a

more general Banach space setting. The result demonstrates that fused density estimators have

large, piecewise constant regions, which is a well-known property of fusion penalties (Tibshirani

et al., 2005; Kim et al., 2009; Wang et al., 2016).

Lemma 2 (representer theorem). A fused density estimator f̂ must be piecewise constant

along each edge. All discontinuities are contained in the set {x1, : : : , xn}∪V , the observations

and the nodes of G.

Using lemma 2, we can parameterize fused density estimators with three finite dimensional

vectors: the fused density estimator at the observation points p, the fused density estimator at

the vertices of G, k, and the piecewise constant values of the fused density estimator, c. For

simplicity, we assume that no two observations occur at the same location, which is a condition

that we can and will relax in the remark following theorem 2.

Let ne denote the number of observations along edge e. We denote by pe,i the value, in the

vector p, of the ith ordered observation along edge e. For a fused density estimator f = exp.g/,

ce,i is the value that is taken by g between the .i−1/th and ith observation in the interval that

is associated with e, where the zeroth and .ne + 1/th observations are set to be the end points

of that interval. Similarly, se,i = xe,i − xe,i−1 with the convention that xe,0 and xe,ne+1 are the

end points of the interval. This gives the length of the segment between two observations, over

which the fused density estimator is piecewise constant. We denote by kv the value in k at the

vertex v. For a given node v, let inc.v/ denote the set of edges which are incident to v and denote

by ce,v the segment in c which is incident to v. Problem (3) becomes

min
p,c,k

∑
e∈E

{
−

1

n

ne∑
i=1

pe,i +λ
ne∑

i=1

|pe,i − ce,i|+ |pe,i − ce,i+1|+
ne+1∑
i=1

se,i exp.ce,i/

}

+λ
∑
v∈V

∑
e∈inc.v/

|kv − ce,v|:

The first summand, over the edges in E, gives the log-likelihood term, the total variation along

an edge, and the integration term. The second summand gives the total variation at nodes of

the geometric graph.

Let F denote the objective function above. We show that this problem can be further reduced

by removing the pe,i-variables. Indeed, for any vectors ĉ and k̂, let F̃ .p/=F.p, ĉ, k̂/. A necessary

condition for any p̂, ĉ and k̂ to minimize F is p̂∈arg minp F̃ .p/. But F̃ .p/ does not have a lower

bound when λ < 1=.2n/. Furthermore, the set arg minp F̃ .p/ is unbounded when λ= 1=.2n/,

and F̃ .p/ has a unique minimum when λ> 1=.2n/. These facts are clear from the graph of the

functions pe,i →−pe,i=n+λ.|pe,i − ce,i|+ |pe,i − ce,i+1|/, which occur as summands in F. The

function is given in Fig. 4. It is the maximum of three affine functions, from which we conclude

that the minimum of F̃ is attained uniquely at pe,i =max{ce,i, ce,i+1} when λ>1=.2n/. We have

shown that λ = 1=.2n/ is a critical point for the existence of fused density estimators below

which the total variation penalty is not sufficiently strong to prevent degenerate solutions to

program (1). For λ>1=.2n/, the value of a fused density estimator at observations is well behaved



Fused Density Estimation 847

Fig. 4. The function pe,i !�pe,i=nCλ.jpe,i �ce,i jC jpe,i �ce,iC1j/ as the maximum of three affine func-
tions: it attains a unique minimum at pe,i Dmax{ce,i , ce,iC1} when λ>1=.2n/

and we can reduce F.p, c, k/ to

min
c,k

∑
e∈E

{
−

1

n

ne∑
i=1

max{ce,i, ce,i+1}+λ
ne∑

i=1

|ce,i − ce,i+1|+
ne+1∑
i=1

se,i exp.ce,i/

}

+λ
∑
v∈V

∑
e∈inc.v/

|kv − ce,v|:

Because 2 max{ce,i, ce,i+1}= ce,i + ce,i+1 +|ce,i − ce,i+1|, we have the further equivalence

min
c,k

∑
e∈E

{
−

1

2n

ne∑
i=1

.ce,i + ce,i+1/+
(

λ−
1

2n

)
ne∑

i=1

|ce,i − ce,i+1|+
ne+1∑
i=1

se,i exp.ce,i/

}

+λ
∑
v∈V

∑
e∈inc.v/

|kv − ce,v|:

By Rockafellar (2015), theorem 23.8, a necessary and sufficient condition for ĉ and k̂ to solve

this problem is

0∈
∑
e∈E

[
−

1

2n

ne∑
i=1

@.ce,i + ce,i+1/+
(

λ−
1

2n

)
ne∑

i=1

@.|ce,i − ce,i+1|/+
ne+1∑
i=1

@{se,i exp.ce,i/}

]

+λ
∑
v∈V

∑
e∈inc.v/

@.|kv − ce,v|/:

Here we make an important point. The subdifferential of each .ce,i +ce,i+1/-term is constant,

and the subdifferential of |ce,i − ce,i+1| is piecewise constant, depending only on the ordering of

the terms ce,i and ce,i+1. Similarly, the subdifferential of the |kv −ce,v|-term is piecewise constant

and again depends only on the ordering of its terms. Lastly, the subdifferential of se,i exp.ce,i/

is given by its gradient: the .e, i/th co-ordinate of the subdifferential is se,i exp.ce,i/.

Consider the transformation z= exp.c/, h= exp.k/. This transformation preserves the order-

ing of elements of ĉ and k̂, so the subdifferential of each absolute value term is invariant under

this transformation. Pursuing this line of reasoning gives the following theorem. To facilitate its

statement, we briefly establish some notation.
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The total variation of piecewise constant function f on G, which has been parameterized into

vectors z and h, can be expressed as a sum of pairwise distances between values in z and h, i.e.

there are sets J1 and J2 of index pairs such that

TV.f/=
∑

.i,j/∈J1

|zi − zj|+
∑

.i,j/∈J2

|zi −hj|:

This formulation depends on the underlying graph structure and the locations of the observa-

tions. The right-hand side of this expression can be written as the l1-norm of a vector C1z+C2h,

where C1 and C2 are matrices with elements in {−1, 0, 1}, each having |J1|+ |J2| rows. We shall

use the matrices C1 and C2, which satisfy TV.f/=‖C1z+C2h‖1, and C2 is 0 in its first |J1| rows.

Let ni =|Ji| for i∈{1, 2}. Let

B=
(

{λ−1=.2n/}In1×n1
0n1×n2

0n2×n1
λIn2×n2

)

and let D1 and D2 be the matrices BC1 and BC2 respectively. We denote by x1, : : : , xn the locations

of observation on G, and we further partition these into ordered observations along each edge,

so that xe,i denotes the ith observation along edge e. Recall the definition of se,i =xe,i −xe,i+1,

and let S be a diagonal matrix with s on its diagonal. Lastly, define the vector w such that

we,i =
{

−1=.2n/ i=1 or i=ne +1,

−1=n otherwise.

Theorem 2. Let λ> 1=.2n/. Then the fused density estimator exists almost surely. It can be

computed as follows. Let z be a vector with indices enumerating the constant portions of the

fused density estimator f̂ , such that ze,i denotes the value of the fused density estimator on

the open interval between xe,i and xe,i−1, or between an observation and the end of the edge

if i = 1 or ne + 1. Let h be a vector with indices enumerating the nodes in G, such that hv

denotes the value of f̂ at node v. Then the fused density estimator f̂ for this sample is the

minimizer of

min
z,h

1
2
zTSz+wTz+‖D1z+D2h‖1: .4/

Proof. The proof follows directly from the line of reasoning before the theorem’s statement.

Details can be found in the on-line appendix A.

Remark 1. The condition on λ is an important condition. As discussed previously, when

λ<1=.2n/ the total variation penalty is not sufficiently strong to balance the likelihood term and

minimizers of program (1) are degenerate. The almost surely condition is simply a requirement

that no two observations occur at the same location, and no observations occur at nodes of

the geometric network. With a slight modification of the assumption on λ, theorem 2 can

be extended to the setting where multiple observations are allowed at a single location. This

extension also allows observations to occur at nodes of the geometric network. In practice, this

extension may be useful when dealing with imperfect data, though we do not focus on it here

because it is a measure zero event in the density estimation paradigm. For completeness, we

include the extension as theorem A.1 of the on-line appendix A.

Methods for computing solutions to the problem in theorem 2—a total variation regularized

quadratic program—are well established. As in Kim et al. (2009), we rely on solving the dual

quadratic program. For convenience, we write the dual problem as a minimization instead of

its typical maximum formulation.
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Proposition 1. The dual problem to problem (4) is

min
y

1
2
yTD1S−1DT

1 y +wTS−1DT
1 y,

‖y‖∞ �1,

DT
2 y =0:

.5/

The primal solution ẑ can be recovered from the dual ŷ through the expression

ẑ=−S−1.DT
1 ŷ +w/:

A more general statement of proposition 1, which suits the more general statement of theorem

2, can be found in the on-line appendix A. It is worth noting that strong duality between the

primal and dual problems (4) and (5) follows immediately. Indeed, both are extended linear–

quadratic programs in the sense of Rockafellar and Wets (2009). By theorem 11.42 in Rockafellar

and Wets (2009), strong duality holds, and in addition both the primal and the dual problem

attain their minimum values if and only if problem (4) is bounded. This is guaranteed by the

assumption on λ in theorem 2. Furthermore, the fact that the minimum of expression (4) is

attained gives the existence of fused density estimators as asserted in theorem 2.

2.2. Additional properties of fused density estimators

In this section, we state a result on the local structure of a fused density estimator and provide

additional comments on its implementational details. The result is intuitive: along an edge, the

value of piecewise constant segments is inversely related to the length of the segment, relative

to adjacent segments. Since smaller segments suggest higher probability in the corresponding

region, this property demonstrates local structure of the estimator which aligns with essential

global behaviour.

Proposition 2 (ordering property). Let se,i and se,i+1 be the lengths of two segments interior

to an edge e, in the sense that 2 � i�ne −1. Assume further that no two observations occur at

the same location. Then se,i � se,i+1 implies that ẑe,i � ẑe,i+1. Similarly, se,i � se,i+1 implies that

ẑe,i � ẑe,i+1.

Up to this point in our analysis, we have discussed the computation of the fused density esti-

mator without consideration for preprocessing the data or post-processing our resulting fused

density estimator. Since the computation and rates of convergence of FDE represent the bulk of

our contribution, we maintain this perspective in the remainder of the paper. It is worth mention-

ing, however, that FDE is amenable to preprocessing and post-processing. Handling multiple

observations at a single location in theorem 2 makes initial binning or minor discretizations

of data (such as projecting observations onto a geometric network) straightforward. Moreover,

FDE can be viewed exclusively as a method for generating adaptive bin widths, where the re-

sulting bins can then be fitted to the data as in a regular histogram. This approach performs

model selection (via FDE) and model fit (via a post-selection maximum likelihood estimate)

of the histogram separately, and is common practice in model selection using lasso and related

methods (Meir and Drton, 2017; Fithian et al., 2014). When FDE is used exclusively to find bins,

it becomes a change point localization method, instead of a non-parametric density estimator

as in its original formulation. Though FDE is amenable to these examples of preprocessing

and post-processing, we shall examine the fused density estimator as a density estimator in the

remaining sections.
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Fig. 5. Univariate densities and fused density estimators

We also make some suggestions on the selection of λ. The choice of λ leads to a fixed number

of piecewise constant portions of the fused density estimator. In this sense, the choice of the

λ-parameter is analogous to choosing the number of bins in histogram estimation. One can tune

this selection with an information criterion such as the Akaike information criterion AIC or

Bayesian information criteria BIC by selecting the FDE over a grid of λ-values that minimizes

the information criterion. Each of these information criteria requires the specification of the

degrees of freedom, which can be set to the number of selected piecewise constant regions in the

graph, as is done in the Gaussian case (Wang et al. 2016; Tibshirani et al., 2012). Alternatively,

one could use cross-validation as a selection criterion. Implementing cross-validation is often

practical for large problems because the sparse quadratic program (5) can be solved very quickly,

as we see in the next section.

3. Experiments

We have established a tractable formulation of the fused density estimator (5). Quadratic pro-

gramming is a mature technology, so computing fused density estimators via quadratic pro-

gramming dramatically improves its computation. Solvers that are designed to leverage sparsity

in the D1- and D2-matrices allow the optimization portion of FDE to scale to large networks

and many observations.

In this section we compute fused density estimators on synthetic and real world examples.
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Fig. 6. A fused density estimator for the location of terrorist attacks in a neighbourhood of Baghdad: the
detected hot spot contains the streets and alleys near a hospital

(These examples can be found at github.com/rbassett3/FDE-Tools, which also in-

cludes a Python package for FDE on geometric networks.) We evaluate the performance of

various optimization methods and provide recommendations for solvers which implement those

methods. To facilitate accessibility and customization of these tools, each of the solvers that we

consider is open source and they compare favourably with commercial alternatives.

3.1. Univariate examples

We first evaluate fused density estimators in the context of univariate density estimation—where

the geometric network G is simply a single edge connecting two nodes. The operator D1 +D2

is especially simple in this setting, corresponding to an oriented edge incidence matrix of a

chain graph. Fig. 5 contains fused density estimators of the standard normal, exponential and

uniform densities, each derived from 100 sample points. The λ-parameter in these experiments

was selected by 20-fold cross-validation.

3.2. Geometric network examples

We next evaluate fused density estimators on geometric networks. For each of these examples, the

underlying geometric network is extracted from the OpenStreetMap database (https://www.

openstreetmap.org). Fig. 6 is a fused density estimator with domain taken to be the road

network in a region of the city of Baghdad. Observations are the locations of terrorist incidents

which occurred in this region from 2013 to 2016, according to the global terrorism database

(LaFree and Dugan, 2007). The density that we attempt to infer is the distribution for the

location of terrorist attacks in this region of the city.

Fig. 7 is a fused density estimator on the road network of Monterey, California. The obser-

vations were generated according to a multivariate normal distribution and projected onto the

nearest way point in the OpenStreetMap data set. These examples of fused density estimators
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Fig. 7. A fused density estimator for artificial observations on Monterey’s road network

on geometric networks illustrate some important properties of the estimator. The fused density

estimators clearly respect the network topology. This is most obviously demonstrated in the

Monterey example, where the red and light green regions, which correspond to elevated por-

tions of the density, are chosen to be sparsely connected regions of the network. This is intuitive

because the sparsely connected regions impact the fusion penalty less severely than a highly

connected region, but it is one way that FDE reflects the underlying network structure. The

Baghdad and Davis examples demonstrate that FDE can also be used for hot spot localization,

and especially in low data circumstances. Lastly, we note that fused density estimators parti-

tion the geometric network into level sets, thereby forming various regions of the network into

clusters. This clustering is an interesting aspect of FDE and suggests that it could be used to

classify regions into areas of high and low priority.

3.3. Algorithmic concerns

The two most prevalent methods for solving sparse quadratic programs are interior point al-

gorithms and the ADMM. Interior point methods to solve problems of the form (4) were

introduced by Kim et al. (2009). Interior point approaches have the benefit of requiring few

iterations for convergence. The cost per iteration, however, depends crucially on the structure

of D1 and D2 when performing a Newton step on the relaxed Karush–Kuhn–Tucker system. In

the case of univariate fused density estimators, the Newton step requires inversion of a banded

matrix: one which has its non-zero elements concentrated along the diagonal. Leveraging the

banded structure allows inversion to be performed in linear time, which is crucial to the per-

formance of the algorithm. For further details of interior point methods, we refer the reader to

Wright (1997), Boyd and Vandenberghe (2004) and Nesterov and Nemirovskii (1994).

The ADMM proceeds by forming an augmented Lagrangian function and updating the

primal and dual variables sequentially. More details can be found in Boyd et al. (2011) and
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Table 1. Mean and standard deviation of run time for univariate OSQP
experiments

Density Results (s) for the following values of λ:

0.006 0.05 0.1

Exponential 0:0361±0:1310 0:0051±0:0043 0:0045±0:0045
Normal 0:0209±0:0912 0:0112±0:0569 0:0052±0:0046
Uniform 0:0269±0:1077 0:0769±0:0565 0:0074±0:0412

Table 2. Mean and standard deviation of run time for univariate CVXOPT
experiments

Density Results (s) for the following values of λ:

0.006 0.05 0.1

Exponential 0:0087±0:0012 0:0069±0:0008 0:0078±0:0011
Normal 0:0086±0:0012 0:0071±0:0009 0:0076±0:0010
Uniform 0:0087±0:0010 0:0065±0:0008 0:0061±0:0008

Bertsekas (2014). Compared with interior point methods, convergence of the ADMM usually

requires more iterations of a less expensive update, whereas interior point methods converge in

fewer iterations but require a more expensive update. In this section, we compare the perfor-

mance of these algorithms on FDE problems. A comparison between the methods on the related

problem of trend filtering can be found in Wang et al. (2016), where the algorithmic preferences

pertained only to the 2×2 grid graph setting. Their results favour the ADMM approach, though

the regularity of this graph structure makes generalizing to general graphs difficult.

For software, we use the operator splitting quadratic programming (OSQP) solver and CVX-

OPT. For the results, see Tables 1–4. These are mature sparse quadratic programming solvers

that use ADMM and interior point algorithms respectively. They are both open source and

compare favourably with commercial solvers (Stellato et al., 2017; Caron, 2018). Our choice to

use these solvers instead of custom implementations reflects that

(a) these tools are representative of what is available in practice,

(b) outsourcing this portion to other solvers reduces the ability for subtle differences in im-

plementation to favour one method over another and

(c) these projects are production quality, so their implementations are likely to be of higher

quality than custom implementations.

We first compare ADMM and interior point methods on univariate FDE problems. We perform

200 simulations, sampling 100 data points from each distribution. We let λ range from 0.006

to 0.1. These choices correspond to the lower bound on the λ-parameter in theorem 2 and an

upper bound which selects a constant or nearly constant density. We report in-solver time, in

seconds, and do not include the time that is required to convert to the sparse formats that are

required for each solver.
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Table 3. OSQP run times for geometric network
examples

Example Results (s) for the
following λ-parameters:

Overfit Middle Underfit

Baghdad 0.1086 0.0686 0.0639
San Diego 0.0920 0.0961 0.0628
Downtown Davis 0.0269 0.0769 0.0074
Davis 12.0698 0.8539 0.6052

Table 4. CVXOPT run times for geometric network
examples

Example Results (s) for the
following λ-parameters:

Overfit Middle Underfit

Baghdad 1.5493 1.2813 1.1268
San Diego 0.5507 0.4956 0.3256
Downtown Davis 0.0812 0.5615 0.4864
Davis — 13.4456 13.3911

In these experiments, the interior point terminated in around 10 iterations. The number of

iterations in the ADMM were less consistent, ranging from a few hundred to a few thousand.

For the geometric network case, we performed experiments by using four examples: the San

Diego and Baghdad data sets from Figs 2 and 6, in addition to similar data sets in Davis, Cali-

fornia. One of these is a fused density estimator with domain as the road network in downtown

Davis, and the other is on the entire city of Davis—our largest example in this paper—which

has 19000 variables and 25000 constraints in the dual formulation (5). We choose λ in a range

that progresses from overfitting to underfitting the data. By overfit, we mean that we choose

λ as small as possible to make the FDE problem still feasible. By underfit, we mean that the

fused density estimator is a constant function. We record a dash when a solver does not run to

successful completion. All experiments were run on a computer with 8 Gbytes of memory, an

Intel processor with four cores at 2.50 GHz and a 64-bit Linux operating system.

From these experiments we see that the augmented Lagrangian method outperforms the

interior point on the geometric network examples. The lack of regularity in the matrices D1 and

D2, and the large-scale matrix factorizations that are associated with the Newton step, limits

this method in comparison with the ADMM. On smaller, well-structured problems, like in the

univariate examples, interior point methods are often faster. On these well-structured problems,

however, the gain in performance is negligible (of the order of a tenth of a second). In contrast,

the speed and versatility of OSQP especially in the context of large, irregular network structure,

leads us to recommend the ADMM as the method to solve the fused density estimator problem

(5). This supports the suggestion of using the ADMM for trend filtering in Wang et al. (2016)

and extends their recommendation beyond the 2×2 grid graph.
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4. Statistical rates

In this section we prove a squared Hellinger rate of convergence for FDE when the true log-

density is of bounded variation. The Hellinger distance h between functions f and f0 on G is

defined as

h2.f , f0/=
1

2

∫

G

.
√

f −
√

f0/2 dx,

where dx is the base measure over the edges in the geometric network G; in the univariate setting,

this is just the Lebesgue measure. The factor of 1
2

is a convention that ensures that the Hellinger

distance is bounded above by 1. The Hellinger distance is a natural choice for quantifying rates

of convergence for density estimators because it is tractable for product measures and provides

bounds for rates in other metrics (Le Cam, 1973; 2012; Gibbs and Su, 2002). The squared

Hellinger risk of an estimator f̃ for f0 is E[h2.f̃ , f0/]. The minimax squared Hellinger risk over

a set of densities H, for a sample size n, is

min
f̃

max
f∈H

Ef [h2.f̃ , f/]:

The minimum is over all estimators f̃ which are measurable maps from the sample space of

x1, : : : , xn to H.

We find that FDE achieves a rate of convergence in squared Hellinger risk which matches

the minimax rate over all univariate densities in F-densities of log-bounded variation, when

the underlying geometric network is simply a compact interval. In this sense, univariate FDE

has the best possible squared Hellinger rate of convergence over this function class. The rate

that we attain is n−2=3, and the equivalence of rates is asymptotic. On an arbitrary connected

geometric network, minimax rates for density estimation can depend on the network, but our

results demonstrate that FDE on a geometric network has squared Hellinger rate at most the

univariate minimax rate.

We begin by establishing the minimax rate over the class F , which gives a lower bound on

the squared Hellinger rate for FDE. To establish the lower bound, it is sufficient to examine the

minimax rate of convergence over a set of densities contained in F . Fixing a constant C and

compact interval I , we consider the set of functions g : I →R

BV.C/ :={g : TV.g/�C, ‖g‖∞ <C}:

Recall that, for a given radius ǫ, the packing entropy of a set S with respect to a metric

d :S ×S →R+ is the logarithm of its packing number, the size of the largest collection of points

in S which are at least ǫ separated with respect to the metric d. Because BV.C/ is bounded below,

the packing entropy of BV.C/ and B̃V.C/ :={exp.g/ : g ∈BV.C/} are of the same order. From

example 6.4 in Yang and Barron (1999), we have that BV.C/ has L2 packing entropy of order

1=ǫ. Applying theorem 5 from Yang and Barron (1999) gives the minimax squared Hellinger

rate over densities {f=
∫

f : f ∈ B̃V.C/} as n−2=3. In theorem 2, we show that FDE attains the

rate of n−2=3 over the larger class F . Therefore, the minimax squared Hellinger rate over F must

also equal n−2=3, so we have proved the following theorem. For sequences an and bn, we write

an ≍bn if an =O.bn/ and bn =O.an/.

Theorem 3. The minimax squared Hellinger rate over F , the set of densities f with log.f/ of

bounded variation, is n−2=3, i.e.

min
f̃

max
f∈F

Ef [h2.f̃ , f/]≍n−2=3:
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To prove the FDE rate of convergence for univariate density estimation, we extend techniques

that were developed for the theory of M-estimators (van de Geer, 2000) and locally adaptive

regression splines in Gaussian models (Mammen and van de Geer, 1997). A detailed proof of

our main result can be found in the on-line appendix A. This rate bound for FDE is based on

novel empirical process bounds for log-densities of bounded variation, and these are used in

conjunction with peeling arguments to provide a uniform bound on the Hellinger error. The

empirical process bounds in appendix A.3 rely on new Bernstein difference metric covering

number bounds for functions of bounded variation, which can be found in appendix B. We

extend the FDE rates for the univariate setting to arbitrary geometric networks in Section 4.2;

this requires embedding the geometric network onto the real line. This embedding is constructed

from the depth-first search algorithm, which was a technique that was used in Padilla et al. (2017)

for regression over graphs, and is described in appendix A.

The subsections in this section follow this outline. In Section 4.1, we provide a proof sketch

of the squared Hellinger rate of convergence for univariate FDE. In the on-line appendix A.3,

we detail the lemmas that are used to prove the main result. In Section 4.2, we extend these rate

results from the univariate setting to arbitrary geometric networks.

4.1. Upper bounds for rate of univariate fused density estimation

In this subsection we prove a squared Hellinger rate of n−2=3 for univariate FDE. Let the

geometric network G be a closed interval [a, b] (a single edge connecting nodes a and b). Recall

the definition of F as the set of densities f with log.f/ of bounded variation. Let f0 ∈F be a

fixed density on G, so that the total variation TV{log.f0/} is constant as n increases.

Theorem 4. Let f̂ n be the fused density estimator of an independent and identically distributed

sample of n points drawn from a univariate density f0. There is an f0-dependent sequence λn

such that λn =OP .n−2=3/, the FDE is well defined, and

Ef0
[h2.f̂ n, f0/]=O.n−2=3/:

Combined with the lower bound in theorem 4, this gives that univariate FDE attains the

minimax rate over densities in F .

Proof. (For a detailed proof see the on-line appendix A.) To control the Hellinger error

for FDE, we rely on the fact that the fused density estimator is the minimizer of problem

(1). We derive an inequality involving the squared Hellinger distance, an empirical process and

fusion penalty terms. This inequality (and in general inequalities serving this purpose; see van de

Geer (2000)) is referred to as a basic inequality. To reduce the notation, we introduce the short-

hand ĥ=h.f̂ n, f0/, I.f/=TV{log.f/}, Î = I.f̂ n/, I0 = I.f0/ and

pf =
1

2
log

(
f +f0

2f0

)
:

We arrive at the following basic inequality by manipulating the optimality condition,

−Pn{log.f̂ n/}+λnÎ �−Pn{log.f0/}+λnI0. In fact, from the definition of FDE we have the

stronger condition −Pn{log.f̂ n/}+λnÎ �−Pn{log.f/}+λnI.f/ for all f ∈F , but the weaker

condition will suffice.

Lemma 3 (basic inequality).

ĥ
2
�16.Pn −P/.pf̂ n

/+4λn.I0 − Î/:
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Squared Hellinger rates now follow from controlling the right-hand side. We do so by con-

sidering two cases. When ĥ is small, we show that

.Pn −P/.pf̂ n
/=OP{n−2=3.1+ I0 + Î/}:

From the basic inequality, this gives

ĥ
2 =OP{16n−2=3.1+ I0 + Î/+4λn.I0 − Î/}

=OP{4.4n−2=3 −λn/Î +4.4n−2=3 +λn/I0 +16n−2=3}: .6/

Excluding details, when λn is chosen to dominate 4n−2=3, the first term in equation (6) is negative,

so we conclude that ĥ
2 =OP .max{n−2=3, λn}/.

The condition ‘when ĥ is small’, and the corresponding control on .Pn − P/.pf̂ n
/, can be

formalized in the following theorem.

Theorem 5.

sup
h.f ,f0/�n−1=3{1+I.f/+I0}

n2=3|.Pn −P/.pf /|
1+ I.f/+ I0

=OP .1/,

where the supremum is taken over all f ∈F .

When ĥ is large, in contrast, we show that .Pn − P/.pf̂ n
/ = OP{n−1=2ĥ

1=2
.1 + Î + I0/1=2}.

From the basic inequality, this gives

√
nĥ

2 =OP{16ĥ
1=2

.1+ I0 + Î/1=2 +4
√

nλn.I0 − Î/},

whence we conclude that ĥ
2 =OP .max{n−2=3, λn}/. The next theorem is an analogue to theorem

5 when ĥ is large.

Theorem 6.

sup
h>n−1=3{1+I.f/+I0}

n1=2|.Pn −P/.pf /|
h1=2.f , f0/{1+ I.f/+ I0}1=2

=OP .1/,

where the supremum is taken over all f ∈F .

To summarize our conclusions so far: the squared Hellinger rate is max{n2=3, λn} when λn

balances the competing terms in equation (6). By choosing

λn =max

{
sup

h.f ,f0/�n−1=3{1+I.f/+I0}

4|.Pn −P/.pf /|
1+ I.f/+ I0

, n−2=3

}
,

we have a minimal λn which dominates in equation (6). Furthermore, this choice of λn satisfies

λn = OP .n−2=3/ by theorem 5. We have established a squared Hellinger rate of n−2=3 for both

the cases of ĥ considered. Lastly, this choice of λn satisfies the condition on λ in theorem 2, so

the fused density estimator is well defined.

Theorems 5 and 6 are essential components of the proof that was outlined above. Both of

these results are new and of independent interest. Their derivation requires the following lemma.

Lemma 4. Let M ∈R and PM ={pf : 1+ I.f/+ I0 �M}. There is a constant C and choice of

c1 such that for all C1 � c1 and δ � .M=2/n1=3

P

(
sup

pf ∈PM ,h.f ,f0/�δ

|
√

n.Pn −P/.pf /|�2C1
√

Mδ1=2

)
�C exp

(
−

C1Mδ−1

4C2

)
:
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Lemma 4 can be used to prove theorems 5 and 6 by applying the peeling device twice: once

each for the parameters M and δ.

The proof of lemma 4 requires three basic ingredients: control of the bracketing entropy of

PM , a uniform bound on PM and a relationship dictating how M scales with control of the

Hellinger distance. These ingredients have the same motivation as in Mammen and van de

Geer (1997), where the authors used a total variation penalty to construct adaptive estimators

in the context of regression. Mammen and van de Geer (1997) assumed sub-Gaussian errors

and proved bounds on metric entropy for functions of bounded variation. The sub-Gaussian

assumption provides local error bounds, and the metric entropy condition bounds the number

of sets on which we must control that error. Though similarly motivated, our context is more

complicated. To control the M in PM with the Hellinger distance, we consider coverings in the

Bernstein difference metric instead of the L2.P/ metric. Using the Bernstein difference enables

us to achieve the results in lemma 4, but its use requires control of generalized bracketing

entropy—bracketing with the Bernstein difference—instead of the usual bracketing entropy

with the L2.P/ metric. In addition, the uniform bound that we require is now on the Bernstein

difference over PM .

In the on-line appendix B, we show that the bracketing entropy of PM , with bracketing

radius δ, is of order M=δ. This bracketing entropy result implies generalized bracketing entropy

bounds and can be proved similarly to results in monotonic shape-constrained estimation (Van

Der Vaart and Wellner, 1996). To achieve the finite sample bounds that are necessary to achieve

these rates, Bernstein’s inequality is used to provide concentration inequalities that are critical

to bounding the basic inequality. With this combination of local error bounds and bracketing

rates, we can apply results in the spirit of generic chaining (Talagrand, 2006) to obtain lemma 4.

Lastly, we translate the probabilistic results into bounds on Hellinger risk. In general, one

cannot prove expected risk rates from convergence in probability because the tails may not decay

sufficiently quickly to give a finite expectation. But, out of the proofs of theorems 5 and 6, we can

derive exponential tail bounds for h2.f̂ n, f0/. This enables us to translate our probabilistic rates

into rates on the Hellinger risk; doing so requires some care to apply the rates in theorems 5 and

6 simultaneously. These details are provided in the expanded proof in the on-line appendix A.

4.2. Guarantees for connected geometric networks

In the previous sections we proved an n−2=3 rate of convergence for univariate fused density

estimators. The following theorem extends this result to arbitrary geometric networks.

Theorem 7. Let f̂ n be the fused density estimator of an independent and identically distributed

sample over a connected geometric network with true density f0. Then there is a choice of

λn, dependent on f0, such that λn =OP .n−2=3/ and

Ef0
[h2.f̂ n, f0/]=O.n−2=3/:

We prove this theorem by using an embedding lemma, lemma A.11 in the on-line appendix,

which states that for any fixed geometric network G there is a measure preserving embedding γ

of G into R that preserves densities and Hellinger distances. Furthermore, for any function g on

G, the (univariate) total variation of the embedded function g ◦γ−1 never exceeds twice that of

the graph-valued total variation. With this lemma in hand, theorem 7 is proved by strategically

bounding terms in our analysis by their univariate counterparts. A detailed proof can be found

in the on-line supplementary material.

Theorem 7 provides an upper bound on the minimax Hellinger rate for densities of log-

bounded variation on geometric networks. Unlike the univariate case, however, we do not have
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a lower bound as in theorem 4, so we cannot conclude that FDE attains the minimax rate for

arbitrary geometric networks. This mirrors similar results found in the Gaussian regression

setting; see for example Padilla et al. (2017). The minimax squared Hellinger rate for density

estimation on geometric networks is at least as small as the univariate rate, and it is reasonable

to suspect that the minimax rate on some graphs may be strictly better than the univariate

rate. Though the univariate case may seem simple, and hence we might expect it to be easier,

the sparse connectivity of the underlying graph in univariate estimation negatively affects its

minimax rate of convergence. In some sense this is intuitive. For example, adding cycles to a

graph increases the total variation compared with the same graph with the cycles removed. The

increased total variation can be seen as applying more shrinkage in the context of estimation,

which makes total variation balls smaller and the problem easier. Similarly, tree graphs (graphs

without cycles) have more connectivity than the univariate chain graph and larger total variation

for a function that is defined on it. This intuition is consistent with the formal results from Hütter

and Rigollet (2016) in the regression setting. Although there may be networks for which the

FDE and minimax squared Hellinger rates may decrease more quickly than n−2=3, we leave that

study to future work.
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