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Summary

The fused lasso, also known as total-variation denoising, is a locally adaptive function estimator

over a regular grid of design points. In this article, we extend the fused lasso to settings in which

the points do not occur on a regular grid, leading to a method for nonparametric regression.

This approach, which we call the K-nearest-neighbours fused lasso, involves computing the K-

nearest-neighbours graph of the design points and then performing the fused lasso over this graph.

We show that this procedure has a number of theoretical advantages over competing methods:

specifically, it inherits local adaptivity from its connection to the fused lasso, and it inherits

manifold adaptivity from its connection to the K-nearest-neighbours approach. In a simulation

study and an application to flu data, we show that excellent results are obtained. For completeness,

we also study an estimator that makes use of an ǫ-graph rather than a K-nearest-neighbours graph

and contrast it with the K-nearest-neighbours fused lasso.

Some key words: Fused lasso; Local adaptivity; Manifold adaptivity; Nonparametric regression; Total variation.

1. Introduction

This article considers the nonparametric regression setting in which we have n observations,

(x1, y1), . . . , (xn, yn), of the pair of random variables (X , Y ) ∈ X × R, where X is a metric space

©c 2020 Biometrika Trust
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294 O. H. Madrid Padilla et al.

with metric dX . We assume that the model

yi = f0(xi) + εi (i = 1, . . . , n) (1)

holds, where f0 : X → R is an unknown function that we wish to estimate. This problem

arises in many settings, including demographic applications (Petersen et al., 2016a; Sadhanala

& Tibshirani, 2018), environmental data analysis (Hengl et al., 2007), image processing (Rudin

et al., 1992) and causal inference (Wager & Athey, 2018).

A substantial body of work has dealt with estimating the function f0 in (1) at the observations

X = x1, . . . , xn, i.e., denoising, as well as at other values of the random variable X , i.e., prediction.

This includes the seminal papers by Duchon (1977), Breiman et al. (1984) and Friedman (1991),

as well as more recent work by Petersen et al. (2016a,b) and Sadhanala & Tibshirani (2018). A

number of previous papers have focused in particular on manifold adaptivity, i.e., adapting to the

dimensionality of the data; these include work on local polynomial regression by Bickel & Li

(2007) and Cheng & Wu (2013), K-nearest-neighbours regression by Kpotufe (2011), Gaussian

processes byYang & Tokdar (2015) andYang & Dunson (2016), and tree-based estimators such as

those in Kpotufe (2009) and Kpotufe & Dasgupta (2012).We refer the reader to Györfi et al. (2006)

for a detailed survey of other classical nonparametric regression methods. The vast majority of

these methods perform well in function classes with variation controlled uniformly throughout

the domain, such as Lipschitz and L2 Sobolev classes. Donoho & Johnstone (1998) and Härdle

et al. (2012) generalized this setting by considering functions of bounded variation and Besov

classes. In this article, we focus on piecewise-Lipschitz and bounded-variation functions, as these

classes can have functions with nonsmooth regions as well as smooth regions (Wang et al., 2016).

Recently, interest has focused on so-called trend filtering (Kim et al., 2009), which seeks to

estimate f0(·) under the assumption that its discrete derivatives are sparse, in a setting in which

one has access to an unweighted graph that quantifies the pairwise relationships between the n

observations. In particular, the fused lasso, also known as zeroth-order trend filtering or total

variation denoising (Rudin et al., 1992; Mammen & van de Geer, 1997; Tibshirani et al., 2005;

Wang et al., 2016), solves the optimization problem

minimize
θ∈Rn

⎧

⎨

⎩

1

2

n
∑

i=1

(yi − θi)
2 + λ

∑

(i,j)∈E

|θi − θj|

⎫

⎬

⎭

, (2)

where λ is a nonnegative tuning parameter and (i, j) ∈ E if and only if there is an edge between

the ith and jth observations in the underlying graph. Then f̂ (xi) = θ̂i. Computational aspects

of the fused lasso have been studied extensively in the case of chain graphs (Davies & Kovac,

2001; Johnson, 2013; Barbero & Sra, 2017) and for general graphs (Chambolle & Darbon, 2009;

Hoefling, 2010; Chambolle & Pock, 2011; Tibshirani & Taylor, 2011; Landrieu & Obozinski,

2016). Furthermore, the fused lasso is known to have excellent theoretical properties. In one

dimension, Mammen & van de Geer (1997) and Tibshirani (2014) showed that the fused lasso

attains nearly minimax rates in mean squared error for estimating functions of bounded variation.

More recently, also in one dimension, Guntuboyina et al. (2018) and Lin et al. (2017) indepen-

dently proved that the fused lasso is nearly minimax under the assumption that f0 is piecewise

constant. In grid graphs, Hutter & Rigollet (2016) and Sadhanala et al. (2016, 2017) proved

minimax results for the fused lasso when estimating signals of interest in applications of image

denoising. In more general graph structures, Padilla et al. (2018) showed that the fused lasso is

consistent for denoising problems, provided that the underlying signal has total variation along

the graph which when divided by n goes to zero. Other graph models that have been studied in
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Adaptive nonparametric regression 295

the literature include tree graphs in Ortelli & van de Geer (2018) and Padilla et al. (2018), and

star and Erdős-Rényi graphs in Hutter & Rigollet (2016).

In this paper, we extend the utility of the fused lasso approach by combining it with the

K-nearest-neighbours, or K-NN, procedure. The K-NN has been well-studied from theoretical

(Stone, 1977; Alamgir et al., 2014; Chaudhuri & Dasgupta, 2014; Von Luxburg et al., 2014),

methodological (Dasgupta, 2012; Dasgupta & Kpotufe, 2014; Kontorovich et al., 2016; Singh

& Póczos, 2016) and algorithmic (Friedman et al., 1977; Zhang et al., 2012; Dasgupta & Sinha,

2013) perspectives. One key feature of K-NN methods is that they automatically have a finer

resolution in regions with a higher density of design points; this is particularly consequential

when the underlying density is highly nonuniform. We study the extreme case in which the data

are supported over multiple manifolds of mixed intrinsic dimension. An estimator that adapts to

this setting is said to achieve manifold adaptivity.

We exploit recent theoretical developments in the fused lasso and the K-NN procedure to

derive a single approach that inherits the advantages of both methods. In greater detail, we extend

the fused lasso to the general nonparametric setting of (1) by performing a two-step procedure.

Step 1. We construct a K-NN graph by placing an edge between each observation and the K

observations to which it is closest in terms of the metric dX .

Step 2. We apply the fused lasso to this K-NN graph.

The resulting K-NN fused lasso estimator appeared in the context of image processing in Elmoataz

et al. (2008) and Ferradans et al. (2014), and more recently in an application of graph trend filtering

in Wang et al. (2016). The present article is the first to study its theoretical properties. We also

consider a variant obtained by replacing the K-NN graph in Step 1 with an ǫ-nearest-neighbour,

ǫ-NN, graph, which contains an edge between xi and xj only if dX (xi, xj) < ǫ.

The main contributions of this paper are the following.

(i) Local adaptivity. We show that provided f0 has bounded variation and satisfies an additional

condition that generalizes piecewise-Lipschitz continuity, then the mean squared errors of both

the K-NN fused lasso estimator and the ǫ-NN fused lasso estimator scale like n−1/d , ignoring

logarithmic factors; here, d > 1 is the dimension of X . In fact, this matches the minimax rate

for estimating a two-dimensional Lipschitz function (Györfi et al., 2006), but over a much wider

function class.

(ii) Manifold adaptivity. Suppose that the covariates are independent and identically distributed

samples from a mixture model
∑ℓ

l=1 π∗
l

pl , where p1, . . . , pℓ are unknown bounded densities and

the weights π∗
l

∈ [0, 1] satisfy
∑ℓ

l=1 π∗
l

= 1. Suppose further that for l = 1, . . . , ℓ, the support

Xl of pl is homeomorphic to [0, 1]dl = [0, 1] × [0, 1] × · · · × [0, 1], where dl > 1 is the intrinsic

dimension of Xl . We show that under mild conditions, if the restriction of f0 to Xl is a function

of bounded variation, then the K-NN fused lasso estimator attains the rate
∑ℓ

l=1 π∗
l
(π∗

l
n)−1/dl .

For intuition about this rate, observe that π∗
l

n is the expected number of samples from the lth

component, and hence (π∗
l

n)−1/dl is the expected rate for the lth component. Therefore, our rate

is the weighted average of the expected rates for the different components.

2. Methodology

2.1. The K-NN and ǫ-NN fused lasso estimators

Both the K-NN and the ǫ-NN fused lasso approaches are simple two-step procedures. The first

step involves constructing a graph on the n observations. The K-NN graph, GK = (V , EK ), has
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296 O. H. Madrid Padilla et al.

vertex set V = {1, . . . , n}, and its edge set EK contains the pair (i, j) if and only if xi is among

the K nearest neighbors of xj, with respect to the metric dX , and vice versa. By contrast, for the

ǫ-graph Gǫ = (V , Eǫ), the pair (i, j) is in Eǫ if and only if dX (xi, xj) < ǫ.

After constructing the graph, the fused lasso is applied to y = (y1, . . . , yn)
T over the graph G

(either GK or Gǫ). We can rewrite the fused lasso optimization problem (2) as

θ̂ = arg min
θ∈Rn

{

1

2

n
∑

i=1

(yi − θi)
2 + λ ‖∇Gθ‖1

}

, (3)

where λ > 0 is a tuning parameter and ∇G is an oriented incidence matrix of G; each row of

∇G corresponds to an edge in G. For instance, if the kth edge in G connects the ith and jth

observations, then

(∇G)k ,l =

⎧

⎪

⎨

⎪

⎩

1, l = i,

−1, l = j,

0, otherwise,

and so (∇Gθ)k = θi − θj. This definition of ∇G implicitly assumes an ordering of the nodes and

edges, which may be chosen arbitrarily without loss of generality. In this paper we mostly focus

on the setting where G = GK is the K-NN graph. We also include an analysis of the ǫ-graph,

which results from taking G = Gǫ , as a point of contrast.

Given the estimator θ̂ defined in (3), we predict the response at a new observation x ∈

X \{x1, . . . , xn} according to

f̂ (x) =
1

∑n
j=1 k(xj, x)

n
∑

i=1

θ̂i k(xi, x). (4)

In the case of K-NN fused lasso, we take k(xi, x) = 1{xi∈NK (x)}, where NK (x) is the set of K nearest

neighbours of x in the training data. For the ǫ-NN fused lasso, we take k(xi, x) = 1{dX (xi ,x)<ǫ}.

Given a set A, 1A(x) is the indicator function that equals 1 if x ∈ A and 0 otherwise. For the ǫ-NN

fused lasso estimator, the prediction rule in (4) may not be well-defined if all the training points

are farther than ǫ from x. When that is the case, we set f̂ (x) to equal the fitted value of the nearest

training point.

We construct the K-NN and ǫ-NN graphs using standard Matlab functions such asknnsearch

and bsxfun; this results in a computational complexity of O(n2). We solve the fused lasso with

the parametric max-flow algorithm of Chambolle & Darbon (2009). The procedure is in practice

much faster than its worst-case complexity of O(m n2), where m is the number of edges in the

graph (Boykov & Kolmogorov, 2004; Chambolle & Darbon, 2009).

In ǫ-NN and K-NN, the values of ǫ and K directly affect the sparsity of the graphs and hence

the computational performance of the fused lasso estimators. Corollary 3.23 in Miller et al. (1997)

provides an upper bound on the maximum degree of arbitrary K-NN graphs in R
d .

2.2. Example

To illustrate the main advantages of the K-NN fused lasso, we construct a simple example.

The ability to adapt to the local smoothness of the regression function will be referred to as

local adaptivity, and the ability to adapt to the density of the design points will be referred to

as manifold adaptivity. The performance gains of the K-NN fused lasso are most pronounced
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Fig. 1. (a) Heatmap of n = 5000 draws from (5). (b) n = 5000 samples generated as in (1), with independent and
identically distributed εi ∼ N (0, 0.5), X having probability density function as in (5), and f0 as given in (6); the vertical

axis corresponds to f0(xi) and the other two axes display the two covariates.

when these two effects happen in concert, i.e., when the regression function is less smooth where

design points are denser. These properties are manifested in the following example.

We generate X ∈ R
2 according to the probability density function

p(x) =
1

5
1{[0,1]2\[0.4,0.6]2}(x) +

16

25
1{[0.45,0.55]2}(x) +

4

25
1{[0.4,0.6]2\[0.45,0.55]2}(x). (5)

Thus, p concentrates 64% of its mass in the small interval [0.45, 0.55]2 and 80% of its mass in

[0.4, 0.6]2. Figure 1(a) displays a heatmap of n = 5000 observations drawn from (5).

We define f0 : R
2 → R in (1) to be the piecewise-constant function

f0(x) = 1{

‖x− 1
2 (1,1)T‖2

2 �
2

1000

}(x). (6)

We then generate {(xi, yi)}
n
i=1 with n = 5000 from (1); the regression function is displayed in

Fig. 1(b). This simulation study has the following characteristics: the function f0 in (6) is not

Lipschitz, but does have low total variation; and the probability density function p is nonuniform

with higher density in the region where f0 is less smooth.

We compared the following methods in this example:

(i) K-NN fused lasso, with the number of neighbours set to K = 5 and the tuning parameter

λ chosen to minimize the average mean squared error over 100 Monte Carlo replicates;

(ii) classification and regression trees, CART (Breiman et al., 1984), with the complexity

parameter chosen to minimize the average mean squared error over 100 Monte Carlo

replicates;

(iii) K-NN regression (see, e.g., Stone, 1977), with the number of neighbours K set to minimize

the average mean squared error over 100 Monte Carlo replicates.

The estimated regression functions resulting from these three approaches are displayed in

Fig. 2. We see that the K-NN fused lasso can adapt to low-density and high-density regions of the

distribution of covariates, as well as to the local structure of the regression function. By contrast,
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Fig. 2. (a) The function f0 in (6), evaluated on an evenly spaced grid of size 100 × 100 in [0, 1]2; (b) the estimate
of f0 obtained via the K-NN fused lasso; (c) the estimate of f0 obtained via CART; (d) the estimate of f0 obtained

via K-NN regression.

the method of Breiman et al. (1984) displays some artifacts due to the binary splits that make up

the decision tree, and K-NN regression undersmooths in large areas of the domain.

In practice, we anticipate that the K-NN fused lasso will outperform its competitors when the

data are highly concentrated around a low-dimensional manifold, and the regression function is

nonsmooth in that region, as in the above example. In our theoretical analysis, we will consider

the special case in which the data lie precisely on a low-dimensional manifold or a mixture of

low-dimensional manifolds.

3. Local adaptivity of the K-NN and ǫ-NN fused lasso approaches

3.1. Assumptions

We assume that in (1) the elements of ε = (ε1, . . . , εn)
T are independent and identically

distributed zero-mean sub-Gaussian random variables:

E(εi) = 0, pr(|εi| > t) � C exp{−t2/(2σ 2)} (i = 1, . . . , n) for all t > 0, (7)
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for some positive constants σ and C. Furthermore, we assume that ε is independent of X .

In addition, for a set A ⊂ A with (A, dA) a metric space, we write Bǫ(A) = {a :

there exists a′ ∈ A with dA(a, a′) � ǫ}. Let ∂A denote the boundary of the set A. The mean

squared error of θ̂ is defined as ‖θ̂ − θ∗‖2
n = n−1

∑n
i=1(θ̂i − θ∗

i )2. The Euclidean norm of a

vector x ∈ R
d is denoted by ‖x‖2 = (x2

1 + · · · + x2
d
)1/2. For s ∈ N, write 1s = (1, . . . , 1)T ∈ R

s.

In the covariate space X , we consider the Borel σ -algebra B(X ) induced by the metric dX . Let

µ be a measure on B(X ). We complement the model in (1) by assuming that the covariates inde-

pendently satisfy xi ∼ p(x). Thus, p is the probability density function of the distribution of the

xi with respect to the measure space {X , B(X ), µ}. Note that X can be a manifold of dimension

d in a space of much higher dimension.

We begin by stating assumptions on the distribution of the covariates p(·) and on the metric

space (X , dX ). In the theoretical results in Györfi et al. (2006, § 3), it is assumed that p is the

probability density function of the uniform distribution on [0, 1]d . In this section we will require

only that p be bounded above and below. This condition appeared in the framework for studying

K-NN graphs in Von Luxburg et al. (2014) and in the work on density quantization by Alamgir

et al. (2014).

Assumption 1. The density p satisfies 0 < pmin < p(x) < pmax for all x ∈ X , where

pmin, pmax ∈ R.

Although we do not require that X be a Euclidean space, we do require that balls in X have

volume, with respect to µ, that behaves similarly to the Lebesgue measure of balls in R
d . This

is expressed in the next assumption, which appeared as part of the definition of a valid region in

Von Luxburg et al. (2014, Definition 2).

Assumption 2. The base measure µ in X satisfies

c1,drd
� µ{Br(x)} � c2,drd for all x ∈ X ,

for all 0 < r < r0, where r0, c1,d and c2,d are positive constants and d ∈ N\{0, 1} is the intrinsic

dimension of X .

Next, we make an assumption about the topology of the space X . We require that the space

have no holes and be topologically equivalent to [0, 1]d , in the sense that there exists a continuous

bijection between X and [0, 1]d .

Assumption 3. There exists a homeomorphism h : X → [0, 1]d , i.e., a continuous bijection

with a continuous inverse, such that

Lmin dX (x, x′) � ‖h(x) − h(x′)‖2 � LmaxdX (x, x′) for all x, x′ ∈ X ,

for some positive constants Lmin and Lmax, where d ∈ N\{0, 1} is the intrinsic dimension of X .

Assumptions 2 and 3 immediately hold if we take X = [0, 1]d , with dX the Euclidean distance,

h the identity mapping in [0, 1]d , and µ the Lebesgue measure in [0, 1]d . A metric space (X , dX )

that satisfies Assumption 3 is a special case of a differential manifold; the intuition is that the

space X is a chart of the atlas for this differential manifold.

In Assumptions 2 and 3 we assume d > 1, since local adaptivity in nonparametric regression

is well understood in one dimension. For example, see Tibshirani (2014), Wang et al. (2016),

Guntuboyina et al. (2018) and references therein.
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300 O. H. Madrid Padilla et al.

We now state conditions on the regression function f0 defined in (1). The first assumption simply

requires bounded variation of the composition of the regression function with the homeomorphism

h from Assumption 3.

Assumption 4. The function g0 = f0 ◦ h−1 has bounded variation, i.e., g0 ∈ bv{(0, 1)d}, and

is also bounded. Here (0, 1)d is the interior of [0, 1]d , and bv{(0, 1)d} is the class of functions in

(0, 1)d of bounded variation. We refer the reader to the Supplementary Material for the explicit

construction of the bv{(0, 1)d} class. The function h was defined in Assumption 3.

If X = [0, 1]d and h(·) is the identity function in [0, 1]d , then Assumption 4 simply says that

f0 has bounded variation. However, to allow for more general scenarios, the condition is stated in

terms of the function g0 which has domain in the unit box, whereas the domain of f0 is the more

general set X .

We now recall the definition of a piecewise-Lipschitz function, which induces a much larger

class than the set of Lipschitz functions, as it allows for discontinuities.

Definition 1. Let 
ǫ := [0, 1]d\Bǫ(∂[0, 1]d).We say that a bounded function g : [0, 1]d → R

is piecewise Lipschitz if there exists a set S ⊂ (0, 1)d that has the following properties.

(i) The set S has Lebesgue measure zero.

(ii) For some constants CS , ǫ0 > 0, we have that µ[h−1{Bǫ(S)∪ ([0, 1]d\
ǫ)}] � CS ǫ for all

0 < ǫ < ǫ0.

(iii) There exists a positive constant L0 such that if z and z′ belong to the same connected

component of 
ǫ\Bǫ(S), then |g(z) − g(z′)| � L0‖z − z′‖2.

Roughly speaking, Definition 1 says that g is piecewise Lipschitz if there exists a small set

S that partitions [0, 1]d in such a way that g is Lipschitz within each connected component of

the partition. Theorem 2.2.1 in Ziemer (2012) implies that if g is piecewise Lipschitz, then g has

bounded variation on any open set within a connected component.

Theorem 1 will require Assumption 5, which is a milder condition on g0 than piece-

wise Lipschitz continuity. We now define some notation that is needed in order to introduce

Assumption 5.

For ǫ > 0 small enough, we denote by Pǫ a rectangular partition of (0, 1)d induced by

{0, ǫ, 2ǫ, . . . , ǫ(⌊1/ǫ⌋ − 1), 1}, so that all the elements of Pǫ have volume of order ǫd . Define


2ǫ = [0, 1]d\B2ǫ(∂[0, 1]d). Then, for a set S ⊂ (0, 1)d , define

Pǫ,S := {A ∩ 
2ǫ\B2 ǫ(S) : A ∈ Pǫ , A ∩ 
2ǫ\B2ǫ(S) |= ∅};

this is the partition induced in 
2ǫ\B2ǫ(S) by the grid Pǫ .

For a function g with domain [0, 1]d , define

S1(g, Pǫ,S) =
∑

A∈Pǫ,S

sup
zA∈A

1

ǫ

∫

Bǫ(zA)

∣

∣g(zA) − g(z)
∣

∣ dz. (8)

If g is piecewise Lipschitz, then S1(g, Pǫ,S) is bounded; see the Supplementary Material.

Next, define

S2(g, Pǫ,S) :=
∑

A∈Pǫ,S

sup
zA∈A

T (g, zA)ǫd (9)
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with

T (g, zA) = sup
z∈Bǫ(zA)

d
∑

l=1

∣

∣

∣

∣

∫

‖z′‖2�ǫ

∂ψ(z′/ǫ)

∂zl

{

g(zA − z′) − g(z − z′)

‖z − zA‖2 ǫd

}

dz′

∣

∣

∣

∣

, (10)

where ψ is a test function; see the Supplementary Material. Thus (9) is the summation, over

evenly sized rectangles of volume ǫ that intersect 
2 ǫ\B2ǫ(S), of the supremum values of the

function in (10). The latter, for a function g, can be thought as the average Lipschitz constant near

zA, see the expression within curly braces in (10), weighted by the derivative of a test function.

The scaling factor ǫd in (10) arises because the integral is taken over a set of measure proportional

to ǫd .

As with S1(g, Pǫ,S), one can verify that if g is a piecewise-Lipschitz function, then S2(g, Pǫ,S)

is bounded.

We now make use of (8) and (9) to state our next condition on g0 = f0 ◦ h−1. This next

condition is milder than assuming that g0 is piecewise Lipschitz; see Definition 1.

Assumption 5. Let 
ǫ := [0, 1]d\Bǫ(∂[0, 1]d). There exists a set S ⊂ (0, 1)d that has the

following properties.

(i) The set S has Lebesgue measure zero.

(ii) For some constants CS , ǫ0 > 0, we have that µ(h−1[Bǫ(S)∪ {(0, 1)d\
ǫ}]) � CS ǫ for all

0 < ǫ < ǫ0.

(iii) The summations S1(g0, Pǫ,S) and S2(g0, Pǫ,S) are bounded:

sup
0<ǫ<ǫ0

max{S1(g0, Pǫ,S), S2(g0, Pǫ,S)} < ∞.

We refer the reader to the Supplementary Material for a discussion on Assumptions 4 and 5. In

particular, we present an example illustrating that the class of piecewise-Lipschitz functions is,

in general, different from the class of functions for which Assumptions 4 and 5 hold. However,

both classes contain the class of Lipschitz functions, which is obtained by taking S = ∅ in

Definition 1.

3.2. Results

Letting θ∗
i = f0(xi), we express the mean squared errors of the K-NN fused lasso and the ǫ-NN

fused lasso in terms of the total variation of θ∗ with respect to the K-NN and ǫ-NN graphs.

Theorem 1. Let K ≍ log1+2r n for some r > 0. Then under Assumptions 1–3, with an

appropriate choice of the tuning parameter λ, the K-NN fused lasso estimator θ̂ satisfies

‖θ̂ − θ∗‖2
n = Opr

(

log1+2r n

n
+

log1.5+r n

n
‖∇GK θ∗‖1

)

.

This upper bound also holds for the ǫ-NN fused lasso estimator with ǫ ≍ log(1+2r)/d n/n1/d if

we replace ‖∇GK θ∗‖1 by ‖∇Gǫθ
∗‖1 and make an appropriate choice of λ.

Clearly, the upper bound in Theorem 1 is a function of ‖∇GK θ∗‖1 or ‖∇Gǫθ
∗‖1 for the K-NN

or ǫ-NN graph, respectively. For the grid graph considered in Sadhanala et al. (2016), ‖∇Gθ∗‖1 ≍

n1−1/d , leading to the rate n−1/d . However, for a general graph, there is no a priori reason to expect
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that ‖∇Gθ∗‖1 ≍ n1−1/d . Our next result shows that ‖∇Gθ∗‖1 ≍ n1−1/d for G ∈ {GK , Gǫ}, under

the assumptions discussed in § 3.1.

Theorem 2. Under Assumptions 1–5 or under Assumptions 1–3 and piecewise Lipschitz con-

tinuity of f0 ◦ h−1, if K ≍ log1+2r n for some r > 0, then for an appropriate choice of the tuning

parameter λ, the K-NN fused lasso estimator defined in (3) satisfies

‖θ̂ − θ∗‖2
n = Opr

(

logα n

n1/d

)

(11)

with α = 3r + 5/2 + (2r + 1)/d. Moreover, under Assumptions 1–3 and piecewise Lipschitz

continuity of f0 ◦ h−1, f̂ defined in (4) with the K-NN fused lasso estimator satisfies

EX ∼p

{

∣

∣f0(X ) − f̂ (X )
∣

∣

2
}

= Opr

(

logα n

n1/d

)

. (12)

Furthermore, under the same assumptions, (11) and (12) hold for the ǫ-NN fused lasso estimator

with ǫ ≍ log(1+2r)/d n/n1/d .

Theorem 2 indicates that under Assumptions 1–5 or under Assumptions 1–3 and piecewise

Lipschitz continuity of f0 ◦ h−1, both the K-NN fused lasso and the ǫ-NN fused lasso estimators

attain a convergence rate of n−1/d , ignoring logarithmic terms. Importantly, Theorem 3.2 of

Györfi et al. (2006) shows that in the two-dimensional setting, this rate is actually minimax for

estimation of Lipschitz-continuous functions when the design points are uniformly drawn from

[0, 1]2. Thus, when d = 2, both the K-NN fused lasso and the ǫ-NN fused lasso are minimax for

estimating functions in the class implied by Assumptions 1–5, and also in the class of piecewise-

Lipschitz functions implied by Assumptions 1–3 and Definition 1. In higher dimensions (d > 2),

by the lower bound in Castro et al. (2005, Proposition 2), we can conclude that both estimators

attain nearly minimax rates for estimating piecewise-Lipschitz functions, whereas it is unknown

whether the same is true under Assumptions 1–5. A different method, similar in spirit to the

method of Breiman et al. (1984), was introduced in Castro et al. (2005, Appendix E). Castro

et al. (2005) showed that this approach is also nearly minimax for estimating elements in the

class of piecewise-Lipschitz functions, although is unclear whether a computationally feasible

implementation of their algorithm is available.

We see from Theorem 2 that both of the fused lasso estimators are locally adaptive, in the sense

that they can adapt to the form of the function f0. Specifically, these estimators do not require

knowledge of the set S in Assumption 5 or Definition 1. This is similar in spirit to the one-

dimensional fused lasso, which does not require knowledge of the breakpoints when estimating

a piecewise-Lipschitz function.

There is, however, an important difference in the applicability of Theorem 2 to the K-NN

fused lasso and to the ǫ-NN fused lasso. To attain the rate in Theorem 2, the ǫ-NN fused lasso

requires knowledge of the dimension d, since this quantity appears in the rate of decay of ǫ; but

in practice the value of d may not be clear. For instance, suppose that X = [0, 1]2 × {0}; this

is a subset of [0, 1]3, but it is homeomorphic to [0, 1]2, so d = 2. If d is unknown, then it can

be challenging to choose ǫ for the ǫ-NN fused lasso. By contrast, the choice of K in the K-NN

fused lasso involves only the sample size n. Consequently, local adaptivity of the K-NN fused

lasso may be much easier to achieve in practice.
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4. Manifold adaptivity of the K-NN fused lasso

In this section, we allow the observations {(xi, yi)}
n
i=1 to be drawn from a mixture distribution

in which each mixture component satisfies the assumptions in § 3. Under these assumptions, we

show that the K-NN fused lasso estimator can still achieve a desirable rate.

We assume

yi = θ∗
i + εi (i = 1, . . . , n),

θ∗
i = f0,zi(xi),

xi ∼ pzi(x),

pr(zi = l) ∼ π∗
l (l = 1, . . . , ℓ),

(13)

where ε satisfies (7), π∗
l

∈ [0, 1] with
∑ℓ

l=1 π∗
l

= 1, pl is a density with support Xl ⊂ X ,

f0,l : Xl → R, and {Xl}l=1,...,ℓ is a collection of subsets of X . For simplicity, we will assume that

X ⊂ R
d for some d > 1 and that dX is the Euclidean distance. In (13), the observed data are

{(xi, yi)}
n
i=1. The remaining ingredients in (13) are either latent or unknown.

We further assume that each set Xl is homeomorphic to a Euclidean box of dimension

depending on l, as follows.

Assumption 6. For l = 1, . . . , ℓ, the set Xl satisfies Assumptions 1–3 with metric given by dX ,

dimension dl ∈ N\{0, 1}, and µ equal to some measure µl . In addition, the following hold.

(i) There exists a positive constant c̃l such that the set ∂Xl =
⋃

l′ |=l Xl′ ∩ Xl satisfies

µl{Bǫ(∂Xl)
⋂

Xl} � c̃lǫ (14)

for any small enough ǫ > 0.

(ii) There exists a positive constant rl such that for any x ∈ Xl , either

inf
x′′∈∂Xl

dX (x, x′′) < dX (x, x′) for all x′ ∈ X \Xl (15)

or Bǫ(x) ⊂ Xl for all ǫ < rl .

The constraints implied by Assumption 6 are very natural. Inequality (14) states that the

intersections of the manifolds X1, . . . , Xℓ are small. To put this into perspective, if the extrinsic

space (X ) were [0, 1]d with Lebesgue measure, then balls of radius of ǫ would have measure

ǫd , which is less than ǫ for all d > 1, and the set Bǫ(∂[0, 1]d) ∩ [0, 1]d would have measure

that scales like ǫ, which is the same scaling as in (14). Furthermore, (15) holds if X1, . . . , Xℓ are

compact and convex subsets of R
d whose interiors are disjoint.

We are now ready to extend Theorem 2 to the framework described in this section.

Theorem 3. Suppose the data are generated as in (13) and that Assumption 6 holds. Suppose

also that the functions f0,1, . . . , f0,ℓ either satisfy Assumptions 4 and 5 or are piecewise Lipschitz

in the domain Xl . Then for an appropriate choice of the tuning parameter λ, the K-NN fused

lasso estimator defined in (3) satisfies

‖θ̂ − θ∗‖2
n = Opr

{

poly(log n)

ℓ
∑

l=1

π∗
l

(π∗
l

n)1/dl

}

,
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provided that n min{π∗
l

: l ∈ [ℓ]} � c0nr0 and K ≍ log1+2r n for some constants c0, r0, r > 0,

where poly(·) is a polynomial function. Here, the π∗
l

are allowed to change with n.

When dl = d for all l ∈ [ℓ] in Theorem 3, we obtain, ignoring logarithmic factors, the

rate n−1/d , which is minimax when the functions f0,l are piecewise Lipschitz. The rate is also

minimax when d = 2 and the functions f0,l satisfy Assumptions 4 and 5. In addition, our rates

can be compared with those in the existing literature on manifold adaptivity. Specifically, when

d = 2, the rate n−1/2 is attained by local polynomial regression (Bickel & Li, 2007) and Gaussian

process regression (Yang & Dunson, 2016) for the class of differentiable functions with bounded

partial derivatives, and by K-NN regression for Lipschitz functions (Kpotufe, 2011). In higher

dimensions, the methods of Bickel & Li (2007), Yang & Dunson (2016) and Kpotufe (2011)

attain better rates than n−1/d on smaller classes of functions that do not allow for discontinuities.

Finally, we refer the reader to the Supplementary Material for an example suggesting that the

ǫ-NN fused lasso estimator may not be manifold adaptive.

5. Experiments

5.1. Simulated data

Throughout this section, we take dX to be Euclidean distance. We compare the following

approaches:

(i) the ǫ-NN fused lasso, with ǫ held fixed and λ treated as a tuning parameter;

(ii) the K-NN fused lasso, with K held fixed and λ treated as a tuning parameter;

(iii) CART (Breiman et al., 1984), implemented in the R (R Development Core Team, 2020)

package rpart, with the complexity parameter treated as a tuning parameter;

(iv) multivariate adaptive regression splines, mars (Friedman, 1991), implemented in the R

package earth, with the penalty parameter treated as a tuning parameter;

(v) random forests, RF (Breiman, 2001), implemented in the R package randomForest,

with the number of trees fixed at 800 and with the minimum size of each terminal node

treated as a tuning parameter;

(vi) K-NN regression (e.g., Stone, 1977), implemented in Matlab using the function

knnsearch, with K treated as a tuning parameter.

We evaluate each method’s performance in terms of the mean squared error, as defined in § 3.1.

Specifically, we apply each method to 150 Monte Carlo datasets with a range of tuning parameter

values. For each method, we then identify the tuning parameter value that leads to the smallest

average mean squared error over the 150 datasets. We refer to this smallest average mean squared

error as the optimized mean squared error in what follows.

In our first two scenarios we consider d = 2 covariates and let the sample size n vary.

Scenario 1. The function f0 : [0, 1]2 → R is piecewise constant,

f0(x) = 1{

t∈R2:‖t− 3
4 (1,1)T‖2 <‖t− 1

2 (1,1)T‖2

}(x).

The covariates are drawn from a uniform distribution on [0, 1]2. The data are generated as in (1)

with N (0, 1) errors.

Scenario 2. The function f0 : [0, 1]2 → R is as in (6), with generative density for X as in (5).

The data are generated as in (1) with N (0, 1) errors.
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Fig. 3. (a) Scatterplot of data generated under Scenario 1; the vertical axis displays f0(xi) and the other two axes display
the two covariates. (b) Optimized mean squared error, MSE, averaged over 150 Monte Carlo simulations, of competing
methods under Scenario 1; here ǫ1 = (3/4)(log n/n)1/2 and ǫ2 = (log n/n)1/2. (c) Computational time, in seconds
for Scenario 1, averaged over 150 Monte Carlo simulations. (d) Optimized mean squared error, averaged over 150
Monte Carlo simulations, of competing methods under Scenario 2. The methods under comparison are MARS (green
solid line and asterisks), CART (red dashed line and plus signs), K-NN (olive dashed line and crosses), 3-NN fused
lasso (blue dashed line and downward-pointing triangles), 4-NN fused lasso (blue dashed line and upward-pointing
triangles), 5-NN fused lasso (blue dashed line and rightward-pointing triangles), ǫ1-NN fused lasso (purple dashed

line and squares), ǫ2-NN fused lasso (purple dashed line and stars), and RF (gold dashed line and diamonds).

Data generated under Scenario 1 are displayed in Fig. 3(a). Data generated under Scenario 2

are displayed in Fig. 1(b).

Figure 3(b) and (d) display the optimized mean squared error as a function of the sample size

for Scenarios 1 and 2, respectively. The K-NN fused lasso gives the best results in both scenarios.

The ǫ-NN fused lasso performs a little worse than K-NN fused lasso in Scenario 1, and very

poorly in Scenario 2; the results are not shown.
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Fig. 4. Optimized mean squared error (MSE), averaged over 150 Monte Carlo simulations, for (a) Scenario 3 and
(b) Scenario 4. In both scenarios, ǫ1 is chosen to be the largest value such that the total number of edges in the
graph Gǫ1

is at most 50 000. The methods under comparison are MARS (green solid line and asterisks), CART
(red dashed line and plus signs), K-NN (olive dashed line and crosses), 3-NN fused lasso (blue dashed line and
downward-pointing triangles), 4-NN fused lasso (blue dashed line and upward-pointing triangles), 5-NN fused lasso
(blue dashed line and rightward-pointing triangles), ǫ1-NN fused lasso (purple dashed line and squares), and RF

(gold dashed line and diamonds).

Timing results for all approaches under Scenario 1 are given in Fig. 3(c). For all methods, the

times reported are averaged over a range of tuning parameter values. For instance, for the K-NN

fused lasso, we fix K and compute the time for different choices of λ; we then report the average

of those times.

For the next two scenarios, we consider n = 8000 and values of d in {2, . . . , 25}.

Scenario 3. The function f0 : [0, 1]d → R is defined as

f0(x) =

{

1,
∥

∥x − 1
4
1d

∥

∥

2
<

∥

∥x − 3
4
1d

∥

∥

2
,

−1, otherwise,

and the density p is uniform in [0, 1]d . The data are generated as in (1) with independent

εi ∼ N (0, 0.3).

Scenario 4. The function f0 : [0, 1]d → R is defined as

f0(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2, ‖x − q1‖2 < min{‖x − q2‖2, ‖x − q3‖2, ‖x − q4‖2},

1, ‖x − q2‖2 < min{‖x − q1‖2, ‖x − q3‖2, ‖x − q4‖2},

0, ‖x − q3‖2 < min{‖x − q1‖2, ‖x − q2‖2, ‖x − q4‖2},

−1, otherwise,

where q1 = (1
4
1

T

⌊d/2⌋, 1
2
1

T

d−⌊d/2⌋)
T, q2 = (1

2
1

T

⌊d/2⌋, 1
4
1

T

d−⌊d/2⌋)
T, q3 = (3

4
1

T

⌊d/2⌋, 1
2
1

T

d−⌊d/2⌋)
T

and q4 = (1
2
1

T

⌊d/2⌋, 3
4
1

T

d−⌊d/2⌋)
T. Once again, the generative density for X is uniform in [0, 1]d .

The data are generated as in (1) with independent εi ∼ N (0, 0.3).
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Fig. 5. Results for the flu data; the normalized prediction error was obtained by dividing each method’s test set
prediction error by the test set prediction error of the 7-NN fused lasso. The methods under comparison are the 5-NN
fused lasso (dark blue), neural networks (olive green), ǫ1-NN fused lasso (purple), ǫ2-NN fused lasso (light pink), ǫ3-NN
fused lasso (dark pink), CART (red), MARS (green), TPS (dark grey), RF (gold) and 7-NN fused lasso (light blue).

The optimized mean squared error for each approach is displayed in Fig. 4. When d is small,

most methods perform well; however, as d increases, the performance of the competing methods

quickly deteriorates, whereas the K-NN fused lasso continues to perform well.

5.2. Flu data

The data consist of flu activity and atmospheric conditions between 1 January 2003 and 31

December 2009 in different cities across the U.S. state of Texas. Our data-use agreement does

not permit dissemination of the flu activity data, which come from medical records. The atmo-

spheric conditions, which include temperature and air quality, can be obtained directly from

http://wonder.cdc.gov/. Using the number of flu-related doctor’s office visits as the

dependent variable, we fit a separate nonparametric regression model to each of 24 cities; each

day is treated as a separate observation, so that the number of samples is n = 2556 in each

city. Five independent variables are included in the regression: maximum and average observed

concentrations of particulate matter, maximum and minimum temperatures, and day of the year.

All variables are scaled to lie in [0, 1]. We performed 50 75%/25% splits of the data into a training

set and a test set. All models were fitted on the training data, using five-fold cross-validation to

select tuning parameter values. Then prediction performance was evaluated on the test set.

We apply the K-NN fused lasso with K ∈ {5, 7} and the ǫ-NN fused lasso with ǫ = j/n1/d

for j ∈ {1, 2, 3}, which is motivated by Theorem 2, and with larger choices of ǫ, leading to worse

performance. We also fit neural networks (Hagan et al., 1996; implemented in Matlab using the

functions newfit and train), thin plate splines (tps, Duchon, 1977; implemented using the

R package fields), and MARS, CART and RF as described in § 5.1.

The average test set prediction error across the 50 test sets is displayed in Fig. 5. It can be seen

that the K-NN fused lasso and the ǫ-NN fused lasso have the best performances. In particular,

the K-NN fused lasso performs best in 13 out the 24 cities, and second best in 6 cities. In 8 of

the 24 cities, the ǫ-NN fused lasso performs best.

We contend that the K-NN fused lasso achieves superior performance because it adapts to

heterogeneity in the density of design points p, i.e., manifold adaptivity, and adapts to hetero-

geneity in the smoothness of the regression function f0, i.e., local adaptivity. In our theoretical

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

-a
b
s
tra

c
t/1

0
7
/2

/2
9
3
/5

7
1
7
4
5
7
 b

y
 U

n
iv

e
rs

ity
 O

f C
a
lifo

rn
ia

 u
s
e
r o

n
 2

3
 M

a
y
 2

0
2
0



308 O. H. Madrid Padilla et al.

results, we have substantiated this contention through prediction error rate bounds for a large class

of regression functions of heterogeneous smoothness and a large class of underlying measures

with heterogeneous intrinsic dimensionality. Our experiments demonstrate that these theoretical

advantages translate into practical performance gains.
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