Deep Learning Toolkit-Accelerated Analytical
Co-optimization of CNN Hardware and Dataflow

Rongjian Liang’ Jianfeng Song
Nvdia Department of ECE
rliang@nvidia.com Texas A&M University
jsong26@tamu.edu

ABSTRACT

The continuous growth of CNN complexity not only intensifies
the need for hardware acceleration but also presents a huge chal-
lenge. That is, the solution space for CNN hardware design and
dataflow mapping becomes enormously large besides the fact that it
is discrete and lacks a well behaved structure. Most previous works
either are stochastic metaheuristics, such as genetic algorithm,
which are typically very slow for solving large problems, or rely
on expensive sampling, e.g., Gumbel Softmax-based differentiable
optimization and Bayesian optimization. We propose an analytical
model for evaluating power and performance of CNN hardware
design and dataflow solutions. Based on this model, we introduce a
co-optimization method consisting of nonlinear programming and
parallel local search. A key innovation in this model is its matrix
form, which enables the use of deep learning toolkit for highly
efficient computations of power/performance values and gradients
in the optimization. In handling power-performance tradeoff, our
method can lead to better solutions than minimizing a weighted
sum of power and latency.

The average relative error of our model compared with Timeloop
is as small as 1%. Compared to state-of-the-art methods, our ap-
proach achieves solutions with up to 1.7 X shorter inference
latency, 37.5% less power consumption, and 3 X less area on
ResNet 18. Moreover, it provides a 6.2 X speedup of optimization
runtime.

CCS CONCEPTS

« Hardware — Hardware accelerators.

KEYWORDS
CNN accelerator, CNN dataflow, CNN compiler optimization

ACM Reference Format:

Rongjian Liang, Jianfeng Song, Yuan Bo, and Jiang Hu. 2022. Deep Learn-
ing Toolkit-Accelerated Analytical Co-optimization of CNN Hardware and
Dataflow. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD °22), October 30-November 3, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3508352.3549402

“Work performed while studying at the Texas A&M University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD °22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9217-4/22/10...$15.00
https://doi.org/10.1145/3508352.3549402

Yuan Bo Jiang Hu
Department of ECE Department of ECE & CSE
Rutgers University Texas A&M University

bo.yuan@soe.rutgers.edu jlanghu@tamu.edu

1 INTRODUCTION

Driven by market demands, CNN complexity has reached the order
of billions of parameters [10] and continues to grow. This trend not
only increases the need for customized CNN hardware acceleration
but also makes the accelerator design a huge challenge. In addition,
the performance and power of CNN computing heavily depend
on how to map a dataflow onto a given hardware, thereby making
the combined solution space for the hardware design and dataflow
mapping become enormously large. Moreover, because the solution
space is discrete as well as lacking a well-behaved structure, it
is quite challenging to find efficient solution search schemes. A
generic combinatorial approach like genetic algorithm [15] may
entail hours of computation time for a large network. In system-
level development, where a variety of high-level decisions need to
be carefully assessed through optimization, such computation cost
is painfully expensive.

Existing Works and Limitations. Due to the importance of
CNN accelerator design and its challenge, there have been numer-
ous related studies published in recent literature [2, 6, 8, 9, 13, 15,
17, 20, 27, 28, 30, 32, 33]. Genetic algorithm [15] works well for
dataflow mapping but is difficult to scale when the hardware is
simultaneously optimized. Gumbel Softmax-based differentiable
optimization [6] relies on expensive sampling and is vulnerable to
large solution variations. Neural network-based CNN accelerator
performance model [3] is also differentiable. However, its model
training cost is very expensive. An analytical model is proposed in
[32], but it comes with hidden "if-else" operations, which degrade
the efficiency of its gradient computation. NAS (Neural Architecture
Search) and accelerator co-design [1, 3, 6, 12, 18, 30, 33] usually sim-
plify the formulation of its hardware design or dataflow component
in order to restrict solution space.

Our goal is to develop a CNN hardware and dataflow co-
optimization method that can attain significantly better solutions
and much faster computation speed than existing approaches. We
achieve this goal through a new modeling technique and a new
optimization approach that dovetail with each other.

Our first key contribution is an analytical performance model for
CNN hardware and dataflow under a given workload. Its novelty lies
in two advantages compared to the previous analytical model [32]:

(1) We propose a one-time offline computation technique that
can help completely avoid any "if-else" operations, which
are present in the model of [32].

(2) We design the model to be a matrix form that enables the use
of deep learning toolkit, such as PyTorch, for highly efficient
computation of power/performance values and gradients.

The second main contribution is a two-stage optimization scheme.
In stage I, the problem is relaxed to continuous non-linear optimiza-
tion. It is then cast as neural network training and solved through

https://doi.org/10.1145/3508352.3549402
https://doi.org/10.1145/3508352.3549402

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

a deep learning toolkit with parallel computing and automatic gra-
dient propagation. Stage II is to obtain an integer solution through
parallel local search. Our model facilitates not only efficient com-
puting in stage I but also a large search region in stage II for better
solution quality. Our method is a multi-objective optimization that
leads to Pareto front solutions for the power-performance tradeoff.

To evaluate the accuracy of our model, we compared the HW
performance value from our model with Timeloop and achieved
an average 1% relative error. Experiments are performed on three
widely used CNN designs. Compared to state-of-the-art methods,
our approach achieves solutions with 1.7x shorter inference latency,
37.5% less power consumption, and 3X less area on ResNet 18. It
also provides a maximum of 6.2X speedup of optimization runtime.
Moreover, it can obtain a better power-performance tradeoff than
minimizing a weighted sum of power and latency.

2 PREVIOUS METHODS

Genetic algorithm is a general framework for combinatorial
optimization and is applied for CNN dataflow optimization in
GAMMA [15]. It is well known that genetic algorithm tends to
be very slow in solving large problems. Although it works well for
dataflow mapping, its runtime would increase remarkably for CNN
hardware-dataflow co-optimization. Bayesian optimization (BO) is
another general framework and is applied in DNN accelerator co-
design [24]. BO requires numerous sampling of a raw model for the
objective function. Usually, such a raw model is complicated, and
its sampling becomes a bottleneck for runtime. As such, the work
of [24] optimizes only a small subset of hardware and dataflow op-
tions. Recently, there is a trend of NAS (Neural Architecture Search)
and accelerator co-design [3, 6, 30, 33]. Arguably, NAS-accelerator
co-design is a superset of CNN hardware-dataflow co-optimization.
However, the co-design space is so huge that existing approaches
have to simplify their hardware/dataflow components. For instance,
the co-design in [33] skips dataflow optimization, and the work of
[30] is restricted to a limited number of hardware templates.

In AutoNBA [6], the objective function is made differentiable
through Gumbel Softmax [11] so that gradient-based search is en-
abled. However, Gumbel Softmax requires sampling of a raw model,
which can be expensive. Moreover, this approach is vulnerable
to large solution variations. The work of DANCE [3] employs a
neural network-based model to facilitate differentiability. However,
its training data generation is very expensive and thus offsets its
advantage in optimization. Timeloop [20] and Maestro [16] provide
models for evaluating DNN hardware and dataflow, such as latency
and power, but they are neither differentiable nor analytical. The
optimizations in Timeloop [20] are exhaustive search and random
sampling. An analytical performance model for DNN accelerators
is introduced in [32].

Other related works include [1, 4] for FPGAs, Sparseloop [5, 7, 21,
29] for sparse tensors, and [22] for memristor-based accelerators.
Also, our optimization method is inspired by Dreamplace [19],
which accelerates VLSI placement with deep learning toolkits.

3 PRELIMINARIES
3.1 CNN Convolution Layer

A generic CNN convolution layer can be expressed as a 6-level loop
nest, as shown in Listing 1. Related symbols and their meaning are

Rongjian Liang, Jianfeng Song, Yuan Bo, and Jiang Hu

listed in Table 1. Note that the fully-connected layer can be viewed
as a special type of CNN layer.

for m in range(M):
for ¢ in range(C):
for i in range(I):
for j in range(J):
for y in range(Y):
for x in range(X):
OQutput[m][il[j] +=
Weight[m][cILyl[xI*xInput[cJ[i*S+yJ[j*S+x]

Listing 1: CNN example
Table 1: Symbols used in the paper

Symbol Meaning

IN input feature maps

ouT output feature maps

w convolution kernels

M number of output feature maps

C number of input feature maps

LJ height and width of output feature map
Y, X height and width of convolution kernel
S convolution stride

In(x) logarithmic operation

exp(x) exponential operation

3.2 Hardware Resource Allocation and Dataflow

The architecture of CNN accelerators depends on two key compo-
nents: hardware resource allocation and dataflow strategy.

3.2.1 Hardware resource allocation. Spatial CNN accelerators con-
tain an array of Processing Elements (PE), each of which has a MAC
to compute the partial sum and local buffers, called Register File
(RF), to store IN, OUT, and W data. The IN, OUT, and W data can
share one RF or they can have an individual RF. The accelerators
typically also house a global shared buffer (GB) to prefetch data
from external DRAM. Again, the IN, OUT, and W data might also
have their individual global buffer. Networks-on-chip are used to
transfer data among PEs and between PEs and the global buffer.
The hardware resource allocation between on-chip compute (MAC)
and on-chip buffers, as well as the allocation among different buffer
components, have a significant impact on the accelerators’ perfor-
mance [14].

3.2.2 Dataflow strategy. It is mainly determined by three compo-
nents. 1). Loop order. Different data reuse opportunities can be
utilized by swapping the order of loops in Listing 1. 2). Spatial
unrolling, which consists of the number of levels of parallelism and
the specific loops selected for spatial unroll. 3). Tiling, which refers
to determining the tiling size for each CNN dimension.

3.2.3 Relationship between hardware resource allocation, dataflow
strategy, and hardware performance. The latency of CNN inference
is determined by the computation time and the data transfer time.
The computation time is affected by the spatial unrolling and con-
strained by the size of the PE array. The data transfer time is affected
by all three dataflow components and limited by the data transfer
bandwidth. The total power comprises of the computation power
and the data transfer power, which mainly depends on the dataflow

Deep Learning Toolkit-Accelerated Analytical
Co-optimization of CNN Hardware and Dataflow

strategy and hardware resource allocation. The area is decided by
the hardware resource allocation.

3.3 Footprint, Buffering Level, Buffer
Requirement and Traffic

The concept of footprint is introduced in [26] to denote the number
of distinct elements in IN, OUT or W used inside a specific loop.
The footprint at loop level I can be computed as follows.

Fin(Ly) = c(D[GED) = 1) +S+y(D][GD) - 1) *S+x(D], (1)

Four (L) = m(Di(D)j(D),)

Fy (L) = m(De(Dy(Dx(D), ®)

where Frn (L;), Four(L;) and Fyy (L;) are the footprint at loop level

I for IN, OUTand W, respectively. And m(l) is the product of all tiled

loop boundaries associated with CNN layer dimension M from loop

level 0 to loop level I. In the example in Listing 2, the m(5) = mg

and m(10) = mgmg. c(1),i(1), j(I),y(I) and x(I) are defined in a
similar way.

The concept of buffering level is also proposed in [26] to associate
on-chip buffer requirements with footprint. Buffering level denotes
a nested loop level at which data are buffered for reuse. Note that
IN, OUT, and W data can have different buffering levels at each
memory hierarchy. In the example in Listing 2, loop L3 is selected
as the buffering level for IN array at register file. Then the buffer
requirement for IN at register file is the size of distinct elements
in IN used in one iteration of loop L3. The buffer size requirement
when buffering at loop level I must be sufficient enough to store
the total number of distinct elements that are used in one iteration
of level I, and it can be computed as:

Px*Fx(L_), ifl > 1;
BSx(Ly) = {PX - =0 4

where X = IN,OUT, W, Px! is the numerical precision (in bytes)
used for its storage. Note that spatial unrolling loops (Lg and L7 in
Listing 2) would not be selected as buffering levels.

The data transfer traffic between DRAM and global buffer when
buffering at loop level I (I > 8) can be computed as:

TF)(Ly) = Px * Fx(Ly) * r[bj, (5)
j>1
where b; is the loop boundary at loop L;.

The traffic between global buffer and register file when buffering
at loop level L; (0 < I < 5) can be computed as:

beb
TEX(Ly) = Px * Fx (L) * —— [| b)» ©)
Sx j=8

where Sx is the number of PEs that share the same data.

3.4 Multi-Objective Optimization

We consider the latency, power, and area in the co-optimization of
CNN hardware and dataflow. It is a multi-objective optimization
problem. A common compromise is to optimize a linear combina-
tion of per-objective losses, called the weighted sum loss method
in this paper. However, it typically does not perform well when
the objectives conflict with each other (like in our case), and it is
hard to find the proper weights for the objectives. A gradient-based

IFor simplicity but without loss of generality, we set Px to 1 in this work.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

neural network training technique that can optimize a collection
of possibly conflicting objectives is proposed in [25]. Its network
parameter update scheme is as follows. Firstly, the gradients of
each objective w.r.t. the shared neural network parameters are com-
puted. Then a minimum-norm vector in the convex hull of the set
of gradient vectors is found. Finally, gradients are updated in the
direction of the minimum-norm vector. It has been shown in [25]
that such gradient update approach essentially optimizes an upper
bound for the multi-objective loss.

#DRAM Level
Lig: for ms in mp
Lig: for ¢3 in c¢p
Ly7: for i3 in ip
Lig: for j3 in jp
Li5: for y3 in yp
Liy: for x3 in xp

#Global Buffer Level
Lis: for my in mg
Lip: for ¢y in cg
Liy: for iy in ig
Liyp: for j in jg
Ly: for yy in yg
Lg: for x» in xg

#Spatial Unrolling
L;: for my in mg
L¢: for iy in ig

#Register File Level
Ls: for my in mpg <--Weight and Output Buffering Level
Ly: for ¢y in cgr
L3: for i() in iR
Ly: for jo in jr
Li: for yo in yr
Ly: for xp in xg

Output [mol [ip]l [jol+=

Weight [mo] [col [yol [xol*
Input [col [ip*S+yol [jo*S+xo]

<--Weight and Output Buffering Level

<--Input Buffering Level

<--Input Buffering Level

Listing 2: Example of design solution

4 PROBLEM FORMULATION

We study the co-optimization of hardware and dataflow for CNN
accelerators with a 2D PE-array and three-level memory hierarchy,
i.e., DRAM, GB, and RF.

The design parameters are defined as follows:

o LoopOrder & BufferingLevel vectors op = [7‘[1D, ﬂf, el ”kDD]’
_ G G G _ R _R R
oG = [71'1 ¥ ,...,nkG] and og = [ﬁl,ﬂz,...,ﬂkR].They

are one-hot vectors that indicate which loop order and buffer-
ing level are chosen in DRAM, GB, and RF, respectively. For
instance, og = [0, 1,0,...,0] means that the second combi-
nation of loop order and buffering level is selected for the RF
loops, i.e., Lo-Ls in Listing 2. kp, kg, kg are the total number
of combinations of loop order and buffering level at DRAM,
GB and RF, respectively.

e Boundary vectorm = [mp, mg, mg, ms|, where mp, mg, mg,
and mg are the tiled loop boundaries for M at DRAM, GB,
RF and spatial unrolling, respectively, as shown in Listing 2.
Similarly, we define loop boundaries for C, L, J, Y and X as
¢ = [ep,ci,cr.¢cs], i = [ip,iG,ir.isl. j = [ips jG, jr. Jsl.
x = [xp, xG, xR, xs], and y = [yp, yG. YR, ys|, respectively.
CNN dimensions that are not selected for spatial unrolling
have their spatial unrolling loop boundaries to be 1. In the

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

example of Listing 2, cs = js = ys = xs = 1. In this way, the
spatial unrolling is also encoded into the boundary vectors.

We let the GB size and RF size match their buffer requirements
computed according to Equation (4). And the PE array size is equal
to the product of the boundaries of spatial unrolling loops (e.g.,
mg * ig in Listing 2. In this way, hardware resource allocation is
also determined by our design parameters.

Given a CNN layer instance x with dimensions [M,C, L,], Y, X],
the objective is to minimize the inference latency, power, and area
by finding the best design parameters. The mathematical problem
formulation is defined as follows:

min HW(x;0) = [T(8),P(0),A(0)], (7)

0%{0p,0G,0r.m,c,i,j,r.q}

subject to
mpmgmgms = M, ®
epeGeres = C,)
ipigigis =1, (10)
jpiciris =J, (11)
YDYGYRYs =Y, (12)
XpXGXRXs = X, (13)
mp, Mg, MR, M, €D, CGs - - -» XD, XG» XR, Xs € N, (14)
op, oG and og are one-hot vectors, (15)

No more than two from [mg, cs, is, js, Xs, ys]are greater than 1.

(16)

Here T (), P(*), A(*) are the mapping from design parameters

to inference latency, power, and area. Constraints (8—14) ensure that

the tiling solution is legal. Constraint (15) means that only one loop

order and buffering level option can be chosen for each memory

level. And constraint (16) enforces that no more than two CNN

dimensions are selected for spatial unroll. It is a multi-objective

optimization problem, and our overall objective is to find a Pareto
optimal solution.

5 METHODOLOGY
5.1 Overview

Figure 1 depicts our CNN hardware dataflow co-optimization frame-
work. The core is an analytical hardware performance model in a
matrix form, which facilitates our two-stage optimization scheme.
In stage I, the original problem (Equation 7) is relaxed into a non-
linear programming problem, which is then been cast as neural
network training and solved through a deep-learning toolkit with
parallel computing and automatic gradient propagation. In stage
II, an integer solution is found by parallel local search around the
continuous solution output by non-linear optimization.

5.2 Analytical Hardware Performance Model in
a Matrix Form

5.2.1 Ln-Exp Trick. We propose a Ln-Exp trick which is the key

to our matrix-form model. Its main idea is illustrated via a few

examples.

The multiplication of a set of scalars can be expressed as the
inner product of two vectors. For example,

ajbic1 = exp{(q.,b), (17)

Rongjian Liang, Jianfeng Song, Yuan Bo, and Jiang Hu

where ¢ = [1,1,1], b =In [ay, b1, c1] and (, *) denotes inner prod-
uct.

The Ln-Exp trick can transform a series of multiplication of
scalars into a matrix multiplication operation. For instance,

artbicr azbzcz asbscs
ajcy agc; aszc3 | = exp{QB}, (18)
bicr baca bscs
where
1 1 1 ay az a3
O=|1 0 1 |,B=In| b1 by b3 |. (19)
0 1 1 c1T Cy 3

5.2.2 Computation of Buffer Size Requirement and Data Traffic. As
discussed in previous works [32], the key to hardware performance
evaluation is to calculate the buffer size requirements and the data
traffics between neighboring memory levels, based on which the
latency, power, and area can be easily computed.

One common property of previous analytical memory perfor-
mance models [26, 32] is that the buffer requirements and the data
traffics can be expressed as the product of a selected set of (tiled)
loop boundaries, and a limited number of their transformations.
Equations (1-6) are good examples. Via the Ln-Exp trick, they can be
described as the inner product of a binary vector, called query vector,
and a vector of the logarithm of loop boundaries and a few of their
transformations called In-bound vector. The query vector is mainly
determined by the selection of loop order and buffering level, i.e.,
by op, 0G, or; while the In-bound vector is decided by the tiling
and spatial unrolling, i.e., by m, c, i, j, r, q. In the example depicted
in Listing 2, the buffer size requirement for kernel weights at GB
can be derived from Equation (4) and computed as follows:

BSw (L11) = yg * XG * mg * mg * CR * xR * YR = exp (¢, b), (20)
where q = [0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0,0,1,1],
b =In([mp, ¢p, ip, jrR: XD, YD, MG €G> 1G> JG» XG> YG M, Is, MR,
CR, iR JR: XR, YR])-
According to Equation (5), the traffic of weight data from DRAM
to GB can be computed as follows:

TFY (L11) = mp#cpip*jp*xp*yp*mg*cg*+BSw (Li1) = eXP((Q'), b),

21
whereq’ =[1,1,1,1,1,1,1,1,0,0,1,1,1,0,1,1,0,0, 1, 1]. Note that a
few transformations of the loop boundaries, e.g., (ir — 1) * S + yg,
might be required for discussing the buffer requirement and data
transfer traffic of IN array, as implied by Equation (1).

Different loop orders and buffering levels can lead to the product
of different sets of loop boundaries. We can simply let the In-bound
vector involves the union of loop boundaries and transformations
required by various loop orders and buffering levels. And the query
vectors corresponding to different loop orders and buffering levels
can be stacked into a matrix, denoted as Query Matrix Q. For dif-
ferent memory levels of IN, OUT, and W arrays, we generate a set
of individual Query Matrices to compute the buffer size and data
transfer traffic. To further enable parallel evaluation of design solu-
tions, different In-bound vectors, corresponding to different tiling
and parallelism strategies, are stacked into a matrix, denoted as
Ln — Bound Matrix B. In this way, various loop order and buffering
level solutions, as well as tiling and parallelism solutions, can be
evaluated in parallel by a few matrix multiplications. The Buffer Size

Deep Learning Toolkit-Accelerated Analytical
Co-optimization of CNN Hardware and Dataflow

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

CNN Instance X

~

Qus o, BS] —
x ‘
|
® I 1 1 Implemented
exp HA n - Forward Backward in PyTorch
- Propagation ModelHW(« ; 0) Propagation
— (Compute (Compute Run in CPU
Notations E—— EEE == 7 PPA) Cradiert or GPU
Qgs: Query Matrix L l 1
for buffer size 1
HwW rfc
Qre: Query Matrix I ' I / Wy]

for data traffic
B: Ln-Bound Matrix r :
BS: Buffer Size Matrix buffering level solution and parallelism solution__design solution

TF: Data Traffic Matrix

T: Inference Time
Matrix

P: Power Matrix

A: Area Matrix T P A

Each row corresponds Each column Each element

to one loop order &

Matrix-Form HW Performance Model

corresponds to one tiling corresponds to one

HW(x ;)

(Non-Linear Optimization by Neural
N ¥
13
Search Around [lL_Parameters
the Continuous
Parameters

Training

Best Design
Solution

Parallel Local Search

Co-Optimization Engine

Figure 1: CNN hardware and dataflow co-optimization framework.

Matrices BS}; (X =IN,OUT,W and Y = GB, RF) can be computed
as follows:

BSY = Q}.'B, (22)

where Qﬁ&y is the Query Matrix of buffer size for X array at Y.
BS}Q(I’, J) corresponds to the buffer size requirement of X array
at memory level Y with the i-th combination of loop order and
buffering level and the j-th tiling and spatial unrolling.

Similarly, the Traffic Matrices TF}Q (X =IN,OUT,W and Y =
GR, RF) are computed as follows:

XY
TF), = Q7' B, (23)

where Q)T(},Y is the Query Matrix of data traffic for X array at mem-
ory level Y. Here, data traffic at GB means the data transfer between
DRAM and GB. And data traffic at RF means the the data transfer be-
tween GB and RF. With the Traffic Matrices, we can further obtain
the Buffer Access Matrices AC;? (X =IN,OUT,W and Y = DRAM,
global buffer, register file) by conducting a few linear transforma-
tions on the Traffic Matrices. AC;? represents the buffer access
counts of X array at memory level Y.

However, the curse of dimensionality prevents naive applica-
tions of the aforementioned matrix-form model to systems with
multi-level memory hierarchy. Since the height of the Query Matri-
ces Qg;;T €quals the number of combinations of loop order and

buffering level equals which grows exponentially to the number of
memory levels. We address this problem by breaking the coupling
between different memory levels. For example, Equation (20) can
be rewritten as

BSw (L11) = yoXG * (mMsmRCRYRXR)
= ygxg * Downstream Footprint (24)

= exp (p,b’) * Downstream Footprint,

where p = [0,0,0,0,1,1] and b’ = In[mg, cG, iG, jG, Y6, xG].- In
this way, we only need to consider the loop order and buffering
level options at the current memory level when computing the
buffer requirement. The result is then multiplied by the downstream
footprint. In this example, the downstream footprint means the
footprint when buffering at loop Lg.

Similarly, the traffic computation Equation (21) can be rewritten
as

w -
TFp (L11) = (mpepipjpYpxp) * MGeGYGXG * (MsMRCRYRXR)
= Upstream Bounds * mgcgygxg * Downstream Footprint

= Upstream Bounds * exp (p’, b) * Downstream Footprint,
(25)

where p’ = [1,1,0,0, 1, 1]. It means that the effects of higher mem-
ory levels on the traffic of lower levels can be described by the
product of upstream loop boundaries, and the effects of lower mem-
ory levels on a higher level can be described by the downstream
footprint.

It is also noteworthy that our method can incorporate various
memory performance models, as long as the buffer requirements
and the data transfer traffics can be expressed as the product of
loop boundaries and their transformations. In this paper, we mainly
deploy the memory performance model in [26]. It is an analyti-
cal model for loop-nest optimization targeting architectures with
application managed buffer, which is commonly used in CNN ac-
celerators. We derive the matrix-form and extend it to consider
multi-level memory hierarchy by our aforementioned techniques.

5.2.3 One-Time Offline Computation. As discussed in Section 5.2.2,
different loop orders and buffering levels can lead to the product of
different sets of loop boundaries when computing the buffer size
requirements and data traffic. Previous analytical models [26, 32]
contain a large number of hidden “if-else" operations to find the
right set of loop boundaries for a given loop order and buffering
level, this greatly degrades the efficiency of gradient computation.

We propose a one-time offline computation technique that can
completely avoid any “if-else" operations during the online eval-
uation of design solutions. To be specific, we generate the Query
Matrices Qgsl/(T p offline and reuse them across different CNN lay-

ers. As introduced in Section 5.2.2, each row in the Query Matrix is
a query vector that corresponds to one combination of loop order
and buffering level. It is a binary vector, and the locations of its
“1" elements indicate the set of loop boundaries that need to be
multiplied when computing buffer size or data traffic. In this way,

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

the results of “if-else" operations are baked into the Query Matrices
and reused across CNN layers.

Table 2: Per Access Power

RF size Energy (pJ) GB size Energy (p])

32B 0.06 32KB 5.82
64B 0.12 64 KB 8.1

128 B 0.24 128 KB 11.66
256 B 0.48 256 KB 15.6
512B 0.96 512 KB 23.27
1 KB 1.2 1 MB 36.32

5.24 Latency, Power and Area Computation. We define EPRAM a5
a constant scalar representing the per DRAM access power. But
the access power of GB and RF depends on their sizes, thus de-
pending on the hardware resource allocation. Table 2 is obtained
by interpolating the data reported in [31]. We can observe that
the per access power grows with the buffer size. Hence, we define
Per-Access-Power Matrices E}g (X =IN,OUT,W and Y = GB, RF)
as follows:

Ex (i, j) = tab(BSx (i, /)), (26)
where tab(x) means rounding up x to the closest buffer size in
Table 2 and fetching the corresponding per access power value.

The Memory Access Power Matrices Pm}; (X = IN,OUT, W
and Y = DRAM, GB, RF) can be calculated as:

EY (i j) = ACY(i,j), ifY =GB,RF,
PmY(i,j)=1 X" XA2In T 27
x () {EDRAM*AC;;(Lj), if Y = DRAM. @
The MAC computation power is
Pymac = Nmac * Emacs (28)

where Njrac is the count of MAC computations and Epgac is the
per MAC computation power.
The Total Power Matrix P can be obtained as:

Y
P= > Pmi+Pyacl (29)
X=IN,OUT,W
Y=DRAM, GB, RF
where J is an all-one matrix with the same shape as Pm};.
The Inference Latency Matrix T can be calculated as:
Nmac

T = Roeiiy
where the Npg (i, j) is the number of PEs, i.e., the product of bound-
aries of spatial unrolling loops, for the i-th combination of loop
order and buffering level and the j-th tiling strategy. Such inference
time can be achieved by providing a large enough data transfer band-
width, and we use the bandwidth as a constraint in our experiments.
The Bandwidth Requirement Matrices BW;; can be computed as:

(30)

BWy (i, j) = TFx (i, j)/ Ty (i,)- (31)
The Area Matrix A can be calculated as:
A= Z BSY Aspam + AmacNpE, (32)
X=IN,OUT,W
Y=GB, RF

where the Agrap is the area per buffer size unit and Aprac is the
area per MAC unit.

Rongjian Liang, Jianfeng Song, Yuan Bo, and Jiang Hu

5.3 Non-Linear Optimization by Neural
Network Training

It is difficult to directly solve the original problem in Equation (7),
due to its enormous and discrete solution space. Hence, we relax
the original problem into a non-linear optimization problem and
then solve it with a gradient-based approach.

5.3.1 Problem Relaxation. Originally, the tiled loop boundaries
mp, mg, mR, ms,cp, G, - - -» XD, XG> XR, Xs are required to be inte-
gers. Now we relax them to continuous. Also, op, oG and og origi-
nally are one-hot vectors, each of which indicating the selection
of one combination of loop order and buffering level at the cor-
responding memory level. Now they are relaxed to represent the
probabilities of sampling over the combinations of loop orders and
buffering levels. Constraint (15) is relaxed as follows.

D _D G _G R _R
(U Sy S S SR -~ g ¥ (33)

i=kp i=kg i=kgr

Dl =1,y af =1, af=1 (34)
i=1 i=1 i=1

We denote the relaxed version of op, oG, or as 7p, ng, g. One-
hot vectors zp, zg, zg can be generated according to np, ng and
nig as follows. For X = D, G, R,

Py (ux = i) =15, i=1,2,... kx, (35)
zx = one_hot(uy), (36)

where p, denotes a probability distribution function with param-
eter ;.

The relaxed problem is defined as:

min Ezp~pn, [T(©),P(0),A(0)], (37)
Q= {np,nG, R, m,c,ij,r,q} 2G~Prg
ZR~Pnp

© = [zp,zG, zr, m, ¢, i, j,7.q]. (38)

Here, E[x] means the expectation of x.

5.3.2 Neural Network Training. We notice the analogy between
neural network training and our problem Equation (37) as follows.

(1) Both problems are non-linear optimization problems. In neu-
ral network training, neural network weights are updated to
reduce the misprediction error; while our task is to optimize
hardware performance by tuning design parameters.

(2) In the forward propagation of neural network training, a
feature vector goes through a series of network layers, which
essentially comprise of matrix operations, to predict a label.
In our task, a CNN layer instance is fed to our matrix-form
model to output hardware performance.

(3) In the backward propagation of neural network training, the
gradient of the misprediction error w.r.t. network weights
are computed and used to update weights. In our task, the
gradient of hardware performance w.r.t. design parameters
are computed to guide the update of design parameters.

We implement our hardware performance model with the deep
learning toolkit PyTorch[23], which offers mature and efficient im-
plementation of matrix operations, automatic gradient derivation,
and optimization engines with compatibility to both CPU and GPU

Deep Learning Toolkit-Accelerated Analytical
Co-optimization of CNN Hardware and Dataflow

acceleration. We set the learning rate to be 0.1043 and epoch count
to be 500, and use the Adam optimizer for network training.

Our problem has multiple objectives, i.e., latency, power, and area.
We deploy the multi-objective optimization technique proposed in
[25], whose main idea is introduced in Section 3.4.

5.4 Parallel Local Search

The outputs from our non-linear optimization stage are continuous
design parameters. Hence, we conduct a local search around the
continuous parameters to find the best integer parameters, as shown
in Figure 1. It is a discrete optimization step and also implemented
with deep learning toolkits. It is noteworthy that our parallel lo-
cal search does not necessarily require the usage of multiple CPU
cores or GPU. Instead, thanks to our matrix-form model, millions
of design solutions can be evaluated in parallel via a few matrix op-
erations, which are efficiently accelerated by deep learning toolkits
even on a single CPU core.

6 EVALUATION

Experiments are conducted on VGG16, ResNet18, and AlexNet. All
algorithms are implemented in Python and run on one core in AMD
Ryzen Threadriper 1920X 12-Core Processor, except for section 6.3
where an additional Nvidia GeForce RTX 2080 Ti GPU is used.

6.1 Model Accuracy

We evaluate the accuracy of our model with respect to Timeloop [20],
which is a state-of-the-art DNN hardware performance model. We
generate thousands of different valid dataflows for three different
CNN layers. Each dataflow is fed to both Timeloop and our model
to compute the hardware performance.

Table 3: Relative errors of our model vs. Timeloop

RF Size GB Size Power Latency
Average 0% 0% 1% 0%
RMSE 0% 0% 3% 0%

Table 3 shows the relative errors of our model compared to
Timeloop. We can see a perfect match on register file level buffer
size, global buffer size, and latency estimation. The relative errors
for power estimation are 1% on average. In general, our model
matches Timeloop very well. Since many solutions generated in
the rest of the experiments cannot be handled by Timeloop, they
are evaluated by our model.

6.2 Comparison with Previous Works

Our hardware and dataflow co-optimization method is compared
with the following previous works:

(1) GAMMAJ15]: It is a generic algorithm-based two-stage ap-
proach. Latency is optimized at stage I, while stage II focuses
on power optimization. The original GAMMA optimizes only
dataflow, and we extended it to optimize CNN hardware as
well.

(2) Gumbel Softmax based approach[11]: Similar work is
proposed for a differentiable co-optimization framework for
network structure and accelerator co-design [6]. In our ex-
periments, we implement a differentiable accelerator search
engine for comparison using Gumbel Softmax.

(3) Bayesian Optimization introduced in [24].

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

6.2.1 Power-Latency Optimization Results. We first report opti-
mization results with power and latency as the objective. At the
same time, all the methods share the same maximum chip area limit <
5e6 um?. Figure 2 shows layer-by-layer comparison for VGG16. Our
approach dominates all the other methods in latency and power
for all layers. The CNN dimensions for layers 11, 12, and 13 are the
same, and so are their solutions for each method.

21

g 19
8
< b 4
s U T) b 3 S A A
£ s . 1 1 1
=
&

1
S & A Ours

A

11 GAMMA
5.6410 BO
_ AE+10 Gumbel
]
3 3E410
&

2.E+10

1E+10 b3 % T g 2

A x z
0.£+00 = L

Layer

Figure 2: Per layer results for VGG16 when optimizing power
and latency.

VGG16 Res 18 Alexnet
129 89
132
Optimization 6.7 6.4 7.2

Time 9.7 11.9 13.7

m LI m:
76 7.6 39
6.1 5.4 1.2
Latency 3.0 3.7 29
N1 LI L
2.8 4.1 4.6
Power 1 3'6 LZ_,"O 1,1i6

|} L} |
0 10 0 - 10 150 5 10 15

Gumbel m Bayes m GAMMA ® Ours

Figure 3: Overall results on power and latency optimization
running on a single CPU core.

Figures 3 shows the overall results for VGG16, Alexnet, and
Res18 on power, inference latency and optimization runtime. The
overall result for a CNN network is obtained by summing up the
results of all layers. Our approach dominates all the other meth-
ods in all three cases. Compared to Bayesian optimization, our
method achieves 1.2-6x less inference latency with 38% to 62%
less power consumption. Compared to GAMMA and Gumbel Soft-
max approach, our approach reduces latency by about 2.9% or
more and power reduction from 10% to 78%. Due to our matrix
form performance model, the non-linear optimization of the pro-
posed method can be performed through neural network training
in PyTorch. Therefore, the proposed method provides 9-13x and 8-
13xspeedup of optimization runtime compared with GAMMA
and Gumbel Softmax approach, respectively.

6.2.2 PPA Optimization. We also evaluate our method on PPA
(Power Performance Area) optimization, where performance is indi-
cated by inference latency. The comparison is made with GAMMA,
which achieves the best power-latency results among the three
previous works. Figure 4 shows the PPA comparison results. The

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

proposed method outperforms GAMMA in all cases. Compared
with GAMMA, our method achieves up to 1.7 X shorter inference
latency, 37.5% less power consumption, 3 less area and 6.2
less optimization time on ResNet 18.

VGG16 Res18 Alexnet
Optimization 7.2 6.2 9.7
Time 1.0 o |
1.2 1.7 19

tatency B 0 o M0

17 3.0 38
Area B0 o Mo

17 16 25

Power 910 o Mo

GAMMA m Ours

Figure 4: PPA results. CNN performance is indicated by in-
ference latency.

6.3 Runtime Analysis

6.3.1 Why Does the Matrix Form Matter? One of our key contri-
butions is the analytical model in a matrix form, which allows
fast solution evaluation through a deep learning toolkit such as
PyTorch. Experiments are conducted on VGG16 layer 1. During
the local search, our matrix form model can evaluate 36 million
solutions (which is still a very tiny portion of the design solution
space) in 35 secs. The evaluation time per design solution of matrix
form is 2300x faster than non-matrix form analytical model. At
the same time, it is also 8300x faster than Timeloop solution eval-
uation. Therefore, the matrix form matters much more than merely
an analytical form model.

150

: m Local Search
0.69

1
100 0
50 ® Non-linear
Optimization
0
CPU G

Time (s)

5
PU CPU+GPU
Figure 5: Runtime breakdown on different platforms.

6.3.2 Effect of Computing Platforms. Figure 5 shows the runtime
breakdown for optimizing PPA of VGG16 layer 1 by our method on
different platforms. On CPU, the non-linear optimization takes 68
secs, and local search takes 34 secs. Where on GPU, the non-linear
optimization takes 94 secs and local search takes 3.3 secs. One can
tell that the local search can be easily parallelized on GPU while
the non-linear optimization part runs faster on the CPU due to the
small size of our model.

6.4 Ablation Study

6.4.1 Effect of Local Search. The local search evaluates a large
number of integer solutions in the neighborhood of the fractional
non-linear optimization solution and finds the optimal integer one.
An alternative and naive method is to round the fractional solution
to its integer neighbor with the minimum Euclidean distance, a.k.a.
nearest rounding. Figure 6 compares the integer solutions from
our local search and nearest rounding on 4 CNN layers of VGG16.
One can see that our local search leads to solutions superior to
the nearest rounding. Since the results are shown in a logarithmic
scale to cover a wide range, the actual difference is greater than it
appears to be. The runtime cost of our local search is labeled in the
figure.

Rongjian Liang, Jianfeng Song, Yuan Bo, and Jiang Hu

-@- Weighted Sum Loss

33128 our Multi-objective Optimization |

1 8.5s i 140
29.9s
15

= 10 v

us| V@
B Local Search 110 "
V Nearest Rounding 05 “‘\x_‘

208 209 210 211 212 213 214 215 216
Logarithm Power

= = “>e

Logarithm Latency
Logarithm Latency

31.2s

205 20 25 230
Logarithm Power

Figure 6: Comparison be- Figure 7: Power and latency
tween local search and near- tradeoff of multi-objective
est rounding,. optimization.

6.4.2 Multi-objective Optimization. Figure 7 shows the effect of
our multi-objective optimization in comparison with a common
approach of minimizing a weighted sum between power and la-
tency on VGG16 layer 1. By varying the weighting factors, the
weighted sum method can obtain the blue dot solutions with differ-
ent latency-power tradeoffs. Our multi-objective optimization can
lead to the orange triangle solution that dominates all the Pareto
front solutions found by the weighted sum method.

6.5 Parallelism Between CNN Layers

So far our method focuses on the parallelism inside a single CNN
layer. We, therefore, devise a two-stage heuristic for applying our
method to accelerators where the entire CNN model is executed in
a layer-wise pipeline manner [15]. Stage 1: Run our algorithm to
optimize PPA for each layer. Stage 2: Identify the latency bottleneck
over layers and then re-optimizing power and area for each layer
given the latency bottleneck as a constraint. Future extensions of
our work will comprehend efficient handling of parallelism between
CNN layers.

7 CONCLUSION

Hardware and dataflow co-optimization is critical for the perfor-
mance, power, and area of CNN accelerator designs. However, the
co-optimization solution space is enormously large and presents
a huge challenge. We develop a matrix form analytical model for
evaluating co-optimization solutions, and it is 2300X faster than a
non-matrix form analytical model. Based on this model, we propose
a co-optimization approach that significantly outperforms several
state-of-the-art methods. Our approach can also be incorporated as
an important component in NAS-accelerator co-design.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation (NSF) award
CCF-1955909, CMMI-2038625, CCF-2106725.

REFERENCES

[1] M.S. Abdelfattah, £.. Dudziak, T. Chau, R. Lee, H. Kim, and N. D. Lane. 2020. Best
of Both Worlds: AutoML Codesign of a CNN and its Hardware Accelerator. In
Design Automation Conference. 1-6.

[2] Y-H. Chen, T. Krishna, J. Emer, and V. Sze. 2017. Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE

Journal of Solid-State Circuits 52, 1 (2017), 127-138.

K. Choi, D. Hong, H. Yoon, J. Yu, Y. Kim, and]. Lee. 2021. DANCE: Differentiable

Accelerator/Network Co-Exploration. In Design Automation Conference. 337—

342.

[4] J. Cong, P. Wei, C. H. Yu, and P. Zhang. 2018. Automated Accelerator Generation
and Optimization with Composable, Parallel and Pipeline Architecture. In Design
Automation Conference. 1-6.

3

Deep Learning Toolkit-Accelerated Analytical
Co-optimization of CNN Hardware and Dataflow

(5]

[9

=

[10

[11

[12]

(13

[14]

[15]

[16]

[17]

(18]

[19]

[20

[22

[23

[24

[25

[26]

[27

[28

C. Deng, Y. Sui, S. Liao, X. Qian, and B. Yuan. 2021. GoSPA: An Energy-efficient
High-performance Globally Optimized SParse Convolutional Neural Network
Accelerator. In International Symposium on Computer Architecture. 1110-1123.
Y. Fu, Y. A. Zhang, Y. Zhang, D. Cox, and Y. Lin. 2021. Auto-NBA: Efficient and
Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators.
arXiv:2106.06575

K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel, E. Solomonik,
J. Emer, and C. Fletcher. 2019. ExTensor: An Accelerator for Sparse Tensor
Algebra. In International Symposium on Microarchitecture. 319-333.

K. Hegde, P. Tsai, S. Huang, V. Chandra, A. Parashar, and C. Fletcher. 2021. Mind
Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search. In
International Conference on Architectural Support for Programming Languages
and Operating Systems. 943-958.

Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel, J. Wawrzynek,
and Y. Shao. 2021. CoSA: Scheduling by Constrained Optimization for Spatial
Accelerators. In International Symposium on Computer Architecture. 554-566.
Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee, J. Ngiam,
Q. V. Le, Y. Wu, and Z. Chen. 2019. GPipe: Efficient Training of Giant Neu-
ral Networks using Pipeline Parallelism. In Conference on Neural Information
Processing Systems. 103-112.

E. Jiang, S. Gu, and B. Poole. 2017. Categorical Reparameterization with Gumbel-
Softmax. arXiv:1611.01144

W. Jiang, L. Yang, E. Sha, Q. Zhuge, S. Gu, S. Dasgupta, Y. Shi, and J. Hu. 2020.
Hardware/Software Co-Exploration of Neural Architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2020), 1-6.
Norman P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, et al. 2017. In-datacenter performance analysis of a tensor
processing unit. In Annual International Symposium on Computer Architecture.
1-12.

S. Kao, G. Jeong, and T. Krishna. 2020. ConfuciuX: Autonomous Hardware
Resource Assignment for DNN Accelerators using Reinforcement Learning. In
International Symposium on Microarchitecture. 622-636.

S.-C. Kao and T. Krishna. 2020. GAMMA: Automating the HW Mapping of DNN
Models on Accelerators via Genetic Algorithm. In International Conference On
Computer Aided Design. 1-9.

H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A. Parashar.
2020. MAESTRO: A Data-Centric Approach to Understand Reuse, Perfor-
mance, and Hardware Cost of DNN Mappings. International Symposium on
Microarchitecture 40, 3 (2020), 20-29.

H. Kwon, A. Samajdar, and T. Krishna. 2018. Maeri: Enabling flexible dataflow
mapping over dnn accelerators via reconfigurable interconnects. ACM SIGPLAN
Notices 53, 2 (2018), 461-475.

Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen,]. Xiong, W. Hwu, and D. Chen. 2020.
EDD: Efficient Differentiable DNN Architecture and Implementation Co-search
for Embedded AI Solutions. In Design Automation Conference. 1-6.

Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Pan. 2020.
Dreamplace: Deep learning toolkit-enabled gpu acceleration for modern vlsi
placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 40, 4 (2020), 748-761.

A. Parashar, P. Raina, Y.-S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara, R. Venkate-
san, B. Khailany, S. W. Keckler, and J. Emer. 2019. Timeloop: A System-
atic Approach to DNN Accelerator Evaluation. In International Symposium on
Performance Analysis of Systems and Software. 304-315.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J.
Emer, S. Keckler, and S. Dally. 2017. SCNN: An accelerator for compressed-
sparse convolutional neural networks. In International Symposium on Computer
Architecture. 27-40.

M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok, and K. Roy.
2020. Bayesian Multi-objective Hyperparameter Optimization for Accurate, Fast,
and Efficient Neural Network Accelerator Design. Frontiers in Neuroscience 14
(2020).

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, et al. 2019. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing
systems 32 (2019).

B. Reagen, J. M. Hernandez-Lobato, R. Adolf, M. Gelbart, P. Whatmough, G.-
Y. Wei, and D. Brooks. 2017. A Case for Efficient Accelerator Design Space
Exploration via Bayesian Optimization. In International Symposium on Low
Power Electronics and Design. 1-6.

O. Sener and V. Koltun. 2018. Multi-task learning as multi-objective optimization.
Advances in neural information processing systems (2018), 525-536.

A. Stoutchinin, F. Conti, and L. Benini. 2019. Optimally Scheduling CNN Convo-
lutions for Efficient Memory Access. arXiv:1902.01492

S. Venkataramani, J. Choi, et al. 2019. DeepTools: Compiler and Execution
Runtime Extensions for RaPiD Al Accelerator. International Symposium on
Microarchitecture 39, 5 (2019), 102-111.

L. Waeijen, S. Sioutas, M. Peemen, M. Lindwer, and H. Corporaal. 2021. ConvFu-
sion: A Model for Layer Fusion in Convolutional Neural Networks. IEEE Access

[29

[31

[32

[33

]

]

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

9 (2021), 168245-168267.

Y. N. Wu, P. A. Tsai, A. Parashar, V. Sze, and J. S. Emer. 2021. Sparseloop: An
Analytical, Energy-Focused Design Space Exploration Methodology for Sparse
Tensor Accelerators. In International Symposium on Performance Analysis of
Systems and Software. 232-234.

L. Yang, Z. Yan, M. Li, H. Kwon, L. Lai, T. Krishna, V. Chandra, W. Jiang, and
Y. Shi. 2020. Co-Exploration of Neural Architectures and Heterogeneous ASIC
Accelerator Designs Targeting Multiple Tasks. In Design Automation Conference.
1-6.

X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha, P. Raina,
et al. 2020. Interstellar: Using halide’s scheduling language to analyze dnn accel-
erators. In International Conference on Architectural Support for Programming
Languages and Operating Systems. 369-383.

Y. Zhao, C.Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin. 2020. DNN-Chip Predictor: An
Analytical Performance Predictor for DNN Accelerators with Various Dataflows
and Hardware Architectures. In International Conference on Acoustics, Speech
and Signal Processing.

Y. Zhou, X. Dong, B. Akin, M. Tan, D. Peng, T. Meng, A. Yazdanbakhsh, D. Huang,
and R. Narayanaswami. 2021. Rethinking Co-design of Neural Architectures and
Hardware Accelerators. arXiv:2102.08619

https://arxiv.org/abs/2106.06575
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1902.01492
https://arxiv.org/abs/2102.08619

	Abstract
	1 Introduction
	2 Previous Methods
	3 Preliminaries
	3.1 CNN Convolution Layer
	3.2 Hardware Resource Allocation and Dataflow
	3.3 Footprint, Buffering Level, Buffer Requirement and Traffic
	3.4 Multi-Objective Optimization

	4 Problem Formulation
	5 Methodology
	5.1 Overview
	5.2 Analytical Hardware Performance Model in a Matrix Form
	5.3 Non-Linear Optimization by Neural Network Training
	5.4 Parallel Local Search

	6 Evaluation
	6.1 Model Accuracy
	6.2 Comparison with Previous Works
	6.3 Runtime Analysis
	6.4 Ablation Study
	6.5 Parallelism Between CNN Layers

	7 Conclusion
	Acknowledgments
	References

