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Increased standing macroalgal biomass in upwelling zones is generally assumed to be the
result of higher nutrient flux due to upwelled waters. However, other factors can strongly
impact macroalgal communities. For example, herbivory and temperature, via their effects
on primary producers and the metabolic demands of consumers, can also influence
macroalgal biomass and productivity, respectively. We assessed the effects of nutrient
availabilty, temperature, and herbivory on macroalgal biomass on a subtidal nearshore
rocky reef in the Galdpagos Islands. We manipulated nutrient availability and herbivory in
field experiments performed in two seasons: the first during a cool, upweling season, and
the second during a warm, non-upweling season. Excluding macro-herbivores had a
clear effect on standing macroalgal biomass, independent of season or nutrient availability.
However, we found different interactive effects of nutrients and macro-herbivores between
the two seasons. During the cool season, macroalgal biomass was significantly higher in
herbivore exclusions than in open areas under ambient nutrient conditions. However,
when nutrients were added, macroalgal biomass was not significantly difierent across all
herbivore treatments, which suggests reduced top-down control of herbivores (hence a
greater standing algal biomass) in open areas. In the warm season, macroalgal biomass
was significantly higher in herbivore exclusions compared to open treatments, both with
and without nutrient addition. Furthermore, biomass reached 11X in herbivore exclusions
with nutrient additions, which hints nutrient limitation only during warm, low-upweling
conditions. Overall, our results support the hypothesis that macro-herbivores reduce
macroalgal biomass in this system and suggest that nutrient availability, but not
temperature, modulate herbivory.
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INTRODUCTION

Shallow subtidal communities in coastal upwelling zones are believed to be largely bottom-up
controlled via nutrient fluxes (Bustamante et al., 1995; Broitman et al., 2001; Menge and Branch,
2001; Menge et al., 2002; Nielsen, 2003; Nielsen and Navarrete, 2004; Vinueza et al,, 2006; Vinueza
et al, 2014). However, predation (top-down control) is also important in marine communities
(Menge, 1991; Paine, 1992; Trussell et al, 2002; Harley, 2011), including in upwelling zones.
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For example, Witman et al. (2010) found that predation intensity
was higher at strong upwelling sites compared to weak upwelling
sites in the Galipagos. The authors suggested that predators
(mostly whelks) track their prey resources (barnacles), which
were more abundant in strong upwelling sites due to enhanced
productivity (Witman et al,, 2010).

Nutrient fluxes linked to upwelling can influence algal
biomass in two ways, First, by enhancing algal photosynthesis
and growth due to increased nitrogen and other limiting
nutrients in the ocean (Figure 1, Bustamante et al, 1995;
Broitman et al, 2001; Menge and Branch, 2001; Menge et al.,
2002; Nielsen, 2003; Nielsen and Navarrete, 2004; Vinueza et al.,
2006; Vinueza et al, 2014). And secondly, by reducing herbivory
due to higher nutrient load in algal tissues, which may decrease
per capita consumption rates (Figure 1). This happens because
herbivores sometimes alter their feeding rates relative to the
nutrient content of their food source (Burnell et al,, 2013) or in
response to decrcased macroalgal palatability (Tomas et al.,
2011). The opposite (i.e., increased consumption rates of
enriched algae) has been found in oligotrophic conditions
(Boyer et al., 2004; Russell and Connell, 2007).

Although its role is largey unexplored, temperature may also be
an important factor in upwelling systems by influencing the
strength of bottom-up and top-down effeats (Bruno et al, 2015).
For example, due to the temperature-dependence of metabolism

(Brown et al., 2004), cooler temperatures associated with upwelling
should reduce algal photosynthesis and « pr
(Figure 1). Reduced consumer ing upwelling has
been documented in the field (Sanford, 1999; Sanford, 2002; Carr

al, 2018) and is an alternative explanation for the observed
association of high algal biomass when or where upwelling is
intense; in other words it is a consequence of reduced top-down
control for what is assumed to be a bottom-up

Although there is a fair number of studies looking at the
interactive effects of herbivores and nutrients in both tropical and
temperate regions, there is a lack of studies looking at these effects in
tropical or subtropical upwelling regions (Burkepile and Hay, 2006).
The purpose of this study was to measure the effects that herbivores,
temperature, and nutrient availability have on standing macroalgal
biomass. We manipulated nutrient availability and herbivory in two
fidd experiments — one during the cool, upwelling season, and the
other during the warm non-upwelling season — on a subtidal
nearshore rocky reef in the Gallipagos Islands.

METHODS

Study Site
We performed the two experiments at 8-10 m depth at Cerro
Mundo (0°52'06.0S; 89°35'04.0"W), a typical Galapagos subtidal

Decreased temperature reduces
algal photosynthesis and growth

Nutrient-rich,
cold seawater

Increased ni

enhances
algal photosynthesis and growth

- g

i)

FIGURE 1 | Conceptual model depicting the effects of upweliing on ecological processes and on macroalgal biomass in benthic upwelling communities such as
nearshore rocky reefs of the Galdpagos Islands. Black armows represent trophic interactions, and the narrow, colored ammows represent hypothesized eflects of
upwelngmaomempcna'nmmmmmmmhumm:wmmmmm wmmm

and i nutrient fiu (particularty of nitrate). These environmental modifications causa r al rales (respiraton,
photosynihasis, growth, movement, consumption, etc.) and to the per capita gth of prey i msrelm & and net balance of
the influence of upweling cn these and other pr is largaly for e, upwelling should have both negalive (via codling) and positive [via
nutrent delivery) effects on primary productivity; the general obsenation is that prey populations tend 10 be larger when and where upweling is strong (Witman
at a., 2010). Not every possible effect is included in this model; for instance, enhanced prey growth and density caused by greater resource flux could increase
the fitness and abundance of consumers through donor control.
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reef, located in San Cristobal Island. The biological ¢ ritie

in the waters surrounding most of the Galipagos Islands are
more temperate than tropical and are dominated by green algae
(Ulva is typically the foremost benthic Genus), brown foliose
algae, and grazing sea urchins. The pencil sea urchin Eucidaris
galapagensis was the only sea urchin species present at Cerro
Mundo during our experiments (Supplementary Table 1); they
are known to have important effects on benthic algae in this
system (Ruttenberg, 2001; Irving and Witman, 2009; Edgar et al.,
2010; Brandt et al, 2012). Other important grazers include the
razor surgeonfish (Prionurus laticlavius), the blue chin parrotfish
(Scarus ghobban), sea turtles (Chelonia mydas), and marine
iguanas (Amblyrhyncus cristatus).

Experimental Design

We ran the first experiment during the 2019 cool season (22
July - 25 November 2019, 18 wecks), and the second during the
2020 warm season (9 January - 24 February 2020, ~ 6 weeks).
The durations differ because the warm season experiment had to
be ended abruptly due to COVID-19, Both experiments included
two factors in a 3 x 2 factorial design (n=8), with slightly different
herbivore treatments. The experiments were based on circular
concrete platforms “pizzas” (Witman et al, 2017), 0.5 m in
diameter, into which Aquamesh™ (plastic-coated, galvanized
with a 5 ¢m mesh size) was embedded for most treatments, Two
substantial advantages of the experimental pizzas are that the
substrate qualities are largely held constant among replicates and
treatments (which would be impossible using natural substrate),
and that they can be moved to other sites for site-level replication
or related experiments.

We used four types of experimental pizzas to achieve the
herbivore treatments (Figure 2). The 2019 cool season
experiment included three herbivore treatments: 1) Open
pizzas in which all herbivores could access the experimental
substrate (Figure 2A), 2) Fish exclusions in which only sea
urchins and meso-herbivores, such as hipods, small bl

L

or d Ifish had access (Figure 2B), and 3) Full herbivore
exclusions (Figure 2C), which prevented access to all macro-
herbivores such as sea urchins, fishes (including adult
damselfishes and blennies), iguanas, and turtles, but not to
meso-herbivores. Given that sea urchins did not access the fish
exclusions (Brandt et al. personal obs. and see Results), we
removed this treatment and added a procedural control in the
2020 warm season, which consisted of a cage with partial sides
and no mesh top (Figure 2D). In both experiments, the
herbivore factor was crossed with nutrients (two treatment
levels: ambient and nutrient addition). For the cool season
experiment, nutrients were added in the 24 nutrient addition
plots by attaching two diffusers made from plastic 15 ml falcon
tubes onto each addition unit (as in Zaneveld et al, 2016,
Figure 2A). The tubes had 25 holes drilled into the sides to
facilitate the slow liberation of time-release fertilizer (25 g of
Osmocote NPK 19-6-12 without micronutrients). Due to
concerns that the nutrients were not leaching out of the plastic
tubes, for the warm season experiment we switched to using
sheer stockings as diffusers (as in Bruno et al, 2003) and
increased the fertilizer volume to 50 g. Nutrient diffusers were
replaced bimonthly during the 2019 cool season experiment and
weekly during the 2020 warm season experiment. We, and many
others, have successfully used these techniques to manipulate
nutrient availability (Bruno et al, 2003; Burkepile and Hay, 2009;
Zaneveld et al., 2016).

We recorded treatment effects on macroalgal cover and
biomass. To track the cover of algal taxa and for the 2019 cool
season experiment, we took weekly images of each experimental
unit, starting on week 6 and for the next six weeks. For the rest of
the experiment (last six weeks) we took pictures every two weeks.
As for the 2020 cool season experiment, we took images every
two weeks, starting from the first week. We analyzed the images
in Adobe thoshopm (version 2017.1.6), by superimposing a
transparent layer with 100 random points over each image and
identifying the substrate category underneath cach point.

FIGURE 2 | Examples of the four types of experimental pizzas used. (A) Open pizzas with ful access to al grazers. (B) Fish exdiusions, which alowed acoess only
1o sea urchins (shown acryiic plates were used only during the pilot phase of this study). (C) Full exclusions, preventing access o all macro-herbivores such as sea
urchins, fishes, iguanas, and turties, but not to meso-herbivores such as amphipods. Note the clean, uncolonized experimental surtace immedately after deployment .
Both cages (fish and ful exclusions) are coverad with a fine, 1cm monofilament mesh top. (D) Procedural control that included partial sides, designed 1o aflect flow
and light to a similar degree as other cages to test for expenmenta antifacts of the herbivore manipulation. Pizzas on (A~C) wem used in the cool season expenment,
pizzas on (A, C, D) in the warm season experiment. Results of (D) are shown in Supplementary Figune 2. The pizza design & based on Witman & a. (2077). Note

the huge Galdpagos shark cruising across the reef in (D).
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Categories included: Ulva sp., sand, red filamentous algae, brown
foliose algae, coarsely branched red algae, Asparagopsis sp., fish,
sea urchin and snail. Given that we were interested in the effect of
macro-herbivores in general on macroalgal cover, we added the
% cover of all algal functional groups/species. To quantify final
macroalgal biomass, algae were scraped, vacuumed into 200 pm
mesh bags (Supplementary Figure 1A), and returned to the
nearby marine lab of the Galapagos Science Center (GSC). For
the 2019 cool season experiment this happened at the end of the
experiment, i.¢., on week 18; for the 2020 warm season
experiment we vacuumed the algae on week 6, when we had to
unexpectedly and immediately end the experiment due to
imminent COVID-19 restrictions. We determined the
macroalgae Ash Free Dry Weight (AFDW) by drying each
sample in an oven for 24 hrs at 60°C and then burning it in a
muffle furnace for 4 hrs at 500°C.

We quantified the effectiveness of the treatments in
controlling herbivore access by deploying GoPro (v8) cameras
focused on a subset of the pizzas (see Supplementary
Figure 1B). This also enabled us determining the composition
of the local marine community, and which species and functional
groups were grazing or interacting on/with the experimental
units. The GoPro set-up video-recorded continuously for ~90
min during each deployment. Finally, we monitored temperature
with HOBO Water Pro v2 Temperature Loggers (Onset
Computer Corporation, Pocasset, MA) programmed to record
water temperatures at 15 min intervals.

Data Analyses

To compare treatment effects within both seasons, we calculated
parametric bootstrap confidence intervals (1500 iterations)
based on the best-fit generalized linear model with a
Gamma distribution and a log-link (AFDW ~ herbivores *
nutrients) in R (R Core Team, 2020). This model structure is

common for positive-only ecological data (Schmettow, 2021;
Anderson, 2022). We also assessed the effects of treatment and
time on percent algal cover during the study (see Supplementary
Figure 3 for results). Algal cover was treated as count data and
the models were fit with a quasipoisson distribution and a square
root link (Zeileis et al, 2008), We interpreted non-overlapping
bars (i.e., 95% confidence intervals) as “statistically significant™
treatment effects at an alpha of 0.05 (Wilcox, 2010; Ranstam,
2012). Code and data are available at: github.com/eagudoadriani/
PizzaProject_2019-2020.

RESULTS

The average benthic temperature at Cerro Mundo was 19.5°C
during the 2019 cool scason experiment (range 15.0 - 22.9°C)
and 23.4°C during the 2020 warm scason (range 18.0 - 26.6°C,
Figure 3). The experimental pizzas remained in place for both
experiments, even during storms and rough periods. In addition,
the final macroalgal biomass in the open pizzas and our
procedural controls in the warm season (Supplementary
Figure 2) was not significantly different, suggesting no artifacts
of flow or light availability in our exclusion cages. Algae quickly
colonized the concrete substrate (Supplementary Figure 3) and
within 3-6 weeks the algal community was qualitatively
indistinguishable from adjacent natural substrate (Brandt et al.
personal obs.). In addition, typical algal succession patterns were
evidenced within the cages (Supplementary Figure 4). Forty-
seven mobile species were observed at the site in the vicinity of
the experiment, nine of which were seen grazing on the pizzas
(Supplementary Table 1). Common herbivorous fishes on the
open pizzas included blue-chin and bumphead parrotfishes
(Scarus ghobban and Scarus perrico, respectively) and razor
surgeonfish (Prionurus laticlavius, Supplementary Figure 1B).

Oeadnd

dan 200
Dame

hpr o

FIGURE 3 | Temporal variation on temperature on the surace of a nearshore rocky reel whene our expeniments were pedormed ((Cerro Mundo™, 10 m depth at
high tide) off the southeastern coast of San Cristdbal Isiand, Galapagos. Data were recorded with HOBO Water Pro v2 Temperature Loggers (Onset Computer

Corporation, P MA). A
oodseasoneq:emm!wugaywduirgn»mwmm
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Pencil sea urchins were also frequently observed grazing on the
open pizzas (Figure 2A).

In both the cool and warm season experiments and when all
herbivores were allowed access to experimental substrates (open
pizzas or gray bars in Figure 4), final algal biomass was relatively
low, with mean values ranging from 0.93 to 7.62 g. On the other
hand, excluding all macro-herbivores in general produced higher
accumulation of final macroalgal biomass with mean values that
ranged from 2.85 to 29.56 g (blue bars in Figure 4). The
combined effects of nutrients and herbivore exclusions varied
however in the cool and the warm season experiments. Excluding
macro-herbivores (both fish and all herbivores) during the cool
season significantly increased final macroalgal biomass relative to
the open pizzas, only with ambient nutrients; there were not
significant differences among open pizzas and herbivore
exclusions when nutrients were added (Figure 4A). This
contrasted with the results of the warm season experiment:
final macroalgal biomass significantly increased in herbivore
exclusions compared to open pizzas only with nutrient
additions, and it reached, ~11X more biomass (Figure 4B). In
other words, adding nutrients had contrasting effects in the two
experiments: during the cool season experiment the significant
differences among herbivore treatments disappeared when
nutrients were added (due to a higher macroalgal biomass in
open pizzas), while the addition of nutrients during the warm
season experiment promoted the significant differences among
herbivore treatments (Figure 4).

DISCUSSION

Overall, our results are in agreement with previous findings that
macro-herbivores have a ng top-down effect on macroalgal
biomass in the Galdpagos, even during intense upwelling
when nutrient flux was presumably high (Vinueza et al,
2006; Vinueza et al, 2014; Carr et al., 2018). On the other
hand, in our study, excluding only fish or all macro-herbivores
had the same effect on final macroalgal biomass during the cool
season (the only season during which the fish exclusion
treatment was included, Figure 4A). This contrasts with Carr
et al. (2018), who found that both sea urchins and other
herbivores including fishes, had strong effects on standing
macroalgal biomass. Our results indicate that the effect of sea
urchins alone was negligible, as final macroalgal biomass in the
fish exclusions (i.e., open to sea urchins) was not significantly
different than in the full exclusions (Figure 4A). A possible
explanation for this is that sea urchins may not have accessed
and grazed the fish exclusions for a substantial time, limiting
their effects on macroalgal biomass. In fact, we recorded sea
urchins in only ~11% of the fish exclusions throughout the
duration of the experiment. The discrepancies between our
results and those of Carr et al. (2018) could also be due to
differences in the local sea urchin species composition during
the two studies. In our experiments, the pencil sea urchin (E.
galapagensis) was the only sea urchin species present, and
our cage design allowed sea urchins to enter/exit at their will.

Cool Season Warm Season

120

g ) ; w

§ -

& 109 - &
. - E 20 -
ol — I 0 - — ——
Ambient nutrents Nutrient addions Ambeent nutnents MNutrient additions
] LN " Fu

Warm Season exp (B). Bars repn
Circles are the individual data raw points (n = 8).

FIGURE 4 | Herbivore treatment eflects on final macroslgal biomass (AFDW of all algal tava, which was largely Ulva) in the 2019 cool season (A) and the 2020
i ap estimaled means (darker, thick

95%

ines) and intervals fentire shaded bar).
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In contrast, Carr et al. (2018) used the green sea urchin
Lytechinus semituberculatus (the second most common sea
urchin species in the Galipagos, Brandt and Guarderas, 2002)
in inclusion cages. It thus seems reasonable that the impact of
the green sea urchins might have been stronger (and detectable)
in Carr et al. (2018). This agrees with other studies that have
found a strong top-down effect of both pencil and green sea
urchins in inclusion cages in the Galapagos subtidal (Brandt
et al, 2012). In addition, it is known that pencil sea urchins
have slower algal grazing rates than green sea urchins (Witman
et al, 2017), Thus the absence of the faster-grazing green sea
urchins in the present experiment could have reduced the total
sea urchin grazing effect.
There was no evidence that nutrient addition affected primary
productivity in the full exclusions (no herbivory) during the cool,
upwelling season ﬂpenmmt. polmndly bcauscmhanmd nutrient
flux via upwelling allevi ion. This period is also
when mean water temperature was the lowest (19.5°C), likely
reducing algal productivity and nutrient demand. Although final
algal biomass was not significantly different in the cool season
experiment across open pizzas (accessible to herbivores) and
regardless nutrient additions, there was a positive, non-significant
trend towards higher biomass when nutrients were added
(Figure 4A). This may hint at reduced herbivory when algal
tissue nutrient concentration is high, as predicted for non-
oligotrophic conditions (Tomas et al., 2011; Bumell et al, 2013).
Compared to open pizzas, excluding all macro-herbivores had
a significant effect on algal biomass both in the cool and in the
warm season experiments, but with different nutrient treatments:
in the cool season experiment significant differences of final
macroalgal biomass among herbivore treatments occurred with
ambient nutrients (Figure 4A), while it did with nutrient
additions in the warm season (Figure 4B). These differences
were maximized in the warm season experiment (~20X versus
~10X more biomass comparing full exclusions and open pizzas
among herbivore treatments with significant differences,
Figure 4). These results suggest that nutrient addition
enhances standing macroalgal biomass in the absence of
macro-herbivores only during the warm season (Figure 4B). A
finding consistent with the ideas that 1) nutrients were limiting
only in the warm season due to the relative weakness of
upwelling, and 2) that higher temperatures (23.4°C, average
temperature during the warmseason) caused greater macroalgal
biomass accumulation when nutrients were not limiting (as seen
in O’Connor et al., 2009). However, given that algal biomass in
the open pizzas with ambient nutrients was not significantly
lower in the warm season compared to the cool season
experiment (which wouldhint that nutrients were limiting
during the warm season) it is also possible that the cool season
nutrient additions were ineffective and that the observed
increased algal biomass in the herbivore exclusions in the
warm season was a result of changing the design (drilled
falcon tubes vs. sheer stockings), the frequency (bimonthly vs.
weekly), and the amount (25 vs. 50 g) of nutrient delivery
between the cool and warm season experiments, respectively
(see Methods). It is still interestinghowever that the increased

algal biomass was restricted to the herbivore exclusions when
nutrients were added. This could suggest that top-down control
in warmer conditions is strong enough to counter the effects of
nutrient availability.

In terms of the influence of temperature, we expected to see a
greater top-down control of grazers on macroalgal biomass during
the warm season (ie., lower macroalgal biomass in the warm
season and higher in the ol season in the open pizzas), due to
temperature-dependence of consumer metabolism (Brown et al.,
2004). However, grazing intensity in open pizzas was not

igni different across seasons (Figure 4). Carr and Bruno

(2013) found that the grazing of the green sea urchin Lytechinus
semituberculatus increased at higher temperatures; their
temperature treatments differed by 14°C. On average, our
temperature “treatment” (which was dependent of in situ
temperature fluctuations) only varied 3.9°C across seasons, which
was likdy insufficient to produce an increase (or to detect a
difference) in macro-herbivores’ metabolism and hence in their
grazing rates.

As mentioned before, few studies on the interactive effects of
herbivores and nutrients have been performed in tropical or
subtropical upwelling regions (Burkepile and Hay, 2006). One
example is the one by Cordeiro et al. (2020), which found that in
shallow depths (1-2 m) sea urchin herbivory strongly influenced
macroalgal cover on marginal coral reefs off southern Brazil.
Surprisingly, fishes had no effect on macroalgal cover. However,
at greater depths (5-6 m), the dynamics of benthic macroalgae
were largely determined by abiotic factors related to localized
upwelling. However, the question remains: when nutrient fluxes
are greater (as in upwelling regions like the Galipagos), do
bottom-up forces overwhelm top-down control? Our results
illustrate an approach that could be used to untangle these
factors in productive and dynamic systems, while also
considering the confounding role of temperature. However, an
important caveat is that because several aspects of our
experimental design differed between the cool and warm
season experiments, the results are not directly comparable.
For example, final algal biomass could have been distinct
between our experiments due to differences in their duration

(18 ks: cold experi 6 warm
experiment) and have affected our results. We do not think
this is the case, as in g I, bi acc lation in full

exclusions was surprisingly very similar between experiments
(Figure 4), and more importantly, when analyzing our data
normalized by the number of days of each experiment (126 days:
cold season experiment, 46 days: warm season experiment), the
results yielded the exact same patterns as observed in Figure 4
and Supplementary Figure 5. Having said that, there should be
replication during warm and cool seasons so that any observed
differences could be attributed to environmental characteristics
like temperature and nutrient fluxes. Moreover, the
concentration of important nutrients (e.g., Nitrogen and
Phosphorus) should be tracked in different treatments
(remarkably, there is little information on benthic nutrient
concentrations in this system). We are actually implementing
these and other changes to the study design and repeating the
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experiment in replicate warm and cool seasons to begin
exploring the role of these environmental factors in mediating
primary productivity and consumption patterns.

In conclusion, our results suggest that both top-down and
bottom-up forcing influence benthic macroalgal communities in
this dynamic upwelling system (Figure 1). Additionally, the
response of macroalgae to temperature, nutrients, and
herbivory hints at an interactive effect among these three
factors. Studying top-down and bottom-up controls in
complex, highly variable systems like the Galdpagos is
important, because direct and indirect interactions among
species may be altered by anthropogenic ocean heating and
other aspects of global change including altered upwelling
dynamics and reduced ocean productivity.
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