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ABSTRACT: Coarse-grained models have proven helpful for
simulating complex systems over long time scales to provide
molecular insights into various processes. Methodologies for
systematic parametrization of the underlying energy function or
force field that describes the interactions among different
components of the system are of great interest for ensuring
simulation accuracy. We present a new method, potential
contrasting, to enable efficient learning of force fields that can
accurately reproduce the conformational distribution produced with
all-atom simulations. Potential contrasting generalizes the noise
contrastive estimation method with umbrella sampling to better
learn the complex energy landscape of molecular systems. When
applied to the Trp-cage protein, we found that the technique
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produces force fields that thoroughly capture the thermodynamics of the folding process despite the use of only a-carbons in the
coarse-grained model. We further showed that potential contrasting could be applied over large data sets that combine the
conformational ensembles of many proteins to improve force field transferability. We anticipate potential contrasting as a powerful

tool for building general-purpose coarse-grained force fields.

B INTRODUCTION

Coarse-grained (CG) molecular dynamics simulations are
computationally efficient and can simulate long time scale
processes that are not accessible to all-atom simulations.'™*
They are widely used for understanding dynamical processes in
physics, chemistry, and biology.s_17 The accuracy of these
simulations depends on how well the force fields can describe
the interactions among various components of the system
under investigation. Therefore, algorithms and methodologies
that can produce high-quality coarse-grained force fields
(CGFFs) or CG potential energy are of key interest.

Several approaches have been introduced for systematically
parametrizing CGFFs.'®"” Top-down approaches often rely on
a set of experimental structural or thermodynamic properties
to fine-tune CGFFs and ensure the physical relevance of CG
simulations.”'®**°™** On the other hand, bottom-up
approaches learn CGFFs from an ensemble of atomistic
configurations collected using simulations performed at finer
resolution, typically with all-atom force fields.”>™*" From the
configurational ensemble, various physical quantities and
correlation functions can be computed to serve as targets for
re-creation with CGFF.*****~%% I addition, CGFFs can also
be optimized to enforce the statistical consistency between
their corresponding Boltzmann distributions and the reference
configurational distribution with variational methods.*' ~** The
consistency is achieved when the CG potential energy matches
the potential of the mean force dictated by the all-atom force
field and the mapping from atomistic to CG configurations.
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Existing variational methods optimize force field parameters
by formulating and solving regression problems or maximizing
the likelihood of observing the reference configurations. The
force matching method”>"" and the flow-matching method*
belong to the former category and aim to minimize the
difference between forces for CG coordinates calculated from
the CGFF and target values estimated either from forces in all-
atom simulations or from normalizing flows trained with
conformations sampled in all-atom simulations. A perfect
match in forces ensures that the CG energy function
reproduces the potential of mean force. The generalized
Yvon—Born—Green (gYBG) method*® relates forces com-
puted from the CGFF to structural correlation functions that
can be directly estimated from configurations, allowing “force
matching without forces”. On the other hand, the relative
entropy method,” or equivalently the maximum likelihood
method,” directly optimizes the CG energy function by
minimizing the relative entropy and maximizing the overlap
between the CG Boltzmann distribution and the configura-
tional distribution from all-atom simulations. The relative
entropy is minimized when the CG energy function reproduces
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Figure 1. Noise contrastive learning accurately reproduces the Miiller potential from sampled data. (a) Illustration of the noise contrastive
estimation method. Representative data samples from Monte Carlo sampling of the Miiller potential and noise samples from a noise distribution

q(x) are shown in blue and orange, respectively. The target data distribution is parametrized using a potential energy function, u,(x; @), that is, p(x;
0) o exp(—pu,(x; 0)), where @ is a set of parameters. € is optimized in a logistic regression to classify the data and noise samples (b) Contour plot
of the Miiller potentlal Energy is shown in units of kzT. (c) Contour plot of the potential energy function u (x, 0%) learned using noise contrastive

estimation. Energy is shown in units of kyT.

the potential of mean force and the CG Boltzmann distribution
assigns high probabilities to configurations from all-atom
simulations.

While existing force field parametrization methods have
found great success in many applications, they are not without
limitations. For example, the relative entropy method needs to
run simulations to sample from trial CG potentials in every
optimization step and can be computationally expensive. While
the force matching method can learn the CG potential directly
without iterative sampling, it often requires extra atomic force
information, and the quality of the resulting potential can be
sensitive to the accumulation of errors through the integration
of the estimated force.

Here we developed a new variational method called
potential contrasting for learning CGFFs and applied it for
multiscale coarse-graining of protein folding. Potential
contrasting generalizes the noise contrastive estimation
method”’ ™" to formulate force field parametrization into a
classification problem. Input for the method is a target
ensemble of protein conformations from all-atom simulations,
and no atomic force information is required. When applied to
the peptide Trp-cage, we found that potential contrasting can
produce force fields that accurately reproduce the all-atom
conformational ensemble and capture the complex folding
landscape. The method also revealed the importance of
including many-body potentials in CG models to describe
protein biophysics with a reduced degree of freedom and
implicit solvation. In addition, we showed that potential
contrasting is computationally efficient and trivially paralleliz-
able, enabling the parametrization of force fields using large
data sets collected from multiple proteins.

B METHODS

Potential contrasting combines a machine learning method
called noise contrastive estimation®® (NCE) with molecular
simulation techniques. In this section, we first introduce NCE
using the Miiller potential50 as an example. Then we present

how the NCE method is generalized and used in potential
contrasting to learn CGFFs for protein folding.

Noise Contrastive Estimation. The NCE method"
learns a probabilistic model on observed data. It is especially
useful for learning unnormalized statistical models where the
probability density function is only specified up to a
normalization constant. It is evident that NCE is connected
to bottom-up force field optimization, which aims to
parametrize an energy function or an unnormalized Boltzmann
distribution from data produced by all-atom simulations.

Here we use the Miiller potential as an example to show how
NCE helps to learn energy functions. Given a set of data
(Figure la) drawn from the Miiller potential with Markov
chain Monte Carlo sampling, NCE aims to approximate their
probability distribution with p(x; @) defined as log p(x; ) =

Pluy(x; ) — F,], where u,(x; 8) is the potential energy
parametrlzed with 0 and F, is the free energy. To optimize the
parameters @, NCE performs a logistic regression to
discriminate the N, data samples {x }l\l"l from N; noise
samples {x}},y (Figure la) that are “drawn from a noise
distribution q(x) Specifically, we assign binary labels of y = 1
and y = 0 to data and noise samples, respectively. NCE
parametrizes the energy function by maximizing the following
averaged log—likelihood of labels:

10, ) = Z log P(y = 1Ix! o)+ Z log P(y = Olx! )
P i=1
(1)
with
=1kx) = & and
PO = 0) + v
vq(x)
=0x)= ———"——
PO= 0% = 0) + v @
where v = P(y = 0)/P(y = 1) = Ny/N,,
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Figure 2. Workflow of the potential contrasting method for learning coarse-grained force fields for the Trp-cage protein. The functional form of the
potential energy function is chosen as u,(x; #), where @ is the set of parameters that need to be learned. The ensemble of conformations from all-
atom simulations is converted into a coarse-grained ensemble using a predefined CG mapping and used as data samples. Here we map each amino
acid into one coarse-grained particle at the C, position. Based on the data samples, a noise potential u,(x) is designed and used to generate an
ensemble of noise conformations and optimize the parameters @ with potential contrasting.

By definition, maximizing the above objective function
forces the probability function p(x; @) to assign high values to
data samples (the first term) and low values to noise samples
(the second term). In that regard, NCE is similar to the
standard maximum likelihood estimation,®" which assigns high
probability on training data. Previous works*’ have proven that
the solution @* for optimizing /(0, F,) behaves like the

maximum likelihood estimator for large noise sample sizes and
p(x; 0*) converges to the true data distribution. The advantage
of NCE over maximum likelihood estimation is that the free
energy F, is treated as a free parameter, and the optimization
avoids the computationally expensive procedure for evaluating
F, rigorously. In addition, a nice property of /(0, E,) is that it is
a concave function and has a unique maximum point if the
potential energy function u,(x; @) is linear to 6.

Treating F, as an independent variable, while being
advantageous, also introduces a dependence of NCE’s
performance on the noise distribution because the noise
sample size is always limited in practice. If p(x; ) is a
normalized density with conserved probability mass, as in the
maximum likelihood optimization, increasing its value on data
samples would implicitly decrease its value on regions outside
the data. Such a balance of probability density is not
guaranteed in NCE since p(x; €) is not strictly normalized
due to the approximate treatment of F,. The use of a noise
distribution remedies this issue by allowing an explicit
probability minimization for the region covered by noise
samples. While a comprehensive theory is still missing on
designing optimal noise distributions,”” we find that a useful
guiding principle is to design the noise distribution such that it
covers the phase space occupied by and surrounding the data
samples. Without significant overlap between data and noise
samples, the objective function, /(6, F,), can be trivially

optimized by assigning high probability on data samples and
low probability on noise samples without forcing p(x; €) to
capture the distributional structure within the data samples. In
such cases, both terms in the objective function approach the
constant zero, and the gradient on @ vanishes, hindering the
optimization.

We parametrized the potential energy function u,(x; @)
using a two-dimensional cubic spline™ with 169 spline
coefficients. The noise distribution g(x) was chosen as the
uniform distribution, and 500 000 samples were generated
from both data and noise distributions. We learned the
parameters @ by maximizing the NCE objective function
1(0, F) (eq 1) using the L-BFGS algorithm54 (In practice, we
minimize the negative of the NCE objective function). As
shown in Figure lc, u,(x; 0*) closely matches the underlying
Miiller potential (Figure 1b), supporting the effectiveness of
NCE for learning potential energy functions.

Potential Contrasting for Learning Force Fields.
Although theoretically sound, the current formulation of
NCE is not effective for learning molecular force fields in
practice. Therefore, we developed a new method named
potential contrasting by generalizing NCE and introducing a
customized way of defining the noise distribution. We present
details of the method with applications to protein molecules in
mind (Figure 2), for which the development of CGFFs is of
great significance but has been challenging.””’ However,
potential contrasting is general and can be applied to other
types of molecules.

Generalizing NCE to Unnormalized Noise Distributions.
The current formulation of NCE" requires specifying noise
distributions for which the normalized probability density can
be easily determined. This requirement restricts the choice of
noise distributions because the normalization constant is
difficult to compute for many probabilistic functions, including
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Boltzmann distributions defined by complex potentials. Here
we propose that this requirement is unnecessary and generalize
NCE to use noise distributions specified with a /Eotential
energy function uy(x). Specifically, we set q(x) = e lug(0=Fg),
where Fyis the free energy. Similarly to F,, we treat F as an
extra parameter in the optimization instead of computing its
value explicitly. As a result, the logistic regression objective
function in eq 1 becomes

1
|+ e~y +EF]

N
1 P
10, E, F) = N 2108

pli=1

N, )
+ 2.1 :
; O e ) +E
©)
Because the value of /(6, E, El) in eq 3 only depends on @ and

the difference between F, and F,, we merge the two free
energies into one free parameter, AF = F, — F,, that is,

1
—Plug(x;) —up(x;;0)+AF]

N

1 P
1(0, AF) = — Z log
Np i=1 1+ve

al 1
+ 2 log ,. )
= 1+ I/_l e—/}[up(xq;ﬁ)—uq(xq)—AF]

(4)
Potential contrasting uses /(8, AF) as the objective function
and optimizes the parameters § by maximizing /(@, AF). 6* is
used to represent optimized parameters.

Defining the Noise Distribution for Learning CGFFs of
Protein Folding. As mentioned before, the performance of
NCE depends critically on the noise distribution, which should
produce samples with sufficient overlap with the training data.
For low dimensional systems, the uniform distribution used in
the Miiller potential example is a feasible choice for the noise.
For complex systems such as protein molecules, uniform
distributions suffer the dimensionality curse to cover the
relevant phase space. Our generalization to unnormalized
Boltzmann distributions significantly broadens the choices of
noise distributions to facilitate producing complex molecular
structures that resemble data samples. We further propose an
umbrella sampling procedure to design noise potential energy
functions and enhance overlap between noise and data
samples.

We design the noise potential energy function such that the
noise samples contain both folded and unfolded structures to
match the configurational ensemble from all-atom simulations.
For a given protein, we start with an energy function that
includes terms for bonds, angles, and dihedral angles defined as

L-1 L-2
1 o a
ubonded(x) = Z Zkl(bt - bi )2 + Z Sangle(aii c,‘)
i=1 i=1
L-3

+ z Sdihedral(di; Ctd)
i=1 (5)

where L is the number of residues in the protein and b, a, and
d; represent the ith bond, angle, and dihedral angle,
respectively. A quadratic function is used for energies on
bonds. k; and by are the force constant and the equilibrium
value for the ith bond, respectively. Cubic spline functions,

pubs.acs.org/JCTC
Sangle a0d Sgierap are used for energies on angles and dihedral

angles (Figure S1). ¢} and ! are spline coefficients for the ith
angle and dihedral angle, respectively. Using data samples, we
fit each bonded energy term in #,,,4.4(x) independently such
that it will reproduce the marginal distribution of the
corresponding degree of freedom from the data samples. To
generate both folded and unfolded structures for noise
samples, we further carried out umbrella sampling simu-
lations™® with 14, 404(X) by biasing the root-mean-squared-
deviation (RMSD) from the folded structure toward different
values.

We combined configurations sampled from all M umbrella
simulations to form a generalized ensemble which is used as
the noise ensemble. The probability distribution of the
generalized ensemble can be described as pgn(x) o Y
exp(—plu(x) + 1,])," " where u,(x) is the energy function
used in the ith umbrella simulation that includes both
Upondea(X) and the bias function on the RMSD. v, is adjustable
energy that needs to be fitted and added to the potential
energy u;(x) so that the relative free energies of the M states
match the relative populations of structures sampled from
these states. Correspondingly, the noise potential function can
be computed as uy(x) = —f~' log 3, exp(—plu,(x) + v,]).
More details on the procedure are included in the Supporting
Information.

Extending Potential Contrasting to Multiple Proteins.
With the developments outlined above, potential contrasting
can be used to parametrize CG energy functions for a specific
protein by optimizing /(0, AF) defined in eq 4 (Figure 2). It
can be further generalized to learn CG potential functions with
shared parameters. Suppose that we can produce data and
noise samples for a collection of proteins, the objective
function to ensure that the CGFF reproduces the target
configurational distribution for each protein can be defined as

S
[tot(ai {AFk}iil) = x

: 1
Z log

N; )
+ Z log ki k(. ki
i=1 1+ yk_l e_ﬂ[up(xq;o)_uq(xq)_AFkJ (6)

The above expression is a sum of potential contrasting
objective functions (eq 4) introduced for each protein. {x,": i
=1, .., Npk} and {qui: i=1, .., qu} represent the data and
noise samples for the kth protein, with N;f and Né‘
corresponding to the respective sample sizes, and v, = N/
NJE. While the same energy function up(x; 0) with shared
parameters @ is used, different noise potential energy functions,
uqk(qui), can be introduced for individual proteins. The
aggregated objective function maintains the property of being
concave if the CG energy function is linear to 6. We note that
the objective function can be generalized straightforwardly if
the CGFF introduces protein-specific parameters, as detailed in
the Supporting Information.

B RESULTS

Potential contrasting is a general method for force field
parametrization. We focus on its application to protein folding
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Figure 3. Parameterizing CGFFs for the Trp-cage protein using potential contrasting and all-atom simulations. (a—c) Distributions of RMSD with
respect to the folded structure for conformations sampled from the all-atom simulation (orange) and CG simulations with learned CG potentials
that differ in the representation of the nonbonded interactions (eqs 7—9). (d) Free energy profiles along the RMSD with respect to the folded
structure for conformations sampled from the all-atom simulation and CG simulations with the three different learned potentials. (e—h) Free
energy surfaces over the first two tICA coordinates for the all-atom simulation (h) and CG simulations with the three different learned potentials.
The metastable states in panel h are labeled as 1, 2, and 3, with the corresponding representative structures shown in parts j, k, and 1. (i) The many-
body potential u™(x; ¢*) as a function of the RMSD with respect to the folded a-helix structure.

and show that it can be used to optimize CGFFs for a specific
protein and a collection of proteins. Given a sufficiently flexible
functional form, the force field produced by potential
contrasting can accurately reproduce the configurational
distribution of all-atom simulations. We demonstrate its
efficiency by optimizing over 12 proteins to derive CG
potential functions with shared parameters. We provide
potential contrasting’s source code via the Github repository
https://github.com/ZhangGroup-MIT Chemistry/PCCG.
Coarse-Grained Force Field for the Trp-Cage Protein.
We applied potential contrasting to learn CGFFs for a 20
amino acid long peptide, Trp-cage. As detailed in the Methods
section, potential contrasting parametrizes the force field by
maximizing its effectiveness in differentiating data samples
from noise samples. We use as data samples a total of N, =
1044 000 conformations from a 208 us long molecular
dynamics simulation with explicit solvents performed in ref
62. This fully atomistic simulation captures multiple folding
and unfolding events for the peptide. We generated N,
1 044 000 noise samples (Figure S2) that include both folded
and disordered configurations and computed the noise
potential u,(x) using the umbrella sampling procedure
described in the Methods section. In the following, we use
potential contrasting to learn three CGFFs with different
flexibility and complexity by optlmlzlng eq 4 with the limited-
memory BFGS (L-BFGS) method.>* For simplicity, we only
use C, atoms to represent protein conformations and define
energies, but potential contrasting can be easily generalized to
more refined structural models.

CGFF with Bonded Terms and Pairwise Nonbonded
Interactions. We first learned a CGFF, ub™(x; ), that includes
bonded terms and pairwise nonbonded terms defined as

ué’”‘(x; 0) = tyong(X) + typge(x) + udihedral(x) + thec(%)
L-1

Fug(x) = Y - kb = bf ? + 2 Sunge(d55 €5

i=1

L-4 L q q
+ Z Sdlhedral(dzf < ) + z Z eXp( 1 //1D)
i=1 j= 1+4
+ Z Z Snb( 1;1
i=1 j=i+4 (7)

The bond, angle, and dihedral terms are similarly defined as in
eq S. Nonbonded terms include electrostatics, t..(x), and a
short-range interaction energy term, u,,(x), both of which act
between pairs of CG particles that are separated by four or
more bonds. The electrostatic interaction is modeled using the
Debye—Hiickel theory, where g; is the net charge of the ith
residue, Ap, is the Debye screening length, and r;; is the distance
between residues i and j. The short- range nonbonded
interaction energy is defined with cubic spline functions,
Snb(rij; c,-j) and c; are spline basis coefficients (Figure S1).
Because bond energies are much stronger than others, the
parameters by and k; were directly fitted based on the mean
and the variance of the ith bond’s distribution in the data
samples. Therefore, the parameter @ only includes spline basis
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coefficients, that is, @ = {c?, ¢, cij}. To prevent overfitting,
regularization terms on the potential energy up(x; 0) are added
in the optimization to control their smoothness. Details on
regularization terms are included in the Supporting Informa-
tion. Since the energy function depends on the parameters @
linearly, potential contrasting is guaranteed to produce a
unique solution 6*.

We carried out molecular dynamics simulations (see the
Supporting Information for details) with the learned CGFF
ugair(x; 0*) to evaluate the resulting structural ensemble.
Similar to that from the all-atom simulation, the distribution of
RMSD with respect to the folded structure for CGFF is
bimodal (Figure 3a). Therefore, the learned CG potential
function ub™(x; 6*) captures both folded and unfolded
structures. However, a significant discrepancy exists between
the two distributions. The CG simulation produced fewer
folded structures, and the two maxima of the corresponding
RMSD distribution do not exactly match that of the all-atom
result. The discrepancy is clearer if we convert the RMSD
distribution histogram into free energy surfaces (Figure 3d).
Deviations can also be seen when comparing the free energy
surface over the first two components of the time-independent
component analysis®>~* (tICA), which describe the slowest
processes observed in the simulation. The all-atom surface has
three metastable states: one folded state (state 1), one
unfolded state (state 2), and one misfolded state (state 3)
(Figure 3h,jk,1). The first tICA coordinate separates the folded
state from unfolded states and thus can be viewed as the
protein’s folding coordinate. On the other hand, tICA 2
captures the conformational transition between unfolded
structures and a misfolded, metastable configuration. Although
the CG simulation samples all three metastable states (Figure
3e), it produces a smaller population of the folded state and
does not capture the cooperative transitions between folded
and unfolded structures (Figure S3).

As mentioned in the Methods section, well-defined noise
distributions are essential for the performance of potential
contrasting. It is conceivable that the noise distribution uq(x)
based on the umbrella sampling of RMSD does not provide
sufficient coverage of the phase space given the degeneracy of
the collective variable. As an alternative, we introduced a new
noise distribution based on two-dimensional umbrella
simulations using RMSD and tICA2 as collective variables.
Because tICA2 is relatively orthogonal to tICAl and RMSD,
explicit biases on tICA2 in the two-dimensional umbrella
sampling shall expand the conformational space explored by
the noise distribution (Figure S4). However, optimizing ugair(x;
0*) with the new noise distribution does not improve the force
field’s performance substantially (Figure S4), suggesting that
the subpar results seen in Figure 3a are not due to the quality
of the noise distribution.

Adding Many-Body Interactions Parametrized Using
Neural Networks. The discrepancy between the CG and all-
atom simulations could also be caused by the pairwise
potential being too restrictive and cannot capture many-body
interactions that might arise due to coarse-graining. Next, we
learned a more flexible energy function that includes an extra
term parametrized using a feed-forward neural network with
parameters ¢, that is,

up"(x 0, ) = ub™(x; 0) + upp(x; @) (8)

The additional energy term, upy(x; ¢), takes angles, dihedral
angles, and pairwise distances as inputs and thus is invariant to
translations and rotations (Figure S5). It can represent
complex interactions involving multiple residues because the
neural network is fully connected to couple different degrees of
freedom.*

A CG simulation performed with the learned potential
function uP““(X; 0%, ¢*) now indeed matches the all-atom
results well. The maxima of the RMSD distribution are much
better placed (Figure 3c), suggesting that the CG simulation
accurately predicts the folded structure. Importantly, the CG
simulation reproduces the relative population of the folded
structure and the unfolded ensemble and the free energy
barrier between them (Figure 3d and S3). Similarly, the free
energy surface of the first two tICA coordinates (Figure 3gh)
and the distributions of pairwise distances (Figure S6) agree
well with the all-atom ones. Therefore, despite only using only
a-carbons, the CGFF captures the complex folding landscape
of the peptide determined from atomistic explicit solvent
simulations.

Adding Secondary Structure Inspired Many-Body Poten-
tials. Although parametrizing the many-body energy term
using a neural network improves the accuracy of the resulting
force field, it has a few disadvantages. For instance, the
potential function wu"(x; @, ¢) is not linear to ¢, and
optimizations may produce multiple solutions with comparable
performance when varying the initial conditions (see Figure
S7). Moreover, it can be difficult to interpret the many-body
energy in simple physical terms. To avoid these issues, we
learned a CG potential function with a secondary structure
based many-body energy term. Secondary structure biases are
frequently incorporated into coarse-grained models as frag-
ment memories for improved quality of structural predic-
tions.'>*>®” They help account for cooperative effects arising
from water molecules involving many residues that are
challenging to describe with pairwise potentials. Specifically,
the secondary structure based many-body energy term is
defined as

uy'(x; 0, ) = ub™(x; 0) + uny(x; ) (9)

It is parametrized using cubic spline functions as ul,(x; ¢) =
S (rmsd_ss(x, x,); ). Here rmsd_ss(x, x,) is the RMSD
calculated on the a-helix (residue 3 to residue 15) between a
given structure x and the folded structure x,. The function
Si(rmsd, c¢*) is parametrized using a cubic spline and the
parameter ¢ includes all the spline basis coefficients ¢*. This
design of the energy function in eq 9 further ensures linear
dependence on parameters and a unique solution for force field
optimization.

The CG simulation results using the learned potential u,™(x;
0%, ¢*) are shown in Figures 3b,d,f, and S3. Although the
many-body energy term is restricted within the a-helix, the CG
simulation correctly reproduces the relative populations of
folded and unfolded states and the free energy barrier. Its
performance is almost as good as the potential with a neural
network based many-body term defined over the whole
protein. The learned many-body potential function uy(x;
¢*) along the a-helix RMSD is shown in Figure 3i. It has a
deep well near 0 nm and quickly approaches zero when the
RMSD is larger than 0.3 nm. Therefore, the potential only
plays a significant role in stabilizing the folded structure when
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Figure 4. Comparison between results from all-atom simulations®” and CG simulations performed using the force field with shared parameters. (a)
For each of the 12 proteins, we show the folded structure (red) from the all-atom simulation, the structure (blue) from the CG simulation that has
the lowest RMSD with respect to the folded structure, and the C,-RMSD (over all residues) between the two structures. The two plots on the right
of structures are distributions of RMSD to the folded structure and distributions of R, (radius of gyration) for conformations sampled from all-atom
simulations (orange) and CG simulations (blue). (b) Trajectories of R, and RMSD with respect to the folded structure for the all-atom simulation
(orange) and the CG simulation (blue) of Protein B. Although the data from all-atom simulations and CG simulations are plotted in the same

figure, their time scales are different. Similar plots for other proteins are included in the Supporting Information.

the a-helix is already close to the native state. Its impact is We designed the energy function to allow sharing of

minimal when the a-helix adopts unfolded configurations. parameters across proteins. The force field for the kth protein

Efficient Optimization of CG Force Fields with Data

. . is defined using eq 9 as
from Multiple Proteins. The above results suggest that

. o ) . ‘
potential contrasting is a powerful tool to parametrize flexible up (x) = thopg(x,) + ”angle(xk) + e (X0) F (%)

CGFFs for specific proteins and capture their complex folding «
landscapes. However, to develop general-purpose force fields, (%) + st (X5 )
optimizing the parameters against a diverse set of proteins is
essential to improve their transferability. Next, we show that

potential contrasting achieves high computational efficiency to

(10)

As proof of principle, we only shared parameters for pairwise

nonbonded interactions and allowed protein-specific parame-

enable parameter optimization using all-atom simulation data ters for bonded and many-body terms. The pairwise non-
of 12 fast-folding proteins.®” bonded interaction potential is now defined as
G https://doi.org/10.1021/acs.jctc.2c00616
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L-4 L
b
unb(x) = z Z Snb(rij; C?]

i=1 j=it+4 (11)

While S, (r; c}‘}’) has the same functional form as that in eq 7,
its parameters now only depend on residue types I and J.
Because c?]b are made to depend on residue types alone, they
are shared among proteins. Our choice of limiting the force
field’s shared parameters is due to the well-known challenges of
predicting secondary structures in CG models.” While
potential contrasting allows efficient optimization of CGFFs
with all parameters being shared across proteins, the accuracy
of the resulting CGFF may be poor. Allowing protein-specific
potentials alleviates the challenges in describing secondary
structures using CG models with only one particle per residue.

Both shared and protein-specific parameters were learned by
optimizing the aggregated objective function defined in eq 6.
For each of the 12 proteins, we used evenly spaced 250 000
conformations from the corresponding all-atom simulation as
data samples. Using the umbrella sampling procedure
described in the Methods section, we generated the same
number of noise samples and computed the noise potentials
uf(x). Because the energy function wuj(x) is linear to all
parameters, optimizing the aggregated objective function (eq
6) converges to a unique solution. In addition, because the
aggregated objective function is a weighted sum of objective
functions for individual proteins, its computing and opti-
mization can be easily parallelized among proteins. Using 12
Nvidia Volta V100 GPUs with each assigned to calculate the
potential contrasting objective function of one protein, we can
optimize the aggregated objective function (Figure S8) and
learn all parameters in 30 min.

CG simulations using the learned potential functions are
compared to all-atom simulations (Figures 4, S9, S10, and
S11) in terms of the radius of gyration (Rg) and the RMSD
from the folded structures. Structures close to the native state
are sampled in the CG simulations for all proteins (Figure 4).
The lowest RMSD for configurations sampled in CG
simulations range from 0.2 to 5.3 A and are less than 4 A
for 10 out of 12 proteins. The short-range nonbonded
interaction potentials between pairs of amino acids are
shown in Figures 5 and S12. We parametrize these potentials

41 | —— ALALYS

|- ILE-VAL

—— TRP-TYR
—— ASP-THR

Energy (kJ/mol)
o

T

0.5 1.0 1.5
Distance (nm)

Figure S. Learned contact potential energy functions between
representative pairs of amino acids. Similar plots for other pairs of
amino acids are included in the Supporting Information.

using cubic splines and do not restrict them to specific
mathematical expressions. Nevertheless, many converge to
functions with multiple minima, potentially arising from the
formation of direct and water-mediated contacts between
amino acids in all-atom simulations.”>%*~7°

Further analyses revealed that the CGFF captures the
collapse transition of proteins with both expanded (large R,)
and compact (small Rg) configurations (Figure S11). The free
energy surfaces along the tICA coordinates support the
metastability of the different configurations (Figure S13).
However, we found that, for most proteins, the native states do
not appear as the global minimum in the sampled free energy
profiles (Figure S10). Even for Trp-cage, the agreement
between CG and all-atom simulations is not as good as those
shown in Figure 3b. The CGFF’s accuracy is impacted by the
sharing of parameters across proteins and our use of a pairwise
potential for the nonbonded interactions. Further improving
the force field accuracy would require introducing transferable
many-body potentials for nonbonded interactions.

Bl CONCLUSION AND DISCUSSION

By generalizing noise contrastive estimation with unnormalized
noise distributions, we developed a new method, potential
contrasting, for learning force fields from reference molecular
configurations. Potential contrasting combines the advantages
of existing variational methods such as force matching and
relative entropy minimization. As with the force matching
method, it is computationally efficient and does not need
sampling during force field optimization. Like the relative
entropy method, potential contrasting does not require force
information. We note that the gYBG method shares similar
properties as potential contrasting and does not require
iterative sampling of trial CG potentials or atomic force
information. However, as Rudzinski and Noid pointed out,”'
the method can be sensitive to the accumulation of errors
arising from the estimation of correlation functions and their
gradients. Whether these challenges prevent the gYBG method
from deriving transferable force fields for complex biomole-
cules is unclear. We showed that potential contrasting is
effective and succeeds in producing CG energy functions that
accurately reproduce configurational distributions obtained
from all-atom simulations. In addition, potential contrasting
can be trivially parallelized for efficient learning of CGFFs with
shared parameters using simulation data of multiple systems.

With its efficacy and efficiency, potential contrasting is well-
positioned to systematically learn transferable CGFFs based on
all-atom force fields. To ensure the accuracy of CGFFs, energy
functions that can account for many-body effects must be used.
Indeed, the less-than-perfect results shown in Figure 4 arise
precisely from the pairwise approximations used in the force
field rather than a failure of potential contrasting. As we have
demonstrated for Trp-cage, provided with a flexible enough
energy function, potential contrasting is fully capable of
producing CG models that reproduce all-atom configurational
distributions with remarkable accuracy. Furthermore, unlike
the neural network based potential with pairwise distances as
inputs, the energy function needs to be agnostic with respect to
protein-specific features for transferability. The recently
proposed CGSchNet based on graph neural networks could
potentially offer the capacity for capturing many-body effects
while maintaining transferability.””

Although we focused in this study on using potential
contrasting to learn CGFFs, the method is general. It can be
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applied to learning various types of force fields. For instance,
potential contrasting can be readily applied to parametrize
implicit solvent models using all-atom simulations with explicit
water molecules. With further development, it could also be
used to improve existing all-atom force fields by incorporating
information from quantum mechanical calculations or
experimental data. Such applications and development will
be investigated in future studies.

Using unnormalized noise distributions produced with
umbrella sampling is essential for parametrizing accurate
CGFFs. Unnormalized noise distributions defined with
molecular energy functions allow the generation of noise
samples that resemble the configurations produced from all-
atom simulations. Therefore, a significant overlap in the phase
space between noise and data samples can be achieved. Such
overlap can be difficult to ensure with arbitrary noise
distributions since all-atom simulations only sample limited
regions of phase space with low energy. We note that, upon
training molecular simulation data, probabilistic models
parametrized with normalizing flows>~"> have been shown
to produce realistic and stable molecular conforma-
tions.”>”*"®" These models have indeed been proposed to
serve as noise distributions for contrastive learning to
guarantee overlap with data samples.w’76 However, we found
that using flow-based models as noise distributions produced
CGFFs with subpar quality. Similar findings have been reached
in other recent studies as well.”> By optimizing the overlap
with data samples, flow-based models may hinder the
minimization of probability for regions outside the data.
Further research is needed to design optimal noise
distributions in NCE.
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