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Monoclonal antibodies are being used to treat a remarkable
breadth of human disorders. Nevertheless, there are several
key challenges at the earliest stages of antibody drug
development that need to be addressed using simple and
widely accessible methods, especially related to generating
antibodies against membrane proteins and identifying antibody
candidates with drug-like biophysical properties (high solubility
and low viscosity). Here we highlight key bionanotechnologies
for preparing functional and stable membrane proteins in
diverse types of lipoparticles that are being used to improve
antibody discovery and engineering efforts. We also highlight
key bionanotechnologies for high-throughput and ultra-dilute
screening of antibody biophysical properties during antibody
discovery and optimization that are being used for identifying
antibodies with superior combinations of in vitro (formulation)
and in vivo (half-life) properties.
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Introduction

The success of antibodies as drugs is directly attributable to
their unique combination of properties, including high
affinity, potent effector functions, low toxicity, long half-
life, and favorable biophysical properties (e.g. high speci-
ficity, stability and solubility). The FDA approval of >100
antibody drugs and related products and ongoing clinical
trials for hundreds more has motivated a tremendous

amount of effort to improve the discovery and development
of these molecules [1]. Despite great advances in this field,
there are several key challenges that continue to limit the
pace and success of antibody drug development [2-4]. In
this review, we highlight two such challenges and illustrate
how bionanotechnology holds great promise to address
these challenges in ways that are increasingly simple and
widely accessible (Figure 1).

Bionanotechnology for improved antibody
drug discovery

One outstanding challenge for therapeutic antibody
development is the discovery of antibodies against mem-
brane proteins. As key mediators of myriad pathological
conditions, membrane proteins represent a large fraction
of promising therapeutic targets. As such, there is signifi-
cant interest in establishing reliable methodologies to
identify antibodies against these biomolecules. However,
there are few approved antibody drugs specific for mem-
brane proteins (<10) relative to the great number of
unique membrane protein drug targets (thousands) [5—
7]. The fundamental challenge for discovering antibodies
against these targets is the ability to prepare membrane
proteins in functional and soluble formats that can be
used for either initial selection or secondary screening or
both [8]. Unfortunately, membrane proteins are
extremely difficult to produce as soluble antigens in
stable, biologically relevant conformations. Transmem-
brane proteins, with highly hydrophobic midsections, are
heavily reliant on an orderly lipid bilayer for stability and
functionality, an environment that is difficult to recapitu-
late in a manner conducive to experimental selections of
therapeutic antibodies. Several approaches have been
reported for addressing this challenge, including DNA
and RNA immunization [9,10], surfactant-solubilized
membrane lysates [11] and whole cells [11-13] for gener-
ating antibodies against membrane proteins. However,
these methods are limited by several common challenges,
which are often linked to the low concentrations, purities
and/or stabilities of membrane proteins either in lysates or
displayed on whole cells. Moreover, DNA and RNA
immunizations do not obviate the need for membrane
protein reagents during secondary screening. Finally, iz
vitro antibody screening against whole cells is challenging
due to the presence of many irrelevant protein antigens
on the cell surface and the complexity of interfacing
relatively large mammalian cells with yeast cells or even
phage particles in a highly specific manner.
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Overview of emerging bionanotechnologies that are improving antibody drug discovery and early-stage developability analysis.

One of the key challenges in antibody drug development is the generation of antibodies specific for membrane proteins given the difficulty in
preparing soluble and functional versions of membrane proteins that can be used for immunization and in vitro antibody selections. Advances in
generating diverse types of biological and synthetic lipoparticles displaying functional membrane proteins are simplifying the discovery of
antibodies against a myriad of membrane proteins as well as diverse panels of epitopes and cross-species reactive epitopes. A second key
challenge in antibody drug development is the assessment of antibody biophysical properties such as self-association and non-specific binding at
the earliest stages of antibody drug discovery. This is particularly important because the complementarity-determining regions of antibodies, which
govern antibody affinity and specificity, also mediate antibody self-association and non-specific binding. Advances in biophysical screening
methods using bionanotechnologies is enabling the unusually large-scale screening of antibody self-association and non-specific binding in
addition to affinity and specificity to identify antibodies with globally superior properties.

Encouragingly, several powerful bionanotechnology
methods have emerged as promising general strategies
for the controlled presentation of membrane proteins in a
biologically relevant manner. These methods have facili-
tated the production of soluble, stabilized, and functional
membrane protein antigens for use in immunizations and
in vitro biopanning. Such methodologies have enabled
both direct biological production of functional antigens
(e.g. virus-like lipoparticles) as well as synthetic creation
of functional antigens (e.g. nanodiscs and peptidiscs)
(Figure 1).

Virus-like lipoparticles are spheroidal assemblies
(~150 nm in diameter) surrounded by intact plasma
membranes [14,15]. These biological particles have been

produced using cellular systems overexpressing a desired
cell surface antigen and Gag proteins. The Gag proteins
localize to membranes and cause curvatures, which bud
off as lipoparticles that can be purified via ultracentrifu-
gation, PEG precipitation, or chromatographic separation
[16,17]. Recently, these lipoparticles were employed for
isolating antibodies against insulin-regulated glucose
transporter (GLUT4) [18]. This transporter, containing
12 transmembrane spanning segments, is implicated in
disease states including diabetes and obesity. Notably,
virus-like lipoparticles were generated with human
GLUT4 levels that were 10-100 times higher than those
of conventional membrane preparations. For antibody
discovery, human GLUT4 lipoparticles were first used
for immunization, and then the resulting antibody
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variable genes were cloned and reformatted as single-
chain variable fragments (scFvs) for phage display screen-
ing (Figure 2a). Next, the scFv library was panned for
binding to GLLUT4 lipoparticles, and isolated scFvs were
further evaluated by ELISA for binding to GLUT4
lipoparticles and lack of binding to control lipoparticles
lacking GLUT4. Several antibody clones from unique
sequence families were characterized and observed to
bind cells overexpressing GLUT4. The antibodies failed
to bind GLUT4 in western blot analysis, suggesting

Notably, several of the identified mAbs showed unique
selectivity for GLUT4 conformational states (Figure 2b
and c¢) and mAbs specific for the inward-open conforma-
tion also demonstrated inhibitory bioactivity, locking the
transporters in an inactive state. More broadly, similar
types of lipoparticles have been employed in several
antibody discovery campaigns at various stages, including
as biotinylated antigens for biosensor-based affinity mea-
surements [9,19-21]. Overall, virus-like lipoparticles may
offer several advantages over alternative membrane pro-

engagement of conformational GLUT4 epitopes.  tein formulations in that they are highly immunogenic,
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Discovery of conformation-specific antibodies against the membrane protein GLUT4 using virus-like lipoparticles.

(a) Presentation of the native conformations of GLUT4 (inward-open and outward-open) for immunization and B-cell isolation was achieved using
virus-like lipoparticle technology. Phage panning with GLUT4 lipoparticles led to the isolation of several high affinity antibodies. (b)-(c) Two
selected GLUT4 antibodies (mAb 1 and mAb 2) display conformational specificity for either the (b) inward-open (mAb 1) or (c) outward-open (mAb

2) conformations. The figure is adapted from a previous publication [18].
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contain intact membrane lipid bilayers, and are relatively
straightforward to produce.

Despite the many strengths of biological lipoparticles,
there has also been much progress in generating different
types of synthetic nanoparticles, which also contain lipids,
for presenting membrane proteins for antibody discovery
applications [22-27]. Initial efforts sought to solubilize
intact membrane proteins via harsh detergents that often
disturb antigen structure and stability. To obviate the
need for such detergents, inspiration from high-density
human lipoproteins led to the development of nanodiscs,
colloidal assemblies of lipid bilayers with modified mem-
brane scaffold proteins wrapped around the hydrophobic
midsections [28]. Nanodiscs have been modified to pres-
ent a wide range of complex antigens and were recently
used to identify high affinity antibodies against a model
transmembrane protein, human Nav1.7 ion channel [29°].
A chimeric surrogate (VSD4-NavAb) containing a portion
of the bacterial homolog NavAb was selected for the
campaign, which enhances expression and stability.
Structurally, VSD4-NavAb is a complex transmembrane
protein, assembling into a homotetramer with a single ion
pore flanked by four voltage-sensing domains. After
expression of VSD4-NavAb in insect cells, the protein
was solubilized with detergent and purified via chroma-
tography. Addition of stoichiometric amounts of lipid and
membrane scaffold protein resulted in displacement of
detergent and the formation of nanodiscs, which were
confirmed via SDS-PAGE after size-exclusion chroma-
tography purification. Notably, biotinylated nanodiscs
were employed for flow cytometry and fluorescence acti-
vated cell-sorting (FACS) applications, which showed
improved signal relative to sorting with proteoliposome
formulations. Encouragingly, the nanodiscs were success-
fully used to isolate high affinity B-cells via single-cell
sorting of antigen-specific hybridoma cells after immuni-
zation of mice with VSD4-NavAb liposomes (Figure 3).

Despite successful applications of nanodiscs in antibody
discovery campaigns, they are relatively challenging to
produce, and often require optimization of molecular
formulation components (e.g. lipid length and rigidity)
on an antigen-specific basis [30]. To address this chal-
lenge, two alternative peptide-based formulations have
been developed, namely Peptidisc and Salipro particles
[31,32]. Peptidiscs are assemblies of transmembrane pro-
teins stabilized by surrounding amphipathic bi-helical
scaffold peptides [32], and, unlike nanodiscs, do not
require additional lipids for stabilization. The scaffold
peptide used for assembling Peptidiscs has proven ame-
nable to the stabilization of multiple different antigens
while requiring minimal optimization. Similarly, saposin-
lipoprotein (Salipro) particles, which are based on a class
of lipid-binding proteins containing amphipathic helices
(saposins), facilitate the stabilization of transmembrane
proteins in lipid nanoparticles [31]. In Salipro particles,

saposin-lipid complexes form a stabilizing belt around the
hydrophobic region of transmembrane proteins. While
the method of stabilization is similar to that for nanodiscs,
the stabilizing components of Salipro particles are smaller
and more flexible than nanodisc components, enabling
natural adaptation of the number of stabilizing saposins to
the size of complexed transmembrane proteins and lipids.
This simplifies the optimization of Salipro particle pro-
duction relative to nanodisc production. The Salipro
technology has been used to stabilize multiple membrane
proteins, including a bacterial peptide transporter and the
HIV-1 spike protein, for structural and functional studies.

The generation of related synthetic lipoparticles has also
been reported using polymers. In particular, styrene-
maleic acid lipoparticles (SMALPs) have been validated
for the synthesis of membrane protein formulations that
are amenable to high-throughput antibody selections
using cell sorting methods and exhibit improved thermo-
stability over detergent-solubilized antigens [33]. These
discoidal lipoparticles are generated from pores formed by
the scaffold co-polymer (styrene-maleic acid) that sur-
rounds target membrane protein within a native lipid
bilayer. SMALPs have advantages over Salipro and Pep-
tidisc particles because they do not require initial deter-
gent extraction of membrane proteins and lack scaffold
polypeptides, thereby reducing the risk of antibody iso-
lation against non-target polypeptides [17]. Peptidisc,
Salipro, and SMALP particles have not yet been reported
as antigen formulations for the isolation of therapeutic
antibodies against membrane proteins, but these unique
particles hold great promise to improve such antibody
generation and warrant future investigation.

Bionanotechnology for improved antibody
developability analysis

A second outstanding challenge in the field of antibody
drug development is the early-stage and ultra-dilute
screening of antibody biophysical properties, especially
antibody self-association because of its strong impact on
concentrated antibody formulation properties such as
viscosity and solubility [4,34-38]. There is intense inter-
est in preparing antibody drugs as concentrated liquid
formulations for subcutaneous administration, which
increases patient compliance and quality of life and
reduces costs associated with administration. However,
antibody therapeutic candidates possess variable and
difficult-to-predict properties in concentrated liquid for-
mulations, including high viscosity, opalescence and
aggregation, and these problems are typically discovered
too late to address via selection of alternative candidates
or protein engineering [39°,40°41]. Therefore, there is a
critical need for technologies that enable screening of
antibody colloidal interactions at early stages of discovery,
which are compatible with the large numbers of candi-
dates (thousands) that are extremely dilute (<0.1 mg/mL)
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Isolation of antibodies against the multi-pass membrane protein, VSD4-NavAb, using nanodiscs.

(a) Mice were immunized using the target membrane protein (VSD4-NavAb) prepared in proteoliposomes, hybridomas were generated, and then
hybridomas were single-cell sorted using biotinylated nanodiscs presenting VSD4-NavAb. (b) Hybridoma cells were sorted to isolate single cells
that both displayed IgG and bound nanodiscs presenting VSD4-NavAb. (c) Single-cell sorting of hybridoma cells using nanodiscs resulted in the
selection of large numbers (>400) of antibodies with high binding activity, as judged by an ELISA assay with immobilized nanodiscs presenting

VSD4-NavAb. The figure is adapted from a previous publication [297].

and only partially purified (e.g. one-step Protein A
purification).

Encouragingly, bionanotechnology is enabling key
advances in early-stage screening of antibody self-inter-
actions. For example, a nanoparticle-based method has
been reported for evaluating antibody self-association in
physiological solution conditions, namely Affinity-Cap-
ture Self-Interaction Nanoparticle Spectroscopy (AC-
SINS) [42]. This approach involves immobilization of
anti-human IgG capture antibodies on gold nanoparticles
(10—20 nm), and then capture of human mAbs at dilute
concentrations (0.001—0.05 mg/mL). The colloidal inter-
actions between the immunogold conjugates are evalu-
ated in terms of the plasmon wavelength redshift via

measurement of the absorbance spectra, which can be
performed using standard absorbance plate readers and
96-well or 384-well plates. This approach has been used
for early stage screening to identify antibodies with super-
ior solubilities [43] and viscosities [41]. In particular, this
approach was used to evaluate the self-association of
87 mAbs generated against a common antigen using
unpurified cell culture supernatants at ultra-dilute con-
centrations (0.001 mg/mL) [43]. Strikingly, the mAbs
displayed a remarkably wide range of self-interactions,
ranging from highly repulsive to highly attractive. More-
over, these self-interaction measurements were strongly
predictive of the solubility of the human antibodies, as
those mAbs with repulsive self-interactions displayed
solubilities up to 200 mg/mL while those with strongly

www.sciencedirect.com
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Charge-stabilized affinity-capture nanoparticle spectroscopy (CS-SINS) enables ultra-dilute screening of antibody self-association for identifying
candidates with low viscosity and opalescence in concentrated antibody formulations.

(a) Gold nanoparticles coated with anti-human Fc capture antibodies aggregate at weakly acidic pHs (e.g. pH ~5-6.5) and low ionic strengths (e.
g. 10 mM histidine or acetate) because the zeta potential of the conjugates is low and crosses zero net charge around pH ~5.5. (b) Gold
nanoparticles co-adsorbed with anti-human Fc capture antibodies and positively charged polymers (polylysine) do not aggregate at weakly acidic
pH values and low ionic strengths because of the increased charge of the conjugates. (c) and (d) CS-SINS measurements of >0.35, which are
measured at a mAb concentration of 0.01 mg/mL, display low risk for high viscosity (>30 cP) or high opalescence (>12 NTU) when formulated at
150 mg/mL. In (c) and (d), the solution conditions were pH 6 and 10 mM histidine. In (d), well-behaved mAbs refer to those that display both
viscosity values <30 cP and opalescence values <12 NTU. The figure is adapted from a previous publication [39°].
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attractive self-interactions displayed solubilities below
10 mg/mL. This and other studies [44,45] demonstrate
the significant potential of carly-stage screening of anti-
body self-interactions to reduce the risk for suboptimal
solution  properties in  concentrated  antibody
formulations.

Nevertheless, one key limitation of AC-SINS is that it is
generally incompatible with common formulation condi-
tions at acidic pH values (pH ~5-6.5) and low ionic
strengths (e.g. 10 mM histidine or acetate). Therefore,
there has been significant interest in adapting this assay to
be compatible with common formulation conditions. A
recent study demonstrated both the origin of the problem
and a surprisingly simple solution [39°]. After gold nano-
particles are coated with anti-human IgG capture anti-
bodies, the investigators found that conjugates aggre-
gated between pH ~5 and 6.5 regardless of the buffer
(acetate or histidine), which was due to the zeta potential
crossing from positive charge due to the highly positively
charged antibodies to negative charge due to the nega-
tively charged gold nanoparticles (Figure 4a). This led to
the simple solution of co-adsorbing polylysine and cap-
ture antibodies to prepare gold-antibody conjugates that
retained their positive charge in the key pH range of
interest (pH ~5-6.5; Figure 4b). This modified assay,
Charge-Stabilized Self-Interaction Nanoparticle Spec-
troscopy (CS-SINS), enabled ultra-dilute measurements
of human mAb self-association (0.01 mg/mL), which was
predictive of antibody solution properties at four orders of
magnitude higher antibody concentrations (150 mg/mL.).
Antibodies with CS-SINS scores >0.35 displayed high
probability of displaying abnormally high viscosity (>30
cP) or opalescence (>12 N'TU; Figure 4c and d). This
approach and other complementary approaches using
functionalized nanoparticles with different charge and
hydrophobic properties [46,47] hold great potential to
identify antibody candidates with drug-like properties
early in the discovery and optimization process.

In addition to the need to evaluate weakly attractive
antibody self-association during early stages of drug
development, it is also critical to evaluate weak non-
specific colloidal interactions between antibodies and
non-antigen molecules [48]. Antibodies with high levels
of non-specific interactions have been linked to fast
antibody clearance /7 vivo [49,50], which is due to several
clearance mechanisms such as increased cellular internal-
ization and degradation. There have been a wide range of
proposed assays for evaluating antibody non-specific
binding, including ELISAs [44,50,51], surface plasmon
resonance [52], cross-interaction chromatography [53-55],
and flow cytometry assays using various types of cells
[56,57]. Despite the usefulness of these assays, they
generally suffer from one or more common limitations,
including low sensitivity for detecting non-affinity (non-
specific) antibody interactions, low throughput and/or

lack of compatibility with existing soluble, full-length
IgGs.

Recently, a magnetic particle-based assay, namely the
PolySpecificity Particle (PSP) assay, has been developed
for sensitively and rapidly evaluating antibody non-spe-
cific interactions [40°]. The PSP assay involves capturing
IgGs and other Fc-fusion proteins on micron-sized beads
functionalized with Protein A, and then evaluating the
binding of biotinylated reagents such as complex mix-
tures of proteins (e.g. soluble membrane proteins from
mammalian cells) and proteins with diverse physico-
chemical properties (e.g. ovalbumin) to immobilized [gGs
via flow cytometry. The use of flow cytometry results in
high signal-to-noise ratios and a strong ability to differ-
entiate between antibodies with different levels of non-
specific binding. Encouragingly, the PSP measurements
are strongly correlated with previously reported levels of
non-specific binding measured using a proprietary tech-
nology for displaying full-length IgGs on yeast [44], which
is significant given that PSP uses soluble IgGs and is
amenable to diverse types of antibodies and Fc-fusion
proteins. Moreover, PSP is highly sensitive at ultra-dilute
antibody concentrations (0.01-0.015 mg/mL) and simple
to perform in a high-throughput manner using a standard
flow cytometer with a microplate sampler [40°]. This
approach holds great potential for improving early assess-
ment of antibody non-specific binding and generation of
antibodies  with  reduced risk  for  abnormal
pharmacokinetics.

Conclusions

The significant improvements in antibody discovery and
developability analysis afforded by bionanotechnology
raise several intriguing possibilities for future research
and implementation. The advances in preparing soluble
and functional versions of membrane proteins in various
types of lipoparticles make it much simpler to perform
sophisticated antibody selections using iz vitro display
technologies and generate a much greater array of anti-
body hits than has been possible previously. For example,
routine generation of lipoparticles displaying functional
membrane proteins, and the use of positive and negative
antibody selections using phage or yeast surface display,
would greatly simplify the selection of antibodies that
recognize different membrane protein conformations,
diverse epitopes and cross-species reactive epitopes.
The advances in discovery-stage biophysical characteri-
zation of antibody self-association and non-specific bind-
ing now makes it possible to screen dramatically larger
numbers of antibody candidates and antibody mutants
during antibody discovery and optimization, which
greatly simplifies the identification of antibodies with
globally superior properties. This is particularly important
because antibody selections against specific types of
targets or specific epitopes, such as those that are hydro-
phobic and/or negatively charged, commonly results in
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panels of antibodies with antigen-binding sites that are
over enriched in hydrophobic and/or positively charged
residues. These types of molecular features are key risk
factors for poor developability properties and increases
the need for extensive screening to identify rare antibody
variants with drug-like biophysical properties. Finally,
the importance of these advances in antibody develop-
ability analysis is expected to be even more important for
the rapidly expanding class of multispecific antibodies
and non-conventional biologics (e.g. antibody fragments,
Fc fusion proteins, nanobodies and cytokines), which
demand even greater emphasis on screening for drug-
like biophysical properties given their unusual and non-
natural formats that are much more prone to poor bio-
physical properties than conventional IgGs.
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