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Abstract 

Smart offices can help employers attract and retain talented people and can positively impact 

well-being and productivity. Thanks to emerging technologies and increased computational 

power, smart buildings with a specific focus on personal experience are gaining attraction. 

Real-time monitoring and estimation of the human states are key to achieving individual 

satisfaction. Although some studies have incorporated real-time data into the buildings to predict 

occupants’ indoor experience (e.g., thermal comfort and work engagement), a detailed framework 

to integrate personal prediction models with building systems has not been well studied. 

Therefore, this paper proposes a framework to predict and track the real-time states of each 

individual and assist with decision-making (e.g., room assignment and indoor environment 

control). The core idea of the framework is to distinguish individuals by a new concept of Digital 

ID (DID), which is then integrated with recognition, prediction, recommendation, visualization, 

and feedback systems. The establishment of the DID database is discussed and a systematic 

prediction methodology to determine occupants’ indoor comfort is developed. Based on the 

prediction results, the Comfort Score Index (CSI) is proposed to give recommendations regarding 

the best-fit rooms for each individual. In addition, a visualization platform is developed for 

real-time monitoring of the indoor environment. To demonstrate the framework, a case study is 

presented. The thermal sensation is considered the reference for the room allocation, and two 

groups of people are used to demonstrate the framework in different scenarios. For one group of 

people, it is assumed that they are existing occupants with personal DID databases. People in 

another group are considered the new occupants without any personal database, and the public 

database is used to give initial guesses about their thermal sensations. The results show that the 

recommended rooms can provide better thermal environments for the occupants compared 

to the randomly assigned rooms. Furthermore, the recommendations regarding the indoor 

setpoints (temperature and lighting level) are illustrated using a work engagement prediction 

model. However, although specific indoor metrics are used in the case study to demonstrate 

the framework, it is scalable and can be integrated with any other algorithms and techniques, 

which can serve as a fundamental framework for future smart buildings. 
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1 Introduction 

A good indoor environment is essential for the occupants 
in many aspects. It has a significant impact on their well- 
being and lead to the improvement of their productivity 
(Huizenga et al. 2006; Humanyze 2018; MIRVAC 2019) 

and vice versa (Milton et al. 2000; Wargocki et al. 2000; 
Lan et al. 2011). In order to have better management of 
the indoor environment, many studies have focused on 
developing smart building management platforms (Tang 
et al. 2019). The rapid growth of high-speed commercial 
internet (Rathore et al. 2016), advances in building  
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management systems (BMSs) (Zhan et al. 2021), as well as 
personal electronic devices such as smartphones (Li et al. 
2017) have supported the concept of a smart building (Dong 
et al. 2019). A smart building is equipped to automatically 
control the building systems to address energy waste and 
improve the indoor environment quality based on smart 
sensors (Deng et al. 2021b). The sensors are installed in 
different locations in the building to collect environmental 
data such as temperature and humidity (Nakama et al. 2015; 
Riaz et al. 2015; Lee et al. 2016; Pasini et al. 2016; Chang  
et al. 2018; Ioannou et al. 2018; Pasini 2018; Machado et al. 
2019; Rafsanjani and Ghahramani 2020). In addition, 
technologies such as Wi-Fi, WSN, 5G, and LP-WAN 01(Lu 
et al. 2019; Marzouk and Abdelaty 2014; Tang et al. 2019) 
have been applied to allow for seamless data communication. 
With the sensing data, real-time visualization platforms  
for indoor environments were developed, which aimed to 
provide the building manager with a more efficient decision- 
making process. For example, Revel et al. (2014) developed 
a low-cost thermal comfort monitoring system by means of 
the predicted mean vote (PMV) index of multiple positions 
calculated through the collected environmental parameters 
such as temperature, relative humidity, and air velocity. 
Chang et al. (2018) presented a framework to achieve 
colorful visualization of indoor temperature and humidity 
associated with adaptive thermal comfort values, which used 
Dynamo to import real-time sensing data into Autodesk 
Revit through the Arduino microcontroller. In addition 
to thermal comfort, other factors such as acoustic comfort 
were also investigated. In addition, different platforms 
were developed to evaluate the real-time indoor air quality. 
A battery-free device was designed by Tran et al. (2017) to 
monitor the concentration of VOC, air temperature, relative 
humidity, and the atmospheric pressure of the indoor 
environment. Similarly, Kim et al. (2014) developed an 
integrated monitoring system with multiple sensors to 
evaluate the real-time indoor air quality. By examining the 
level of seven gases (i.e., ozone (O3), particulate matter 
(PM), carbon monoxide (CO), nitrogen oxides (NO2), sulfur 
dioxide (SO2), carbon dioxide (CO2), and the volatile organic 
compound (VOC)), the system was able to provide a timely 
alert regarding the air quality. 

Even with such efforts to improve the indoor environment, 
a survey involving more than 52,000 people in 351 office 
buildings showed that only half of the occupants are satisfied 
with their indoor environments (Frontczak et al. 2012). One 
major reason behind this is that the conventional methods 
for indoor environment control rely on adaptive comfort 
models and standards (ASHRAE 2017; Gan et al. 2019), 
which adopt one-size-fits-all approaches that assume all 
the occupants have similar preferences (Sood et al. 2020) 

resulting in an indoor environment that can only satisfy   
a small proportion of occupants (Frontczak et al. 2012). 
However, it is well established that different people have 
distinct preferences for indoor environments resulting from 
differences in age, gender, physiological features to name a 
few (Földváry Ličina et al. 2018; Cheung et al. 2019). For 
example, it is suggested that females prefer higher room 
temperatures than males (Karjalainen 2007) and the thermal 
sensation of people in different age groups (under 25 years 
old, 26–45 years old, and over 65 years old) are statistically 
different (Calis and Kuru 2017). In addition, it is shown that 
the occupants’ physiological features such as brain signal 
(Matthews et al. 2017; Wang et al. 2019; Deng et al. 2021c), 
skin conductance level, heart rate, and skin temperature may 
vary across individuals under the same indoor environment 
(i.e., temperature and lighting conditions) (Deng et al. 2021c). 
Therefore, it is essential to consider the individual differences 
in the decision-making of the building systems. 

To meet occupants’ diverse preferences of the indoor 
environment, previous studies have focused on approaches 
regarding individual indoor experiences. The idea of activity- 
based workplaces (ABWs) (Stone and Luchetti 1985) was 
proposed to offer people more flexible workplaces. The 
utilization of ABWs aims to provide flexible workplaces for 
the occupants depending on their personal preference (e.g., 
the location and microclimate of the workplace) (Appel- 
Meulenbroek et al. 2011). It has shown an advantage in 
improving people’s performance (Jahncke and Hallman 
2020), physical activity, and relationships with co-workers 
(Arundell et al. 2018) compared with traditional offices.  
A review involving 36,039 participants also highlights the 
benefits of ABW particularly in improving communication, 
control of time, and workplace satisfaction (Engelen et al. 
2019). Recently, some efforts have already been paid to 
integrate the ABW with smart building systems. For example, 
a robust system named OccuSpace was developed by Rahaman 
et al. (2019) for workplace management. The system allowed 
the occupants to use the statistical features of the Received 
Signal Strength Indicator (RSSI) of Bluetooth card beacons 
to predict the utilization of the shared workplace. Similarly, 
Sood et al. (2020) presented a platform with a mobile interface 
for the occupants to find suitable workplaces by collecting 
their experience feedback at different indoor workplaces. 

However, the application of ABW needs precise  
control of the indoor environment, as a poor indoor space 
management strategy may lead to extra energy consumption 
(Masoso and Grobler 2010) and insufficient indoor comfort 
improvement for the occupants (Deng et al. 2021a). 
Therefore, to maximize the gains from ABW, a human- 
centric smart decision-making system is required. In addition, 
a comprehensive survey regarding the worker perspectives  
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on incorporating artificial intelligence (AI) into office spaces 
is conducted. The results show that it is expected that future 
buildings should be able to interact with the occupants 
and create better indoor environments for individuals 
(Ho et al. 2015). 

To achieve this, real-time estimation of the occupants’ 
states (e.g., comfort level and work engagement) is the key 
to mapping personal behavior patterns and performance to 
improve the comfort level and well-being of each individual 
(Humanyze 2018). Prediction models for human comfort 
as the references for the decision-making of the indoor 
environment have been investigated in several studies. For 
example, Ho et al. (2015) developed a platform that could 
connect the real-time indoor air quality to a personal 
health reporting system through a mobile app. The system 
was able to analyze the data and give alerts to the occupants 
once the concentration of air pollution exceeded a certain 
threshold. Moreover, after collecting subjects’ thermal 
comfort feedback and physiological data under different 
environmental conditions, Li et al. (2017, 2018, 2019) 
developed different approaches including smartphone 
applications and thermal camera-based frameworks to 
estimate the occupants’ personal thermal comfort. Based on 
the developed personal thermal comfort models, a dynamic 
determination of the optimum room condition mode was 
achieved. Similarly, Ma et al. (2019) applied an ANN model 
which took human parameters (e.g., clothing type, activity 
type, human relative position, gender, age, height, and weight) 
and environmental parameters (e.g., air temperature, air 
humidity, air velocity) as inputs to train a personal prediction 
model for thermal comfort.  

Based on the existing technologies, research has started 
to focus on occupant-centric environmental control. For 
example, Kim et al. (2018) has proposed a unified modeling 
framework to achieve smart control of indoor thermal 
environments based on personal prediction models. The 
framework discussed the data collection, model selection, 
and learning process of the systems, as well as the 
architecture for integration of models in thermal control. 
In addition, a review conducted by Yang et al. (2022) 
summarized the concepts of making the HVAC control based 

on occupant information. The utilization of occupant-related 
data in improving the performance of HVAC systems has 
been identified. However, these frameworks only focus on 
thermal comfort and have not explored the capabilities of 
incorporating other indoor experiences. In addition, there 
is no case study to demonstrate how the proposed systems 
work. In order to further improve the indoor experience  
of the occupants, it is essential to develop a generic 
framework with an illustrative case study. Taking the concept 
of the digital twins (Deng et al. 2021b) as a departure point, 
this study proposes a novel framework for human-centric 
monitoring and control of smart buildings. Based on 
personal information, the framework incorporates different 
building systems but is fully scalable. The contributions  
of this framework include: (1) a new concept of human 
digital ID (DID), which refers to the digital replica of human 
biographic data; (2) a DID-based framework for real-time 
human-centric indoor monitoring and room management; 
and (3) a case study to demonstrate the feasibility and 
practicability of the framework. 

The paper is organized as follows. The concept of the 
DID-based framework is described in Section 2, followed 
by a case study to demonstrate the framework in Section 3. 
Discussion of the case study results is conducted in 
Section 4, the conclusions are given in Section 5. 

2 Methodology 

In this study, a new concept of human Digital ID (DID) 
is proposed as the core of the real-time human-centric 
monitoring framework. As per definition, the concept of 
DID refers to a digital replica of human biographic data, 
environment preferences, and personal prediction models 
that can be used to help with the evaluation of their 
indoor experience. The systems and information flow of 
the framework are shown in Figure 1. The DID supports 
interactions in different connected systems that are important 
for the decision-making and control of indoor spaces. These 
systems include: (1) recognition system; (2) prediction 
system; (3) visualization system; (4) feedback system; and 
(5) control system. The information stored in DID serves 

 
Fig. 1 Components and information flow of the DID-based system 
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as the personal prediction model to estimate the personal  
comfort or indoor environment preference of the occupant. 
After the occupant is recognized by the recognition system, 
the profile for the specific individual is obtained. In the 
prediction system, the personal DID combines with the 
real-time environmental data to estimate the human states 
(e.g., thermal comfort, visual comfort, mental states). In 
addition, to sufficiently represent the collected and predicted 
information, a virtualization platform is implemented as a tool 
for real-time monitoring and decision-making. The details 
of each system are discussed in the following sections. 

2.1 Digital ID (DID) 

2.1.1 DID data components 

The information contained in DID for an individual is 
shown in Figure 2. Human information can be categorized 
into two major categories: (1) dynamic parameters; and (2) 
static parameters. Dynamic parameters include the parameters 
that continuously change over time such as clothing type, 
location, activity intensity, and physiological data (e.g., 
galvanic skin response (GSR), skin temperature (ST), and 
heart rate (HR)), when available. In contrast, the static 
parameters do not change significantly within a short period 
of time, such as human physical parameters (e.g., age, gender, 
height, and weight), general environmental perceptions (e.g., 
preference of temperature, humidity, and lighting level), 
lifestyle (e.g., level of physical activity), and long-term 
working style (e.g., sedentary or long-standing). In practice, 
the dynamic parameters can be obtained through wearable 
or non-intrusive sensors (Li et al. 2017, 2018). The static 
parameters are used to categorize the profiles of different 
people and do not need to be collected continuously. In  

addition, the personal prediction models are also considered 
a part of DID. They refer to the mathematical models 
(e.g., standardized equations and learned models from 
machine learning) that are capable of predicting the 
occupants’ states such as thermal comfort, visual comfort, 
and work engagement. The prediction models use the 
static or dynamic parameters, sometimes combined with 
the environmental parameters, to make the estimation. For 
example, human activity level and clothing type associated 
with room temperature and humidity are generally considered 
good features for predicting thermal comfort (Ma et al. 2019; 
Gan et al. 2021). 

2.1.2 A framework to establish and update the DID database 

A framework for the establishment and update of the 
prediction models is proposed as shown in Figure 3. Based 
on the functionalities of the building, a target group of people 
is determined. For example, for an educational building 
with study rooms, the target group of people is students 
while for an office building the target group of people 
should be the employees. An initial database is established 
by collecting the data from the target group. For this study, 
the educational building is used in the case study, thus the 
data is mostly collected from students. The static parameters 
of the people including age, gender, weight, height, thermal 
preference, and lighting preference are collected. Based on 
the collected information, further processes of the data are 
conducted to establish the personal prediction models for 
occupants’ states (e.g., thermal comfort, visual comfort, sound 
comfort, odor comfort, and work engagement). 

However, the existence of personal models for all the 
occupants cannot be assumed, due to the lack of data or 
because someone is a new occupant. Therefore, for the new 

 
Fig. 2 Components of Digital ID 
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occupants without existing DID databases, public databases 
will be applied to give the initial guess of their states. The 
public databases usually contain a large number of datasets 
collected from different studies. Based on the databases, 
general prediction models can also be well-trained, thus 
they serve as potential sources to initialize the system for 
new occupants. The details for establishing the prediction 
models are described in Section 2.3. A good example of a 
public general database being used in this study is the 
ASHRAE Global Thermal Comfort Database II (Földváry 
Ličina et al. 2018), which will be described in detail in the 
case study. While the initial guess of the human states is 
conducted, the occupants will give feedback to the system 
and allow the establishment of their personal database. 
An example approach to collecting feedback is through a 
mobile app developed in the previous studies (Gupta et al. 
2016; Li et al. 2017; Sood et al. 2020). The collection of 
feedback can not only apply to new occupants but also be 
feasible for existing occupants so as to update their existing 
databases. 

2.1.3 DID data storage and exchange 

All data of the DID is stored in a local or cloud database.  
In this study, a text file on the local disk is used to store the 
personal information of any occupant, while there is no 
restriction on the data storage and other approaches such 
as SQL database are also feasible to keep the database in the 
cloud. Within the database, each individual has a separate 
sub-database that contains the previously mentioned 
information (Section 2.1.1). The database is dynamic as the 
information of the person changes over time. When the 
database is needed by the system, it is accessed by scripts 
that are based on computer programs developed in languages  

such as python, java, C++, and MATLAB (depending on the 
program platforms). In this study, the back-end programs 
are mostly written in python. For example, when the system 
needs to estimate the thermal comfort of the occupants 
using the environmental parameters (e.g., temperature and 
humidity), the specific thermal comfort prediction model 
is accessed and applied to make the estimations. Note that 
there can be multiple models to estimate the same human 
state, and they take different input features. For instance, 
temperature and humidity are often used as the input 
features for thermal comfort (Li et al. 2017; André et al. 2020) 
while personal physiological data such as skin temperature 
and heart rate are also useful predictors of thermal comfort 
(Li et al. 2017). The required information from the database 
thus depends on real-world scenarios. 

2.2 Recognition system based on DID 

To track the human states, a recognition system based on 
DID is proposed as shown in Figure 3. Once a person 
enters the building, the system will recognize the occupant 
so as to match him/her with the corresponding DID database 
(if it exists). One example of the identification method is 
the QR code. If the QR code is attached to a phone or an 
identity card, the occupants only need to swipe the card or 
an identifiable marker on the phone, which they would 
typically have to do at the entrance of office buildings. 
Alternatively, computer vision techniques can be another 
method to recognize the occupants through indoor 
surveillance cameras (Adjabi et al. 2020). As both QR 
scanning and vision-based human recognition are mature 
techniques in the real world and have been widely used, 
details of the human identifying processing will not be  

 
Fig. 3 The schematic diagram for the establishment, access, and update of the database 
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discussed in this paper as they are out of the scope of this 
study. Once the DID of the occupant is recognized, the 
database becomes an open resource for the systems. However, 
for the new occupants, recognition is considered to fail, 
and a new database will be generated at the back end of the 
systems, newly collected data from the specific occupants 
will be allocated into the database. 

2.3 Prediction system 

The proposed system can deal with the different scenarios: 
(1) existing occupants with their DID databases well 
established; and (2) new occupants without DID databases 
or without enough data to deliver accurate personal 
prediction models. For the first scenario, it is assumed that 
there is enough data collected from the occupants and the 
mathematical models have been established. Therefore, the 
existing personal database is used to estimate the occupants’ 
states. 

However, for the second scenario, there is no personal 
database for the programs to access. Therefore, it is proposed 
to conduct the initial guess based on the public open-source 
database. The process of the model training is shown in 
Figure 4. For an existing public database with occupants’ 
information, corresponding environment parameters, and 
associated comfort feedback (e.g., ASHRAE Global Thermal 
Comfort Database II), a general prediction model can  
be established using machine learning. Take the thermal 
sensation as an example, the input includes personal 
information such as age, gender, weight, height, and clothing 
level. The environmental parameters include temperature 
and humidity, while the outputs are the thermal sensation 
indices (e.g., integer numbers range from −3 to 3). Here,  
it is considered the baseline prediction model. 

However, an alternative method is proposed to establish 
separate models based on the profiles of humans. Based on 
the findings in previous studies (Indraganti and Rao 2010; 

Indraganti et al. 2015; Thapa 2019), one hypothesis here is 
that people with similar profiles tend to have similar 
perceptions and preferences of the environment. Therefore, 
human profiles are assigned into different categories according 
to their static parameters such as age, gender, weight, and 
height. This method requires the new occupants to enter 
their basic information right after they enter the building 
through the same app as mentioned in Section 2.1.2. For 
each category of the human profile, a prediction model is 
established. The categories are distinguished by human 
profile, and several pre-defined categories are used to establish 
the initial prediction models based on the data collected in 
different indoor environments (IE). When the building is 
used for a specific group of people, the establishment of the 
initial database can thus be based on data from the target 
group of people. The potential benefit of this method is that 
less data is required to establish the prediction model for a 
specific group of people. The validation of this hypothesis 
is conducted in the case study in Section 3.2.1. 

2.4 Human-centric visualization system 

Different from indoor environment monitoring, the 
visualization platform required for DID needs to be human- 
centric. It should be able to show the state of individuals, 
such as their location in the building, comfort levels, and 
preferences of the indoor environment. It can help the 
building manager to provide a better strategy of indoor 
environment control. To keep the privacy of the occupants, 
the visualization system contains no identifiable personal 
information (e.g., name, age, gender, height, weight) and 
only the building managers can access it. A comprehensive 
comparison of existing platforms that allow real-time 
visualization of the built environment is provided. BIM 
platforms such as Revit are commonly used in previous 
studies (Lee et al. 2016; Deng et al. 2021b). The developed 
interactive interfaces achieved through the Application 

 
Fig. 4 The proposed method for model training 
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Programming Interfaces (APIs) using C# programming 
can show the status quo of the indoor environment such as 
temperature and humidity (Teizer et al. 2017; Ferreira et al. 
2018; Kang et al. 2018; Pasini 2018; Machado et al. 2019). 
However, due to the model updating mechanism, most of 
the BIM platforms are not suitable for real-time visualization 
of moving components such as human subjects, because it 
requires the model to update from time to time, which may 
crash the models. To be specific, any modifications of BIM 
models in Revit will cause a reload of the entire model. 

In contrast, game engines such as Unity can not only be 
efficiently connected to BIM models but also provide 
functionalities that allow the human models to update their 
locations with high frequencies (e.g., >100 Hz). In addition, 
data connection and visualization interfaces can also be 
achieved using C# scripts. The game engine is thus considered 
the most practical platform. Therefore, in this study, Unity 
is used as the tool for developing the real-time visualization 
platform. Revit model is converted to FBX. Format and 
pre-processed by the 3D Max (retain some semantic 
information) and then imported into the Unity. In addition 
to the building model, human models are also created to 
represent the occupants. Separate programs are written 
in C# scripts to allow the data exchange between the local 
data files. The scripts will read the local data file which 
contains the environmental parameters (e.g., temperature 
and humidity) and human state (e.g., thermal sensation). 
These data files are generated from the back-end programs 
(written by python) mentioned in previous sections. An 
example scene of Unity is described in Section 3.5. 

2.5 Feedback system 

The feedback system includes recommendations for the 
occupants based on the DID. With a variety of smart sensors 

installed in different locations of the buildings, real-time 
environmental data such as temperature and humidity are 
readily available. In this study, the real-time environmental 
data is collected and stored in the text files, which are not 
only connected to the Unity visualization platform but  
also being used to provide feedback based on the results 
from the prediction system. After processing the obtained 
information, recommendations are sent to the occupants 
or the building managers. The notifications regarding the 
recommendation are delivered through a mobile app to the 
occupant, thus they can know the most suitable places for 
them to visit. 

With the capability of estimating the comfort levels   
of the occupants in different aspects, a recommendation 
system regarding the best-fit rooms for the occupants  
is proposed. A composite index is designed to represent 
the overall comfort score of each room. The indoor 
environment comfort metric for an occupant includes 
different aspects such as thermal comfort (TC), lighting 
comfort (LC), sound comfort (SC), and odor comfort (OC). 
The score for each aspect can be predicted using a method 
that is similar to the estimation of thermal sensation (i.e., 
range from −3 to 3). In order to evaluate the environment 
of the room in a more straightforward way, a linear 
method is proposed to evaluate the overall indoor comfort. 
A schematic diagram of the linear method is shown in Figure 5. 
As shown in Eq. (1), a normalized score for each comfort 
level is first obtained. Based on the preference of the 
occupants, different weights are assigned to each type of 
indoor comfort. The weights in the case study are obtained 
by questionnaires. To normalize the final score, the sum of 
the weights should be 1 as indicated in Eq. (2). The Comfort 
Score Index (CSI) of a room can thus be represented as Eq. (3), 
which ranges from 0 to 1 (the higher the better). However, 
a higher final score does not necessarily mean the IEQ for a 

 
Fig. 5 Computation of the scores for building rooms 
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specific room is good in every aspect. For example, a room 
may achieve the highest final score but has a score of zero 
for specific comfort types. Therefore, a constraint of scores 
(p) for individual comfort types is added to the final choice. 
The problem can then be written as shown in Eq. (4). Based 
on the strategy, the best-match rooms will be assigned for 
the occupants based on DID. 
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where Cij refers to the jth parameter (e.g., TC, LC, OC, and 
SC) in the ith room, Wj represents the weight of a specific 
indoor comfort type for the occupant. 

2.6 Control system 

The feedback system provides a valid reference for the 
building control system. On one hand, the predicted human 
state of the occupants is used as a signal sent to the control 
terminal regarding the adjustment of the indoor systems. 
For example, given the occupants are feeling warm, the 
corresponding signal will be a trigger to lower the 
temperature setpoint. The final decision can be transferred 
to a smart thermostat (e.g., NEST) to control the indoor 
environment. Similarly, a signal that reflects that the  

occupants feel the room is too bright can drive the dimming 
of the lighting systems. On the other hand, the real-time 
monitoring of the occupants’ states provides more insights 
into the interaction between the occupants and the building. 
A more flexible control strategy can then be applied by the 
building manager based on the results of the systems and 
the visualization platform. 

3 Case study 

To provide a better understanding of the proposed methods, 
a case study is used to showcase the capabilities of the DID 
framework. A schematic diagram of the case study is 
shown in Figure 6. The thermal comfort metric (i.e., thermal 
sensation) is selected as the example of human comfort as 
it is ranked as one of the most important factors that 
affect the occupants’ satisfaction in buildings (Zhang 2003; 
Frontczak and Wargocki 2011). Based on the thermal 
comfort prediction models, the recommendation system  
is used to pick the suitable rooms for the subjects. After  
the occupants are assigned to the rooms, the real-time 
physiological data is used to make a dynamic estimation of 
thermal sensation thus providing further recommendations 
regarding the settings of the indoor thermal conditions. In 
order to demonstrate the scalability of this framework, 
another example where it is applied can be to determine the 
lighting level that helps support occupants’ work engagement. 
In this case, recommendations regarding the indoor lighting 
levels can also be given. More details are described in the 
following sections. 

3.1 Description of the scene 

Three rooms (Figure 7) in the GG Brown Building at the 
University of Michigan are used as the scenes to demonstrate 
the DID system, all the rooms are student labs. Figure 8  

 
Fig. 6 The framework of the case study 
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shows the floor layout of the basement of GGB, and the 
locations of these rooms are highlighted. The areas of rooms 
1006, 1140, and 1105 are around 40, 30, and 75 square meters, 
respectively. These rooms do not have any windows, thus 
there is no natural ventilation, and the indoor environments 
are fully controlled by the central heating, ventilation, and 
air conditioning (HVAC) system through thermostats, 
which allows the occupants to directly control the indoor 
temperature. Corresponding environment sensors (i.e., 
COZIR) are selected and installed in the three rooms to 
obtain the real-time temperature and humidity data. 

3.2 Digital ID of the subjects 

Based on previous studies, personal prediction models can 

have higher prediction accuracies compared to general 
prediction models (Kim et al. 2018; Arakawa Martins et al. 
2022), thus this framework aims to use the personal datasets 
to establish the personal prediction models. However,   
the system might not necessarily have the personal data of 
all occupants. For example, the database may miss the 
personal datasets for new occupants. Therefore, two groups 
of occupants are used as examples to demonstrate how the 
DID framework works in different scenarios. It is assumed 
that there are 12 occupants, 6 of them (group #1) are the 
existing occupants who have their personal DID information 
stored in the database while another 6 people (group #2) 
are considered new occupants without any existing personal 
databases. Group #2 is considered as an alternative method 
when there are no personal models for occupants in the 

 
Fig. 7 Example rooms (1006, 1140, and 1105) 

Fig. 8 The layout of the GGB basement 
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building. Therefore, the case study can demonstrate how 
the framework handles the different scenarios. The proposed 
DID framework is applied to estimate the thermal comfort 
of those occupants in different rooms and give the room 
recommendation regarding the best-fit rooms for each of 
them. 

3.2.1 Existing database for new occupants 

For new occupants (group #2) without existing personal 
thermal comfort models, general prediction models are 
required. ASHRAE Global Thermal Comfort Database II 
is a public thermal comfort database that contains 107,583 
datasets, and it allows end-users to only export the data 
with specific parameters through a web-based tool (Földváry 
Ličina et al. 2018). Because it is open source and contains a 
large number of datasets, it is used as an example public 
database to establish the general thermal comfort models 
for the new occupants. The datasets are carefully selected 
with meaningful static parameters by referring to the 
previous studies (Liu et al. 2019; Ma et al. 2019). According 
to the previous study (Wang et al. 2020a), the thermal 
sensation is a subjective thermal metric that is most widely 
used. Therefore, although thermal sensation might not 
always equal thermal comfort (Schweiker et al. 2020), it is 
used as an example to illustrate the prediction models. 
However, it is worth noting that although the thermal 
sensation is used as an illustrative example, the method is 
fully scalable and can be applied to other thermal comfort 
metrics (e.g., thermal satisfaction and thermal preference). 
In the real world, the system might not use only one single 
thermal metric but incorporate different thermal comfort 
metrics into the building systems. In order to obtain as 
many data points as possible, rather than using the web 
tool, the original full database is downloaded and manually 
filtered. The retained datasets include thermal sensation, age, 
gender, occupant height, occupant weight, cloth insulation, 
air temperature, relative humidity, and air velocity. The 
datasets that miss any of these parameters are removed. In 
addition, as the office or educational buildings are the main 
focus, the datasets for residential buildings are excluded. The 
details of the final datasets are summarized in Table 1. 

Table 1 Details of the filtered dataset 
Count 8574 
Age range 18–68 
Gender Male/female 
Height (cm) 120–203 
Weight (kg) 34–130 
Clothing level (Clo) 0.08–2.14 
Air temperature (°C) 13.4–40.5 
Relative humidity (%) 15.2–88.8 

Regarding the machine learning algorithms for the 
demonstration, random forest (RF) is proven to have the 
highest accuracy in relevant studies (Kim et al. 2018), thus it 
is chosen to test the training strategy in this section. Figure 9 
shows the machine learning process of the demonstration. 
Based on the previous study (Ma et al. 2019), human 
profile data including gender, age, height weight, clothing 
level, room temperature, and relative humidity are taken  
as the input features of the model. In addition, since the 
cooling/heating strategy (categorized as air-conditioned, 
mixed-mode, and naturally ventilated) can also affect thermal 
sensation (Wang et al. 2020b), it is also included as one of the 
input features. The thermal sensation ranges from −3 to 3 
(ASHRAE 2017) are encoded as the outputs. 

To show the accuracies of the prediction models, the 
hypothesis proposed in Section 2.3 is validated. Therefore, 
a systematic comparison of different data training strategies 
is developed as shown in Figure 10. Category C refers to any 
categories of human profiles based on their age, gender, 
height, and weight. n samples (30%) from category C are 
randomly selected as the test set. In this case, for a dataset 
that contains N data points in total, the training set in 
case 1 is the whole dataset minus the selected test set 
(N − n), while case 2 used the rest of the dataset (m) in 
category C as the training set. Case 3, on the other hand, 
used the same amount (m) of randomly sampled data from 
case 1 as the training data. In this case, three cases used 
different training sets to establish prediction models while 
the test set is the same, which provided a fair comparison 
strategy. 

Based on the comparison strategies, 6 example categories 
of human profiles are selected and the detail for each 
category is shown in Table 2. To ensure the reliability of the 
prediction models, the categories with less than 100 data 
points are excluded. Referring to Figure 10, for category 1, 
n is 93 (30% of 310) and m is 217 (70% of 310). The 
hyper-parameters of the random forest are set as follows: 
the number of estimators is set to be 100, the maximum tree  

 
Fig. 9 Machine learning for thermal sensation 
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depth is set to expand until all leaves are pure or until all 
leaves contain less than the minimum number of samples 
required to split an internal node (i.e., 2). The minimum 
number of samples required to be at a left node is set to be 
4 and the number of features for the best split is set to be 
“auto”. The results are computed 100 times, and the test 
data set is randomly selected at each time. The accuracy is 
indicated by the fraction of the predictions our model gets 
right. The results of the training and test accuracies for the 
three cases are summarized in Table 2. The training accuracies 
indicate that there is no significant overfitting in the 
prediction models. In addition, the corresponding confusion 
matrices for the three cases are shown in Table 3, which 
further support the feasibility of the prediction models. 
Although more data points are associated with thermal 
sensations of −1, 0, and 1, the prediction accuracies for 
other values are also reasonable. In addition, even when 
the models fail to give the correct prediction, the predicted 
values are still close to the actual ones. Take the thermal 
sensation of 0 as an example, even if the predicted values are 
not 0, they will most likely be predicted as −1 or 1. 

Regarding the data collection and training strategy in 
the initial guess for the new occupants, it can be observed 
that case 1 and case 2 achieve almost identical prediction 
accuracies without significant difference (p > 0.05), with 
the fact that case 1 has more than 10 times larger datasets 
compared with case 2. On the other hand, the prediction 
accuracies from case 3 are significantly lower compared  
to case 1 and case 2 (p < 0.05), with more than 0.15 lower  

Table 3 Confusion matrices for the three cases  
Predicted 

Case 1 
−3 −2 −1 0 1 2 3 

−3 0.19 0.19 0.00 0.00 0.00 0.00 0.00
−2 0.10 2.03 1.83 0.77 0.48 0.00 0.00
−1 0.00 0.77 16.59 5.40 3.18 0.00 0.00
0 0.00 0.00 4.24 22.76 2.80 0.19 0.00
1 0.00 0.00 3.47 4.53 16.68 1.25 0.00
2 0.00 0.00 0.39 0.48 2.03 6.46 0.68

Actual

3 0.00 0.00 0.00 0.00 0.68 0.87 0.96
Predicted 

Case 2 
−3 −2 −1 0 1 2 3 

−3 0.30 0.30 0.10 0.00 0.00 0.00 0.00
−2 0.10 2.08 1.69 0.89 0.79 0.00 0.00
−1 0.00 0.79 15.97 6.15 3.77 0.10 0.00
0 0.00 0.10 4.27 22.22 3.97 0.30 0.00
1 0.00 0.00 3.97 4.17 12.10 2.58 0.20
2 0.00 0.00 0.69 0.69 3.08 5.65 0.40

Actual

3 0.00 0.00 0.10 0.00 0.79 0.79 0.89
Predicted 

Case 3 
−3 −2 −1 0 1 2 3 

−3 0.22 0.11 0.11 0.11 0.00 0.00 0.00
−2 0.00 2.21 1.65 1.21 0.44 0.00 0.00
−1 0.00 0.44 14.77 7.28 4.85 0.33 0.00
0 0.00 0.00 5.73 18.08 4.41 0.55 0.00
1 0.00 0.00 5.40 5.62 11.47 2.32 0.11
2 0.00 0.00 0.55 1.32 4.52 3.20 0.33

Actual

3 0.00 0.00 0.00 0.00 0.55 0.88 1.21  

 
Fig. 10 Different data training strategies 

Table 2 Results of the comparison of the data training strategies 
 

Case 1 Case 2 Case 3 

Category Age Gender Height (cm) Weight (kg) Count Train Test Train Test Train Test 
1 20–30 Male 160–170 50–70 310 0.814 0.615 0.809 0.555 0.790 0.433 
2 20–30 Male 170–180 60–80 665 0.813 0.594 0.793 0.593 0.792 0.433 
3 30–40 Male 170–180 60–80 285 0.814 0.610 0.770 0.574 0.770 0.489 
4 20–30 Female 150–160 40–60 705 0.813 0.669 0.808 0.671 0.785 0.463 
5 20–30 Female 160–170 50–70 1146 0.813 0.687 0.807 0.690 0.783 0.496 
6 30–40 Female 160–170 50–70 292 0.813 0.693 0.804 0.683 0.769 0.545 

Average 0.813 0.645 0.799 0.627 0.782 0.477 
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average accuracy. The reason is that the dataset in case 3 
covers all categories of the human profiles but only has the 
same sizes of datasets as case 2. The results can provide 
valuable insights regarding the establishment of the database 
as well as the data training plan. At the initial stage for 
establishing the DID database, it is suggested that the 
collection of the training dataset should be maintained within 
a category of occupants that fits the usage of the buildings. 
In this way, higher prediction accuracies can be achieved 
with a much smaller dataset, referring to the accuracy 
comparison between case 2 and case 3. In addition, if there 
already exists a large dataset across all the categories of 
human profiles, the prediction models can be trained using 
either the whole dataset or the dataset within target categories, 
as they can provide similar performance, referring to the 
comparison between case 1 and case 2. Furthermore, assume 
the database will be updated with more data samples within 
specific categories, the performance of using the categorized 
dataset to train the model may outperform the whole dataset, 
as their dataset size will get closer, referring to the tendency 
of prediction accuracy from case 1 to case 3 compared to 
case 2. It can be seen that once the sizes of the dataset are 
similar, the prediction model obtained by the categorized 
dataset can have much higher accuracy. 

The results prove that the hypothesis is correct, and the 
selected public database (ASHRAE Global Thermal Comfort 
Database II) can help with the establishment of prediction 
models with acceptable accuracies. Therefore, the baseline 
prediction models obtained here are used for the initial 
guess of the new occupants (group #2) in this case study. 

3.2.2 Personal database for existing occupants 

For the occupants with an existing prediction model 
(group #1), personal thermal sensation models are used. In 
addition to the database for the room recommendation, the 
example database for real-time monitoring of the occupants’ 
states is also included. Figure 11 shows an example dataset, 
the left one shows the personal thermal sensation based on 
the indoor temperature and humidity, the middle one shows 
the thermal sensation based on physiological responses 
(e.g., skin conductance, heart rate, and skin temperature) of 
the subject, the right one is for the prediction of work 
engagement based on indoor lighting level and physiological 
responses of the subject. The prediction models for the 
work engagement can be used to make recommendations 
of lighting levels. The dataset regarding the physiological 
responses will not be used in the recommendation system 
but will be discussed in Section 3.4.1. Note that the human 
static parameters (e.g., age, gender, height, and weight) are 
not needed for the personal thermal sensation models as 
the data for each model come from one single occupant. 

For the thermal sensation database used in the room 
recommendation, the data are collected from the experiments 
in our previous studies (Li et al. 2017, 2018; Deng et al. 
2021c). People are asked to report their thermal sensation 
(from −3 to 3) under different indoor environments, and 
the random forest (RF) algorithm is used to establish a 
thermal sensation prediction model based on the indoor 
environment (e.g., temperature and relativity humidity). 
Therefore, given the indoor temperature and relative  

Fig. 11 Example of the dataset for existing DID database 
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humidity, the models can estimate the thermal sensation  
of occupants. On average, the prediction accuracy of the 
models from our example datasets is 79.4% using RF.  

3.3 The room recommendation strategy 

The recommendation strategy follows the approach described 
in Section 2.5. In this case study, the thermal sensation is 
the only index that needs to be considered. The indoor 
thermal environments of the three example rooms are 
measured using the COZIR sensors. As an illustrative 
example, the parameters in Table 4 are some random 
initial settings. Based on these initial indoor conditions, the 
implementation of the framework regarding the room 
recommendation is demonstrated. Here, ids 1 to 6 are used 
to indicate the people in group #1 and ids 7 to 12 for people 
in group #2. At first, the occupants are randomly assigned  

Table 4 The indoor environment of different rooms 
 Room temperature (°C) Relative humidity (%) 

Room 1 23.8 53.2 

Room 2 20.7 61.1 

Room 3 18.2 67.3  

to different rooms by assuming that they have no information 
regarding the room conditions. Then the prediction models 
mentioned in previous sections are used and the CSI for 
each room is computed. The scores of different rooms and 
recommendations regarding the best-fit rooms for each 
occupant are shown in Table 5. According to the results, 
for most of the occupants (1, 2, 3, 4, 5, 6, 9, 10, and 11), 
there is at least one room that is expected to give the most 
suitable (score of 1) indoor environments. In this case, the 
recommendations regarding the best-fit rooms are given to 
these occupants. For example, occupant 1 is suggested to go 
to room 2, occupant 2 is suggested to stay in room 1, and 
so on.  

However, not every occupant can have a room with the 
optimal thermal environment for them. In this case, the 
occupants will be suggested to a relatively more suitable 
room and the room setting will be changed to minimize 
discomfort. The strategy of modifying the room settings is 
explained in the next section. Therefore, the rooms with 
the highest Room CSI are chosen. Figure 12 shows the 
comparison of the Room CSI before and after applying our 
recommendations, which shows the potential improvement 
of the occupants’ thermal sensation. Note for this section, 
people in both group #1 and group #2 have databases to 

Table 5 Scores of different rooms for each occupant 

 Occupant 1 2 3 4 5 6 7 8 9 10 11 12 

Room 1 1 0 1 1 1 0 −1 −1 0 2 1 −1 

Room 2 0 −1 0 0 0 −1 −1 −2 0 1 1 −1 
Thermal 
sensation 

Room 3 −1 −2 −1 0 −1 −2 −2 −3 −2 0 0 −2 

Room 1 0.67 1 0.67 0.67 0.67 1 0.67 0.67 1 0.33 0.67 0.67 

Room 2 1 0.67 1 1 1 0.67 0.67 0.33 1 0.67 0.67 0.67 Room score 
index 

Room 3 0.67 0.33 0.67 1 0.67 0.33 0.33 0 0.33 1 1 0.33 

Original 1 3 3 2 1 3 1 3 1 1 2 3 Room 
assignment Recommended 2 1 2 2&3 2 1 1&2 1 1&2 3 3 1&2  

 
Fig. 12 Room Score Index comparison 
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support the recommendation system, the only difference is 
that people in group #1 use the personal database while 
those in group #2 use the public database described in 
Section 3.2.1. 

3.4 Feedback of room environment control 

3.4.1 Feedback strategy based on physiological responses 

Based on the results shown in the previous section, there 
may not necessarily be a room that provides the perfect 
indoor environment for them. Therefore, adjustment of the 
indoor environment may be required. As mentioned in 
Section 3.2.2, for occupants with an existing DID database 
(group #1), the system can not only establish the personal 
thermal sensation prediction models based on static 
parameters but also use dynamic parameters to obtain the 
personal prediction models for thermal sensation and work 
engagement. Assuming the physiological is accessible, it 
can be used to estimate the real-time states of the occupants. 
Therefore, real-time recommendations regarding the setpoints 
for thermal environments and lighting levels can be given   
to maximize the occupants’ thermal sensation and work 
engagement, respectively. 

Based on previous studies, the ST and HR are confirmed 
to be good features to estimate the thermal sensation of a 
person (Li et al. 2017; Nkurikiyeyezu et al. 2017). In addition, 
it is suggested that the general autonomic changes in the 
skin’s electrical properties can be reflected by the GSR 
signal (Braithwaite et al. 2013), and manipulation of GSR 
may affect central neural activity (Critchley et al. 2001, 2002; 
Nagai et al. 2004), which implies the correlation between 
GSR signal and brain activity, thus it can be used to reflect 
the mental activity. Therefore, in the DID database, the 
GSR, ST, and HR are used as the dynamic parameters to 
estimate the thermal sensation and work engagement of the 
subjects. In our previous studies, Shimmer3 GSR+ Unit is 

used to collect the GSR signal of the occupants, Optical 
Pulse Ear-Clip, and Skin Surface Temperature Probe are 
used to collect the HR and ST of the subjects, respectively. 
More information on the data collection process can be 
found in our previous study (Deng et al. 2021c). In the 
real world, a more portable device such as a wristband can 
be used to collect these data and connect these physiological 
responses to the computer terminal through Bluetooth. In 
this study, it is assumed that the physiological responses 
are easily obtainable to support the decision-making of 
the system. The overall idea of using physiological responses 
is to leverage the real-time physiological responses to provide 
a dynamic estimation of the human states, which will be 
used to help with indoor environment control. 

Figure 13 shows the schematic diagram regarding the 
estimation of thermal sensation and work engagement 
based on physiological responses (and lighting level for 
work engagement). Different algorithms such as RF and 
neural network (NN) could potentially be used to establish 
the prediction models. For the thermal sensation models, 
they take these physiological data (e.g., GSR, HR, and ST) 
as the input features, while the thermal sensation values 
are the output. Therefore, given the GSR, HR, and ST data, 
the models can output estimations of people’s thermal 
sensations. Based on the previous study (Deng et al. 2021c), 
lighting level is selected to be the environmental parameter 
associated with GSR, HR, and ST values to establish the 
prediction models for work engagement. As for the outputs, 
the discrete indices range from −2 to 2. The value −2 is for 
very low engagement, −1 for low engagement, 0 for a 
neutral level of engagement, 1 for high engagement, and 2 
for very high work engagement, respectively. The hyper- 
parameters of the RF are set identical to the one described in 
Section 3.2.1. The designed NN contains three hidden 
layers, the first layer contains 4 neurons, the second and 
third layers contain 8 neurons, and it implements SoftMax 
Activation and Categorical Cross-Entropy Loss. The RF and  

 
Fig. 13 Estimation of thermal sensation and work engagement using physiological responses 
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NN algorithms are compared for the example datasets, and 
the results show that RF outperforms NN for our datasets 
based on the same evaluation method as Section 3.2.1. 
However, the accuracies of the prediction models may  
vary a bit while different datasets are applied, thus NN is 
mentioned here as another potential algorithm as it might 
be a better option for other datasets. For people in group #1, 
these prediction models are pre-trained and can be directly 
used to estimate the thermal sensation and work engagement. 
Table 6 shows the detailed information of these two types 
of models (accuracies are the average of people in group 
#1). Please note that there could be many different input 
features to build the prediction models for either thermal 
sensation or work engagement, two existing models are used 
as illustrative examples. 

Therefore, corresponding room environment recom-
mendations are made based on the results from the 
physiological responses. If the model predicts the thermal 
sensation of −3, −2, and −1 for the occupant, it is recom-
mended to increase the indoor temperature of the room 
where he/she stays, while for the value of 1, 2, and 3, it is 
recommended to decrease the indoor temperature. Similarly, 
the prediction models for work engagement are applied 
to help with the setting of the indoor lighting level. For the 
existing database, several common lighting levels (i.e., 200 lux, 
500 lux, and 1000 lux) are used to see which one gives the  

Table 6 Details of the personal prediction model for thermal 
sensation and work engagement 

Input data Thermal sensation Work engagement 

GSR √ √ 

HR √ √ 

ST √ √ 

Lighting level × √ 

Data points 370 680 

Accuracy (RF) 89.2% 79.3%  

highest work engagement. Therefore, a lighting level can be 
recommended for the occupant. For example, if the lighting 
level of 500 lux gives the predicted work engagement higher 
than 1000 lux or 200 lux, then the lighting level is chosen to be 
500 lux. However, these models are used for demonstration, 
in the real-world system, there can be a higher resolution of 
lighting levels in the models. 

3.4.2 Feedback strategy based on the public database 

For people in group #2, until the personal models containing 
the physiological responses are established, the public database 
is still used to give feedback on the indoor environment. 
When an occupant is assigned to the room where the 
thermal sensation is not 0 (the Room Comfort Score is  
not 1), then corresponding feedback can be directly given  
based on the previously predicted thermal sensation. For 
example, occupant 8 is assigned to room 1 with the thermal 
sensation of −1, indicating that although room 1 has the 
most suitable indoor environment among the three rooms, 
he/she will still feel a bit cool. In this case, the feedback    
for room 1 is to increase the temperature. Meanwhile, 
corresponding data collection for the occupant can be used 
to establish or update their DID database. 

3.4.3 Example feedback 

The different models mentioned in the previous section 
indicate that the framework is compatible with any form of 
prediction model or any related human database. For example, 
based on either the physiological responses or the public 
open sources database, corresponding feedback for the 
room can be given. To demonstrate the feedback from the 
occupant, an example of the feedback based on Table 5 
and random physiological responses is given in Table 7 and 
Table 8. The strategy here is to only give feedback to the 
rooms that are recommended for the occupants. Take the 
thermal sensation as an example, assume the occupants 

Table 7 Feedback regarding the thermal environments of different rooms 

Occupant 1 2 3 4 5 6 7 8 9 10 11 12 

Room 1       ՛ ՛    ՛ 

Room 2       ՛     ՛ 

Room 3             

Note: ՛ indicates feedback for increasing the temperature, ՝ indicates feedback for decreasing the temperature (where applicable). 

Table 8 Feedback regarding the lighting levels of different rooms 

 Occupant 1 2 3 4 5 6 7 8 9 10 11 12 

Room 1  200    500 200 500 500 1000  1000 

Room 2 500  500 200 1000  200  500  200 1000 Lighting level 

Room 3    200           
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follow the room recommendations, the thermal sensation 
of occupants 1, 2, 3, 4, 5, 6, 9, 10, and 11 will be 0. 
Therefore, there is no feedback from them. However, for 
the occupants 7, 8, and 12, no perfect rooms are found  
for them. By following the recommendations, occupants  
7 and 12 are suggested to stay in room 1 or 2, and occupant 
8 is recommended to stay in room 1. In this case, corresponding 
feedback will be given to their assigned rooms. As shown in 
Table 7, considering the feedback from all the occupants, 
the final feedback is that both room 1 and room 2 are 
suggested to have a higher temperature. 

Nevertheless, it is still possible for the recommendation 
to give a wrong signal due to the limited accuracies of the 
prediction models. On one hand, the occupants can have 
full access to adjust the setting of the indoor environment, 
which will be a feedback signal to the system to update the 
database. On the other hand, as demonstrated in Section 3.4.1, 
when the occupants are in a specific room, the model 
established from the physiological data is used, which could 
rectify the potential errors of the systems. In addition, there 
can be a conflict in the feedback from different occupants. 

For example, two occupants are assigned to the same room 
but the feedback from them is opposite (e.g., one feels 
warm/hot while the other feels cool/cold). Similarly, for the 
recommended lighting levels of the rooms, conflicts between 
occupants may be found. It will be a much more complex 
situation and require more advanced algorithms to compute 
the final results, which is out of the scope of this paper. 
However, some existing methods regarding the optimization 
of the indoor assignment and environmental control can 
be found in our previous studies (Li et al. 2020; Deng et al. 
2021a). 

3.5 Real-time visualization in Unity 

Unity is used to develop a real-time visualization platform 
because it is compatible with BIM models and allows a 
real-time update of the human models. A BIM model is 
generated and imported into Unity for the virtual environment. 
As shown in Figure 14, the building model is a basement 
described in Section 3.1. COZIR sensors are connected to 
the computer and the environmental data are read and 

 
Fig. 14 Developed real-time visualization platform based on Unity 
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saved in local .csv files. A C# script is generated in Unity 
to read the imported data in .csv files. It can be seen that 
the indoor environmental parameters (i.e., temperature 
and humidity) can be visualized explicitly, and there are 
two buttons to display or hide the texts of sensing data.  
In addition, two human models are created to demonstrate 
how the different occupants can be represented, and distinct 
rendering colors are assigned to them based on the estimated 
thermal preferences. In this example, blue indicates that the 
occupant is feeling cool or cold (with the thermal sensation 
of −3, −2, and −1), and prefer a warmer environment, 
while red means the occupant feels warm or hot (with  
the thermal sensation of 1, 2, and 3) and prefers a cooler 
environment, green implies a neutral feeling of the occupant. 
Once the corresponding occupants change their locations 
(e.g., shift to another room), the new thermal comfort 
preferences will be given based on the new environmental 
parameters. Similarly, two buttons for displaying and hiding 
the occupant models are given, and in this way, the user can 
have better control of the visualization interface. In general, 
the platform can provide real-time information about the 
indoor environment and occupants’ comfort levels. 

4 Discussion 

In general, a case study is used to demonstrate the proposed 
framework and how the DID could be incorporated. Different 
personal databases are used to demonstrate occupants with 
different profiles (group #1). The scenarios when people 
are new occupants (group #2) are also illustrated. Various 
types of database and prediction models are incorporated 
into our framework. An explicit example is given to show 
how these databases are used and how the systems make 
use of them to provide recommendations and feedback. The 
results show that compared to the randomly assigned 
rooms, the recommended rooms can provide better thermal 
environments for the occupants.  

It is worth noting that the proposed framework is 
generic, and any other types of building information or 
technologies can be implemented. Although the case study 
used specific human parameters and prediction models as 
examples, the framework can fit any other occupant-related 
parameters or states (e.g., lighting comfort, sound comfort, 
and odor comfort). The only difference will be the input 
parameters. In addition, after comparing the capabilities of 
different platforms, a real-time visualization platform based 
on Unity is developed. The functionalities of the developed 
platform are also extendable, and the case study intends to 
provide an example of the capabilities of the platform as well 
as the key functionalities. The interfaces can be re-designed 
based on the requirement of the projects or personal 
preferences. By integrating the real-time sensing data and 

the predicted values, the developed platform can provide 
real-time information for both the overview of the indoor 
environment and the occupants’ states, which can be valuable 
references for the building managers. With the help of the 
proposed framework, unnecessary space conditioning when 
the room is unoccupied or over-conditioning can be reduced. 
As a result, the indoor experience of the occupants as well 
as the energy efficiency of the building can be improved. 

There are several advantages of the proposed framework. 
Compared with the occupant-centric environmental control 
framework in previous studies (Kim et al. 2018; Yang et al. 
2022), our framework focuses not only on thermal comfort 
models but also on the overall indoor experience of the 
occupants based on the concept of DID and CSI. The concept 
of CSI can incorporate different indoor comfort indexes of 
the occupants and allow the systems to estimate occupants’ 
overall indoor experience. In addition, rather than only 
proposing a concept, the framework is validated using a 
detailed example to demonstrate the mechanism of the 
systems. The case study contains two different types of 
prediction models (e.g., thermal sensation and work 
engagement) to show the scalability of the framework. In 
the case study, the ASHRAE Global Thermal Comfort 
Database II is used as a publicly available dataset for 
pre-training the model, which guarantees the reproducibility 
of the results. Furthermore, a visualization platform that 
serves as an auxiliary tool for the building control systems 
is also developed and demonstrated. 

It is also worth acknowledging some limitations of 
this study. To allow the system to work based on individual 
preferences, the DID database contains some private 
information of the occupants, thus people may concern 
about their privacy. Therefore, data security needs to be 
ensured in a real-world implementation. In addition, to 
implement the framework, the buildings need to be equipped 
with a number of sensors and preferably with a building 
automation system (BAS). Furthermore, this study provides 
a general idea of the framework with several example 
methods. The framework is scalable and allows different 
technologies and algorithms to be incorporated, while the 
detailed discussion of optimization algorithms is not the 
scope of this paper. For example, the recommendation 
strategy does not discuss the maximum capacity of the 
rooms and the conflict perceptions of different occupants. 

5 Conclusions 

This paper proposes a novel concept of DID for human- 
centric monitoring and control of the indoor environment, 
which provides valuable insights into next-generation smart 
buildings. The concept of DID is defined and explicitly 
explained. Based on the DID, the interaction between  
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different systems in the framework is presented, and 
possible approaches and algorithms for specific systems are 
discussed. A case study using the scene of the GGB building 
at the University of Michigan is presented to demonstrate 
the framework. Two groups of occupants are used to 
demonstrate how the DID, in different scenarios, can be 
adopted into the framework to provide recommendations 
for room allocation and indoor environment control. As 
thermal sensation is used as the target index to recommend 
the rooms, the results show an improvement in the thermal 
sensation of the occupants if they follow the recommendations 
compared with randomly assigned rooms. Different types of 
database and prediction models are used during the process 
to demonstrate the scalability of the framework. Example 
feedback for the building systems is also demonstrated based 
on previous results. Furthermore, a Unity-based platform that 
enables the real-time visualization of indoor environmental 
parameters and occupants’ states is developed. In general, 
DID-based indoor environment monitoring and control 
allows efficient human-centric management of the indoor 
environment. It is scalable and considered a valuable 
framework for future smart building. 
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