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Abstract Keywords
Smart offices can help employers attract and retain talented people and can positively impact smart office;
well-being and productivity. Thanks to emerging technologies and increased computational  digital ID (DID);

power, smart buildings with a specific focus on personal experience are gaining attraction.
Real-time monitoring and estimation of the human states are key to achieving individual
satisfaction. Although some studies have incorporated real-time data into the buildings to predict
occupants’ indoor experience (e.g., thermal comfort and work engagement), a detailed framework
to integrate personal prediction models with building systems has not been well studied.
Therefore, this paper proposes a framework to predict and track the real-time states of each
individual and assist with decision-making (e.g., room assignment and indoor environment
control). The core idea of the framework is to distinguish individuals by a new concept of Digital
ID (DID), which is then integrated with recognition, prediction, recommendation, visualization,
and feedback systems. The establishment of the DID database is discussed and a systematic
prediction methodology to determine occupants’ indoor comfort is developed. Based on the
prediction results, the Comfort Score Index (CSI) is proposed to give recommendations regarding
the best-fit rooms for each individual. In addition, a visualization platform is developed for
real-time monitoring of the indoor environment. To demonstrate the framework, a case study is
presented. The thermal sensation is considered the reference for the room allocation, and two
groups of people are used to demonstrate the framework in different scenarios. For one group of
people, it is assumed that they are existing occupants with personal DID databases. People in
another group are considered the new occupants without any personal database, and the public
database is used to give initial guesses about their thermal sensations. The results show that the
recommended rooms can provide better thermal environments for the occupants compared
to the randomly assigned rooms. Furthermore, the recommendations regarding the indoor
setpoints (temperature and lighting level) are illustrated using a work engagement prediction
model. However, although specific indoor metrics are used in the case study to demonstrate
the framework, it is scalable and can be integrated with any other algorithms and techniques,
which can serve as a fundamental framework for future smart buildings.
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and vice versa (Milton et al. 2000; Wargocki et al. 2000;
Lan et al. 2011). In order to have better management of
the indoor environment, many studies have focused on
developing smart building management platforms (Tang
et al. 2019). The rapid growth of high-speed commercial
internet (Rathore et al. 2016), advances in building

1 Introduction

A good indoor environment is essential for the occupants
in many aspects. It has a significant impact on their well-
being and lead to the improvement of their productivity
(Huizenga et al. 2006; Humanyze 2018; MIRVAC 2019)

E-mail: menassa@umich.edu
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management systems (BMSs) (Zhan et al. 2021), as well as
personal electronic devices such as smartphones (Li et al.
2017) have supported the concept of a smart building (Dong
et al. 2019). A smart building is equipped to automatically
control the building systems to address energy waste and
improve the indoor environment quality based on smart
sensors (Deng et al. 2021b). The sensors are installed in
different locations in the building to collect environmental
data such as temperature and humidity (Nakama et al. 2015;
Riaz et al. 2015; Lee et al. 2016; Pasini et al. 2016; Chang
et al. 2018; Ioannou et al. 2018; Pasini 2018; Machado et al.
2019; Rafsanjani and Ghahramani 2020). In addition,
technologies such as Wi-Fi, WSN, 5G, and LP-WAN 01(Lu
et al. 2019; Marzouk and Abdelaty 2014; Tang et al. 2019)
have been applied to allow for seamless data communication.
With the sensing data, real-time visualization platforms
for indoor environments were developed, which aimed to
provide the building manager with a more efficient decision-
making process. For example, Revel et al. (2014) developed
a low-cost thermal comfort monitoring system by means of
the predicted mean vote (PMV) index of multiple positions
calculated through the collected environmental parameters
such as temperature, relative humidity, and air velocity.
Chang et al. (2018) presented a framework to achieve
colorful visualization of indoor temperature and humidity
associated with adaptive thermal comfort values, which used
Dynamo to import real-time sensing data into Autodesk
Revit through the Arduino microcontroller. In addition
to thermal comfort, other factors such as acoustic comfort
were also investigated. In addition, different platforms
were developed to evaluate the real-time indoor air quality.
A battery-free device was designed by Tran et al. (2017) to
monitor the concentration of VOC, air temperature, relative
humidity, and the atmospheric pressure of the indoor
environment. Similarly, Kim et al. (2014) developed an
integrated monitoring system with multiple sensors to
evaluate the real-time indoor air quality. By examining the
level of seven gases (i.e., ozone (O3), particulate matter
(PM), carbon monoxide (CO), nitrogen oxides (NO,), sulfur
dioxide (SO,), carbon dioxide (CO,), and the volatile organic
compound (VOC)), the system was able to provide a timely
alert regarding the air quality.

Even with such efforts to improve the indoor environment,
a survey involving more than 52,000 people in 351 office
buildings showed that only half of the occupants are satisfied
with their indoor environments (Frontczak et al. 2012). One
major reason behind this is that the conventional methods
for indoor environment control rely on adaptive comfort
models and standards (ASHRAE 2017; Gan et al. 2019),
which adopt one-size-fits-all approaches that assume all
the occupants have similar preferences (Sood et al. 2020)

resulting in an indoor environment that can only satisfy
a small proportion of occupants (Frontczak et al. 2012).
However, it is well established that different people have
distinct preferences for indoor environments resulting from
differences in age, gender, physiological features to name a
few (Foldvéry Licina et al. 2018; Cheung et al. 2019). For
example, it is suggested that females prefer higher room
temperatures than males (Karjalainen 2007) and the thermal
sensation of people in different age groups (under 25 years
old, 26-45 years old, and over 65 years old) are statistically
different (Calis and Kuru 2017). In addition, it is shown that
the occupants’ physiological features such as brain signal
(Matthews et al. 2017; Wang et al. 2019; Deng et al. 2021¢),
skin conductance level, heart rate, and skin temperature may
vary across individuals under the same indoor environment
(i.e., temperature and lighting conditions) (Deng et al. 2021c).
Therefore, it is essential to consider the individual differences
in the decision-making of the building systems.

To meet occupants’ diverse preferences of the indoor
environment, previous studies have focused on approaches
regarding individual indoor experiences. The idea of activity-
based workplaces (ABWs) (Stone and Luchetti 1985) was
proposed to offer people more flexible workplaces. The
utilization of ABWs aims to provide flexible workplaces for
the occupants depending on their personal preference (e.g.,
the location and microclimate of the workplace) (Appel-
Meulenbroek et al. 2011). It has shown an advantage in
improving people’s performance (Jahncke and Hallman
2020), physical activity, and relationships with co-workers
(Arundell et al. 2018) compared with traditional offices.
A review involving 36,039 participants also highlights the
benefits of ABW particularly in improving communication,
control of time, and workplace satisfaction (Engelen et al.
2019). Recently, some efforts have already been paid to
integrate the ABW with smart building systems. For example,
a robust system named OccuSpace was developed by Rahaman
et al. (2019) for workplace management. The system allowed
the occupants to use the statistical features of the Received
Signal Strength Indicator (RSSI) of Bluetooth card beacons
to predict the utilization of the shared workplace. Similarly,
Sood et al. (2020) presented a platform with a mobile interface
for the occupants to find suitable workplaces by collecting
their experience feedback at different indoor workplaces.

However, the application of ABW needs precise
control of the indoor environment, as a poor indoor space
management strategy may lead to extra energy consumption
(Masoso and Grobler 2010) and insufficient indoor comfort
improvement for the occupants (Deng et al. 2021a).
Therefore, to maximize the gains from ABW, a human-
centric smart decision-making system is required. In addition,
a comprehensive survey regarding the worker perspectives
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on incorporating artificial intelligence (AI) into office spaces
is conducted. The results show that it is expected that future
buildings should be able to interact with the occupants
and create better indoor environments for individuals
(Ho et al. 2015).

To achieve this, real-time estimation of the occupants’
states (e.g., comfort level and work engagement) is the key
to mapping personal behavior patterns and performance to
improve the comfort level and well-being of each individual
(Humanyze 2018). Prediction models for human comfort
as the references for the decision-making of the indoor
environment have been investigated in several studies. For
example, Ho et al. (2015) developed a platform that could
connect the real-time indoor air quality to a personal
health reporting system through a mobile app. The system
was able to analyze the data and give alerts to the occupants
once the concentration of air pollution exceeded a certain
threshold. Moreover, after collecting subjects’ thermal
comfort feedback and physiological data under different
environmental conditions, Li et al. (2017, 2018, 2019)
developed different approaches including smartphone
applications and thermal camera-based frameworks to
estimate the occupants’ personal thermal comfort. Based on
the developed personal thermal comfort models, a dynamic
determination of the optimum room condition mode was
achieved. Similarly, Ma et al. (2019) applied an ANN model
which took human parameters (e.g., clothing type, activity
type, human relative position, gender, age, height, and weight)
and environmental parameters (e.g., air temperature, air
humidity, air velocity) as inputs to train a personal prediction
model for thermal comfort.

Based on the existing technologies, research has started
to focus on occupant-centric environmental control. For
example, Kim et al. (2018) has proposed a unified modeling
framework to achieve smart control of indoor thermal
environments based on personal prediction models. The
framework discussed the data collection, model selection,
and learning process of the systems, as well as the
architecture for integration of models in thermal control.
In addition, a review conducted by Yang et al. (2022)
summarized the concepts of making the HVAC control based
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Fig. 1 Components and information flow of the DID-based system
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on occupant information. The utilization of occupant-related
data in improving the performance of HVAC systems has
been identified. However, these frameworks only focus on
thermal comfort and have not explored the capabilities of
incorporating other indoor experiences. In addition, there
is no case study to demonstrate how the proposed systems
work. In order to further improve the indoor experience
of the occupants, it is essential to develop a generic
framework with an illustrative case study. Taking the concept
of the digital twins (Deng et al. 2021b) as a departure point,
this study proposes a novel framework for human-centric
monitoring and control of smart buildings. Based on
personal information, the framework incorporates different
building systems but is fully scalable. The contributions
of this framework include: (1) a new concept of human
digital ID (DID), which refers to the digital replica of human
biographic data; (2) a DID-based framework for real-time
human-centric indoor monitoring and room management;
and (3) a case study to demonstrate the feasibility and
practicability of the framework.

The paper is organized as follows. The concept of the
DID-based framework is described in Section 2, followed
by a case study to demonstrate the framework in Section 3.
Discussion of the case study results is conducted in
Section 4, the conclusions are given in Section 5.

2 Methodology

In this study, a new concept of human Digital ID (DID)
is proposed as the core of the real-time human-centric
monitoring framework. As per definition, the concept of
DID refers to a digital replica of human biographic data,
environment preferences, and personal prediction models
that can be used to help with the evaluation of their
indoor experience. The systems and information flow of
the framework are shown in Figure 1. The DID supports
interactions in different connected systems that are important
for the decision-making and control of indoor spaces. These
systems include: (1) recognition system; (2) prediction
system; (3) visualization system; (4) feedback system; and
(5) control system. The information stored in DID serves
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as the personal prediction model to estimate the personal
comfort or indoor environment preference of the occupant.
After the occupant is recognized by the recognition system,
the profile for the specific individual is obtained. In the
prediction system, the personal DID combines with the
real-time environmental data to estimate the human states
(e.g., thermal comfort, visual comfort, mental states). In
addition, to sufficiently represent the collected and predicted
information, a virtualization platform is implemented as a tool
for real-time monitoring and decision-making. The details
of each system are discussed in the following sections.

2.1 Digital ID (DID)

2.1.1 DID data components

The information contained in DID for an individual is
shown in Figure 2. Human information can be categorized
into two major categories: (1) dynamic parameters; and (2)
static parameters. Dynamic parameters include the parameters
that continuously change over time such as clothing type,
location, activity intensity, and physiological data (e.g.,
galvanic skin response (GSR), skin temperature (ST), and
heart rate (HR)), when available. In contrast, the static
parameters do not change significantly within a short period
of time, such as human physical parameters (e.g., age, gender,
height, and weight), general environmental perceptions (e.g.,
preference of temperature, humidity, and lighting level),
lifestyle (e.g., level of physical activity), and long-term
working style (e.g., sedentary or long-standing). In practice,
the dynamic parameters can be obtained through wearable
or non-intrusive sensors (Li et al. 2017, 2018). The static
parameters are used to categorize the profiles of different
people and do not need to be collected continuously. In
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addition, the personal prediction models are also considered
a part of DID. They refer to the mathematical models
(e.g., standardized equations and learned models from
machine learning) that are capable of predicting the
occupants’ states such as thermal comfort, visual comfort,
and work engagement. The prediction models use the
static or dynamic parameters, sometimes combined with
the environmental parameters, to make the estimation. For
example, human activity level and clothing type associated
with room temperature and humidity are generally considered
good features for predicting thermal comfort (Ma et al. 2019;
Gan et al. 2021).

2.1.2 A framework to establish and update the DID database

A framework for the establishment and update of the
prediction models is proposed as shown in Figure 3. Based
on the functionalities of the building, a target group of people
is determined. For example, for an educational building
with study rooms, the target group of people is students
while for an office building the target group of people
should be the employees. An initial database is established
by collecting the data from the target group. For this study,
the educational building is used in the case study, thus the
data is mostly collected from students. The static parameters
of the people including age, gender, weight, height, thermal
preference, and lighting preference are collected. Based on
the collected information, further processes of the data are
conducted to establish the personal prediction models for
occupants’ states (e.g., thermal comfort, visual comfort, sound
comfort, odor comfort, and work engagement).

However, the existence of personal models for all the
occupants cannot be assumed, due to the lack of data or
because someone is a new occupant. Therefore, for the new
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Fig. 2 Components of Digital ID
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Fig. 3 The schematic diagram for the establishment, access, and update of the database

occupants without existing DID databases, public databases
will be applied to give the initial guess of their states. The
public databases usually contain a large number of datasets
collected from different studies. Based on the databases,
general prediction models can also be well-trained, thus
they serve as potential sources to initialize the system for
new occupants. The details for establishing the prediction
models are described in Section 2.3. A good example of a
public general database being used in this study is the
ASHRAE Global Thermal Comfort Database II (Foldvary
Lic¢ina et al. 2018), which will be described in detail in the
case study. While the initial guess of the human states is
conducted, the occupants will give feedback to the system
and allow the establishment of their personal database.
An example approach to collecting feedback is through a
mobile app developed in the previous studies (Gupta et al.
2016; Li et al. 2017; Sood et al. 2020). The collection of
feedback can not only apply to new occupants but also be
feasible for existing occupants so as to update their existing
databases.

2.1.3 DID data storage and exchange

All data of the DID is stored in a local or cloud database.
In this study, a text file on the local disk is used to store the
personal information of any occupant, while there is no
restriction on the data storage and other approaches such
as SQL database are also feasible to keep the database in the
cloud. Within the database, each individual has a separate
sub-database that contains the previously mentioned
information (Section 2.1.1). The database is dynamic as the
information of the person changes over time. When the
database is needed by the system, it is accessed by scripts
that are based on computer programs developed in languages

such as python, java, C++, and MATLAB (depending on the
program platforms). In this study, the back-end programs
are mostly written in python. For example, when the system
needs to estimate the thermal comfort of the occupants
using the environmental parameters (e.g., temperature and
humidity), the specific thermal comfort prediction model
is accessed and applied to make the estimations. Note that
there can be multiple models to estimate the same human
state, and they take different input features. For instance,
temperature and humidity are often used as the input
features for thermal comfort (Li et al. 2017; André et al. 2020)
while personal physiological data such as skin temperature
and heart rate are also useful predictors of thermal comfort
(Li et al. 2017). The required information from the database
thus depends on real-world scenarios.

2.2 Recognition system based on DID

To track the human states, a recognition system based on
DID is proposed as shown in Figure 3. Once a person
enters the building, the system will recognize the occupant
so as to match him/her with the corresponding DID database
(if it exists). One example of the identification method is
the QR code. If the QR code is attached to a phone or an
identity card, the occupants only need to swipe the card or
an identifiable marker on the phone, which they would
typically have to do at the entrance of office buildings.
Alternatively, computer vision techniques can be another
method to recognize the occupants through indoor
surveillance cameras (Adjabi et al. 2020). As both QR
scanning and vision-based human recognition are mature
techniques in the real world and have been widely used,
details of the human identifying processing will not be
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discussed in this paper as they are out of the scope of this
study. Once the DID of the occupant is recognized, the
database becomes an open resource for the systems. However,
for the new occupants, recognition is considered to fail,
and a new database will be generated at the back end of the
systems, newly collected data from the specific occupants
will be allocated into the database.

2.3 Prediction system

The proposed system can deal with the different scenarios:
(1) existing occupants with their DID databases well
established; and (2) new occupants without DID databases
or without enough data to deliver accurate personal
prediction models. For the first scenario, it is assumed that
there is enough data collected from the occupants and the
mathematical models have been established. Therefore, the
existing personal database is used to estimate the occupants’
states.

However, for the second scenario, there is no personal
database for the programs to access. Therefore, it is proposed
to conduct the initial guess based on the public open-source
database. The process of the model training is shown in
Figure 4. For an existing public database with occupants’
information, corresponding environment parameters, and
associated comfort feedback (e.g., ASHRAE Global Thermal
Comfort Database II), a general prediction model can
be established using machine learning. Take the thermal
sensation as an example, the input includes personal
information such as age, gender, weight, height, and clothing
level. The environmental parameters include temperature
and humidity, while the outputs are the thermal sensation
indices (e.g., integer numbers range from -3 to 3). Here,
it is considered the baseline prediction model.

However, an alternative method is proposed to establish
separate models based on the profiles of humans. Based on
the findings in previous studies (Indraganti and Rao 2010;

Indraganti et al. 2015; Thapa 2019), one hypothesis here is
that people with similar profiles tend to have similar
perceptions and preferences of the environment. Therefore,
human profiles are assigned into different categories according
to their static parameters such as age, gender, weight, and
height. This method requires the new occupants to enter
their basic information right after they enter the building
through the same app as mentioned in Section 2.1.2. For
each category of the human profile, a prediction model is
established. The categories are distinguished by human
profile, and several pre-defined categories are used to establish
the initial prediction models based on the data collected in
different indoor environments (IE). When the building is
used for a specific group of people, the establishment of the
initial database can thus be based on data from the target
group of people. The potential benefit of this method is that
less data is required to establish the prediction model for a
specific group of people. The validation of this hypothesis
is conducted in the case study in Section 3.2.1.

2.4 Human-centric visualization system

Different from indoor environment monitoring, the
visualization platform required for DID needs to be human-
centric. It should be able to show the state of individuals,
such as their location in the building, comfort levels, and
preferences of the indoor environment. It can help the
building manager to provide a better strategy of indoor
environment control. To keep the privacy of the occupants,
the visualization system contains no identifiable personal
information (e.g., name, age, gender, height, weight) and
only the building managers can access it. A comprehensive
comparison of existing platforms that allow real-time
visualization of the built environment is provided. BIM
platforms such as Revit are commonly used in previous
studies (Lee et al. 2016; Deng et al. 2021b). The developed
interactive interfaces achieved through the Application

Category 1 IE4

| Prediction Model 1 \

Separate Models Category 2

,:>| Prediction Model 2 \

IE2 |~ |1Em| [ Prediction Modeln |

Baseline Model

Fig. 4 The proposed method for model training
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Programming Interfaces (APIs) using C# programming
can show the status quo of the indoor environment such as
temperature and humidity (Teizer et al. 2017; Ferreira et al.
2018; Kang et al. 2018; Pasini 2018; Machado et al. 2019).
However, due to the model updating mechanism, most of
the BIM platforms are not suitable for real-time visualization
of moving components such as human subjects, because it
requires the model to update from time to time, which may
crash the models. To be specific, any modifications of BIM
models in Revit will cause a reload of the entire model.

In contrast, game engines such as Unity can not only be
efficiently connected to BIM models but also provide
functionalities that allow the human models to update their
locations with high frequencies (e.g., >100 Hz). In addition,
data connection and visualization interfaces can also be
achieved using C# scripts. The game engine is thus considered
the most practical platform. Therefore, in this study, Unity
is used as the tool for developing the real-time visualization
platform. Revit model is converted to FBX. Format and
pre-processed by the 3D Max (retain some semantic
information) and then imported into the Unity. In addition
to the building model, human models are also created to
represent the occupants. Separate programs are written
in C# scripts to allow the data exchange between the local
data files. The scripts will read the local data file which
contains the environmental parameters (e.g., temperature
and humidity) and human state (e.g., thermal sensation).
These data files are generated from the back-end programs
(written by python) mentioned in previous sections. An
example scene of Unity is described in Section 3.5.

2.5 Feedback system

The feedback system includes recommendations for the
occupants based on the DID. With a variety of smart sensors

installed in different locations of the buildings, real-time
environmental data such as temperature and humidity are
readily available. In this study, the real-time environmental
data is collected and stored in the text files, which are not
only connected to the Unity visualization platform but
also being used to provide feedback based on the results
from the prediction system. After processing the obtained
information, recommendations are sent to the occupants
or the building managers. The notifications regarding the
recommendation are delivered through a mobile app to the
occupant, thus they can know the most suitable places for
them to visit.

With the capability of estimating the comfort levels
of the occupants in different aspects, a recommendation
system regarding the best-fit rooms for the occupants
is proposed. A composite index is designed to represent
the overall comfort score of each room. The indoor
environment comfort metric for an occupant includes
different aspects such as thermal comfort (TC), lighting
comfort (LC), sound comfort (SC), and odor comfort (OC).
The score for each aspect can be predicted using a method
that is similar to the estimation of thermal sensation (i.e.,
range from —3 to 3). In order to evaluate the environment
of the room in a more straightforward way, a linear
method is proposed to evaluate the overall indoor comfort.
A schematic diagram of the linear method is shown in Figure 5.
As shown in Eq. (1), a normalized score for each comfort
level is first obtained. Based on the preference of the
occupants, different weights are assigned to each type of
indoor comfort. The weights in the case study are obtained
by questionnaires. To normalize the final score, the sum of
the weights should be 1 as indicated in Eq. (2). The Comfort
Score Index (CSI) of a room can thus be represented as Eq. (3),
which ranges from 0 to 1 (the higher the better). However,
a higher final score does not necessarily mean the IEQ for a

Comfort Score Matrix Weight Score
Room 1 9(Gi) | 9(Cw) | 9(Cw) | 9(Ci) 9(Gi) Wi ()
Room 2 9(C) | 9(Cr) [ 9(Cu) | 9(Ca) a(Czn) X Wa _ ()
Room 3 9(Cx) | 9(Cx) | 9(Cx) | 9(Ca) 9(Cx) Ws (s
Wy
Room m 9(Cni) | 9(Cr2) | A(Cma) | 9(Cra) 9(Crn) ()
Wn

Fig. 5 Computation of the scores for building rooms
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specific room is good in every aspect. For example, a room
may achieve the highest final score but has a score of zero
for specific comfort types. Therefore, a constraint of scores
(p) for individual comfort types is added to the final choice.
The problem can then be written as shown in Eq. (4). Based
on the strategy, the best-match rooms will be assigned for
the occupants based on DID.

| Cjibound - | Cx]

C, )=l 101 1
g( J> |Cj7bound ( )
d>w =1 ()
j=1

f(TC,,LC;,0C,,8C;,+) =Y W;-g(C;)
j=1

&y | Crvoma | =[G
f;W,- B (3)

max f (TC,,LC,,0C,,SC,,-),
st.g(Cy) €l pl]

j_bound

(4)

where C; refers to the jth parameter (e.g., TC, LC, OC, and
SC) in the ith room, W; represents the weight of a specific
indoor comfort type for the occupant.

2.6 Control system

The feedback system provides a valid reference for the
building control system. On one hand, the predicted human
state of the occupants is used as a signal sent to the control
terminal regarding the adjustment of the indoor systems.
For example, given the occupants are feeling warm, the
corresponding signal will be a trigger to lower the
temperature setpoint. The final decision can be transferred
to a smart thermostat (e.g., NEST) to control the indoor
environment. Similarly, a signal that reflects that the

Existing Database

 S—
i | ASHRAE

occupants feel the room is too bright can drive the dimming
of the lighting systems. On the other hand, the real-time
monitoring of the occupants’ states provides more insights
into the interaction between the occupants and the building.
A more flexible control strategy can then be applied by the
building manager based on the results of the systems and
the visualization platform.

3 Case study

To provide a better understanding of the proposed methods,
a case study is used to showcase the capabilities of the DID
framework. A schematic diagram of the case study is
shown in Figure 6. The thermal comfort metric (i.e., thermal
sensation) is selected as the example of human comfort as
it is ranked as one of the most important factors that
affect the occupants’ satisfaction in buildings (Zhang 2003;
Frontczak and Wargocki 2011). Based on the thermal
comfort prediction models, the recommendation system
is used to pick the suitable rooms for the subjects. After
the occupants are assigned to the rooms, the real-time
physiological data is used to make a dynamic estimation of
thermal sensation thus providing further recommendations
regarding the settings of the indoor thermal conditions. In
order to demonstrate the scalability of this framework,
another example where it is applied can be to determine the
lighting level that helps support occupants’ work engagement.
In this case, recommendations regarding the indoor lighting
levels can also be given. More details are described in the
following sections.

3.1 Description of the scene

Three rooms (Figure 7) in the GG Brown Building at the
University of Michigan are used as the scenes to demonstrate
the DID system, all the rooms are student labs. Figure 8
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Fig. 6 The framework of the case study
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Fig. 8 The layout of the GGB basement

shows the floor layout of the basement of GGB, and the
locations of these rooms are highlighted. The areas of rooms
1006, 1140, and 1105 are around 40, 30, and 75 square meters,
respectively. These rooms do not have any windows, thus
there is no natural ventilation, and the indoor environments
are fully controlled by the central heating, ventilation, and
air conditioning (HVAC) system through thermostats,
which allows the occupants to directly control the indoor
temperature. Corresponding environment sensors (i.e.,
COZIR) are selected and installed in the three rooms to
obtain the real-time temperature and humidity data.

3.2 Digital ID of the subjects

Based on previous studies, personal prediction models can

have higher prediction accuracies compared to general
prediction models (Kim et al. 2018; Arakawa Martins et al.
2022), thus this framework aims to use the personal datasets
to establish the personal prediction models. However,
the system might not necessarily have the personal data of
all occupants. For example, the database may miss the
personal datasets for new occupants. Therefore, two groups
of occupants are used as examples to demonstrate how the
DID framework works in different scenarios. It is assumed
that there are 12 occupants, 6 of them (group #1) are the
existing occupants who have their personal DID information
stored in the database while another 6 people (group #2)
are considered new occupants without any existing personal
databases. Group #2 is considered as an alternative method
when there are no personal models for occupants in the
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building. Therefore, the case study can demonstrate how
the framework handles the different scenarios. The proposed
DID framework is applied to estimate the thermal comfort
of those occupants in different rooms and give the room
recommendation regarding the best-fit rooms for each of
them.

3.2.1 Existing database for new occupants

For new occupants (group #2) without existing personal
thermal comfort models, general prediction models are
required. ASHRAE Global Thermal Comfort Database II
is a public thermal comfort database that contains 107,583
datasets, and it allows end-users to only export the data
with specific parameters through a web-based tool (Foldvary
Li¢ina et al. 2018). Because it is open source and contains a
large number of datasets, it is used as an example public
database to establish the general thermal comfort models
for the new occupants. The datasets are carefully selected
with meaningful static parameters by referring to the
previous studies (Liu et al. 2019; Ma et al. 2019). According
to the previous study (Wang et al. 2020a), the thermal
sensation is a subjective thermal metric that is most widely
used. Therefore, although thermal sensation might not
always equal thermal comfort (Schweiker et al. 2020), it is
used as an example to illustrate the prediction models.
However, it is worth noting that although the thermal
sensation is used as an illustrative example, the method is
fully scalable and can be applied to other thermal comfort
metrics (e.g., thermal satisfaction and thermal preference).
In the real world, the system might not use only one single
thermal metric but incorporate different thermal comfort
metrics into the building systems. In order to obtain as
many data points as possible, rather than using the web
tool, the original full database is downloaded and manually
filtered. The retained datasets include thermal sensation, age,
gender, occupant height, occupant weight, cloth insulation,
air temperature, relative humidity, and air velocity. The
datasets that miss any of these parameters are removed. In
addition, as the office or educational buildings are the main
focus, the datasets for residential buildings are excluded. The
details of the final datasets are summarized in Table 1.

Table 1 Details of the filtered dataset

Count 8574

Age range 18-68
Gender Male/female
Height (cm) 120-203
Weight (kg) 34-130
Clothing level (Clo) 0.08-2.14
Air temperature (°C) 13.4-40.5
Relative humidity (%) 15.2-88.8

Regarding the machine learning algorithms for the
demonstration, random forest (RF) is proven to have the
highest accuracy in relevant studies (Kim et al. 2018), thus it
is chosen to test the training strategy in this section. Figure 9
shows the machine learning process of the demonstration.
Based on the previous study (Ma et al. 2019), human
profile data including gender, age, height weight, clothing
level, room temperature, and relative humidity are taken
as the input features of the model. In addition, since the
cooling/heating strategy (categorized as air-conditioned,
mixed-mode, and naturally ventilated) can also affect thermal
sensation (Wang et al. 2020b), it is also included as one of the
input features. The thermal sensation ranges from -3 to 3
(ASHRAE 2017) are encoded as the outputs.

To show the accuracies of the prediction models, the
hypothesis proposed in Section 2.3 is validated. Therefore,
a systematic comparison of different data training strategies
is developed as shown in Figure 10. Category C refers to any
categories of human profiles based on their age, gender,
height, and weight. n samples (30%) from category C are
randomly selected as the test set. In this case, for a dataset
that contains N data points in total, the training set in
case 1 is the whole dataset minus the selected test set
(N — n), while case 2 used the rest of the dataset (m) in
category C as the training set. Case 3, on the other hand,
used the same amount (m) of randomly sampled data from
case 1 as the training data. In this case, three cases used
different training sets to establish prediction models while
the test set is the same, which provided a fair comparison
strategy.

Based on the comparison strategies, 6 example categories
of human profiles are selected and the detail for each
category is shown in Table 2. To ensure the reliability of the
prediction models, the categories with less than 100 data
points are excluded. Referring to Figure 10, for category 1,
n is 93 (30% of 310) and m is 217 (70% of 310). The
hyper-parameters of the random forest are set as follows:
the number of estimators is set to be 100, the maximum tree
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Tree T 1
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Fig. 9 Machine learning for thermal sensation
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Whole Dataset (N)

Case 1 Whole Dataset — Category C (N — n) ‘
Case 2 Cate(%(;ry © Category C (m) ‘
Case 3 Randomly Sampled (m) ‘
Test Train
Fig. 10 Different data training strategies
Table 2 Results of the comparison of the data training strategies
Case 1 Case 2 Case 3
Category Age Gender Height (cm)  Weight (kg) Count Train Test Train Test Train Test
1 20-30 Male 160-170 50-70 310 0814 0615 0.809  0.555 0.790  0.433
2 20-30 Male 170-180 60-80 665 0.813  0.594 0.793  0.593 0792 0.433
3 30-40 Male 170-180 60-80 285 0.814 0.610 0.770  0.574 0.770  0.489
4 20-30 Female 150-160 40-60 705 0.813  0.669 0.808  0.671 0.785  0.463
5 20-30 Female 160-170 50-70 1146 0.813  0.687 0.807  0.690 0.783  0.496
6 30-40 Female 160-170 50-70 292 0.813  0.693 0.804 0.683 0.769  0.545
Average 0813  0.645 0799  0.627 0782 0477
depth is set to expand until all leaves are pure or until all  Table 3 Confusion matrices for the three cases
leaves contain less than the minimum number of samples Predicted
required to split an internal node (i.e., 2). The minimum Case 1 3 1 0 ] 2 3
number of samples required to be at a left noc.ie is set to be 3 019 019 000 000 000 000 000
f and”thehnumbelr of features fordthe be.st split is se}t1 to be 5 010 203 183 077 048 000 000
datuto . T e re(zisu tsl arel con:ipute LOO tlmes},1 and the teét 1 000 077 1659 540 318 000 0.0
_ a;x setCllsbranh orfn yse eCtE hat eacd. time. The acczrellcy S Actual 0 000 000 424 2276 280 019 0.00
1r‘1 ﬁca:[[teh y t le rafct}llon o. t. e pred1ct10ns our n.lo fe geﬁs 1 000 000 347 453 1668 125 0.00
i}l}g t. The results of t e t(ria-mil?gbfn ;ft accuracies for t. e 5 000 000 039 048 203 646 0.8
three cases are summarized in Table 2. The tram.mg.;,r accuracies 3 000 000 000 000 068 087 096
indicate that there is no significant overfitting in the Prodicied
prediction models. In addition, the corresponding confusion Case 2 ; . ; i ; 2 ;
matrices for the three cases are shown in Table 3, which
1oeTs e -3 030 0.30 0.10 0.00 0.00  0.00 0.00
further support the feasibility of the prediction models.
. . ) -2 010 208 169 089 079 0.00 0.00
Although more data points are associated with thermal
. . . -1 000 079 1597 615 377 010 0.00
sensations of —1, 0, and 1, the prediction accuracies for
. Actual 0 000 010 427 2222 397 030 0.0
other values are also reasonable. In addition, even when
. . e . 1 0.00 0.00 3.97 4.17 12.10  2.58 0.20
the models fail to give the correct prediction, the predicted
. 2000 000 069 069 308 565 040
values are still close to the actual ones. Take the thermal
. . . 3 0.00 0.00 0.10 0.00 079 079 0.89
sensation of 0 as an example, even if the predicted values are p—
. . . Predict
not 0, they will most likely be predicted as —1 or 1. Case 3 rediere
Regarding the data collection and training strategy in e ! 0 ! 2 u
the initial guess for the new occupants, it can be observed -3 022 0dL - 0dl 011 000 0.00 000
that case 1 and case 2 achieve almost identical prediction -2 00022 165 12l 044 000 0.00
accuracies without significant difference (p > 0.05), with -1 000 044 1477 728 485 033 000
the fact that case 1 has more than 10 times larger datasets Actual 0000 000 573 1808 441 055 0.00
compared with case 2. On the other hand, the prediction 1000 000 540 562 1147 232 011
accuracies from case 3 are significantly lower compared 2 000 000 055 132 452 320 033
3 0.00 0.00 0.00 0.00 055 0.88 1.21

to case 1 and case 2 (p < 0.05), with more than 0.15 lower
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average accuracy. The reason is that the dataset in case 3
covers all categories of the human profiles but only has the
same sizes of datasets as case 2. The results can provide
valuable insights regarding the establishment of the database
as well as the data training plan. At the initial stage for
establishing the DID database, it is suggested that the
collection of the training dataset should be maintained within
a category of occupants that fits the usage of the buildings.
In this way, higher prediction accuracies can be achieved
with a much smaller dataset, referring to the accuracy
comparison between case 2 and case 3. In addition, if there
already exists a large dataset across all the categories of
human profiles, the prediction models can be trained using
either the whole dataset or the dataset within target categories,
as they can provide similar performance, referring to the
comparison between case 1 and case 2. Furthermore, assume
the database will be updated with more data samples within
specific categories, the performance of using the categorized
dataset to train the model may outperform the whole dataset,
as their dataset size will get closer, referring to the tendency
of prediction accuracy from case 1 to case 3 compared to
case 2. It can be seen that once the sizes of the dataset are
similar, the prediction model obtained by the categorized
dataset can have much higher accuracy.

The results prove that the hypothesis is correct, and the
selected public database (ASHRAE Global Thermal Comfort
Database II) can help with the establishment of prediction
models with acceptable accuracies. Therefore, the baseline
prediction models obtained here are used for the initial
guess of the new occupants (group #2) in this case study.

3.2.2 Personal database for existing occupants

For the occupants with an existing prediction model
(group #1), personal thermal sensation models are used. In
addition to the database for the room recommendation, the
example database for real-time monitoring of the occupants’
states is also included. Figure 11 shows an example dataset,
the left one shows the personal thermal sensation based on
the indoor temperature and humidity, the middle one shows
the thermal sensation based on physiological responses
(e.g., skin conductance, heart rate, and skin temperature) of
the subject, the right one is for the prediction of work
engagement based on indoor lighting level and physiological
responses of the subject. The prediction models for the
work engagement can be used to make recommendations
of lighting levels. The dataset regarding the physiological
responses will not be used in the recommendation system
but will be discussed in Section 3.4.1. Note that the human
static parameters (e.g., age, gender, height, and weight) are
not needed for the personal thermal sensation models as
the data for each model come from one single occupant.
For the thermal sensation database used in the room
recommendation, the data are collected from the experiments
in our previous studies (Li et al. 2017, 2018; Deng et al.
2021c). People are asked to report their thermal sensation
(from -3 to 3) under different indoor environments, and
the random forest (RF) algorithm is used to establish a
thermal sensation prediction model based on the indoor
environment (e.g., temperature and relativity humidity).
Therefore, given the indoor temperature and relative

Room Temp Humidity TC_EV Skin Conductance Heart Rate SkinTemp  TC_PHY Lighting Level Skin Conductance Skin Temp Heart Rate Engagement
20 36.6 -1 0.292460317 56.4577098 29.2505313 -2 200 0.279176986  33.4255069 74.3830586 0
17.9 553 -3 0.449192821 53.4132757 29.4353257 -2 | 200 0.287174631 32.92335339 66.8263683 0
153 53.2 -3 0.432888986 55.3580443 33.041612 0 500 1.157017462 30.44195509 69.0793774 0
29.4 46.8 3 0.389399142 55.4267165 34.0122227 1 500 0.550005116 30.97578856 75.5309995 0
15 321 =3, 0.257795677 59.3632791 29.0832424 -2 | 500 1.054047081 30.29731151 63.6401602 1
283 29.9 2 0.250172397 61.9034627 29.1450057 -2 1000 0.609844149 31.58552033 76.7030619 -1
16.8 39.7 -3 0.350139444 56.1964813 34.1332221 1 1000 1.028192727 32.36726903 66.432231 0
16.5 56.6 -3 0.456654803 58.9315602 29.1662701 -2 1000 0.329496025 32.88669994 72.2049056 0
32 46.8 3 0.391406163 54.3063236 32.7634419 0 200 0.28971029 32.91944757 63.0538732 -1
29.6 35 3 0.284680597 55.8233849 28.932524 -2 | 1000 0.315555104 32.89671395 69.6257618 0
29.2 334 2 0.271645715 56.7525828 29.135024 -2 1000 0.595781822 31.85521834 71.3503616 0
28.2 31.3 1 0.257598651 59.6234844 29.1364742 -2 200 0.275759831 32.94396791 64.9811874 0
29.5 46.8 2 0.391336788 55.4191704 33.8932475 1, 500 0.552036939 30.89144779 67.6713965 0
238 53.2 0 + 0.433809246 55.0436309 29.4747531 -2 + 200 0.290060634 34.06448472 79.0497788 1
135 47.2 -3 0.399149808 55.9636932 33.8699053 1 | 200 0.293855017 34.09970424 87.6784532 0
31.2 55.3 3 0.454631479 57.1741638 29.223824 -2 200 0.189905147 32.76376207 74.2810896 2
18.1 30 -3 0.252355284 56.9778185 29.1001834 -2 1000 1.053404061 32.33254067 73.9124066 0
29.3 47.2 2 0.419220363 56.562519 33.7037563 1 200 0.285714286 33.46083545 70.8799433 0
212 55.2 -1 0.442370477 55.539859 33.0759168 0 500 1.006666077 30.53898048 68.1524302 -1
22 42.6 =1 0.361974137 57.3676851 32.9766013 0 500 0.775350517 30.80182352 68.9777701 0
20.8 49 -1 0.430650599 58.5996499 33.6459379 1 200 0.287574404 34.05247466 75.6950136 0
256 42.6 0 0.362414322 55.9472857 33.9999314 1 500 0.773631317 30.81859876 69.0352614 0
17.9 47.2 -2 0.406461941 58.8667689 33.0612919 0 500 0.782813974 30.85215132 67.7009144 0
28.5 37.2 2 0.326695874 56.0108938 29.4569293 -2 1000 0.77615787 32.35406102 66.348323 -1
25.9 425 1 0.360345904 57.5870749 33.7234833 2 | 500 1.15005524 30.4623416 66.9378832 -1
221 47.4 -1 0.420017136 54.7853457 33.041797 0 500 1.155308234 30.33409703 64.8425667 0
28.8 22.3 2 0.245263764 56.4494764 29.1716108 -2 200 0.316467387 34.35036884 78.1873202 -2
27.5 43.2 1 0.367777361 56.7900395 34.049367 1 | 500 1.076536311 30.32552396 68.7818927 -1

Fig. 11 Example of the dataset for existing DID database
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humidity, the models can estimate the thermal sensation
of occupants. On average, the prediction accuracy of the
models from our example datasets is 79.4% using RF.

3.3 The room recommendation strategy

The recommendation strategy follows the approach described
in Section 2.5. In this case study, the thermal sensation is
the only index that needs to be considered. The indoor
thermal environments of the three example rooms are
measured using the COZIR sensors. As an illustrative
example, the parameters in Table 4 are some random
initial settings. Based on these initial indoor conditions, the
implementation of the framework regarding the room
recommendation is demonstrated. Here, ids 1 to 6 are used
to indicate the people in group #1 and ids 7 to 12 for people
in group #2. At first, the occupants are randomly assigned

Table 4 The indoor environment of different rooms

Room temperature (°C) Relative humidity (%)

Room 1 23.8 53.2
Room 2 20.7 61.1
Room 3 18.2 67.3

Table 5 Scores of different rooms for each occupant

to different rooms by assuming that they have no information
regarding the room conditions. Then the prediction models
mentioned in previous sections are used and the CSI for
each room is computed. The scores of different rooms and
recommendations regarding the best-fit rooms for each
occupant are shown in Table 5. According to the results,
for most of the occupants (1, 2, 3, 4, 5, 6, 9, 10, and 11),
there is at least one room that is expected to give the most
suitable (score of 1) indoor environments. In this case, the
recommendations regarding the best-fit rooms are given to
these occupants. For example, occupant 1 is suggested to go
to room 2, occupant 2 is suggested to stay in room 1, and
SO on.

However, not every occupant can have a room with the
optimal thermal environment for them. In this case, the
occupants will be suggested to a relatively more suitable
room and the room setting will be changed to minimize
discomfort. The strategy of modifying the room settings is
explained in the next section. Therefore, the rooms with
the highest Room CSI are chosen. Figure 12 shows the
comparison of the Room CSI before and after applying our
recommendations, which shows the potential improvement
of the occupants’ thermal sensation. Note for this section,
people in both group #1 and group #2 have databases to

Occupant 1 2 3 4 5 6 7 8 9 10 11 12
Room 1 1 0 1 1 1 0 -1 -1 0 2 1 -1
Thermal
. Room 2 0 -1 0 0 0 -1 -1 -2 0 1 1 -1
sensation
Room 3 -1 -2 -1 0 -1 -2 -2 -3 -2 0 0 -2
Room 1 0.67 1 0.67 0.67 0.67 1 0.67 0.67 1 0.33 0.67 0.67
Room score Room 2 1 0.67 1 1 1 067 067 033 1 067 067 067
index
Room 3 0.67 0.33 0.67 1 0.67 0.33 0.33 0 0.33 1 1 0.33
Room Original 1 3 3 2 1 3 1 3 1 1 2 3
assignment Recommended 2 1 2 2&3 2 1 1&2 1 1&2 3 3 1&2
1.04 Original
B Recommended
x
S
2 o8
g
5]
A 0.6
=
o
N
g 0.4
Q
£
o
& 021
0.0

1 2 3 4 5 6 7
Occupant

Fig. 12 Room Score Index comparison
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support the recommendation system, the only difference is
that people in group #1 use the personal database while
those in group #2 use the public database described in
Section 3.2.1.

3.4 Feedback of room environment control

3.4.1 Feedback strategy based on physiological responses

Based on the results shown in the previous section, there
may not necessarily be a room that provides the perfect
indoor environment for them. Therefore, adjustment of the
indoor environment may be required. As mentioned in
Section 3.2.2, for occupants with an existing DID database
(group #1), the system can not only establish the personal
thermal sensation prediction models based on static
parameters but also use dynamic parameters to obtain the
personal prediction models for thermal sensation and work
engagement. Assuming the physiological is accessible, it
can be used to estimate the real-time states of the occupants.
Therefore, real-time recommendations regarding the setpoints
for thermal environments and lighting levels can be given
to maximize the occupants’ thermal sensation and work
engagement, respectively.

Based on previous studies, the ST and HR are confirmed
to be good features to estimate the thermal sensation of a
person (Li et al. 2017; Nkurikiyeyezu et al. 2017). In addition,
it is suggested that the general autonomic changes in the
skin’s electrical properties can be reflected by the GSR
signal (Braithwaite et al. 2013), and manipulation of GSR
may affect central neural activity (Critchley et al. 2001, 2002;
Nagai et al. 2004), which implies the correlation between
GSR signal and brain activity, thus it can be used to reflect
the mental activity. Therefore, in the DID database, the
GSR, ST, and HR are used as the dynamic parameters to
estimate the thermal sensation and work engagement of the
subjects. In our previous studies, Shimmer3 GSR+ Unit is

Tree N

used to collect the GSR signal of the occupants, Optical
Pulse Ear-Clip, and Skin Surface Temperature Probe are
used to collect the HR and ST of the subjects, respectively.
More information on the data collection process can be
found in our previous study (Deng et al. 2021c). In the
real world, a more portable device such as a wristband can
be used to collect these data and connect these physiological
responses to the computer terminal through Bluetooth. In
this study, it is assumed that the physiological responses
are easily obtainable to support the decision-making of
the system. The overall idea of using physiological responses
is to leverage the real-time physiological responses to provide
a dynamic estimation of the human states, which will be
used to help with indoor environment control.

Figure 13 shows the schematic diagram regarding the
estimation of thermal sensation and work engagement
based on physiological responses (and lighting level for
work engagement). Different algorithms such as RF and
neural network (NN) could potentially be used to establish
the prediction models. For the thermal sensation models,
they take these physiological data (e.g., GSR, HR, and ST)
as the input features, while the thermal sensation values
are the output. Therefore, given the GSR, HR, and ST data,
the models can output estimations of people’s thermal
sensations. Based on the previous study (Deng et al. 2021c),
lighting level is selected to be the environmental parameter
associated with GSR, HR, and ST values to establish the
prediction models for work engagement. As for the outputs,
the discrete indices range from -2 to 2. The value -2 is for
very low engagement, —1 for low engagement, 0 for a
neutral level of engagement, 1 for high engagement, and 2
for very high work engagement, respectively. The hyper-
parameters of the RF are set identical to the one described in
Section 3.2.1. The designed NN contains three hidden
layers, the first layer contains 4 neurons, the second and
third layers contain 8 neurons, and it implements SoftMax
Activation and Categorical Cross-Entropy Loss. The RF and

3
2
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-1
-2
L-3
Thermal Sensation
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1
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- -2

Work Engagement

Fig. 13 Estimation of thermal sensation and work engagement using physiological responses
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NN algorithms are compared for the example datasets, and
the results show that RF outperforms NN for our datasets
based on the same evaluation method as Section 3.2.1.
However, the accuracies of the prediction models may
vary a bit while different datasets are applied, thus NN is
mentioned here as another potential algorithm as it might
be a better option for other datasets. For people in group #1,
these prediction models are pre-trained and can be directly
used to estimate the thermal sensation and work engagement.
Table 6 shows the detailed information of these two types
of models (accuracies are the average of people in group
#1). Please note that there could be many different input
features to build the prediction models for either thermal
sensation or work engagement, two existing models are used
as illustrative examples.

Therefore, corresponding room environment recom-
mendations are made based on the results from the
physiological responses. If the model predicts the thermal
sensation of —3, -2, and —1 for the occupant, it is recom-
mended to increase the indoor temperature of the room
where he/she stays, while for the value of 1, 2, and 3, it is
recommended to decrease the indoor temperature. Similarly,
the prediction models for work engagement are applied
to help with the setting of the indoor lighting level. For the
existing database, several common lighting levels (i.e., 200 lux,
500 lux, and 1000 lux) are used to see which one gives the

Table 6 Details of the personal prediction model for thermal
sensation and work engagement

Input data Thermal sensation Work engagement
GSR v v
HR v v
ST v v
Lighting level X J
Data points 370 680
Accuracy (RF) 89.2% 79.3%

highest work engagement. Therefore, a lighting level can be
recommended for the occupant. For example, if the lighting
level of 500 lux gives the predicted work engagement higher
than 1000 lux or 200 lux, then the lighting level is chosen to be
500 lux. However, these models are used for demonstration,
in the real-world system, there can be a higher resolution of
lighting levels in the models.

3.4.2 Feedback strategy based on the public database

For people in group #2, until the personal models containing
the physiological responses are established, the public database
is still used to give feedback on the indoor environment.
When an occupant is assigned to the room where the
thermal sensation is not 0 (the Room Comfort Score is
not 1), then corresponding feedback can be directly given
based on the previously predicted thermal sensation. For
example, occupant 8 is assigned to room 1 with the thermal
sensation of —1, indicating that although room 1 has the
most suitable indoor environment among the three rooms,
he/she will still feel a bit cool. In this case, the feedback
for room 1 is to increase the temperature. Meanwhile,
corresponding data collection for the occupant can be used
to establish or update their DID database.

3.4.3 Example feedback

The different models mentioned in the previous section
indicate that the framework is compatible with any form of
prediction model or any related human database. For example,
based on either the physiological responses or the public
open sources database, corresponding feedback for the
room can be given. To demonstrate the feedback from the
occupant, an example of the feedback based on Table 5
and random physiological responses is given in Table 7 and
Table 8. The strategy here is to only give feedback to the
rooms that are recommended for the occupants. Take the
thermal sensation as an example, assume the occupants

Table 7 Feedback regarding the thermal environments of different rooms

Occupant 1 2 3 4 5 6 7 8 9 10 11 12
Room 1 T T T
Room 2 T T
Room 3

Note: T indicates feedback for increasing the temperature, | indicates feedback for decreasing the temperature (where applicable).

Table 8 Feedback regarding the lighting levels of different rooms

Occupant 1 2 3 4 5 6 7 8 9 10 11 12
Room 1 200 500 200 500 500 1000 1000
Lighting level Room 2 500 500 200 1000 200 500 200 1000

Room 3 200
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follow the room recommendations, the thermal sensation
of occupants 1, 2, 3, 4, 5, 6, 9, 10, and 11 will be 0.
Therefore, there is no feedback from them. However, for
the occupants 7, 8, and 12, no perfect rooms are found
for them. By following the recommendations, occupants
7 and 12 are suggested to stay in room 1 or 2, and occupant
8 is recommended to stay in room 1. In this case, corresponding
feedback will be given to their assigned rooms. As shown in
Table 7, considering the feedback from all the occupants,
the final feedback is that both room 1 and room 2 are
suggested to have a higher temperature.

Nevertheless, it is still possible for the recommendation
to give a wrong signal due to the limited accuracies of the
prediction models. On one hand, the occupants can have
full access to adjust the setting of the indoor environment,
which will be a feedback signal to the system to update the
database. On the other hand, as demonstrated in Section 3.4.1,
when the occupants are in a specific room, the model
established from the physiological data is used, which could
rectify the potential errors of the systems. In addition, there
can be a conflict in the feedback from different occupants.

Model View

Show environmental data
Hide environmental data

Fig. 14 Developed real-time visualization platform based on Unity

Game View

For example, two occupants are assigned to the same room
but the feedback from them is opposite (e.g., one feels
warm/hot while the other feels cool/cold). Similarly, for the
recommended lighting levels of the rooms, conflicts between
occupants may be found. It will be a much more complex
situation and require more advanced algorithms to compute
the final results, which is out of the scope of this paper.
However, some existing methods regarding the optimization
of the indoor assignment and environmental control can
be found in our previous studies (Li et al. 2020; Deng et al.
2021a).

3.5 Real-time visualization in Unity

Unity is used to develop a real-time visualization platform
because it is compatible with BIM models and allows a
real-time update of the human models. A BIM model is
generated and imported into Unity for the virtual environment.
As shown in Figure 14, the building model is a basement
described in Section 3.1. COZIR sensors are connected to
the computer and the environmental data are read and

Prefer cooler

Show occupants
Hide occupants

Neutral

Prefer warmer
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saved in local .csv files. A C# script is generated in Unity
to read the imported data in .csv files. It can be seen that
the indoor environmental parameters (i.e., temperature
and humidity) can be visualized explicitly, and there are
two buttons to display or hide the texts of sensing data.
In addition, two human models are created to demonstrate
how the different occupants can be represented, and distinct
rendering colors are assigned to them based on the estimated
thermal preferences. In this example, blue indicates that the
occupant is feeling cool or cold (with the thermal sensation
of -3, -2, and -1), and prefer a warmer environment,
while red means the occupant feels warm or hot (with
the thermal sensation of 1, 2, and 3) and prefers a cooler
environment, green implies a neutral feeling of the occupant.
Once the corresponding occupants change their locations
(e.g., shift to another room), the new thermal comfort
preferences will be given based on the new environmental
parameters. Similarly, two buttons for displaying and hiding
the occupant models are given, and in this way, the user can
have better control of the visualization interface. In general,
the platform can provide real-time information about the
indoor environment and occupants’ comfort levels.

4 Discussion

In general, a case study is used to demonstrate the proposed
framework and how the DID could be incorporated. Different
personal databases are used to demonstrate occupants with
different profiles (group #1). The scenarios when people
are new occupants (group #2) are also illustrated. Various
types of database and prediction models are incorporated
into our framework. An explicit example is given to show
how these databases are used and how the systems make
use of them to provide recommendations and feedback. The
results show that compared to the randomly assigned
rooms, the recommended rooms can provide better thermal
environments for the occupants.

It is worth noting that the proposed framework is
generic, and any other types of building information or
technologies can be implemented. Although the case study
used specific human parameters and prediction models as
examples, the framework can fit any other occupant-related
parameters or states (e.g., lighting comfort, sound comfort,
and odor comfort). The only difference will be the input
parameters. In addition, after comparing the capabilities of
different platforms, a real-time visualization platform based
on Unity is developed. The functionalities of the developed
platform are also extendable, and the case study intends to
provide an example of the capabilities of the platform as well
as the key functionalities. The interfaces can be re-designed
based on the requirement of the projects or personal
preferences. By integrating the real-time sensing data and

the predicted values, the developed platform can provide
real-time information for both the overview of the indoor
environment and the occupants’ states, which can be valuable
references for the building managers. With the help of the
proposed framework, unnecessary space conditioning when
the room is unoccupied or over-conditioning can be reduced.
As a result, the indoor experience of the occupants as well
as the energy efficiency of the building can be improved.

There are several advantages of the proposed framework.
Compared with the occupant-centric environmental control
framework in previous studies (Kim et al. 2018; Yang et al.
2022), our framework focuses not only on thermal comfort
models but also on the overall indoor experience of the
occupants based on the concept of DID and CSI. The concept
of CSI can incorporate different indoor comfort indexes of
the occupants and allow the systems to estimate occupants’
overall indoor experience. In addition, rather than only
proposing a concept, the framework is validated using a
detailed example to demonstrate the mechanism of the
systems. The case study contains two different types of
prediction models (e.g., thermal sensation and work
engagement) to show the scalability of the framework. In
the case study, the ASHRAE Global Thermal Comfort
Database II is used as a publicly available dataset for
pre-training the model, which guarantees the reproducibility
of the results. Furthermore, a visualization platform that
serves as an auxiliary tool for the building control systems
is also developed and demonstrated.

It is also worth acknowledging some limitations of
this study. To allow the system to work based on individual
preferences, the DID database contains some private
information of the occupants, thus people may concern
about their privacy. Therefore, data security needs to be
ensured in a real-world implementation. In addition, to
implement the framework, the buildings need to be equipped
with a number of sensors and preferably with a building
automation system (BAS). Furthermore, this study provides
a general idea of the framework with several example
methods. The framework is scalable and allows different
technologies and algorithms to be incorporated, while the
detailed discussion of optimization algorithms is not the
scope of this paper. For example, the recommendation
strategy does not discuss the maximum capacity of the
rooms and the conflict perceptions of different occupants.

5 Conclusions

This paper proposes a novel concept of DID for human-
centric monitoring and control of the indoor environment,
which provides valuable insights into next-generation smart
buildings. The concept of DID is defined and explicitly
explained. Based on the DID, the interaction between
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different systems in the framework is presented, and
possible approaches and algorithms for specific systems are
discussed. A case study using the scene of the GGB building
at the University of Michigan is presented to demonstrate
the framework. Two groups of occupants are used to
demonstrate how the DID, in different scenarios, can be
adopted into the framework to provide recommendations
for room allocation and indoor environment control. As
thermal sensation is used as the target index to recommend
the rooms, the results show an improvement in the thermal
sensation of the occupants if they follow the recommendations
compared with randomly assigned rooms. Different types of
database and prediction models are used during the process
to demonstrate the scalability of the framework. Example
feedback for the building systems is also demonstrated based
on previous results. Furthermore, a Unity-based platform that
enables the real-time visualization of indoor environmental
parameters and occupants’ states is developed. In general,
DID-based indoor environment monitoring and control
allows efficient human-centric management of the indoor
environment. It is scalable and considered a valuable
framework for future smart building.
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