
Theoretical Computer Science 852 (2021) 61–72
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Time-energy tradeoffs for evacuation by two robots in the 

wireless model✩

Jurek Czyzowicz a,1, Konstantinos Georgiou b,∗,1, Ryan Killick c, 
Evangelos Kranakis c,1, Danny Krizanc d, Manuel Lafond e,1, Lata Narayanan f,1, 
Jaroslav Opatrny f,1, Sunil Shende g

a Université du Québec en Outaouais, Gatineau, Québec, Canada
b Ryerson University, Dept. of Mathematics, Toronto, Ontario, Canada
c School of Computer Science, Carleton University, Ottawa, Ontario, Canada
d Department of Mathematics & Comp. Sci., Wesleyan University, Middletown, CT, USA
e Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
f Department of Comp. Sci. and Software Eng., Concordia University, Montreal, Québec, Canada
g Department of Computer Science, Rutgers University, Camden, NJ, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 September 2019
Received in revised form 3 September 2020
Accepted 8 November 2020
Available online 13 November 2020

Keywords:
Energy
Evacuation
Linear
Robot
Speed
Time
Trade-offs
Wireless communication

Two robots stand at the origin of the infinite line and are tasked with searching 
collaboratively for an exit at an unknown location on the line. They can travel at maximum 
speed b and can change speed or direction at any time. The two robots can communicate 
with each other at any distance and at any time. The task is completed when the last robot 
arrives at the exit and evacuates. We study time-energy tradeoffs for the above evacuation 
problem. The evacuation time is the time it takes the last robot to reach the exit. The 
energy it takes for a robot to travel a distance x at speed s is measured as xs2. The total 
and makespan evacuation energies are respectively the sum and maximum of the energy 
consumption of the two robots while executing the evacuation algorithm.
Assuming that the maximum speed is b, and the evacuation time is at most cd, where d
is the distance of the exit from the origin and c is some positive real number, we study 
the problem of minimizing the total energy consumption of the robots. We prove that the 
problem is solvable only for bc ≥ 3. For the case bc = 3, we give an optimal algorithm, and 
give upper bounds on the energy for the case bc > 3.
We also consider the problem of minimizing the evacuation time when the available 
energy is bounded by �. Surprisingly, when � is a constant, independent of the distance d
of the exit from the origin, we prove that evacuation is possible in time O (d3/2 logd), and 
this is optimal up to a logarithmic factor. When � is linear in d, we give upper bounds on 
the evacuation time.
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1. Introduction

Linear search is an online problem in which a robot is tasked with finding an exit placed at an unknown location on an 
infinite line. It has long been known that the classic doubling strategy, which guarantees a search time of 9d for an exit at 
distance d from the initial location is optimal for a robot travelling at speed at most 1 (see any of the books [1,2,30] for 
additional variants, details and information). If even one more robot is allotted to the search then clearly an exit at distance 
d can always be found in time d by one of the robots. Therefore the problem of group search by multiple robots on the line 
is concerned with minimizing the time the last robot arrives at the exit; the problem is also called evacuation. It was first 
introduced as part of a study on cycle-search [11] and further elaborated on an infinite line for multiple communicating 
robots with crash [21] and Byzantine faults [19].

The time taken for group search on the line clearly depends on the communication capabilities of the robots. In the 
wireless communication model, the robots can communicate at any time and over any distance. In the face-to-face com-
munication model, the robots can only communicate when they are in the same place at the same time. A straightforward 
algorithm achieves evacuation time 3d in the wireless model, and can be seen to be optimal, while it has been shown that 
in the face-to-face model, two robots cannot achieve better evacuation time than one robot [9].

In this paper, we consider the energy required for group search on the line. We use the energy model in which the 
energy consumption of a robot travelling a distance x at speed s is proportional to xs2. This model, also used in [12], is 
motivated by the concept of viscous drag in fluid dynamics; see Section 1.1 for more details. Let c be a chosen positive 
constant. Then, the authors of [12], studied the question of the minimum energy required for group search on the line by 
two robots performing under the face-to-face communication model and travelling at speed at most b while guaranteeing 
that both robots reach the exit within time cd, where d is the distance of the exit from the starting position of the robots. 
For the special case b = 1, c = 9, they proved the surprising result that two robots can evacuate with less energy than one 
robot, while taking the same evacuation time. Note that in the face-to-face model, where no information can be exchanged 
from distance, robots are bound to follow zig-zag trajectories effectively arranging for a sequence of possible meeting points 
in order to facilitate the efficient evacuation of their peers. In contrast, robots’ trajectories we consider in this work, where 
robots perform in the wireless model, need only make one turn before they terminate. As a result, our model of energy that 
does not take into consideration any turning costs can be thought as more realistic in the wireless communication model 
than in the face-to-face communication model.

Our main approach throughout the paper is to investigate time-energy tradeoffs for group search by two robots in the 
wireless communication model. Assuming that the maximum speed is b, and the evacuation time is at most cd, where d is 
the distance of the exit from the origin, we study the problem of minimizing the total energy consumption of the robots. 
We also consider the problem of minimizing the evacuation time when the available energy is bounded by �.

1.1. Model and problem definitions

Two robots are placed at the origin of an infinite line. An exit is located at unknown distance d from the origin and can 
be found if and only if a robot walks over it. A robot can change its direction or speed at any time, e.g., as a function of its 
distance from the origin, or the distance walked so far. Robots operate under the wireless model of communication in which 
messages can be transmitted between robots instantaneously at any distance. Feasible solutions are robots’ trajectories in 
which, eventually, both robots evacuate, i.e. they both reach the exit. Given a location of the exit, the time by which the 
second robot reaches the exit is referred to as the evacuation time. We distinguish between constant-memory robots that 
can only travel at a constant number of hard-wired speeds, and unbounded-memory robots that can dynamically compute 
speeds and distances, and travel at any possible speed.

The energy model being used throughout the paper is motivated from the concept of viscous drag in fluid dynamics 
[4]. In particular, an object moving with constant speed s will experience a drag force FD proportional2 to s2. In order 
to maintain the speed s over a distance x the object must do work equal to the product of FD and x resulting in a 
continuous energy loss proportional to the product of the object’s squared speed and travel distance. For simplicity we take 
the proportionality constant to be one, and define the energy consumption moving at constant speed s over a segment of 
length x to be xs2. We extend the definition of energy for a robot moving in the same direction from point a to point b on 
the line, using speed s(x) ∈ R, x ∈ [a, b], as ∫ b

a s2(x)dx. The total energy of a specific robot traversing more intervals, possibly 
in different directions, is defined as the sum of the energies used in each interval.

Given a team of two robots, the total evacuation energy is defined as the sum of the robots’ energies used till both robots 
evacuate. Similarly, we define the makespan evacuation energy as the maximum energy used by any of the two robots.

For each d > 0 there are two possible locations for the exit to be at distance d from the origin: we will refer to either 
of these as input instances d for the group search problem. More specifically, we are interested in the following three 
optimization problems:

2 The constant of proportionality has (SI) units kg/m and depends, among other things, on the shape of the object and the density of the fluid through 
which it moves.
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Definition 1.1. Problem EEbd (c): Minimize the total evacuation energy, given that the evacuation time is no more than cd
(for all instances d) and using speeds no more than b.

Definition 1.2. Problem TEbd (�): Minimize the evacuation time, given that the total evacuation energy is no more than �
(for all instances d), and using speeds at most b.

Definition 1.3. Problem ME
b
d (�): Minimize the evacuation time, given that the makespan evacuation energy is no more 

than � (for all instances d), and using speeds at most b.

For the last two problems, we consider two cases when the evacuation energy � is a constant and when it is linear in d.

1.2. Our results

Consider the following intuitive and simple algorithm for wireless evacuation, which is a parametrized version of a 
well-known algorithm for the case of unit speed robots that achieve evacuation time 3d.

Definition 1.4 (Algorithm simple wireless search Ns,r ). Robots move at opposite directions with speed s until the exit is found. 
The finder announces “exit found” and halts. The other robot changes direction and moves at speed r until the exit is 
reached.

We analyze the behaviour of this algorithm for all three proposed problems, and determine the speeds that achieve the 
minimum evacuation energy (or time) among all algorithms of this class, while respecting the given bound on evacuation 
time (resp. energy). In some cases, the algorithms derived are shown to be optimal. In particular, our main results are the 
following:

1. We show that the problem EEbd (c) admits a solution if and only if cb ≥ 3. Furthermore, for every c, b > 0 with cb = 3, 
we show that the optimal total evacuation energy is 4b2d, and this is achieved by Ns,r with s = r = b (Theorem 2.3).

2. For every c, b > 0 with cb ≥ 3, we derive the optimal values of s and r for the algorithm Ns,r that minimize the total 
evacuation energy (Theorem 2.4).

3. We observe that if total or makespan energy � is a constant, problems TEbd (�) and ME
b
d (�) cannot be solved by robots 

that can only use a finite number of speeds. We prove that if � is bounded by a constant, the optimal evacuation 
time is �(d3/2) (see Theorem 3.2). Somewhat surprisingly, we give an algorithm with evacuation time O (d3/2 logd) (see 
Theorem 3.3); thus the algorithm is optimal up to a logarithmic factor. Our algorithm requires the robots to continuously 
change their speed at every distance x from the origin. This is the only part that requires robots to have unbounded 
memory.

4. For the problems TEbd (�) and ME
b
d (�) with total or makespan energy � = O (d) and b = 1, we give upper bounds on 

the evacuation time (see Theorems 3.3 and 5.1 respectively).

1.3. Related work

In group search, a set of communicating robots interact and co-operate by exchanging information in order to complete 
the task which usually involves finding an exit placed at an unknown location within a given search domain. Some of 
the pioneering results related to our work are concerned with search on an infinite domain, like a straight line [3,5,6,29], 
while others with search on the perimeter of a closed domain like unit disk [11] or equilateral triangle or square [23]. The 
communication model being used may be either wireless [11] or face-to-face [8,20,23]. Search and evacuation problems 
with a combinatorial flavour have been recently considered in [14,15] and search-and-fetch problems in [25,26], while [10]
studied average-case/worst-case trade-offs for a specific evacuation problem on the disk. The interested reader may also 
wish to consult a recent survey paper [18] on selected search and evacuation topics.

Traditional approaches to evaluating the performance of search have been mostly concerned with time. This is apparent 
in the book [2] and the research described in the seminal works on deterministic [3], stochastic [5,6] and randomized [29]
search and continued up to the most recent research papers on linear search, for robots with terrain dependent speeds [22], 
robots with faults [27] in particular Byzantine [19] or crash-fault behaviour [21], robots with probabilistic faults [7], and in 
group search problems with distinguished searchers, such as in [28] for linear search, or [16,17] for searching the unit disk 
(see also the survey paper [18]). Aside from the research by [24], in which the authors are looking at the turn cost when 
robots change direction during the search, little or no research has been conducted on other measures of performance.

[12] was the first paper on search and evacuation that changed the focus from optimizing the time to (a) minimizing 
the energy consumption required to find the exit and (b) to time/energy tradeoffs. The authors determine optimal (and in 
some cases nearly optimal) linear search algorithms inducing the lowest possible energy consumption and also propose a 
linear search algorithm that simultaneously achieves search time 9d and consumes energy 8.42588d, for an exit located at 
distance d unknown to the robots. However, this differs from our present work in that the authors focus exclusively on the 
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face-to-face communication model while here we focus on the wireless model. In the present paper, we extend the results 
of [12] to the realm of the wireless communication model and study time/energy trade-offs for evacuating two robots on 
the infinite line. Despite their apparent similarities, the face-to-face and wireless communication models require completely 
different approaches to the design of efficient linear search algorithms.

2. Minimizing energy given bounds on evacuation time and speed

This section is devoted to the problem EEbd (c) of minimizing the total evacuation energy, given that the robots can travel 
at speed at most b and are required to complete the evacuation within time cd for every instance d where d is the distance 
of the exit from the origin. We start with establishing a necessary condition on the product bc.

Lemma 2.1. No online (wireless) algorithm can solve EEbd (c) if bc < 3.

Proof. (Lemma 2.1) Consider an arbitrary algorithm for the problem, and for some d > 0, we let it run till at least one point 
among ±d is reached by a robot, say R , in time at least d/b. We place the exit at point −d − ε , so that R needs additional 
2(d + ε)/b time to reach it, resulting in evacuation time at least 3d/b. Since the argument holds for every ε > 0, the claim 
follows. �

Next we show that algorithm Nb,b is an optimal solution to the problem EEbd (c) when bc = 3. We start with the following 
lemma:

Lemma 2.2. Let b, c > 0 with bc = 3 and consider an evacuation algorithm such that robots use maximum speed b and evacuate by 
time cd for an exit at distance d from the origin. Then for every d > 0, the points d, −d, must be visited at time d/b.

Proof. (Lemma 2.2) Suppose not. Notice that the points ±d cannot be visited before time d/b using speed at most b. We 
look at two cases.

Case 1: There exists d > 0 such that neither d nor −d is visited at time d/b. Consider the first time t > d/b when either 
of them is visited, wlog let the point +d be visited at time t > d/b by robot R1. We put the exit at −d. Then R1
has to travel an additional distance of 2d, and can use speed at most b, so needs time at least 2d/b to get to the 
exit. The total time taken by R1 to evacuate is at least t + 2d/b > 3d/b = cd.

Case 2: There exists d > 0 such that d is visited at time d/b but −d is not visited at this time (or vice versa). Wlog 
suppose R1 is at point d at time d/b. Let −d + 2ε be the closest point to −d that has been visited at time d/b
where ε > 0 since by assumption −d is not visited at this time. We put the exit at −d + ε . The time limit to 
evacuate is c(d − ε). At time d/b, R1 is at distance 2d − ε from the exit, so the total time for R1 to reach the exit 
is at least

d/b + (2d − ε)/b = 3d/b − ε/b = cd − cε

3
> cd − cε

In both cases, we showed that the robots cannot evacuate in the required time bound. This completes the proof by 
contradiction. �
Theorem 2.3. For every b, c > 0 with bc = 3, the algorithm Nb,b is the only feasible solution to EEbd (c), and is therefore optimal, and 
has total energy consumption 4b2d.

Proof. (Theorem 2.3) Lemma 2.2 implies that in order to achieve an evacuation time cd, both robots must use the maximum 
speed b and explore in different directions. If the exit is found at distance d by one of the robots, the time is d/b, and 
therefore, the other robot must travel at the maximum speed b in order to arrive at the exit in time cd. Thus, the only 
algorithm that can evacuate within time cd while using speed at most b is Nb,b . A total distance of 4d is travelled by the 
two robots, all at speed b, therefore the total energy consumed is 4b2d. �

Next we consider the case of c, b > 3 and determine the optimal choices of speeds s, r for Ns,r , as well as the induced 
total evacuation energy and competitive ratio for problem EEbd (c).

Theorem 2.4. Let δ = 2 + 3
√
2 ≈ 3.25992. For every c, b > 0, problem EEbd (c) admits a solution by algorithm Ns,r if and only if cb ≥ 3. 

For the spectrum of c, b for which a solution exists, the following choices of speeds s, r are feasible and optimal for Ns,r

3 ≤ cb ≤ δ cb > δ

s b
bc−2

δ
3√2c

r b δ

c
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Fig. 1. The competitive ratio of Ns,r for the choices of Theorem 2.4.

The induced total evacuation energy is f (cb) 2d
c2
, where

f (x) :=
⎧⎨
⎩

x2

(x−2)2
+ x2 ,3 ≤ x ≤ δ

1
2

(
2+ 3

√
2
)3

, x > δ

It was observed in [12] that the optimal offline solution, given that d is known, equals 2d
c2
. The competitive ratio is given 

by supd c2

2d e(c, b, d) = f (cb) for algorithms inducing total evacuation energy e(c, b, d). The competitive ratio of Ns,r for 
the choices of Theorem 2.4 is summarized in Fig. 1. Note that in particular, Theorem 2.4 claims that the competitive ratio 
only depends on the product cb, and when cb = 3, the competitive ratio is 18 and is decreasing in cb (strictly only when 
cb < δ). The optimal speed choices for the unbounded problem EEcd (∞) are exactly those that appear under case cb > δ. 
The remaining of the section is devoted to proving Theorem 2.4.

First we derive closed formulas for the performance of Ns,r . From the definition of energy used, and given that the 
robots move at speed 1, we deduce what the evacuation time and energy are when the exit is placed at distance d from 
the origin. The following two functions will be invoked throughout our argument below.

T (s, r) := 1

s
+ 2

r
(1)

E (s, r) := s2 + r2 (2)

Lemma 2.5. Let b, c be such that there exist s, r for which Ns,r is feasible. Then, for instance d of EEbd (c), the induced evacuation time 
of Ns,r is d · T (s, r) and the induced total evacuation energy is 2d · E (s, r).

Next we show the spectrum of c, b for which Ns,r is applicable.

Lemma 2.6. Algorithm Ns,r gives rise to a feasible solution to problem EEbd (c) if and only if bc ≥ 3. For every such b, c > 0, the optimal 
choices of N f

s,r can be obtained by solving the convex program:

min
s,r∈R

E (s, r) (NLPbc )

s.t. T (s, r) ≤ c

0 ≤ s, r ≤ b.

Moreover, if E (s0, r0) optimizes NLPbc , then the competitive ratio of Ns0,r0 equals c2 · E (s0, r0).

Proof. (Lemma 2.6) For fixed parameter b, consider the non-linear program

min
s,r∈R

1

s
+ 2

r
(3)

s.t. 0 ≤ s, r ≤ b
65
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T (s, r) = 1
s + 2

r is clearly strictly decreasing in either of s, r > 0. Hence when b is fixed, both constraints s, r ≤ b must 
be tight at optimality. But then, mins,r∈R T (s, r) = T (b,b) = 3/b. It follows that NLPbc has a feasible solution if and only if 
3/b ≤ c.

By Lemma 2.5, it is immediate that NLPbc exactly models the problem of choosing optimal speeds for Ns,r , for problem 
EE

b
d (c). Also note that T (s, r) and E (s, r) are strictly convex functions when s, r > 0, and hence NLPbc is a convex program. 

Moreover, an optimizer always exists, since the function is bounded from below, and is defined over a compact feasible 
region. Finally, the claim pertaining to the competitive ratio follows from Lemma 2.5. �

A corollary of Lemma 2.6 is that any feasible solution for NLPbc satisfying first-order necessary optimality conditions is 
also a globally optimal solution. As a result, the proof of Theorem 2.4 follows by showing the proposed solution is feasible 
and satisfies first-order necessary optimality conditions. This is done in Lemmas 2.7 and 2.8.

Towards proving that first-order optimality conditions are satisfied, we argue first that for all c, b > 0 with cb ≥ 3, the 
optimizers of NLPbc satisfy the time constraint tightly. Indeed, if not, then one could reduce any of the values among s, r to 
make the constraint tight, improving the induced energy. Hence, in the optimal solutions to NLPbc , any of s, r ≤ b could be 
additionally tight or not. In what follows, δ represents 2 + 3

√
2, as in the statement of Theorem 2.4.

Lemma 2.7. For each c, b > 0 for which 3 ≤ cb ≤ δ, the optimal solution to NLPbc is given by s = b
bc−2 , r = b.

Proof. (Lemma 2.7) first-order optimality (KKT) conditions for s, r, assuming that time constraint and r ≤ b are tight, are

−∇E (s, r) = λ1∇T (s, r) + λ2

(
0
1

)
T (s, r) = c

0 ≤ s ≤ b

r = b

λ1, λ2 ≥ 0,

where functions E (·, ·) , T (·, ·) are as in (1), (2). Utilizing only the equality constraints above, we easily derive that

s = b

bc − 2
, λ1 = 2b3

(bc − 2)3
, λ2 = −2

(
b4c3 − 6b3c2 + 12b2c − 10b

)
(bc − 2)3

Note that s ≤ b for all cb ≥ 3. λ1 is clearly positive. It is enough to verify that λ2 ≥ 0.
Indeed, define g(x) = 10 − 12x + 6x2 − x3, and note that λ2 = b g(cb)

(cb−2)3
. Since cb ≥ 3 and b > 0, we conclude that λ2 ≥ 0

as long as g(cb) ≥ 0. For that, we calculate the 3 roots of g

2 + 3
√
2, 2− 1± i

√
3

22/3
.

Since the leading coefficient of g is negative, and since g has a unique real root, we conclude that g(x) ≥ 0 as long as 
x ≤ 2 + 3

√
2 as wanted. �

Lemma 2.8. For each c, b > 0 for which cb > δ, the optimal solution to NLPbc is given by s = δ
3√2c

, r = δ
c .

Proof. (Lemma 2.8) first-order optimality (KKT) conditions for s, r, assuming that only time constraint is tight, are

−∇E (s, r) = λ∇T (s, r)

T (s, r) = c

0 ≤ s, r ≤ b

λ ≥ 0

Using only the equality constraints, we derive

s = 1+ 22/3

c
, r = 1

2
s(cs − 1)2 = 2+ 3

√
2

c
, λ = 2s3.

Observe that the proposed values of s, r satisfy the speed bound only if cb ≥ δ. But then, we also see that λ > 0 for all such 
c, b, and hence s, r do indeed satisfy the first-order optimality conditions. �
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Proof. (Theorem 2.4) By Lemma 2.6 and Lemma 2.7, the optimal induced energy when 3 ≤ cb ≤ δ is

2dE
(

b

bc − 2
,b

)
= 2d

(
b2

(bc − 2)2
+ b2

)

and the induced competitive ratio is

(cb)2
(
1+ 1

(cb − 2)2

)
.

Finally, by Lemma 2.6 and Lemma 2.8, the optimal induced energy when cb > δ is

2dE
(
1+ 22/3

c
,
2+ 3

√
2

c

)
= d

(
2+ 3

√
2
)3

c2
.

Hence the competitive ratio is constant and equals

1

2

(
2+ 3

√
2
)3 ≈ 17.3217,

completing the proof of Theorem 2.4. �
3. Minimizing evacuation time, given constant evacuation energy

In this section we consider the problem of minimizing evacuation time, given constant total (or makespan) evacuation 
energy. First we observe that if the robots can use only a finite number of speeds, there is no feasible solution to the 
problems ME

b
d (�) or TEbd (�).

Theorem 3.1. If � is a constant, and the robots have access to only a finite number of speeds, there is no feasible solution to the 
problems ME

b
d (�) or TEbd (�).

Proof. (Theorem 3.1) Suppose the robots can only use speeds in a finite set. Wlog let s be the minimum speed in the set. 
Define d′ = �/s2, and place the exit at d′ + ε for any ε > 0. Travelling at any speed at or above s, it is impossible for even 
one of the robots to reach the exit with energy ≤ �. �

Next we prove a lower bound on the evacuation time in this setting.

Theorem 3.2. For every constant e ∈R+ , the optimal evacuation time for problem ME
b
d (e) is �(d3/2), asymptotically in d.

Proof. (Theorem 3.2) For any arbitrarily large value of d, we place the exit at distance d from the origin. For any robot to 
reach the exit before running out of battery, a robot can travel at speed at most 

√
e/d. Therefore the time for even the first 

robot to reach the exit is at least d√
e/d

= d3/2/
√
e. �

Note that the above lower bound also holds for problem TEbd (e) (if the total evacuation energy is no more than e, then 
also the makespan evacuation energy is no more than e). Next we prove that this naive lower bound is nearly tight (up to 
a logd factor). First we consider the case that e ≤ 1. Then, we show how to modify our solution to also solve the problem 
when e > 1.

The key idea is to allow functional speed s = s(x) to depend on the distance x of the robot from the origin. We will make 
sure that the choice of s is such that, for every large enough d, once the exit is located at distance d, there is “enough” 
leftover energy for the other robot to evacuate too. For that, we will choose the maximum possible speed r (which can 
now depend on d, and which will be constant) so as to evacuate without exceeding the maximum energy bounds. Notably, 
even though our algorithmic solution is described as a solution to TEbd (e), it will be transparent in the proof that it is also 
a feasible solution to ME

b
d (e).

Theorem 3.3. For every constant e ≤ 1, problem TEbd (e) admits a solution by Ns,r , where (functional) speed s is chosen as

s(x) = 1√
2 + 2x (1/e + log(1 + x))

.

When the exit is found (hence its distance d from the origin becomes known), speed r is chosen as
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r =
√

e

2d (e log(d + 1) + 1)
,

inducing evacuation time O  
(
d3/2 logd

)
, where in particular the constant in the asymptotic (in d) is independent of e.

Proof. (Theorem 3.3) First we observe that since e ≤ 1, s(x) ≤ 1 for all x ≥ 0. Given that d is at least, say, 1, it is also 
immediate that r ≤ 1, hence the speed choices comply with the speed bound.

The exit placed at distance d from the origin is located by the finder in time

d∫
0

1
s(x)dx = 2

√
2
(
(d + 1)3/2(3e log(d + 1) − 2e + 3) + 2e − 3

)
9e

≤ d3/2 logd,

where the inequality holds for every e ≤ 1, and for big enough d.
When the exit is located by a robot, the other robot is at distance 2d from the exit. Moreover, each of the robots have 

used energy

d∫
0

s2(x)dx = e

2
− e

2e log(d + 1) + 2
,

hence the leftover energy for the non-finder (i.e., the robot that did not find the exit) to evacuate is at least

e − 2

(
e

2
− e

2e log(d + 1) + 2

)
= e

e log(d + 1) + 1
.

The non-finder is informed of d, and hence can choose constant speed r so as to use exactly all of the leftover energy, i.e. 
by choosing r satisfying

2d∫
0

r2dx = e

e log(d + 1) + 1
.

Note that Ns,r is also a feasible solution to problem ME
b
d (e). Solving for r gives the value declared at the statement of the 

theorem. Finally, choosing this specific value of r, the non-finder needs additional 2d/r time to evacuate, which is at most

(2d)3/2
√

(e log(d + 1) + 1)

e
≤ (2d)3/2

√
log(d + 1)

e
≤ d3/2 logd,

where the last inequality holds for big enough d, since e is constant. So the overall evacuation time is no more than 
2d3/2 logd, for big enough d, as promised. �

It remains to address the case e > 1. For this, we recall that we solve TEbd (e) for large enough values of d, and we modify 
our solution so as to choose functional speed

s̄(x) := min{s(x),1},
effectively using even less energy than before. The distance that is traversed at speed 1 depends only on constant e, and 
hence the additional evacuation time is O (1) with respect to d.

4. Minimizing evacuation time with bounded linear total evacuation energy

In this section we study the problem TE1d (�) of minimizing the evacuation time, where � = ed for some constant e. We 
show how to choose optimal speed values s, r for algorithm Ns,r . Note that even though d is unknown to the algorithm, 
speeds s, r may depend on the known constant e, and the maximum speed b = 1.

In this section we prove the following theorem:

Theorem 4.1. Let δ = 2 + 3
√
2 ≈ 3.25992. For every constant e ∈ R+ , problem TE1d (ed) admits a solution by Ns,r , where speeds s, r

are chosen as follows

e < δ e ∈ [δ,4) e ≥ 4

s
√

e
2
(
1+22/3

) √
e−2
2 1

r
√

e(
2+21/3

) 1 1
68



J. Czyzowicz, K. Georgiou, R. Killick et al. Theoretical Computer Science 852 (2021) 61–72
The induced evacuation time is given by g(e)d where g(e) is given by:

g(e) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√(
2+21/3

)3
e , e < δ

2+
√

2
e−2 , e ∈ [δ,4)

3 , e ≥ 4

First we observe that, given the values of s = s(e), r = r(e), it is a matter of straightforward calculations to verify, assum-
ing they are feasible and optimal, that the induced evacuation time is indeed equal to g(e)d as promised. Given Lemma 2.5, 
we know that the optimal speed choices for algorithm Ns,r , for problem TE1d (ed) are obtained as the solution to the follow-
ing NLP.

min
s,r∈R

1
s + 2

r (NLP′
e)

s.t. 2(s2 + r2) ≤ e

0 ≤ s, r ≤ 1

The optimal solutions to NLP′
e can be obtained by solving complicated algebraic systems and by invoking KKT conditions, for 

the various values of e, as we also did for NLPbc . However, the advantage is that one can map the optimal solutions to NLP1c , 
see Theorem 2.4 and use b = 1, to feasible solutions to NLP′

e . Then, we just need to verify first-order optimality conditions 
for the candidate optimizers. Since the NLP is convex, these should also be unique global optimizers.

Indeed, one of the critical structural properties pertaining to the optimizers of NLP1c is that the time constraint 1s + 2
r ≤ cd

is satisfied tightly. At the same time, the optimal speed values, as described in Theorem 2.4, as a function of c, achieve 
evacuation energy equal to f (c)d 2

c2
. Attempting to find the correspondence between parameters c, e (and problems NLP1c , 

NLP
′
e), we consider the transformation f (c) 2

c2
= e. For the various cases of the piece-wise function f , the transformation 

gives rise to the piece-wise function g and optimal speeds s, r (as a function of e) of Theorem 4.1.
Overall, the previous approach provides just a mapping between the provable optimizers s(c), r(c) to NLP1c , and candidate 

solutions s(e), r(e) to NLP′
e , and more importantly, it saves us from solving complicated algebraic systems induced by KKT 

conditions. What we verify next (which is much easier), is that feasibility and KKT conditions are indeed satisfied for the 
obtained candidate solutions s(e), r(e). Since the NLP is convex, that also shows that s(e), r(e), as stated in Theorem 4.1 are 
actually global optimizers to NLP′

e .

Lemma 4.2. For every e ∈R+ , speeds s(e), r(e), as they are defined in Theorem 4.1, are feasible to NLP′
e .

Proof. (Lemma 4.2) Speeds s = s(e) and r = r(e) are clearly non negative. Next we verify that they never attain value more 
than 1. We examine two cases. When e < 2 + 3

√
2, it is easy to see that r/s = 3

√
2. Hence, it is enough to check that r ≤ 1, 

which is immediate from the formula of r = r(e). In the other case, we assume e ∈ [δ, 4). Speed r is clearly at most 1, as 
well as s = √

(e − 2)/2 ≤ √
(4 − 2)/2 = 1.

Next we verify that the given speeds comply with the evacuation energy bounds. When e < 2 + 3
√
2 we have

2(s2 + r2) = 2e

(
1

2
(
1+ 22/3

) + 1(
2+ 21/3

)
)

= e.

When e ∈ [δ, 4) we have

2(s2 + r2) = 2e

(
e − 2

2
+ 1

)
= e.

Lastly, when e ≥ 4 both speeds are 1, and clearly, 2(s2 + r2) = 4 ≤ e as wanted. �
Lemma 4.3. For every e ∈R+ , speeds s(e), r(e), as stated in Theorem 4.1, are the optimal solutions to NLP′

e .

Proof. (Lemma 4.3) For every e ∈R+ , we verify that speeds s(e), r(e) satisfy first-order optimality conditions. Since NLP′
e is 

convex, that would imply that s(e), r(e) are the unique optimizers.
First we observe that the energy inequality constraint is always tight (verified within the proof of Lemma 4.2). Apart 

from that constraint, let I(e) (possibly empty) denote the set of constraints, among s, r ≤ 1, which are tight for the specific 
candidate optimizer s(e), r(e), and for a specific value of e. For i ∈ I we denote the corresponding constraint by gi(s, r) ≤ 1.

When e < 2 + 3
√
2, the bound constraint is the only constraint which is tight. Therefore KKT conditions are satisfied as 

long as there exists λ ≥ 0 such that
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−∇
(
1

s
+ 2

r

)
= λ∇2(s2 + r2) ⇔

(
1/s2

2/r2

)
= λ

(
4s
4r

)

A solution exists as long as 2s3 = r3, which is indeed, the case, which also implies that λ = 1/(4s3) ≥ 0.
When e ∈ [2 + 3

√
2, 4), the bound constraint and constraint r ≤ 1 are tight. Therefore KKT conditions are satisfied as long 

as there exist λ1, λ2 ≥ 0 such that

−∇
(
1

s
+ 2

r

)
= λ1∇2(s2 + r2) + λ2

(
0
1

)
⇔

(
1/s2

2/r2

)
= λ1

(
4s
4r

)
+ λ2

(
0
1

)

Solving for λ1, λ2, and using the provided values for s = s(e) and r = r(e) we obtain

λ1 = √
2

(
1+ 22/3

e

)3/2

, λ2 = 2− 2

(
2+ 3

√
2

e

)3/2

,

and clearly both values are nonnegative when e ≥ 2 + 3
√
2.

Lastly, for the first-order optimality conditions, when e ≥ 1, all (but the non-negativity constraints) are tight. Therefore 
KKT conditions are satisfied as long as there exist λ1, λ2, λ3 ≥ 0 such that

− ∇
(
1

s
+ 2

r

)
= λ1∇2(s2 + r2) + λ2

(
1
0

)
+ λ3

(
0
1

)

⇔
(
1/s2

2/r2

)
= λ1

(
4s
4r

)
+ λ2

(
1
0

)
+ λ3

(
0
1

)

Since r = s = 1, the above system simplifies to

1 = 4λ1 + λ2

2 = 4λ1 + λ3

which admits the solution λ1 = 1/4 ≥ 0, λ2 = 0, λ3 = 1 ≥ 0. �
5. Minimizing evacuation time with bounded linear makespan evacuation energy

In this section we study the problem ME
1
d (�) of minimizing the evacuation time, given that the makespan evacuation 

energy � = ed for some constant e. We show how to choose optimal speed values s, r for algorithm Ns,r . Note that even 
though d is unknown to the algorithm, speeds s, r may depend on the known value e, and the maximum speed b = 1.

Theorem 5.1. For every constant e ∈R+ , problem ME
1
d (ed) admits a solution by Ns,r , where speeds s, r are chosen as follows

e < 3 e ≥ 3

s
√

e
3 1

r
√

e
3 1

The induced evacuation time is given by g(e)d where

g(e) :=
{

3
√

3
e , e < 3

3 , e ≥ 3

Proof. (Theorem 5.1) What distinguishes the performance, and feasibility, of Ns,r between TE1d (ed) and ME
1
d (ed), is that in 

the former, the total evacuation energy (equal to d(2s2 +2r2)) is bounded by e, while in the latter the makespan evacuation 
energy (equal to d(s2 + 2r2)) is bounded by e. Hence, similar to the analysis for TE1d (ed), the optimal speed choices for Ns,r

to ME
1
d (ed) are the optimal solutions to the following NLP.

min
s,r∈R

1
s + 2

r (NLP′′
e )

s.t. s2 + 2r2 ≤ e

0 ≤ s, r ≤ 1
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Note that NLP′′
e is convex, hence any choice of feasible speeds satisfying first-order optimality (KKT) conditions is also the 

unique global minimizer. Moreover, the choices of s, r of the statement of the theorem are clearly feasible to NLP′′
e . Hence, 

it suffices to show that the choices of s, r do indeed satisfy KKT conditions.
When e < 3 we note that the energy constraint is tight, while both speed constraints are not tight. Hence, s, r are the 

unique optimizers if there exists λ ≥ 0 satisfying

−∇
(
1

s
+ 2

r

)
= λ∇(s2 + 2r2) ⇔

(
1/s2

2/r2

)
= λ

(
2s
4r

)

from which we conclude that λ = 1/(2s3) = 1/(2r3) > 0 as wanted (for s = r = √
e/3).

When e ≥ 3 we note that the speed constraints are both tight, while the energy constraint is tight only when e = 3. In 
that case, it suffices to show that there exist nonnegative λ1, λ2 satisfying

−∇
(
1

s
+ 2

r

)
= λ1

(
1
0

)
+ λ2

(
0
1

)

Clearly, λ1 = 1/s2 = 1 > 0 and λ2 = 2/r2 = 2 > 0, which concludes the proof. �
6. Conclusion

We considered a variant of the well-studied linear search problem in the wireless communication model where two 
robots try to reach a hidden exit on the line. The novelty of our work is the study of the total evacuation energy, a new 
measure of solution quality that was first introduced in [12]. The new measure, together with the traditional objective of 
minimizing the evacuation time, gives rise to a challenging multi-objective optimization problem. We analyze the problem 
by minimizing one of the objectives while converting the other objective to a bounded constraint on the search problem, 
e.g., minimizing evacuation time subject to bounded evacuation energy. Somewhat surprisingly, even though the search 
domain is unbounded, we show that there is indeed a feasible solution to the problem even when the evacuation energy is 
restricted to be constant.

While our definition of the evacuation energy is inspired by fundamental principles of physics, the definition does not 
consider any additional energy expended to change the direction of motion or to arbitrarily adjust the speed. Alternative 
formulations of energy consumption that incorporate these considerations may give rise to new multi-objective optimization 
problems that will be studied in future work.

Our search problem was considered under the wireless communication model, while the face-to-face model was studied 
by the same authors in [12]. It would be worthwhile to explore other communication models, such as the pebble model or 
the blackboard model, for other geometric search domains like a unit disk, the plane, or a graph, and for a given number of 
searchers. Likewise, one may inject uncertainty into the problem by either allowing faulty robots and/or performing average 
case instead of worst case analysis. Finally, improving upon the trade-offs we established in this work remains an interesting 
open problem.
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