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Abstract: In this paper, we study modular categories whose Galois group action on
their simple objects are transitive. We show that such modular categories admit unique
factorization into prime transitive factors. The representations of SL2(Z) associated
with transitive modular categories are proven to be minimal and irreducible. Using
the Verlinde formula, we characterize prime transitive modular categories as the Galois
conjugates of the adjoint subcategory of the quantum groupmodular category C(sl2, p−
2) for some prime p > 3. As a consequence, we completely classify transitive modular
categories. Transitivity of super-modular categories can be similarly defined. A unique
factorization of any transitive super-modular category into s-simple transitive factors is
obtained, and the split transitive super-modular categories are completely classified.

1. Introduction

Modular categories are spherical braided fusion categories over C whose braidings are
nondegenerate. The notion of modular category has evolved from the studies of rational
conformal field theory [36], topological quantum field theory [52] and the quantum
invariants of knots and 3-manifolds such as the Jones polynomial [33,47]. Moreover,
unitary modular categories are the mathematical foundations of topological phases of
matter [56] and topological quantum computing [50,55]. Similar to the role of groups
in the study of symmetries, modular categories are natural algebraic objects to organize
“quantum symmetries”.

An important family of examples of modular categories is obtained from the quantum
group construction [3,49]. In general, for any simple Lie algebra g and a suitable root
of unity q ∈ C, one can construct a modular category by taking the semisimplification
of the category of tilting modules of the quantum group Uq(g) specialized at the root
of unity q [1,2]. The associated 3-manifold invariants [4,51] and mapping class group
representations [5,29] are also well-studied in the literature.
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Modular categories have many striking arithmetic properties, such as the Verlinde
formula, which are encoded in the matrices S and T (see Section 2). More precisely,
let s :=

(
0 −1
1 0

)
and t :=

(
1 1
0 1

)
be the generators of the modular group SL2(Z). For

any modular category C, the assignment ρC : s #→ S, t #→ T defines a projective
representation of SL2(Z) [3,52]. Another notable arithmetic property of C is the fact
that the kernel of ρ̄C is a congruence subgroup whose level is equal to the order of the T-
matrix [43]. Moreover, ρ̄C admits liftings to linear representations of SL2(Z) which are
also shown to have congruence kernels in [22]. In addition, these liftings enjoy certain
symmetries under the action of the absolute Galois group Gal(Q̄/Q). These properties
of the liftings are essential to our proofs in this paper.

Since the irreducible characters of the fusion ring of a modular category C can be
indexed by the set Irr(C) of isomorphism classes of simple objects of C [15,19], the
action of Gal(Q̄/Q) on these characters induces a permutation action on Irr(C). The
number of Galois orbits is also an invariant of modular categories.

Classification problems are always important in anymathematical theory. There have
been efforts on classifying modular categories by rank [9,10,48], Frobenius–Perron
dimension [8,12] and Frobenius–Schur exponent [13,54]. Note that there are finitely
many modular categories up to equivalence for any given rank [11]. The number of
Galois orbits plays prominent roles in most of these papers (see also [16,32]), which
leads to the idea of classifying modular categories by the number of Galois orbits.

In this paper, we investigate modular categories with only one Galois orbit, which
are called transitive modular categories. The smallest nontrivial example of a transitive
modular category is the Fibonacci modular category, which can be described as the
adjoint subcategory C(sl2, 3)(0) of the quantum group category C(sl2, 3) associated to
sl2 at level 3. More generally, the adjoint subcategory C(sl2, p − 2)(0) of C(sl2, p − 2)
and its Galois conjugates are prime and transitive modular categories for any prime
p > 3 (see Proposition 4.3). Remarkably, up to equivalence, these are all the nontrivial
prime transitive modular categories. Moreover, every transitive modular category can
be uniquely factorized (up to permutation of factors) into a Deligne product of prime
transitive ones. Specifically, we prove the following two major theorems of this paper
(cf. Theorem 6.4 and Theorem 6.5).

Theorem I. Let C be a nontrivial modular category. Then C is prime and transitive if
and only if ord(T ) is a prime number p > 3 and C is equivalent to a Galois conjugate
of C(sl2, p − 2)(0) as modular categories.

Theorem II. Let C be a nontrivial modular category. Then C is transitive if and only
if C is equivalent to a Deligne product of prime transitive modular categories whose
T-matrices have distinct orders. In particular, ord(T ) is a square-free odd integer whose
prime factors are greater than 3.

To prove these theorems, we first study factorizations of transitivemodular categories
in Section 3. For any modular category C, we denote by Q(S) the Q-extension by
adjoining all the entries of the S-matrix, and denote by GC the corresponding Galois
group over Q. Our first observation is that the action of GC on Irr(C) is fixed-point free
(Proposition 3.2), and so Irr(C) is a GC-torsor. Moreover, every fusion subcategory of a
transitive modular category is also transitive and modular (Corollary 3.9). We conclude
that any transitive modular category has a unique factorization into a Deligne product of
prime transitive modular categories in Theorem 3.11. In Section 4, we study the Galois
conjugates of modular categories C(sl2, k)(0) at odd level k. We show that for any prime
p ≥ 5, every Galois conjugate of C(sl2, p − 2)(0) is prime and transitive.
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Inspired by the Galois symmetries of the representations of SL2(Z) associated with
modular categories, we define the notion of minimal representations of SL2(Z) and the
characteristic 2-group of a modular category in Section 5. The minimal representations
of SL2(Z) associated with a modular category C are completely determined by the
eigenvalues of the images of t (Lemma 5.6). Moreover, the characteristic 2-group of C
naturally gives rise to a decomposition of any representation of SL2(Z) associated with
C (see Proposition 5.11). By studying these two notions, we prove in Theorem 5.14 that
any representation of SL2(Z) associated with a transitive modular category C is minimal
and irreducible, and that the order of the T-matrix of C is odd and square-free.

We completely classify transitive modular categories in Section 6 by characterizing
the prime and transitive modular categories. Using the minimality and the irreducibility
of the representations of SL2(Z) associated with transitive modular categories, we show
that the order of the T-matrix of any prime transitivemodular category C is a prime p ≥ 5,
and it has the same fusion rules as C(sl2, p − 2)(0). Applying the classification result of
[30], we show that C must be a Galois conjugate of C(sl2, p − 2)(0) (see Theorem 6.4).
Combining with the unique factorization theorem, the full classification of transitive
modular categories is established in Theorem 6.5.

Finally, we discuss transitive super-modular categories in Section 7. We classify
all the transitive split super-modular categories by using the classification of transitive
modular categories (Theorem 7.4). Moreover, a unique factorization of transitive super-
modular categories into s-simple transitive factors is obtained in Theorem 7.13. Then
we exhibit a family of non-split transitive prime categories over sVec and conjecture that
these are all the s-simple transitive super-modular categories up to Galois conjugate.

The paper is organized as follows. In Section 2, we set up notations and give a brief
review on modular categories. In Section 3, we define transitive modular categories and
derive some fundamental properties of them. In particular, we establish the prime fac-
torization theorem in Theorem 3.11. In Section 4, we discuss the prime and transitive
modular categories obtained from the quantum group categories C(sl2, p − 2) for any
odd prime p. In Section 5, we study the modular group representations associated with
modular categories. We show in Theorem 5.14 that the representations associated with
transitive modular categories are irreducible and minimal. In Section 6, we character-
ize the prime transitive modular categories in Theorem 6.4, which implies the complete
classification of transitive modular categories in Theorem 6.5. Finally, in Section 7, tran-
sitive super-modular categories are introduced and studied. We classify split transitive
super-modular categories in Theorem 7.4 and prove a unique factorization theorem of
transitive super-modular categories in Theorem 7.13.

Throughout this paper, we tacitly use the following notations: ζn = exp(2π i/n),
Qn = Q(ζn), and i = ζ4 = √−1. A subcategory of any category is assumed to a full
subcategory, unless stated otherwise.

2. Preliminaries

In this section, we recall some basic definitions and notations. The readers are referred
to [3,27,34] for more details.

2.1. Braided fusion categories. A fusion category is a semisimple, C-linear abelian,
rigid monoidal category with finite-dimensional Hom-spaces and finitely many isomor-
phism classes of simple objects including the tensor unit 1. For any fusion category C,
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we denote by Irr(C) the set of isomorphism classes of simple objects of C. When it is
clear from the context, we will denote the isomorphism class of an object X of C by the
same notation X .

The Grothendieck group of C, denoted by K0(C), admits a ring structure given by
the tensor product. More precisely, we have X ⊗ Y = ∑

Z∈Irr(C) N
Z
X,Y Z for any X, Y ∈

Irr(C), where

N Z
X,Y := dimC C(X ⊗ Y, Z) (2.1)

are called the fusion coefficients. The collection of fusion coefficients N Z
X,Y for all

X,Y, Z ∈ Irr(C) is referred to as the fusion rules of C. The fusion matrix NX of
X ∈ Irr(C) is defined as (NX )Z ,Y := N Z

X,Y for any Y, Z ∈ Irr(C). The largest real
eigenvalue of NX , denoted by FPdim(X), is called the Frobenius–Perron dimension of
X . The Frobenius–Perron dimension of C is defined as

FPdim(C) :=
∑

X∈Irr(C)
FPdim(X)2.

Let C be a fusion category. For any object X ∈ C, the left dual of X is a triple
(X∗, evX , coevX ), where X∗ is an object of C, evX : X∗ ⊗ X → 1 and coevX : 1 →
X ⊗ X∗ are respectively the evaluation and coevaluation morphisms associated with the
left dual object X∗ of X . A simple object X ∈ Irr(C) is called invertible if X ⊗ X∗ ∼= 1.
The pointed subcategory of C, denoted by Cpt, is the full abelian subcategory generated
by the invertible objects ofC. A fusion categoryC is called pointed ifCpt = C. The adjoint
subcategory of C, denoted by Cad or C(0), is the full abelian subcategory generated by
the subobjects of X⊗X∗ for any X ∈ C (cf. [28,31]). Both Cpt and Cad are fusion
subcategories of C.

The left duality of C can be extended to a contravariant monoidal functor (−)∗, and so
(−)∗∗ defines a monoidal functor on C. A pivotal structure on a fusion category C is an

isomorphism of monoidal functors j : idC
∼=−→ (−)∗∗. A fusion category equipped with

a pivotal structure is called a pivotal fusion category. If C is a pivotal fusion category,
then for any X ∈ C and f ∈ EndC(X), the (left) quantum trace of f can be defined as

tr j ( f ) := evX∗ ◦(( jX ◦ f ) ⊗ idX∗) ◦ coevX ∈ EndC(1) ∼= C.

A pivotal structure j on C is called spherical if tr j ( f ) = tr j ( f ∗) for any endomorphism
f of C. A spherical fusion category is a fusion category equipped with a spherical pivotal
structure. When the pivotal structure is clear from the context, we will drop the subscript
j . In a pivotal category C, the quantum dimension dX of any object X ∈ C is defined to
be dX := tr(idX ). It has been shown in [28] that if C is a spherical fusion category, then
dX is a totally real algebraic integer for any object X ∈ C.

The global dimension of any fusion category was introduced in [37, Def. 2.5]. If C
is a spherical fusion category, its global dimension is given by

dim(C) =
∑

X∈Irr(C)
d2X .

In particular, dim(C) is a totally positive algebraic integer. We will denote the positive
square root of dim(C) by

√
dim(C).
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A braiding on a fusion category C is a natural isomorphism

βX,Y : X ⊗ Y
∼=−→ Y ⊗ X

satisfying the Hexagon axioms. A fusion category equipped with a braiding is called a
braided fusion category. Let C be a braided fusion category, and D ⊂ C a collection of
objects of C. The Müger centralizer of D in C (cf. [38]), denoted by CC(D), is the full
subcategory of C with the collection of objects given by

{X ∈ C | βY,X ◦ βX,Y = idX⊗Y , ∀Y ∈ D}.

It follows directly from the definition of a braiding that CC(D) is a fusion subcategory
of C. In particular, the fusion subcategory CC(C) is called theMüger center of C, and is
denoted by C′. A braided fusion category C (or its braiding β) is called nondegenerate
if C′ is equivalent to Vec, the category of finite-dimensional vector spaces over C. A
braided fusion category is called a symmetric fusion category if C′ = C. By Deligne’s
theorems [20,21], if C is a symmetric fusion category, then dim(C) ∈ Z.

2.2. Modular categories and arithmetic invariants. A premodular category (or a ribbon
fusion category) is a spherical braided fusion category. A modular category C is a
premodular categorywhose underlying braidingβ is nondegenerate. The (unnormalized)
S-matrix of a premodular category C is defined to be

SX,Y := tr(βY,X∗ ◦ βX∗,Y ), X, Y ∈ Irr(C).

In particular, SX,1 = S1,X = dX . It has been proved in [38] that a premodular category
is modular if and only if its S-matrix is invertible. Moreover, when C is modular, the
fusion coefficients can be expressed in terms of the S-matrix by the Verlinde formula
(see, for example, [3]):

N Z
X,Y = 1

dim(C)
∑

W∈Irr(C)

SX,W SY,W SZ∗,W

S1,W
. (2.2)

Let C be amodular category. A natural isomorphism θ : idC
∼=−→ idC , called the ribbon

structure of C, can be defined using the spherical pivotal structure of C and the Drinfeld
isomorphism (cf. [41, Sec. 2]). The ribbon structure is compatible with the braiding and
the duality in the following sense:

θX⊗Y = (θX ⊗ θY ) ◦ βY,X ◦ βX,Y and θX∗ = (θX )
∗ (2.3)

for any objects X,Y ∈ C. If X ∈ Irr(C), then θX is a nonzero scalar multiple of idX . We
will use the abuse notation to denote both this scalar and the isomorphism itself by θX
whenever X is simple. The T-matrix of C is defined to be the diagonal matrix

TX,Y := δX,Y θX , X,Y ∈ Irr(C).

It follows from [53] (see also [3, Thm. 3.1.19]) that θX has finite order for any X ∈ Irr(C),
and so does theT-matrix. The pair ofmatrices (S, T ) is called the (unnormalized)modular
data of C. We may denote the modular data of a modular category C by (SC , TC) when
the context needs to be clarified.
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For any m ∈ Z, the m-th Gauss sum [44] of a modular category C is defined as

τm(C) :=
∑

X∈Irr(C)
d2XθmX .

If gcd(m, ord(T )) = 1, the m-th (multiplicative) central charge and the m-th anomaly
of C are defined as

ξm(C) :=
τm(C)
|τm(C)|

and αm(C) := ξm(C)2. (2.4)

It is well-known that |τ1(C)| =
√
dim(C), and ξm(C) is a root of unity (cf. [3,38,44]).

2.3. Galois actions on modular categories. Let C be a modular category with modular
data (S, T ). For any complex matrix M , we denote byQ(M) the field extension ofQ by
adjoining the entries of M . It has been proved in [43] that Q(S) ⊂ Q(T ) = QN , where
N = ord(T ). In particular, Q(S) is an abelian extension over Q, and its Galois group is
denoted by GC . It is immediate to see that

Q(S) = Q(SX,Y /dY | X,Y ∈ Irr(C)).

By the Verlinde formula, for any Y ∈ Irr(C), the assignment

χY : Irr(C) → C, X #→ SX,Y
dY

defines a character of the fusion ring K0(C), and {χY | Y ∈ Irr(C)} is the set of irre-
ducible characters of K0(C) (cf. [3]). Thus, for any σ ∈ GC , σ (χY ) = χσ̂ (Y ) for some
permutation σ̂ on Irr(C), and the map

GC → Sym(Irr(C)), σ #→ σ̂

is a group monomorphism. The set of orbits under this GC-action is abbreviated as
Orb(C). We will denote a Galois automorphism σ ∈ GC as well as its associated per-
mutation on Irr(C) by σ̂ .

For any Galois extension E overQ containingQ(S), the Galois group Gal(E/Q) acts
on Irr(C) via the restriction onQ(S) or the surjection Gal(E/Q)

res−→ GC . Therefore, the
Gal(E/Q)-orbits in Irr(C) are identical to the GC-orbits. Using the above convention,
for any σ ∈ Gal(E/Q), we use σ̂C to represent the restriction of σ on Q(S) and also its
permutation on Irr(C). When it is clear from the context, σ̂C will simply be denoted by
σ̂ . In particular, one can take E = Q̄ and so the absolute Galois group Gal(Q̄/Q) acts
on Irr(C). According to [19], for any σ ∈ Gal(Q̄/Q), X,Y ∈ Irr(C), we have

σ

(
SX,Y√
dim(C)

)
= ± Sσ̂ (X),Y√

dim(C)
. (2.5)

If C = A ! B for some modular categories A and B, then Irr(C) = Irr(A) × Irr(B)
under the identification X ! Y #→ (X, Y ). In this case, SC = SA ⊗ SB, the Kronecker
product of the S-matrices. Therefore, Q(SC) = Q(SA)Q(SB), the composite field of
Q(SA) and Q(SB). Let F = Q(SA) ∩ Q(SB), and L = Gal(F/Q). The restrictions on
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F define two epimorphisms resA : GA → L and resB : GB → L . Their fiber product
GA • GB, defined as

GA • GB := {(σ̂ , τ̂ ) ∈ GA × GB | resA(σ̂ ) = resB(τ̂ )},
satisfies the commutative diagram

GA • GB
pA

!!

pB
""

GA

resA
""

GB
resB !! L

where pA, pB are coordinate projections. By the universal property of the fiber product,
the restriction epimorphisms πA : GC → GA and πB : GC → GB induce a group
homomorphism

f : GC → GA • GB, f (σ̂C) = (σ̂A, σ̂B) (2.6)

for any σ̂C ∈ GC . It follows from [24, Prop. 14.4.21] that f is an isomorphism. This
proves the first part of statement (i) of the following lemma. The second part follows
directly from [24, Cor. 14.4.20].

Lemma 2.1. Let C = A ! B for some modular categories A,B, and let

F = Q(SA) ∩ Q(SB).

Then:

(i) The map f : GC → GA • GB, f (σ̂C) = (σ̂A, σ̂B), defines an isomorphism of
groups, and

|GC | =
|GA| · |GB|
[F : Q] . (2.7)

(ii) For any σ ∈ Gal(Q̄/Q), X ∈ Irr(A) and Y ∈ Irr(B), we have

σ̂C(X ! Y ) = σ̂A(X) ! σ̂B(Y ).

(iii) For any OA ∈ Orb(A) and OB ∈ Orb(B), GC acts on OA × OB, under the
identification of Irr(C) = Irr(A)×Irr(B), and the number of GC-orbits in OA×OB
is bounded by [F : Q]. In particular, the numbers of Galois orbits of these categories
satisfy

|Orb(A)| · |Orb(B)| ≤ |Orb(C)| ≤ |Orb(A)| · |Orb(B)| · [F : Q].
Proof. The equality (2.7) follows directly from [24, Cor. 14.4.20] and the definition of
GC .

The action of GC on Irr(C) is equivalent to the action of GA •GB on Irr(A)× Irr(B)
by the definition of the Galois group actions. The statement (ii) follows immediately
from this observation.

To prove (iii), consider any X ∈ OA and Y ∈ OB. By definition,

StabGC (X ! Y ) ⊂ StabGA(X) × StabGB (Y ).
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Therefore, by Burnside’s lemma (see, for example, [24, Ex. 18.3.8]) and (2.7), we have

1 ≤ number of GC-orbits in OA × OB

= 1
|GC |

∑

(X,Y )∈OA×OB

|StabGC (X ! Y )|

≤ 1
|GC |

∑

(X,Y )∈OA×OB

|StabGA(X)| · |StabGB (Y )|

= |GA| · |GB|
|GC |

= [F : Q].

Now, we can establish the last inequalities by summing over all OA × OB ∈ Orb(A)×
Orb(B). 12

3. Unique Factorization of Transitive Modular Categories

In this section, we introduce the definition of transitive modular categories. These mod-
ular categories have spectacular properties which provide the foundations for the classi-
fication.We prove in Theorem 3.11 that every fusion subcategory of a transitive modular
category is a transitive modular subcategory and the prime factorization of a transitive
modular category is unique up to permutation of prime factors.

Definition 3.1. A modular category C is said to be transitive if GC (or Gal(Q̄/Q)) acts
transitively on Irr(C), i.e., |Orb(C)| = 1.

Recall that a transitive subgroup G of the symmetric group Sn is called regular if
the G-action on {1, . . . , n} is fixed-point free (cf. [57]).

Proposition 3.2. If C is a transitive modular category, then GC is regular and |GC | =
| Irr(C)|.

Proof. Since C is a transitive modular category, GC is an abelian transitive subgroup of
Sym(Irr(C)). By [57, Prop. 4.4], GC is regular. In particular, |GC | = | Irr(C)|. 12

SinceGC is regular, for any X ∈ Irr(C), there is a unique σ̂ ∈ GC such that X = σ̂ (1).
Therefore, we simply identify GC with Irr(C) via the identification σ̂ #→ σ̂ (1). For
convenience, we will use 1 and îd interchangeably. In particular, the action of σ̂ on µ̂ is
equal to the product σ̂ µ̂ for any σ̂ , µ̂ ∈ GC .

Thus, for any transitive modular category C, its modular data can be indexed by GC .
Moreover, the S-matrix can be expressed in terms of the dimensions of simple objects
as in the following lemma.

Lemma 3.3. Let C be a transitive modular category. For any σ̂ , µ̂ ∈ Irr(C), we have

Sσ̂ ,µ̂ = σ̂ (dµ̂)dσ̂ = µ̂(dσ̂ )dµ̂. (3.8)

Consequently, all the entries of the S-matrix are totally real algebraic units, and every
simple object of C is self-dual.
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Proof. Recall from Section 2.3 that

µ̂

(
Sσ̂ ,1

d1

)
= Sσ̂ ,µ̂

dµ̂
,

so we have Sσ̂ ,µ̂ = µ̂(dσ̂ )dµ̂. Since S is symmetric, we also have Sσ̂ ,µ̂ = σ̂ (dµ̂)dσ̂ .
According to [11, Prop. 3.6], dσ̂ = dσ̂ (1) is an algebraic unit for all σ̂ ∈ GC . Since

both dσ̂ and dµ̂ are totally real (cf. [28]), Sσ̂ ,µ̂ is a totally real unit. In particular, the
matrix s = 1√

dim(C) S is a unitary real symmetric matrix, and so we have id = s2 = C ,
where CX,Y = δX,Y ∗ is the charge conjugation matrix (cf. [3,28]). Therefore, every
simple object of C is self-dual. 12
Corollary 3.4. LetC be a transitivemodular category. Then there exists a unique element
σ̂0 ∈ GC such that σ̂0(dµ̂) = FPdim(µ̂) for all µ̂ ∈ GC , and

σ̂0(dim(C)) = FPdim(C).

Proof. Since the Frobenius–Perron dimension defines a character of the fusion ring
K0(C) and the simple objects are in one-to-one correspondence to the characters of the
fusion ring (see Section 2.3), there exists a unique simple object σ̂0 ∈ GC such that
χσ̂0(µ̂) = FPdim(µ̂) for all µ̂ ∈ GC . Therefore, by Lemma 3.3, we have

FPdim(µ̂) = χσ̂0(µ̂) =
Sµ̂,σ̂0
dσ̂0

= σ̂0(dµ̂).

The second assertion follows directly from the first statement and the definitions of
dim(C) and FPdim(C) . 12

Now, we can prove the first major observation on transitive modular categories.

Theorem 3.5. Let C be a transitive modular category. Then:

(i) For any σ̂ , µ̂ ∈ Irr(C), if σ̂ 3= µ̂, then d2
σ̂

3= d2
µ̂
. In particular, if µ̂ 3= îd, then

d2µ̂ 3= 1 and µ̂(dim(C)) 3= dim(C).

(ii) If X is an invertible object in C, then X ∼= 1. In particular, Cpt 4 Vec as fusion
categories.

(iii) Q(S) = Q(dim(C)) = Q(dX | X ∈ Irr(C)).

Proof. Suppose there exist σ̂ 3= µ̂ ∈ Irr(C) such that d2
σ̂
= d2

µ̂
. Then dσ̂ = εdµ̂ for

some ε ∈ {±1}. By Lemma 3.3, for any λ̂ ∈ Irr(C), we have

Sσ̂ ,λ̂ = λ̂(dσ̂ )dλ̂ = λ̂(εdµ̂)dλ̂ = ελ̂(dµ̂)dλ̂ = εSµ̂,λ̂.

Consequently, the rows Sσ̂ ,∗ and Sµ̂,∗ of S are linearly dependent, which contradicts the
invertibility of the S-matrix. This proves the first assertion of statement (i).

Note that dîd = d1 = 1. Therefore, for any µ̂ 3= îd, we have d2
µ̂

3= 1. In particular, up
to isomorphism, there is no other invertible object in C than 1, which implies statement
(ii). Moreover, by (2.5), we find

µ̂

(
d21

dim(C)

)

= µ̂

(
1

dim(C)

)
=

d2
µ̂

dim(C)
. (3.9)
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Hence,

dim(C)
µ̂(dim(C))

= d2µ̂ 3= 1,

and we have completed the proof of statement (i).
Since Q(dim(C)) is a subfield of Q(S), it is abelian and hence Galois over Q. By

(i), there is no nontrivial element of GC fixing dim(C). By the Fundamental Theorem
of Galois theory, Q(dim(C)) = Q(S). By the definition of Q(S), we always have the
inclusions

Q(dim(C)) ⊆ Q(dµ̂ | µ̂ ∈ GC) ⊆ Q(S).

The equality Q(dim(C)) = Q(S) implies Q(S) = Q(dµ̂ | µ̂ ∈ GC). 12
Corollary 3.6. If C is a transitive modular category, then the underlying braided fusion
category has a unique pivotal structure up to isomorphism.

Proof. By [11, Lem. 2.4], there is a bijective correspondence between Irr(Cpt) and
isomorphism classes of pivotal structures of the underlying fusion category of C. By
Theorem 3.5 (ii), Irr(Cpt) is trivial since C is transitive. Therefore, the underlying pivotal
structure of the modular category C is the only one up to isomorphism. 12

Recall that a fusion category C is called weakly integral if FPdim(C) ∈ Z, and is said
to be trivial if it is tensor equivalent to Vec.

Corollary 3.7. If C is a transitive modular category and D ⊂ C a nontrivial fusion
subcategory, then dim(D) 3∈ Z. In particular, C does not contain any nontrivial weakly
integral fusion subcategories.

Proof. Suppose D is a fusion subcategory of C such that dim(D) ∈ Z. Let σ̂0 ∈ GC
be the canonical element realizing the Frobenius–Perron dimension in Corollary 3.4.
Then σ̂0(dim(D)) = FPdim(D) and hence FPdim(D) ∈ Z. In other words,D is weakly
integral. By [28, Prop. 8.27], for any µ̂ ∈ Irr(D), σ̂0(d2µ̂) = FPdim(µ̂)2 ∈ Z. Therefore,
d2
µ̂

∈ Z. By Lemma 3.3, dµ̂ is a real algebraic unit for any µ̂ ∈ GC , and so d2
µ̂
= 1.

However, by Theorem 3.5, this means µ̂ = îd and hence Irr(D) = {1}. This proves the
first statement of the corollary.

Note that every weakly integral fusion categoryB satisfies FPdim(B) = dim(B) ∈ Z
(cf. [28]). Therefore, if B is a weakly integral fusion subcategory of C, then B must be
trivial by the preceding assertion. 12
Remark 3.8. As a consequence of Corollary 3.7, if C is a transitive modular category
satisfying dim(C) ∈ Z, then C is trivial.

In the following, we study fusion subcategories and Deligne products of transitive
modular categories.

Corollary 3.9. Every fusion subcategory of a transitivemodular category C is amodular
subcategory of C.
Proof. Let D be a fusion subcategory of C. Then D is premodular with the braiding
and the spherical pivotal structure inherited from C. Now consider the Müger center
D′ = CD(D) of D. It is a symmetric fusion subcategory of D and hence of C. Then,
by [20,21], dim(D′) is an integer. By Corollary 3.7, D′ is equivalent Vec as a fusion
category. Therefore, D is modular. 12
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Example 3.10. The adjoint subcategory C := C(sl2, 3)(0) of the quantum group modular
category C(sl2, 3) is a Fibonacci modular category. It has two isomorphism classes of
simple objects 1 and τ such that τ ⊗ τ = 1 ⊕ τ (cf. [48]). The S-matrix of C is given
by

S =
(
1 dτ

dτ −1

)

where dτ = 1+
√
5

2 . Therefore, Q(S) = Q(
√
5) and GC ∼= Z2 with the generator σ̂ :√

5 #→ −
√
5. Therefore, C is transitive.

Recall that a modular category C is prime if every modular subcategory of C is
equivalent to C or Vec. By [39, Thm. 4.5], every modular category admits a prime
factorization, i.e., it is equivalent to a finite Deligne product of primemodular categories.

Theorem 3.11. Let C be a transitive modular category. Then:

(i) every fusion subcategory of C is a transitive modular subcategory, and
(ii) the prime factorization of C is unique up to permutation of factors.

Proof. LetA be an arbitrary fusion subcategory of C. It follows from Corollary 3.9 that
A is a modular subcategory of C. Let B := CC(A), the Müger centralizer of A in C.
Then we have an equivalence of modular categories

C 4 A ! B

by the double centralizer theorem [39, Thm. 4.2].
As noted in Section 2.3, for any X!Y ∈ Irr(C) = Irr(A!B) and any σ ∈ Gal(Q̄/Q),

we have σ̂C(X ! Y ) = σ̂A(X)! σ̂B(Y ). Since C is transitive, for any X ∈ Irr(A), there
exists σ ∈ Gal(Q̄/Q) such that

σ̂A(1A) ! σ̂B(1B) = σ̂C(1A ! 1B) = X ! 1B.

Therefore, GA acts transitively on Irr(A). This completes the proof of (i).
It follows from [39, Thm. 4.5] that C admits a prime factorization. By Corollary 3.7,

Cpt 4 Vec . Therefore, by [17, Prop. 2.2], the prime factorization of C is unique up to
permutation of factors. 12
Proposition 3.12. If A,B are transitive modular categories and C = A ! B, then

|Orb(C)| = |GA| · |GB|
|GC |

= [Q(dim(A)) ∩ Q(dim(B)) : Q]. (3.10)

In particular, if A,B are nontrivial modular categories and they are Galois conjugate
to each other, then A ! B is not transitive.

Proof. SinceA,B are transitive, as discussed at the beginning of this section, the action
of GA (resp. GB) on Irr(A) = GA (resp. GB = Irr(B)) is just the left multiplication.
By Lemma 2.1, GA • GB ∼= GC is a subgroup of GA × GB, and the action of GC
on Irr(C) = Irr(A) × Irr(B) = GA × GB is equivalent to the left multiplication by
GA • GB. Therefore, the orbits of this GA • GB-action are the cosets of GA • GB in
GA × GB, which implies the first equality in (3.10). The second equality in (3.10) is a
direct application of Lemma 2.1(i) and Theorem 3.5(iii).
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SupposeA andB are nontrivial Galois conjugate modular categories. Then the exten-
sionQ(dim(A)) = Q(dim(B)) andQ(dim(A)) is a proper extension ofQ (cf. Theorem
3.5). Therefore, we have

|Orb(A ! B)| = [Q(dim(A)) ∩ Q(dim(B)) : Q] = [Q(dim(A)) : Q] > 1,

which means A ! B is not transitive. This completes the proof of the last assertion. 12
The following corollary provides a necessary and sufficient condition for the transi-

tivity of a Deligne product.

Corollary 3.13. Let C, D be modular categories. Then C !D is transitive if and only if
the following two conditions hold: both C, D are transitive and

Q(dim(C)) ∩ Q(dim(D)) = Q.

Proof. If C ! D is transitive, then, by Theorem 3.11, C and D are also transitive.
By Proposition 3.12, 1 = |Orb(C ! D)| = [Q(dim(C)) ∩ Q(dim(D)) : Q], and so
Q(dim(C)) ∩ Q(dim(D)) = Q.

Conversely, assume C and D are transitive modular categories and Q(dim(C)) ∩
Q(dim(D)) = Q, then [Q(dim(C)) ∩ Q(dim(D)) : Q] = 1. It follows from Proposi-
tion 3.12 that C ! D is transitive. 12

4. Primality of Transitive Quantum Group Modular Categories

A quantum group modular category C(g, k) can be constructed from a simple Lie al-
gebra g and a positive integer k, which is called the level. This modular category is a
semisimplification of the tilting module category of the quantum group Uq(g) special-
ized at a root of unity q determined by k and g. The readers are referred to [3,49] and
the references therein for details.

In this paper, we focus on the cases when g = sl2. Let k be a positive integer and
q = exp

(
π i
k+2

)
. For any r ∈ Q, we define

qr := exp
(

π ir
k + 2

)
.

The quantum integer [n]ζ for any root of unity ζ 3= ±1 is defined as

[n]ζ := ζ n − ζ−n

ζ − ζ−1 .

The isomorphism classes of simple objects of C(sl2, k) are indexed by the integers
a ∈ [0, k]. The modular data (S, T ) of the modular category C(sl2, k) is given by (cf.
[3], see also [47] with a different convention)

Sa,b = [(a + 1)(b + 1)]q , Ta,b = δa,b qa(a+2)/2, 0 ≤ a, b ≤ k. (4.11)

One can replace q by any Galois conjugate q ′ = ql for some l relatively prime to 2(k+2)
to get anothermodular categoryC(sl2, k, ql). The simple objects of thismodular category
are also indexed by the integers in [0, k] and its modular data is also given by (4.11)
with q replaced by ql .
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For the discussions of the remainder of this paper, we will simply write Ak,l for the
modular category C(sl2, k, ql) where gcd(l, 2(k + 2)) = 1. Let Va denote the isomor-
phism class of the simple objects of Ak,l indexed by the integer a ∈ [0, k]. Then V0 is
the isomorphism class of the tensor unit 1. The fusion rules ofAk,l are the same for any
possible integer l, and they are given by (cf. [3])

Nc
a,b =






1, if |a − b| ≤ c ≤ min(a + b, 2k − a − b)
and c ≡ a + b (mod 2) ;

0, otherwise.
(4.12)

One can observe directly from the fusion rules that Ak,l is Z2-graded, where the
homogeneous component A( j)

k,l , j ∈ {0, 1}, is the C-linear subcategory (additively)
generated by the simple objects Va satisfying a ≡ j (mod 2) for any integer a ∈ [0, k].
Moreover, the adjoint fusion subcategory ofAk,l isA(0)

k,l , which is amodular subcategory
of Ak,l if and only if k is odd (cf. [6,51]), and

Irr(A(0)
k,l ) =

{
V2 j | 0 ≤ j ≤ k − 1

2

}
. (4.13)

In particular, when k = 1, A(0)
1,l is tensor equivalent to Vec , and when k = 3, A(0)

3,l is a
Fibonacci modular category (see Example 3.10).

For any fusion category C, we say that a simple object X ∈ Irr(C) tensor generates
C if every simple object of C is isomorphic to a summand of a tensor power of X . The
following observation could be known to experts but we include it here for completeness.

Lemma 4.1. For any positive odd integer k and l ∈ (Z/2(k + 2)Z)×, every nontrivial
simple object of A(0)

k,l tensor generates A(0)
k,l . In particular, A(0)

k,l is a prime modular
category.

Proof. Since A(0)
1,l is trivial, the statements are true for k = 1. We assume k ≥ 3. By

the fusion rules (4.12), when k = 3, V2⊗V2 = V0 ⊕ V2; when k > 3 is odd, for any
1 ≤ j ≤ k−3

2 , we have

V2 j ⊗ V2 = V2 j−2 ⊕ V2 j ⊕ V2 j+2.

Therefore, V2 tensor generates A(0)
k,l . Moreover, for any 1 ≤ j ≤ k−1

2 , we have 2 ≤
min(4 j, 2k − 4 j), so N 2

2 j,2 j = 1, which means V2 is a direct summand of V2 j⊗V2 j .

Therefore, V2 j tensor generates A(0)
k,l . 12

For any odd integer k and l ∈ (Z/2(k + 2)Z)×, the modular data (S(0), T (0)) ofA(0)
k,l

is indexed by j = 0, . . . , k−1
2 , and is given by

S(0)j,m = [(2 j + 1)(2m + 1)]ql , T (0)
j,m = δm, j q2l j ( j+1), 0 ≤ j,m ≤ k − 1

2
. (4.14)

It is well-known that the first central charge of Ak,1 is given by (cf. [3])

ξ1(Ak,1) = exp
(

3kπ i
4(k + 2)

)
.
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By definition (see (2.4)), the first anomaly of Ak,1 is

α1(Ak,1) = ξ1(Ak,1)
2 = exp

(
3kπ i

2(k + 2)

)
.

By the fusion rules, Irr((Ak,1)pt) = {V0, Vk}, and (Ak,1)pt is a modular subcategory of
Ak,1. By [23, Cor. 3.27], CAk,1((Ak,1)pt) = A(0)

k,1. Therefore,

Ak,1 4 A(0)
k,1 ! (Ak,1)pt

as modular categories by the double centralizer theorem [39, Thm. 4.2]. Consequently,
by [44, Lemma 3.12], α1(Ak,1) = α1(A(0)

k,1) · α1((Ak,1)pt). Following (4.11), we have

α1((Ak,1)pt) =
1 + i k

1 − i k
= i k .

Therefore,

α1(A(0)
k,1) =

α1(Ak,1)

α1((Ak,1)pt)
= exp

(
(1 − k)kπ i
2(k + 2)

)
. (4.15)

In the literature, A(0)
k,1 is often referred to as the quantum group modular category

“SO(3) at level k” or “PSU(2) at level k”. The ribbon categories with these fusion
rules for odd k are completely classified in [30, Cor. 8.2.7], with a slightly different
parametrization.

Lemma 4.2. For any positive odd integer k, the modular categories

A(0)
k,l , l ∈

(
Z

2(k + 2)Z

)×

form a complete list of inequivalent ribbon categories with the fusion rules of SO(3) at
level k. If k + 2 = p > 3 is a prime, each of these modular categories is equivalent to a
Galois conjugate of A(0)

p−2,1 = C(sl2, p − 2)(0).

Proof. The first part follows directly from [30, Cor. 8.2.7]. If k + 2 = p > 3 is a prime,
there are exactly |(Z/2pZ)×| = p−1 equivalence classes of ribbon categories with the
fusion rules of SO(3) at level k. Note that all Galois conjugates of A(0)

k,1 have the same
fusion rules. Hence, they are equivalent to the modular categories in the list. According
to (4.15), α1(A(0)

p−2,1) = exp
(
(3−p)(p−2)π i

2p

)
∈ Qp, which is a root of unity of order p or

2p for p > 3. By definition, the first anomalies of the Galois conjugates ofA(0)
k,1 are the

Galois conjugates of α1(A(0)
k,1). Therefore, there are at least ϕ(p) = p − 1 equivalence

classes among the Galois conjugates of A(0)
k,1, and we are done by the first assertion. 12

Now, we can show a family of these quantum group modular categories are prime
and transitive in the following proposition.

Proposition 4.3. Let p be any odd prime and l ∈ (Z/2pZ)×. Then themodular category
A(0)

p−2,l is prime and transitive.
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Proof. By Lemma 4.1, A(0)
p−2,l is prime. Therefore, it suffices to show that A(0)

p−2,l is
transitive.

The underlying root of unity ql is the primitive 2p-th root of unity. Since p is
odd, Qp = Q(ql) = Q(q2l), it suffices to show that Gal(Qp/Q) acts transitively on
Irr(A(0)

p−2,l).

For any nonnegative integer m ≤ p−3
2 , gcd(2m + 1, 2p) = 1. So there exists σ ∈

Gal(Qp/Q) such that σ (q) = q2m+1. Thus, we have

σ

(
S(0)j,0

S(0)0,0

)

= σ ([(2 j + 1)]ql ) =
[(2 j + 1)(2m + 1)]ql

[2m + 1]ql
=

S(0)j,m

S(0)0,m

for any nonnegative integer j ≤ p−3
2 . Therefore, σ̂ (V0) = V2m and hence Gal(Qp/Q)

acts transitively on Irr(A(0)
p−2,l). 12

Proposition 4.4. Let p1, . . ., p/>3 be distinct primes. For any (l1, . . ., l/)∈(Z/2p1Z)×
× · · ·×(Z/2p/Z)×, the Deligne product

C = A(0)
p1−2,l1 ! · · · ! A(0)

p/−2,l/

is a transitive modular category.

Proof. We proceed to prove the statement by induction on /. The statement obviously
holds for / = 1 by Proposition 4.3. Now we assume p1, . . . , p/ > 3 are distinct primes
and (l1, . . . , l/) ∈ (Z/2p1Z)× × · · · × (Z/2p/Z)× for some integer / > 1. By the
induction assumption, C = !/−1

a=1A
(0)
pa−2,la is a transitive modular category. Note that

dim(C) =
/−1∏

a=1

dim(A(0)
pa−2,la ) ∈ Qp′

/
and dim(A(0)

p/−2,l/
) ∈ Qp/ ,

where p′
/ = p1 . . . p/−1. Since Qp′

/
∩ Qp/ = Q, it follows from Corollary 3.13 and

Proposition 4.3 that C ! A(0)
p/−2,l/

is transitive. 12

5. Representations of SL2(Z) Associated with Modular Categories

In this section, we show that the representations of SL2(Z) associated with transitive
modular categories are irreducible and minimal. As a consequence, the order of the T-
matrix of any nontrivial transitive modular category is square-free and its prime factors
are greater than 3.

Let C be a modular category with modular data (S, T ). We denote by GLC(C) the
group of all invertible matrices over C indexed by Irr(C), and VC = K0(C)⊗ZC with
the standard basis EC = {eX | X ∈ Irr(C)}. Note that S, T ∈ GLC(C), and the group
GLC(C) acts on VC via the standard basis EC , namely A(eY ) =

∑
X∈Irr(C) AXY eX for

any A ∈ GLC(C) and Y ∈ Irr(C). We often identify GL(VC) with GLC(C) in this
manner.
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Recall that s :=
(
0 −1
1 0

)
and t :=

(
1 1
0 1

)
are generators of the group SL2(Z),

subjected to the relations s4 = id and (st)3 = s2, and the assignment

ρ̄C : SL2(Z) → PGL(VC), s #→ S, t #→ T (5.16)

defines a group homomorphism (cf. [3,52]). This projective representation ρC can be
lifted to an ordinary representation (ρ, VC) such that the diagram

SL2(Z)

ρC ##!
!!

!!
!!

!!
!

ρ
!! GL(VC)

""

PGL(VC)

commutes, where the vertical map GL(VC) → PGL(VC) is the natural surjection. Any
lifting (ρ, VC) of ρC , called a representation of SL2(Z) associated with C, yields an
action of SL2(Z) on VC given by

a · eY := ρ(a)(eY ) =
∑

X∈Irr(C)
ρ(a)X,Y (eX )

for any a ∈ SL2(Z).We call VC an SL2(Z)-module of C throughout this paper. If (ρ, VC)
is a representation of SL2(Z) associated with C, then the pair (s, t) := (ρ(s), ρ(t)),
called the normalized modular data, uniquely determines ρ, and the matrices s, t are
unitary and symmetric (cf. [28]). Moreover, the group of 1-dimensional representations
of SL2(Z) acts transitively on representations of SL2(Z) associated with C by tensor
product (cf. [22]).

For any positive integer m, we denote by πm : SL2(Z) → SL2(Z/mZ) the natural
surjection.We say that a representationφ : SL2(Z) → GLr (C) is of levelm ifφ = φ̃◦πm
for some representation φ̃ : SL2(Z/mZ) → GLr (C) and m = ord(φ(t)). By [22, Thm.
II], if ρ is a representation of SL2(Z) associated with C, then ρ is of level n = ord(ρ(t))
and ρ(a)X,Y ∈ Qn for any a ∈ SL2(Z) and X, Y ∈ Irr(C). In particular, s, t are matrices
defined overQn . Thus, for σ ∈ Gal(Qn/Q), (σρ, VC) is also a representation of SL2(Z)
where σρ(a) = σ (ρ(a)) for any a ∈ SL2(Z), and the corresponding σ -twisted SL2(Z)-
action on VC is denoted by

σa · v = σρ(a)(v) (5.17)

for any v ∈ VC .
Let (ρ, VC) be a level n representation of SL2(Z) associated with a modular category

C. The action of the Galois group Gal(Qn/Q) on the normalized modular data (s, t)
satisfies some interesting conditions as follows: for σ ∈ Gal(Qn/Q), there exists a sign
function εσ : Irr(C) → {±1} such that

σ (sX,Y ) = εσ (X)sσ̂ (X),Y = εσ (Y )sX,σ̂ (Y ) (5.18)

for any X,Y ∈ Irr(C)(cf. [15,19]), and

σ 2(tX,X ) = tσ̂ (X),σ̂ (X) (5.19)
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for any X ∈ Irr(C) (cf. [22, Thm. II (iii)]). Moreover, the absolute Galois group
Gal(Q̄/Q) acts on the normalized modular data via the restriction

resQQn
: Gal(Q̄/Q) → Gal(Qn/Q).

The condition of the action of Gal(Q̄/Q) on s defines a Gal(Q̄/Q)-action on VC . Let
gσ ∈ GL(VC) be defined by

(gσ )X,Y := εσ (X) δσ̂ (X),Y .

Then, (5.18) and (5.19) can be rewritten as

σ (s) = gσ s = sg−1
σ , σ 2(t) = gσ tg−1

σ , (5.20)

and the assignment

φρ : Gal(Q̄/Q) → GL(VC), σ #→ gσ , (5.21)

defines a group homomorphism (cf. [15]). Therefore, for any σ ∈ Gal(Q̄/Q), we have

σ 2
ρ(a) = gσ ρ(a)g−1

σ for all a ∈ SL2(Z). (5.22)

In particular, (ρ, VC) ∼= (σ
2
ρ, VC) as representations of SL2(Z).

Now, Gal(Q̄/Q) acts on VC via the representation (φρ, VC) of Gal(Q̄/Q), namely

σ · eX := gσ (eX ) = εσ (X) eσ̂ (X) (5.23)

for any σ ∈ Gal(Q̄/Q) and X ∈ Irr(C). Thus, in view of [22, Thm. II (iii)] or (5.22), for
any a ∈ SL2(Z), v ∈ VC and σ ∈ Gal(Q̄/Q), we have

σ · (a · v) = gσ ρ(a)(v) = gσ ρ(a)g−1
σ gσ (v) = σ 2

a · (σ · v). (5.24)

By [22, Thm. II (iv)], if σ (ζn) = ζ an for some integer a coprime to n, then

gσ = ρ(tastbstas−1), (5.25)

where b is an inverse of a modulo n. Therefore, the Gal(Q̄/Q)-action on VC is uniquely
determined by ρ, and in light of (5.25), every SL2(Z)-submodule of VC also inherits the
action of Gal(Q̄/Q).

5.1. Minimal representations of SL2(Z). To proceed, we set up the following conven-
tions. We will denote by spec(M) the set of the eigenvalues of an linear operator M on a
finite-dimensional complex vector space. For any finite multiplicative abelian group A,

A2 := {a2 | a ∈ A}
is a subgroup of A of order |A|/|12(A)|, where 12(A) is the (largest) elementary 2-
subgroup of A. In particular, for any positive integer m, 12(Gal(Qm/Q)) is simply
denoted by 1m

2 and we define

ϕ2(m) :=
∣∣∣((Z/mZ)×)2

∣∣∣ =
∣∣∣Gal(Qm/Q)2

∣∣∣ .
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It is immediately seen that ϕ2 is a multiplicative function. Moreover, for any prime p,
we have

ϕ2(pm) =






1
2 (p − 1)pm−1 if p is odd;
2m−3 if p = 2 andm ≥ 3;
1 if p = 2 andm = 1, 2.

(5.26)

Suppose (s, t) is a normalized modular data of a modular category C. By (5.19), the
assignment (σ, ζ ) #→ σ 2(ζ ) defines a Gal(Q̄/Q)-action on spec(t), and the Gal(Q̄/Q)-
orbit of tX,X , for any X ∈ Irr(C), is then given by

Gal(Q̄/Q) · tX,X = {σ 2(tX,X ) | σ ∈ Gal(Qm/Q)}

where m = ord(tX,X ). In particular, |Gal(Q̄/Q) · tX,X | = ϕ2(m). We denote by
spec(t)/Gal(Q̄/Q) the set of Gal(Q̄/Q)-orbits of spec(t).

Lemma 5.1. Let (ρ, VC) be a representation of SL2(Z) associated with a modular cate-
gory C. If (ρ|W ,W ) is a subrepresentation of (ρ, VC), then spec(ρ(t)|W ) is closed under
the action of Gal(Q̄/Q) on spec(ρ(t)). In particular,

spec(ρ(t)|W )/Gal(Q̄/Q) ⊆ spec(ρ(t))/Gal(Q̄/Q),

and every direct sum decomposition of the SL2(Z) representation (ρ, VC) determines a
partition of spec(ρ(t))/Gal(Q̄/Q).

Proof. For any ζ ∈ spec(ρ(t)), Bζ = {eX | t·eX = ζeX } is a basis for the corresponding
eigenspace of ρ(t). Let ζ ∈ spec(ρ(t)|W ) andw ∈ W \{0} such that t ·w = ζw. Thenw
is aC-linear combination of Bζ . Thus, for any σ ∈ Gal(Q̄/Q), we have σ 2

t·w = σ 2(ζ )w

and σ−1 · w ∈ W by (5.25). It follows from (5.24) that

t · (σ−1 · w) = σ−1 · (σ 2
t · w) = σ 2(ζ ) σ−1 · w,

and so σ 2(ζ ) ∈ spec(ρ(t)|W ). 12

The minimal possible dimension of an SL2(Z)-submodule of VC of the preceding
proposition inspires the following definition.

Definition 5.2. Alevelm representation (φ,W )ofSL2(Z) is calledminimal if dim(W ) =
ϕ2(m) and

spec(φ(t)) = {σ 2(ζ lm) | σ ∈ Gal(Qm/Q)}

for some l ∈ (Z/mZ)×. In this case, (φ,W ) or the corresponding SL2(Z)-module is
said to be minimal of type l.

Corollary 5.3. Let (ρ, VC) be a representation of SL2(Z) associated with a modular
category C. If (ρ|W ,W ) is a minimal subrepresentation of (ρ, VC), then (ρ|W ,W ) is
irreducible.
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Proof. Since (ρ, VC) is of some level n = ord(t), ker(ρ|W ) is a congruence subgroup of
SL2(Z). Let m be the level of (ρ|W ,W ). Since (ρ|W ,W ) is minimal, dim(W ) = ϕ2(m)
and

spec(ρ(t)|W ) = {σ 2(ζ lm) | σ ∈ Gal(Qm/Q)} for some l ∈ (Z/mZ)×.

In particular, Gal(Q̄/Q) acts transitively on spec(ρ(t)|W ). If (ρ|U ,U ) is a nontrivial
subrepresentation of (ρ|W ,W ) and ζ ∈ spec(ρ(t)|U ), then the Gal(Q̄/Q)-orbit of ζ is
spec(ρ(t)|W ). Therefore,

dim(U ) ≥ |spec(ρ(t)|W )| = ϕ2(m) = dim(W ).

Therefore, U = W and hence (ρ|W ,W ) is irreducible. 12

The following examples are building blocks of all the minimal irreducible represen-
tations of SL2(Z).

Example 5.4. For any odd prime p, there are precisely two inequivalent irreducible
representations of SL2(Z) of level p and dimension ϕ2(p) = (p − 1)/2, denoted by
(η

p
j ,Cϕ2(p)) or simplyη

p
j ( j = ±1),which can be described as follows (see, for example,

[25, Sec. 4]). Let a ∈ (Z/pZ)×, and set j =
(
a
p

)
, the Legendre symbol of a modulo

p. For any integers x, y ∈ [1, (p − 1)/2],

η
p
j (s)x,y =

2i j√
p∗ sin

(
4π axy

p

)
and η

p
j (t)x,y = δx,y exp

(
2π i ax2

p

)
(5.27)

where

√
p∗ =

{ √
p if p ≡ 1 (mod 4),

−i
√
p if p ≡ 3 (mod 4).

The representation type of η
p
j is independent of the choice of a with

(
a
p

)
= j . The

standard basis for Cϕ2(p) is an eigenbasis of η
p
j (t) and the representation η

p
j is uniquely

determined by spec(ηp
j (t)), which is either {σ 2(ζp) | σ ∈ Gal(Qp/Q)} or {σ 2(ζ ap ) |

σ ∈ Gal(Qp/Q)}where a is quadratic nonresidue modulo p. In particular, ηp
±1 are level

p minimal representations of SL2(Z).

Example 5.5. The isomorphismclasses of 1-dimensional representations of SL2(Z) form
a cyclic group of order 12 under tensor product, and they are completely determined
by the images of t. If x is a 12-th root of unity, we denote by χx the 1-dimensional
representation of SL2(Z) such that χx (t) = x . In particular, χ±1

ζ3
= χζ±1

3
= η3±1, and

the level of χx is the order of x . Since ord(x) | 12 and ϕ2(d) = 1 for any positive integer
d | 12, every 1-dimensional representation of SL2(Z) is minimal.

We close this subsection with the following characterization of minimal irreducible
representations of SL2(Z) which extends the preceding examples to a general setting.
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Lemma 5.6. Let (φ, V ) be a level n irreducible representation of SL2(Z). If (φ, V ) is
minimal of type l, then n = d · p1 . . . p/ for some positive integer d | 12 and distinct
primes p1, . . . , p/ ≥ 5. In this case, there exist unique l0 ∈ (Z/dZ)× and li ∈ (Z/piZ)×
such that ζ ln = ζ

l0
d ζ

l1
p1 . . . ζ

l/
p/ and

φ ∼= χx ⊗ η
p1
j1

⊗ · · ·⊗ η
p/

j/
,

where x = ζ
l0
d and ji =

(
li
pi

)
. In particular, φ is uniquely determined by ζ ln up to

equivalence.

Proof. Let p be a prime factor of n, and m a positive integer such that n = pm · n2,
where n2 is a positive integer not divisible by p. Set n1 = pm . By the Chinese Remainder
Theorem, there exist irreducible representations φi : SL2(Z) → GL(Vi ) of level ni such
that

φ ∼= φ1⊗φ2.

Therefore, for any ω ∈ spec(φ(t)),

ω = ω1 · ω2

where ωi ∈ spec(φi (t)). Since (φ, V ) is minimal of type l, ω = σ 2(ζ ln) for some
σ ∈ Gal(Qn/Q), which means it is a primitive n-th root of unity. Thus, ωi is primitive
ni -th root for i = 1, 2. Note that the group µn of n-th roots of unity is an internal direct
product of µn1 and µn2 , the pair (ω1,ω2) is uniquely determined by ω. More precisely,
there exists a unique li ∈ (Z/niZ)× such that l = li n/ni in Z/niZ. Then

ζ ln = ζ l1n1 · ζ l2n2
and

ωi = σ 2
(
ζ lini

)

for i = 1, 2. As σ runs through Gal(Qn/Q), we find

{σ 2
(
ζ lini

) ∣∣ σ ∈ Gal(Qni /Q)}

is a subset of spec(φi (t)). Therefore, dim(Vi ) ≥ ϕ2(ni ) and so

ϕ2(n) = dim(V1) · dim(V2) ≥ ϕ2(n1) · ϕ2(n2) = ϕ2(n).

This implies dim(Vi ) = ϕ2(ni ) and

spec(φi (t)) = {σ 2
(
ζ lini

) ∣∣ σ ∈ Gal(Qni /Q)}.

Thus, both φ1 and φ2 are minimal of type l1 and l2 respectively.
The level pm irreducible representations of SL2(Z) were classified by [45,46] (see

also [26, Tbl. 1–8]). Since φ1 is an irreducible representation of level pm and dimension
ϕ2(pm), whose values are given by (5.26), we find

m =
{
1 if p is odd;
1 or 2 if p = 2.
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In this case, φ1 ∼= η
p
±1 if p > 3 (cf. Remark 5.4) and φ1 is 1-dimensional if p ≤ 3.

Since p can be any prime factor of n, we obtain the factorization n = d · p1 . . . p/ for
some positive integer d | 12 and p1, ..., p/ are distinct primes greater than 3.

If one denotes the preceding irreducible representation φ1 by φ p, then, by induction,
we have

φ ∼= φd ⊗
⊗

prime p>3
p|n

φ p, where φd =
⊗

prime p≤3
p|n

φ p

is 1-dimensional. There exist a unique integer l p (mod p) satisfying l ≡ l pn/p (mod p)
for each odd prime divisor p of n, and a unique l0 ∈ (Z/dZ)× satisfying l ≡ l0n/d
(mod d). Then, we have

ζ ln = ζ
l0
d

∏

prime p>3
p|n

ζ
l p
p and ζ

l0
d = φd(t).

Therefore, φd = χ
ζ
l0
d

and φ p = η
p
jp , where jp =

(
l p
p

)
(cf. Examples 5.4 and 5.5).

Consequently,

φ ∼= χ
ζ
l0
d

⊗
⊗

prime p>3
p|n

η
p
jp .

12

5.2. Characteristic 2-group of modular categories. Let C be a modular category with
the modular data (S, T ). For any normalized modular data (s, t) of C, Q(S) ⊂ QN ⊆
Qn , where N = ord(T ) and n = ord(t) (cf. [22,43]). The restriction of the Galois
automorphisms of Qn to Q(S) defines an epimorphism resQn

Q(S) : Gal(Qn/Q) → GC of
groups. Note that by [22, Prop. 6.7], we have

ker(resQn
Q(S)) = Gal(Qn/Q(S)) ⊆ 1n

2 . (5.28)

Definition 5.7. Let (s, t) be a normalized modular data of a modular category C, and
n = ord(t). The image of the elementary 2-subgroup 1n

2 of Gal(Qn/Q) under the
restriction map resQn

Q(S) : Gal(Qn/Q) → GC is called the characteristic 2-group of C,
and denoted by HC .

In view of (5.28), we have the exact sequence of abelian groups:

1 → Gal(Qn/Q(S))
incl−−→ 1n

2

resQn
Q(S)−−−−→ HC → 1. (5.29)



1292 S.-H. Ng, Y. Wang, Q. Zhang

Proposition 5.8. The characteristic 2-group HC of C is independent of the choice of the
normalized modular data (s, t) of C. Moreover, if n = ord(t), then

GC/HC ∼= Gal(Qn/Q)

1n
2

.

In particular, |GC |/|HC | = ϕ2(n).

Proof. Let (s, t) and (s′, t ′) be normalizedmodular data of C and let (ρ, VC) and (ρ′, VC)
be the corresponding representations of SL2(Z) associated with C respectively. Then
ρ′ ∼= χ⊗ρ for some 1-dimensional character of SL2(Z). Since χ12 = 1, t ′ = xt for
some 12-th root of unity x . Let m = ord(t ′), and l = lcm(m, n). Then Ql = Qm(x) =
Qn(x). By definition, resQl

Qn
(1l

2) ⊆ 1n
2. For any σ ∈ 1n

2, there exists an extension
τ ∈ Gal(Ql/Q) such that τ |Qn = σ . Since x12 = 1, τ 2(x) = x . Thus, τ 2 = id and
hence τ ∈ 1l

2. Therefore,

resQl
Qn

(1l
2) = 1n

2 .

By the same argument, we also have

resQl
Qm

(1l
2) = 1m

2 .

Since the diagram

Gal(Ql/Q)
res

Ql
Qm

!!

res
Ql
Q(S)

$$""
"""

"""
"""

"""
"""

res
Ql
Qn

""

Gal(Qm/Q)

resQm
Q(S)

""

Gal(Qn/Q)
resQn

Q(S)

!! GC

of restriction maps is commutative, we have

resQm
Q(S)(1

m
2 ) = resQl

Q(S)(1
l
2) = resQn

Q(S)(1
n
2).

This proves the first assertion of the statement.
By (5.29), we also have the following commutative diagram of abelian groups with

exact rows:

1 !! Gal(Qn/Q(S)) incl
!!

id
""

1n
2

resQn
Q(S)

!!

incl
""

HC !!

incl
""

1

1 !! Gal(Qn/Q(S)) incl
!! Gal(Qn/Q)

resQn
Q(S)

!! GC !! 1.

Therefore,

GC/HC ∼= Gal(Qn/Q)/Gal(Qn/Q(S))
1n

2/Gal(Qn/Q(S))
∼= Gal(Qn/Q)

1n
2

.

12
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Corollary 5.9. LetC be amodular categorywith themodular data (S, T ). If N = ord(T )
is not a multiple of 4, then

HC = resQN
Q(S)(1

N
2 ).

Proof. Since 4 ! N , by [22, Lem. 2.2], there exists a level N representation (ρ, VC) of
SL2(Z) associated with C. Therefore, ρ(t) = t has order N . Now, the result follows
directly from Definition 5.7 of HC . 12
Example 5.10. Let A be a finite abelian group and q : A → C× a nondegenerate
quadratic form. The pointed modular category C = C(A, q) has the S- and T-matrices
given by

Sa,b = q(a)q(b)
q(ab)

, Ta,b = δa,bq(a)

for any a, b ∈ A.

(i) If |A| is odd, then Q(S) = Q(T ) = QN , where N = ord(T ). Since |A| is odd, and
so is N . Therefore, by Corollary 5.9, HC = 1N

2 is nontrivial.
(ii) If A = 〈a〉 is a cyclic group of order 2 and and q(a) = ±i , then C is called a semion

category. In this case, ord(T ) = 4 and Q(S) = Q. Therefore, HC is trivial.

Let (ρ, VC) be a level n representation of SL2(Z) associated with C, and (s, t) the
corresponding normalized modular data. Since 1n

2
res−→ HC is an epimorphism of ele-

mentary 2-groups, there exists a subgroup H̃C ⊂ 1n
2 such that

resQn
Q(S) : H̃C

∼−→ HC (5.30)

is an isomorphism. Now, recall that the Gal(Q̄/Q)-action on VC via φρ factors through
Gal(Qn/Q) (cf. (5.21)). Therefore, H̃C acts on VC in the same way (cf. (5.23)), namely

σ · eX = gσ (eX ) = εσ (X)eσ̂ (X)

for any σ ∈ H̃C . One can decompose VC as an H̃C-module into its isotypic components

VC =
⊕

χ∈Irr(H̃C)

V χ
C ,

where Irr(H̃C) denotes the set of irreducible characters of H̃C , and V χ
C the isotypic

component of VC corresponding to the irreducible character χ of H̃C .

Proposition 5.11. Let C be a modular category and (ρ, VC) a representation of SL2(Z)
associated with C. Then for any χ ∈ Irr(H̃C), the isotypic component V

χ
C is an SL2(Z)-

submodules of VC , and

VC =
⊕

χ∈Irr(H̃C)

V χ
C (5.31)

is a decomposition of SL2(Z)-modules. Moreover, if there exists a simple object X ∈
Irr(C) such that StabHC (X) = {id}, then all the V χ

C ’s are non-zero and pairwise inequiv-
alent.
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Proof. By (5.24), for any v ∈ V χ
C , σ ∈ H̃C , and a ∈ SL2(Z),

σ · (a · v) = σ 2
a · (σ · v) = χ(σ ) a · v.

Therefore, V χ
C is an SL2(Z)-invariant subspace of (ρ, VC), and the SL2(Z)-module

decomposition (5.31) follows immediately.
Let χ ,χ ′ be distinct irreducible characters of H̃C such that V χ

C 3= 0 and V χ ′
C 3= 0.

Then, there exists σ ∈ H̃C such that χ(σ ) 3= χ ′(σ ). By (5.25), gσ = ρ(a) for some
a ∈ SL2(Z), and the restrictions of ρ(a) on V χ

C and V χ ′
C are the distinct scalars χ(σ ) and

χ ′(σ ) respectively. Therefore, V χ
C and V χ ′

C are inequivalent representations of SL2(Z).
For each χ ∈ Irr(H̃C),

Pχ := 1

|H̃C |
∑

σ∈H̃C

χ(σ )gσ

is an idempotent operator on VC commuting with the action SL2(Z) such that V χ
C =

Pχ (VC). Therefore, V
χ
C = 0 if and only if Pχ = 0. If {gσ | σ ∈ H̃C} is C-linearly

independent, then Pχ 3= 0 and hence V χ
C 3= 0 for all χ ∈ Irr(H̃C).

Let X ∈ Irr(C) be such that StabHC (X) = {id}. Suppose ∑
σ∈H̃C

ασ gσ = 0 for some
ασ ∈ C. Then

∑

σ∈H̃C

ασ gσ (eX ) =
∑

σ∈H̃C

ασ εσ (X)eσ̂ (X) = 0.

Since StabHC (X) = {id}, {eσ̂ (X) | σ̂ ∈ HC} is a set of distinct basis elements of VC and
hence ασ = 0 for all σ ∈ H̃C . Therefore, {gσ | σ ∈ H̃C} is C-linearly independent, and
so V χ

C 3= 0 for all χ ∈ H̃C . This completes the proof of the proposition. 12
Proposition 5.12. Let (ρ, VC) be a level n representation of SL2(Z) associated with a
modular category C. If ρ is irreducible, then HC is trivial, the S-matrix of C is real, and
C is self-dual. Moreover, there exists X ∈ Irr(C) such that ρ(t)X,X is a primitive n-th
root of unity.

Proof. If ρ is an irreducible representation of SL2(Z), the decomposition (5.31) of ρ,
determined by the characteristic 2-subgroup HC , must be trivial. Suppose there exists a
nontrivial element σ̂ in HC . Then σ̂ (X) 3= X for some X ∈ Irr(C) and so the eigenspaces
E± of gσ corresponding to the eigenvalues±1 are nontrivial. Note that both E+ and E−
are stable under the SL2(Z) action, andVC = E+⊕E−. This contradicts the irreducibility
of VC . Therefore, HC is trivial.

Let σ ∈ Gal(Qn/Q) denote the complex conjugation. Then σ̂ (X) = X∗ for X ∈
Irr(C). Since HC is trivial, σ |Q(S) = id and so X∗ = σ̂ (X) = X for X ∈ Irr(C).
Therefore, SC is real and C is self-dual.

Let n = pn11 . . . pn/
/ be the prime factorization of n, where p1, . . . , p/ are distinct

prime factors of n. Since ρ is irreducible, by the Chinese Remainder Theorem, there
exists a level pnii irreducible representation (ρi , Vi ) of SL2(Z) for each i = 1, . . . , /
such that

(ρ, VC) ∼= (ρ1, V1)⊗ · · ·⊗(ρ/, V/).
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Since (ρi , Vi ) is of level p
ni
i , there exists a nonzero eigenvector vi ∈ Vi of ρi (t) with

an eigenvalue ωi which is a primitive pnii -th root of unity. Thus, ρ(t) has an eigenvalue
ζ = ω1 . . .ω/ which is a primitive n-th root of unity. Since {eX | X ∈ Irr(C)} is an
eigenbasis for ρ(t), there exists X ∈ Irr(C) such that ρ(t)X,X = ζ . 12

5.3. The SL2(Z)-modules of transitive modular categories. In this section, we show
that the representations of SL2(Z) associated with any transitive modular category C is
minimal and irreducible, and that the order of TC is odd and square-free.

Let C be a transitive modular category, (ρ, VC) a level n representation of SL2(Z)
associated with C, and (s, t) the corresponding normalized modular data. As before, the
Galois group GC is identified with Irr(C) via the bijection σ̂ #→ σ̂ (1). Then, we have

spec(t) = {tσ̂ ,σ̂ | σ̂ ∈ GC} = {σ 2(ζ ) | σ ∈ Gal(Qn/Q)}, (5.32)

where ζ = t1,1. Here, the last equality is a consequence of (5.19). Therefore, Gal(Q̄/Q)
acts on spec(t) transitively, and so every eigenvalue of t is a primitive n-th root of unity.
In particular,

Q(t) = Qn = Q(ζ ).

Lemma 5.13. The characteristic 2-group HC is given by

HC = {σ̂ ∈ GC | tσ̂ ,σ̂ = t1,1}.

Moreover, for any σ̂ , τ̂ ∈ GC , tσ̂ ,σ̂ = tτ̂ ,τ̂ if and only if σ̂HC = τ̂HC . In particular, each
eigenvalue of t has algebraic multiplicity |HC |.
Proof. Let ζ = t1,1. Since Q(ζ ) = Qn , we have

1n
2 = {σ ∈ Gal(Qn/Q) | σ 2(ζ ) = ζ } = {σ ∈ Gal(Qn/Q) | tσ̂ ,σ̂ = ζ }.

Thus, if σ̂ ∈ HC , then there exists σ ∈ 1n
2 such that σ |Q(S) = σ̂ , which means tσ̂ ,σ̂ = ζ .

Conversely, if σ̂ ∈ GC such that tσ̂ ,σ̂ = ζ , then there exists σ ∈ Gal(Qn/Q) such that
σ |Q(S) = σ̂ . By (5.19), σ 2(ζ ) = tσ̂ ,σ̂ = ζ . Thus, σ ∈ 1n

2, and hence σ̂ ∈ HC . This
proves the first statement.

Let σ̂ , τ̂ ∈ GC , and τ ∈ Gal(Qn/Q) such that τ |Q(S) = τ̂ . If tσ̂ ,σ̂ = tτ̂ ,τ̂ , then
tσ̂ ,σ̂ = τ 2(ζ ) or

ζ = τ−2(tσ̂ ,σ̂ ) = tτ̂−1σ̂ ,τ̂−1σ̂ .

Therefore, τ̂−1σ̂ ∈ HC and so τ̂HC = σ̂HC . Conversely, if τ̂HC = σ̂HC , then σ̂ = τ̂ µ̂
for some µ̂ ∈ HC , and hence

tσ̂ ,σ̂ = tτ̂ µ̂,τ̂ µ̂ = τ 2(tµ̂,µ̂) = τ 2(t1,1) = tτ̂ ,τ̂ .

12
Now, we can prove the major theorem of this section.
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Theorem 5.14. Let C be a nontrivial transitive modular category. Then every represen-
tation of SL2(Z) associated with C is minimal and irreducible. Moreover, the order of
the T-matrix T of C is odd and square-free, and every prime factor of ord(T ) is greater
than 3.

Proof. Let (ρ, VC) be a level n representation of SL2(Z) associated with C, and HC the
characteristic 2-group of C. By Propositions 3.2 and 5.11, with H̃C defined in (5.30), VC
admits an SL2(Z)-module decomposition

VC =
⊕

χ∈Irr(H̃C)

V χ
C

such that V χ
C 3= 0 for all χ ∈ H̃C . We proceed to determine V χ

C for each χ ∈ Irr(H̃C).
Recall that the H̃C-action on VC is given by

σ · eµ̂ = gσ (eµ̂) = εσ (µ̂)eσ̂ µ̂

for any σ ∈ H̃C and µ̂ ∈ GC . For any µ̂ ∈ GC , the subspace Vµ̂ of VC spanned by
{eσ̂ µ̂ | σ̂ ∈ HC} is closed under this H̃C-action, and t acts as the scalar tµ̂,µ̂ on Vµ̂ by
Lemma 5.13. Therefore, Vµ̂ admits an isotypic decomposition

Vµ̂ =
⊕

χ∈Irr(H̃C)

V χ
µ̂
.

Since gid = idVC , the character ψµ̂ of H̃C afforded by Vµ̂ is given by

ψµ̂(σ ) = |HC | · δσ,id for any σ ∈ H̃C .

Therefore, as an H̃C-module, Vµ̂ is equivalent to the regular representation of H̃C . Con-
sequently, dim(V χ

µ̂
) = 1 for each χ ∈ Irr(H̃C).

Let 5 be a complete set of coset representatives of HC in GC . Then,

VC =
⊕

µ̂∈5

Vµ̂

is a decomposition of H̃C-modules. Therefore,

V χ
C =

⊕

µ̂∈5

V χ
µ̂

for each χ ∈ Irr(H̃C), and dim(V χ
C ) = |GC |/|HC | = ϕ2(n) by Proposition 5.8. Let

(ρχ , V χ
C ) denote the corresponding subrepresentation of (ρ, VC). Then

spec(ρχ (t)) = {tσ̂ ,σ̂ | σ̂ ∈ 5} = {σ 2(t1,1) | σ ∈ Gal(Q̄/Q)}

by Lemma 5.13. Therefore, for any χ ∈ Irr(H̃C), the level n representation (ρχ , V χ
C ) of

SL2(Z) is minimal of type l ∈ (Z/nZ)×, where l is determined by ζ ln = t1,1. Hence,
by Corollary 5.3, (ρχ , V χ

C ) is irreducible for each χ ∈ H̃C .
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It follows from Lemma 5.6 that V χ
C

∼= V χ ′
C as SL2(Z)-modules for any χ ,χ ′ ∈

Irr(H̃C). In view of Proposition 5.11, H̃C must be trivial and so does HC . Therefore,
(ρ, VC) is minimal and irreducible, and n = d · p1 . . . p/ where d | 12 and p1, . . . , p/

are distinct primes greater than 3. Moreover,

ρ ∼= χ⊗ρ′

for some 1-dimensional representation χ and a level m = p1 . . . p/ minimal represen-
tation (ρ′, V ′) of SL2(Z). By tensoring ρ with the dual representation χ∗ of χ , we find
(ρ′, V ′) is equivalent to a representation of SL2(Z) associated with C. By [22, Thm II
(i)], we have

ord(T ) | m | 12 ord(T )
which implies ord(T ) = m since gcd(m, 12) = 1. 12

6. Classification of Transitive Modular Categories

In this section, we prove that a nontrivial prime and transitive modular category must
be equivalent to A(0)

p−2,l for some prime p > 3 and l ∈ (Z/2pZ)×. In view of Theorem
3.11, we complete the classification of transitive modular categories in Theorem 6.5.
The minimal irreducibility of the representations of SL2(Z) associated with transitive
modular categories is crucial to the characterization of the prime ones.

We begin with the realization of minimal irreducible representations of SL2(Z) by
transitive modular categories.

Lemma 6.1. Let p > 3 be a prime. Then every level p minimal irreducible representa-
tion of SL2(Z) is equivalent to a representation of SL2(Z) associated with A(0)

p−2,l for
some l ∈ (Z/2pZ)×.

Proof. Recall fromProposition 4.3 thatA(0)
p−2,l is a prime and transitivemodular category

for any prime p > 3 and l ∈ (Z/2pZ)×. Moreover, the order of the T-matrix of A(0)
p−2,l

is p. By [22, Lemma 2.2], there exists a level p representation (ρ,Cϕ2(p)) of SL2(Z)
associated with A(0)

p−2,1, and we set t = ρ(t). Then, by Theorem 5.14, (ρ,Cϕ2(p)) is a
minimal irreducible representation of SL2(Z) of type a where ζ ap = t1,1. Therefore, by
Lemma 5.6,

(ρ,Cϕ2(p)) ∼= (η
p
j ,C

ϕ2(p)), where j =
(
a
p

)
.

For any l ∈ (Z/2pZ)×, define σl ∈ Gal(Qp/Q) by σl(ζp) = ζ lp. Since ρ(a) is
a matrix over Qp for any a ∈ SL2(Z) (cf. [22, Thm. II]), ρl(a) := σl(ρ(a)) defines
another level p representation of SL2(Z), and (ρl ,Cϕ2(p)) is a representation of SL2(Z)
associated with A(0)

p−2,l . Since σl(t1,1) = ζ alp , we have

(ρl ,Cϕ2(p)) ∼= (η
p
jl
,Cϕ2(p)), where jl =

(
al
p

)
.

Therefore, every level p minimal irreducible representation of SL2(Z) is equivalent to a
representation of SL2(Z) associated withA(0)

p−2,l for some l ∈ (Z/2pZ)×, as desired. 12
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Corollary 6.2. Let n = p1 . . . p/ for some distinct primes p1, . . . , p/ > 3. Then every
level n minimal irreducible representation of SL2(Z) is equivalent to a representation
of SL2(Z) associated to a transitive modular category

D = A(0)
p1−2,l1 ! · · · ! A(0)

p/−2,l/

for some la ∈ (Z/2paZ)×, a = 1, . . . , /.

Proof. Let (φ, V ) be a level nminimal irreducible representation of SL2(Z). By Lemma
5.6, there exists level pa minimal irreducible representation (ηpa

ja , Va) of SL2(Z) for each
a = 1, . . . , / such that

(φ, V ) ∼= (η
p1
j1
, V1)⊗ · · ·⊗(η

p/

j/
, V/)

whereVa = Cϕ2(pa). ByLemma6.1, (ηpa
ja , Va) is equivalent to a representation (ρa, VDa )

of SL2(Z) associated with a transitive modular category Da = A(0)
pa−2,la for some

la ∈ (Z/2paZ)×. Let D = D1 ! · · · ! D/. Then D is transitive by Proposition 4.4
and

(ρ, VD) = (ρ1, VD1)⊗ · · ·⊗(ρ/, VD/
)

is a representation of SL2(Z) associated with D. Now, we have

(φ, V ) ∼= (ρ, VD).

12
Theorem 6.3. Let C be a nontrivial prime and transitive modular category. Then the
order of the T-matrix is a prime number greater than 3.

Proof. By Theorem 5.14, ord(TC) = N is odd and has a prime factor p > 3. It fol-
lows from [22, Lem. 2.2] that there exists a level N representation (ρ, VC) of SL2(Z)
associated with C. Again, by Theorem 5.14, (ρ, VC) is minimal and irreducible.

Suppose N is not a prime. Then N = pq for some odd square-free integer q not
divisible by p and all the prime factors of q are greater than 3. In particular, ϕ2(q) > 1. In
view of Lemma 5.6, there exist minimal and irreducible SL2(Z)-representations (φ1, V1)
and (φ2, V2) of levels p and q respectively such that

(ρ, VC) ∼= (φ1, V1) ⊗ (φ2, V2). (6.33)

It follows from Lemma 6.1 and Corollary 6.2 that there exist modular categories B1,B2
such that (φi , Vi ) is equivalent to a representation (ρi , VBi ) associated with Bi and

B1 = A(0)
p−2,l for some l ∈ (Z/2pZ)×.

Note that (ρ1, VB1)⊗(ρ2, VB2) is a representation of SL2(Z) associated with B = B1 !
B2 and

(ρ, VC) ∼= (ρ1, VB1)⊗(ρ2, VB2). (6.34)

Note that the eigenvalues of ρ(t) are all distinct.
Let Ei be the standard basis for VBi . Then, Ei is an eigenbasis of ρi (t) and

EB = {x1⊗x2 | (x1, x2) ∈ E1 × E2}
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is an eigenbasis of ρ1(t)⊗ρ2(t) for VB = VB1⊗VB2 . Since EC = {eX | X ∈ Irr(C)} is
an eigenbasis of ρ(t) = t for VC , the equivalence (6.34) implies there exists a bijection
6 : Irr(C) → E1 × E2, which is defined as follows: for any X ∈ Irr(C), there exists a
unique pair (x1, x2) ∈ E1 × E2 satisfying

(ρ1(t)⊗ρ2(t))(x1⊗x2) = tX,X · x1⊗x2,

and we define 6(X) := (x1, x2).
Let 6(1) = (b1, b2), and D := 6−1(E1 × {b2}) ⊆ Irr(C). Let D be the full

subcategory of C additively generated by the simple objects whose isomorphism classes
are in D, i.e.D is a semisimple subcategory of C with Irr(D) = D. We proceed to show
D is a fusion subcategory of C.

By [10,Lem.3.17], there exists an intertwiningoperatorU : (ρ, VC) → (ρ1⊗ρ2, VB)
such that for any X ∈ Irr(C), U (eX ) = U(x1,x2) x1⊗x2 for some scalar U(x1,x2) = ±1
where 6(X) = (x1, x2). Let s(i) = ρi (s) for i = 1, 2 and s = ρ(s). Then for any
X,Y ∈ Irr(C), we have

sX,Y = s(1)x1,y1s
(2)
x2,y2U(x1,x2)U(y1,y2),

where 6(X) = (x1, x2),6(Y ) = (y1, y2) ∈ E1 × E2. By the Verlinde formula, for any
X, Y ∈ D and Z ∈ Irr(C), we have

N Z
X,Y =

∑

W∈Irr(C)

sX,WsY,WsZ ,W
s1,W

=
∑

(w1,w2)∈B

s(1)x1,w1s
(1)
y1,w1s

(1)
z1,w1

(
s(2)b2,w2

)2
s(2)z2,w2U(x1,b2)U(y1,b2)U(z1,z2)U

3
(w1,w2)

s(1)b1,w1
s(2)b2,w2

U(b1,b2)U(w1,w2)

where 6(X) = (x1, b2), 6(Y ) = (y1, b2), 6(Z) = (z1, z2) and 6(W ) = (w1, w2).
Since U 2

(w1,w2)
= 1, we have

N Z
X,Y = U(x1,b2)U(y1,b2)U(z1,z2)

U(b1,b2)

∑

w1∈B1

s(1)x1,w1s
(1)
y1,w1s

(1)
z1,w1

s(1)b1,w1

∑

w2∈B2
s(2)b2,w2

s(2)z2,w2

= δb2,z2
U(x1,b2)U(y1,b2)U(z1,z2)

U(b1,b2)

∑

w1∈B1

s(1)x1,w1s
(1)
y1,w1s

(1)
z1,w1

s(1)b1,w1

,

where the last equality is based on the fact that s(2) is symmetric and unitary. Therefore,
N Z
X,Y = 0 whenever Z 3∈ D. Thus, D is closed under the tensor product of C and hence

a fusion subcategory.
By Theorem 3.9,D is a modular subcategory of C. Since p > 3, we have | Irr(D)| =

|E1| = ϕ2(p) > 1 so D is nontrivial. Moreover, since C is prime, C = D and so
ϕ2(p) = | Irr(C)|. Therefore, ϕ2(q) = 1, a contradiction! Therefore, N is a prime. 12

Now, we can prove our major theorem of this section.
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Theorem 6.4. Let C be a nontrivial transitive prime modular category. Then C is
equivalent to A(0)

p−2,l for some prime p > 3 and l ∈ (Z/2pZ)× as modular categories.
Moreover, the set

{A(0)
p−2,l | l ∈ (Z/2pZ)×}

is a complete set of inequivalent transitive prime modular categories whose T-matrices
are of order p.

Proof. Suppose C is a nontrivial transitive prime modular category, then by Theorem
6.3, ord(TC) is a prime p > 3. It follows from [22, Lem. 2.2] that there exists a level p
representation (ρ, VC) of SL2(Z) associated with C. Let (s, t) denote the corresponding
normalized modular data (s, t) of C. By Theorem 5.14, (ρ, VC) is minimal and irre-
ducible. In view of Lemma 6.1, there exists a modular category D = A(0)

p−2,l for some
l ∈ (Z/2pZ)× and a level p representation (ρ′, VD) associated with D such that

(ρ, VC) ∼= (ρ′, VD).

Let (s′, t ′) be the normalized modular data of D corresponding to (ρ′, VD). Recall that
Irr(D) = {Vd | d ∈ D} where D = {2 j | 0 ≤ j ≤ (p − 3)/2}. We simply write ea for
the basis element eVa for VD, and the entry ρ′(a)Va ,Vb as ρ′(a)a,b for any a ∈ SL2(Z).
As in the proof of Theorem 6.3, we have a bijection 6 : D → Irr(C) by comparing
the eigenvalues of the images of t: for a ∈ D, we define 6(a) := X ∈ Irr(C) if
ρ(t)X,X = ρ′(t)a,a .

To simplify notations, we denote s6(a),6(b) by sa,b for any a, b ∈ D. By [10,
Lem. 3.17], there exists a diagonal matrixU , indexed by D, of order at most 2 such that

s = Us′U.

Let x = 6−1(1). Then for any a, b, c ∈ D, the Verlinde formula yields the equations

N6(c)
6(a),6(b) =

∑

j∈D

sa, j sb, j sc, j
sx, j

= Ua,aUb,bUc,c

Ux,x

∑

j∈D

s′
a, j s

′
b, j s

′
c, j

s′
x, j

.

SinceD is transitive, there exists σ ∈ Gal(Qp/Q) such that σ̂ (Vx ) = V0 and we simply
write σ̂ (x) = 0. Applying σ to the preceding equation, we find

N6(c)
6(a),6(b) =

Ua,aUb,bUc,c

Ux,x

∑

j∈D

εσ (a)εσ (b)εσ (c)
εσ (x)

s′
σ̂ (a), j s

′
σ̂ (b), j s

′
σ̂ (c), j

s′
0, j

= ±N
Vσ̂ (c)
Vσ̂ (a),Vσ̂ (b)

.

Since the fusion coefficients N6(c)
6(a),6(b) and N

Vσ̂ (c)
Vσ̂ (a),Vσ̂ (b)

are nonnegative, we have

N6(c)
6(a),6(b) = N

Vσ̂ (c)
Vσ̂ (a),Vσ̂ (b)

for all a, b, c ∈ D. Therefore, the assignment

6(a) #→ Vσ̂ (a), for a ∈ D,

defines a Z+-based ring isomorphism between K0(C) and K0(D). By Lemma 4.2, C is
equivalent to A(0)

p−2,l as modular categories for some l ∈ (Z/2pZ)×.
The second statement is an immediate consequence of Lemma 4.2 and Proposition

4.3. 12
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Finally, we establish the complete classification of nontrivial transitive modular cat-
egories.

Theorem 6.5. Let C be a nontrivial modular category. Then C is transitive if and only
if C is equivalent to a Deligne product !/

a=1A
(0)
pa−2,la as modular categories for some

distinct primes p1, . . . , p/ > 3 and la ∈ (Z/2paZ)× .

Proof. If C is transitive, then by Theorem 5.14, ord(TC) = p1 . . . p/ for some distinct
primes p1, . . . , p/ > 3. It follows from Theorem 3.11, C can be uniquely factorized into
a Deligne product of prime transitive modular categories up to the ordering of factors.
Therefore, by Theorem 6.4, C is equivalent to !/

a=1A
(0)
pa−2,la as modular categories for

some la ∈ (Z/2paZ)×.
The converse of the statement follows directly from Proposition 4.4. 12
In view of Theorem 6.5, nontrivial transitive modular categories C up to equivalence

are uniquely parameterized by a pair (n, l) in which n = ord(TC) is a square-free integer
relatively prime to 6 and l is a congruence class in (Z/2nZ)×, which can be determined
by the anomaly α1(C).

7. Transitivity of Super-Modular Categories

In this section, we investigate super-modular categories with transitive Galois actions.
We first recall the definition of super-modular categories and the Galois group actions
on their reduced S-matrices.

The tensor category of Z/2Z-graded finite-dimensional vector spaces over C
equippedwith the super braidingβ is denoted by sVec. This braided fusion category sVec
is symmetric and it can be endowed with two inequivalent spherical structures. The non-
trivial simple object f ∈ sVec is a fermion that means f ⊗ f ∼= 1 and β f, f = − id f ⊗ f .
The two inequivalent spherical structures on sVec are distinguished by d f = ±1. The
corresponding premodular categories are respectively denoted by sVecε with d f = ε.

A premodular category C is called super-modular or a super-modular category over
sVecε if C′ is equivalent to sVecε as premodular categories for some ε = ±1. Let f
be the transparent fermion of C. Then, for any X ∈ Irr(C), we have dX⊗ f = εdX and
θX⊗ f = −εθX by the twist equation (2.3). Hence, f ⊗X 3∼= X . The transparent fermion
f ∈ C may also be denoted by fC if the context needs to be clarified.

The group Irr(C′) = {1, f } ∼= Z/2Z acts on Irr(C) by tensor product. We denote by
X the Z/2Z-orbit {X, f ⊗X} of Irr(C), and set of Z/2Z-orbits by Irr(C). By the above
discussions, this Z/2Z-action is fixed-point free, and so there exists a complete set of
representatives 7C of Irr(C) such that 1 ∈ 7C and 7C is closed under taking duals. We
call such a set 7C of simple objects of C a basic subset of Irr(C), and we simply denote
7C by 7 when there is no ambiguity. In general, Irr(C) = 7 ∪ ( f ⊗ 7) and there is no
canonical choice of 7 unless C is a split super-modular category, i.e., C 4 D ! sVecε

as premodular categories for some modular category D and some ε ∈ {±1}. We call a
super-modular category C non-split if C is not a split super-modular category.

With respect to the decomposition Irr(C) = 7 ∪ ( f ⊗ 7), the S-matrix of C admits
the block form

S =
(

Ŝ d f Ŝ
d f Ŝ Ŝ

)
,



1302 S.-H. Ng, Y. Wang, Q. Zhang

where Ŝ is a symmetric invertible matrix indexed by7, called the reduced S-matrix of C.
The reduced S-matrix Ŝ of C has the unitary normalization ŝ =

√
2√

dim(C) Ŝ which satisfies
a Verlinde-like formula [40]. Since C embeds into Z(C) as a premodular subcategory, S
is defined over QN where N is the Frobenius–Schur exponent of C or the order of the
T-matrix of Z(C) (cf. [43]). The reduced S-matrix of C will be denoted by ŜC when the
clarification is necessary.

It is immediate to see that Q(Ŝ) = Q(S) ⊆ QN . Similar to modular categories,
we define GC := Gal(Q(S)/Q). By [40, Sec. 2.2], for any Galois extension E over
Q containing Q(S) and σ ∈ Gal(E/Q), there exists a unique permutation σ̂ on 7
satisfying

σ

(
ŜX,Y
Ŝ1,Y

)

= ŜX,σ̂ (Y )
Ŝ1,σ̂ (Y )

(7.35)

for any X, Y ∈ 7 (see also [14]). The permutation σ̂ on 7 induces a permutation on
Irr(C), namely σ̂ (X) := σ̂ (X) for X ∈ 7, and we denote this permutation on Irr(C) by
the same notation σ̂ . This gives rise to an action of Gal(E/Q) on Irr(C) by the restriction
to Q(S). In particular, Gal(Q̄/Q) acts on Irr(C). Note that the action of Gal(Q̄/Q) on
Irr(C) is independent of the choices of 7.

Since the group homomorphism ·̂ : GC → Sym(Irr(C)) is injective, we will identify
GC with the imageof ·̂ as formodular categories. In otherwords, for anyσ ∈ Gal(Q̄/Q),
weuse σ̂ to denote both theGalois automorphismonQ(S) and the associatedpermutation
on Irr(C). Again, we denote the set of Gal(Q̄/Q)-orbits of Irr(C) by Orb(C).

Definition 7.1. We call a super-modular category C transitive if the Gal(Q̄/Q)-action
on Irr(C) is transitive.

We first derive some properties of the Galois actions on super-modular categories.
The following lemma is an analog of [11, Prop. 3.6].

Lemma 7.2. Let C be a super-modular category. Then for any σ ∈ Gal(Q̄/Q), dX is a
totally real algebraic unit for X ∈ σ̂ (1).

Proof. Let 7 be a basic subset of Irr(C). By [40, Lem. 2.2], for any σ ∈ Gal(Q̄/Q), we
have

d2σ̂ (1) =
dim(C)

σ (dim(C))
. (7.36)

Since dim(C)
σ (dim(C)) has algebraic norm 1, and dσ̂ (1) is a totally real algebraic integer (see

[28]), dσ̂ (1) is a a totally real algebraic unit. Now the statement follows from the fact
that σ̂ (1) = {σ̂ (1), f ⊗σ̂ (1)} and d2f ⊗σ̂ (1)

= d2
σ̂ (1)

. 12
On split transitive super-modular categories, we begin with the following lemma.

Lemma 7.3. Let D be a modular category. Then the split super-modular category C =
D ! sVecε for any ε = ±1 is transitive if and only if D is transitive.

Proof. We can take 7 = Irr(D). The Gal(Q̄/Q)-action on Irr(C) is equivalent to its
action on 7, which coincides with the Gal(Q̄/Q)-action on the modular category D.
Therefore, the statement follows. 12



Modular Categories with Transitive Galois Actions 1303

Combining Lemma 7.3 and Theorem 6.5, we obtain the full classification of split
transitive super-modular categories.

Theorem 7.4. Let C be a nontrivial split super-modular category. Then C is transitive

if and only if C is equivalent to
(
!/

a=1A
(0)
pa−2,la

)
! sVecε as premodular categories for

some ε ∈ {±1}, distinct primes p1, . . . , p/ > 3 and (l1, . . . , l/) ∈ (Z/2p1Z)× × · · · ×
(Z/2p/Z)×. 12

Transitive super-modular categories have similar properties as transitive modular
categories. For example, the following lemma is parallel to Proposition 3.2.

Lemma 7.5. IfC is a transitive super-modular category, thenwehave |GC | = | Irr(C)|/2.
Proof. Since GC acts transitively on Irr(C), GC is regular and so

|GC | = |Irr(C)| = | Irr(C)|/2.
12

Therefore, for any transitive super-modular category C with a basic subset7 of Irr(C),
we can identify GC with 7 via σ̂ #→ σ̂ (1). Under this identification, we will simply
denote f ⊗ σ̂ by f σ̂ for any σ̂ ∈ GC . Now, we can compare the following theorem to
Lemma 3.3 and Theorem 3.5.

Theorem 7.6. Let C be a transitive super-modular category with a basic subset 7 of
Irr(C). Let Ŝ be the reduced S-matrix of C indexed by GC according to the preceding
identification of GC and 7. Then:

(i) For any σ̂ , µ̂ ∈ GC , we have Ŝσ̂ ,µ̂ = σ̂ (dµ̂)dσ̂ = µ̂(dσ̂ )dµ̂. In particular, all entries
of Ŝ and S are totally real algebraic units.

(ii) For any σ̂ , µ̂ ∈ GC , if σ̂ 3= µ̂, then d2
µ̂

3= d2
µ̂
. In particular, if µ̂ 3= 1, then d2

µ̂
3= 1

and µ̂(dim(C)) 3= dim(C).
(iii) For any X ∈ Irr(C), if d2X ∈ Z, then X ∈ {1, f }. For any fusion subcategoryD ⊂ C,

if f ∈ D, thenD is a super-modular category, otherwise,D is a modular category.
In particular, C has no nontrivial Tannakian subcategory.

(iv) Q(Ŝ) = Q(dim(C)) = Q(dσ̂ | σ̂ ∈ GC).

Proof. The first equality of statement (i) follows from (7.35) by setting X = µ̂, Y = 1,
and the second equality follows from the fact that Ŝ is symmetric. Consequently, by
Lemma 7.2, all entries of Ŝ and S are totally real algebraic units.

Now we have (i) and (7.36), the proof of (ii) and (iv) are the same as that of Theorem
3.5 (i) and (iii) by replacing S by Ŝ.

For statement (iii), assume X ∈ Irr(C) satisfies d2X ∈ Z. By the above discussions,
since C is transitive, there exists σ̂ ∈ GC such that X = σ̂ or X = f σ̂ . In either case,
we have d2X = d2

σ̂
∈ Z. By Lemma 7.2, dσ̂ is a real algebraic unit, so d2X = d2

σ̂
= 1.

Consequently, by (ii), we have σ̂ = 1. Therefore, X = 1 or X = f .
Let D ⊂ C be any fusion subcategory. Then D is a premodular subcategory of C.

Since theMüger centerD′ ofD is a symmetric fusion subcategory of C, we have d2X ∈ Z
for any X ∈ D′. Therefore, we have Irr(D′) ⊂ {1, f } and hence D is super-modular
(resp. modular) if and only if f ∈ D (resp. f 3∈ D). Finally, if D is a Tannakian
subcategory of C, then f /∈ D and so D is modular. Therefore, D braided equivalent to
Vec , and this completes the proof of the theorem. 12
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By definition, a super-modular category over sVecε for some ε = ±1 is a nonde-
generate braided fusion category over sVec according to [18]. Therefore, ifA and B are
super-modular categories over sVecε, then their tensor productA!

sVec
B = (A!B)A is a

nondegenerate braided fusion category over sVec, where A = 1A !1B ⊕ fA ! fB is a
connected étale algebra inA!B. It is immediate to see that dim(A) = 2 and θA = idA
for any ε = ±1. Therefore, A !

sVec
B admits a spherical structure inherited from A ! B

by [35] , which implies that A !
sVec

B is a super-modular category.

Consider the forgetful functor G : A !
sVec

B → A ! B, and the free-module functor

F : A!B → A!
sVec

B defined by F(X!Y ) = (X!Y )⊗A for X ∈ A, Y ∈ B. According
to [35], F is a surjective tensor functor, and G is right adjoint to F . Let dimA(M) denote
the categorical dimension of any object M ∈ A !

sVec
B. We have

dimA(F(X ! Y )) = dimA!B(X ! Y ) = dimA(X) · dimB(Y )

for any X ∈ A and Y ∈ B. Therefore, F : A ! B → A !
sVec

B preserves the spherical
structures (cf. [42]).

Since fA ! fB acts freely on Irr(A ! B), F(X ! Y ) is simple for any X ∈ Irr(A)
and Y ∈ Irr(B). The transparent fermion of A !

sVec
B is given by

F( fA ! 1B) ∼= fA ! 1B ⊕ 1A ! fB ∼= F(1A ! fB) (7.37)

and

dimA(F( fA ! 1B)) = dimA( fA) = ε.

Therefore,A!
sVec

B is a super-modular category over sVecε. This proves the first statement

of the following lemma.

Lemma 7.7. Let A and B be super-modular categories over sVecε for some ε ∈ {±1}.
Then:

(i) C := A !
sVec

B is a super-modular category over sVecε,

Irr(C) = {F(X ! Y ) | (X,Y ) ∈ Irr(A) × Irr(B)},
and

dimA(F(X ! Y )) = dXdY

for any X ∈ A and Y ∈ B.
(ii) Let 7A and 7B be basic subsets of Irr(A) and Irr(B) respectively. Then

7C = {F(X ! Y ) | (X,Y ) ∈ 7A × 7B}
is a basic subset of Irr(C). Moreover, the corresponding reduced S-matrix ŜC of C is
given by the Kronecker product ŜC = ŜA⊗ŜB.

Proof. We continue the preceding discussions to prove (ii). For any X ∈ Irr(A) and
Y ∈ Irr(B), we have

GF(X ! Y ) ∼= X ! Y ⊕ (X⊗ fA) ! (Y⊗ fB).
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Therefore, for any (X,Y ) 3= (X ′,Y ′) ∈ Irr(A) × Irr(B),

F(X ! Y ) ∼= F(X ′ ! Y ′) if and only if X ′ ! Y ′ ∼= (X⊗ fA) ! (Y⊗ fB).

For any (X, Y ), (X ′, Y ′) ∈ 7A ×7B, X ′ !Y ′ 3∼= (X⊗ fA)! (Y⊗ fB) by the definition
of a basic subset. Since F is a tensor functor, 1C ∈ 7C and 7C is closed under taking
dual. It follows from (7.37) that

Irr(C) = 7C ∪ ( fC⊗7C)

where fC = F(1A ! fB). Therefore, 7C is a basic subset of Irr(C).
By [35, Thm. 4.1], for any (X,Y ), (X ′,Y ′) ∈ 7A × 7B,

dim(A)(SC)X!Y ,X ′!Y ′ = (SA!B)X!Y,X ′!Y ′ + (SA!B)X!Y,( fA⊗X ′)!( fB⊗Y ′)

= 2(SA)X,X ′(SB)X ′,Y ′

where X ! Y = F(X ! Y ). Since dim(A) = 2, we have

(SC)X!Y ,X ′!Y ′ = (SA)X,X ′(SB)X ′,Y ′ ,

which is equivalent to ŜC = ŜA ⊗ ŜB. 12
Recall the definition of the fiber product in Section 2.3.

Corollary 7.8. LetA, B be super-modular categories over sVecε for some ε = ±1 with
basic subsets 7A and 7B of simple objects of A and B respectively. Let C := A !

sVec
B

and F = Q(SA) ∩ Q(SB). Then:

(i) The map g : GC → GA •GB, g(σ̂C) = (σ̂A, σ̂B), defines an isomorphism of groups,
and

|GC | =
|GA| · |GB|
[F : Q] .

(ii) For any σ ∈ Gal(Q̄/Q), X ∈ 7A and Y ∈ 7B, we have

σ̂C(F(X ! Y )) = F(σ̂A(X) ! σ̂B(Y )).

(iii) |Orb(A)| · |Orb(B)| ≤ |Orb(C)| ≤ |Orb(A)| · |Orb(B)| · [F : Q].
(iv) If A and B are transitive, then

|Orb(C)| = |GA| · |GB|
|GC |

= [Q(dim(A)) ∩ Q(dim(B)) : Q].

Proof. In view of Lemma 7.7, by replacing Irr(A), Irr(B), Irr(C) respectively with
7A,7B, and the associated 7C , the statements (i)-(iii) can be proved in the same
way as Lemma 2.1, and the proof of (iv) is similar to that of Proposition 3.12. 12
Proposition 7.9. Let C be a super-modular category over sVecε for some ε = ±1. If A
is a super-modular subcategory of C, then bothA and its Müger centralizer B = CC(A)
are super-modular categories over sVecε, and there is an equivalence of premodular
categories over sVec,

C 4 A !
sVec

B. (7.38)
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Proof. It is clear that A is a super-modular over sVecε. Note that C′ is a premodular
subcategory of B, which is a nondegenerate braided fusion category over sVec by [18,
Prop. 4.3]. Therefore, by Lemma 7.7, B and A !

sVec
B are super-modular categories over

sVecε.
By [18, Prop. 4.3], there exists a braided tensor equivalence A !

sVec
B 4 C over sVec.

In fact, the tensor product functor ⊗ : A ! B → C, X ! Y #→ X⊗Y , for any X ∈ A
and Y ∈ B, defines an essentially surjective braided tensor functor. This braided tensor
functor descends to a braided tensor equivalence ⊗ : A !

sVec
B ∼−→ C over sVec, which

satisfies the commutative diagram

A ! B C

A !
sVec

B

⊗

F ⊗ . (7.39)

By Lemma 7.7, any simple object in A !
sVec

B is isomorphic to F(X ! Y ) for some

(X,Y ) ∈ Irr(A) × Irr(B) and

dimA(F(X ! Y )) = dXdY = dX⊗Y = d⊗(F(X!Y )).

Therefore, ⊗ preserves spherical structures, and hence is an equivalence of premodular
categories. 12
Corollary 7.10. Let C be a transitive super-modular category. Then any fusion subcat-
egory of C is transitive modular or super-modular.

Proof. By Theorem 7.6 (iii), any fusion subcategory A ⊂ C is either modular or super-
modular. Assume first thatA is super-modular. In view of Proposition 7.9 and Corollary
7.8, the proof of transitivity of A is the same as that of Theorem 3.11 with the sets
Irr(A), Irr(B) and Irr(C) of irreducible objects replaced by basic sets of simple objects
7A, 7B and the corresponding 7C . Now, we assumeA is modular. ThenD := A∨ C′,
the fusion subcategory of C generated by A and C′, is a super-modular subcategory of
C. By the above discussions, D is transitive. Therefore, by Lemma 7.3, A is transitive.

12
Corollary 7.11. Let A, B be super-modular over sVecε for some ε = ±1. Then A !

sVec
B

is transitive if and only if the following two conditions hold: both A, B are transitive,
and Q(dim(A)) ∩ Q(dim(B)) = Q.

Proof. Let C = A!
sVec

B be transitive. Then bothA and B are transitive by Corollary 7.10.

Therefore, by Corollary 7.8 (iv), we have

|Orb(C)| = [Q(dim(A)) ∩ Q(dim(B)) : Q] = 1,

and so Q(dim(A)) ∩ Q(dim(B)) = Q.
Conversely, it follows immediately from Corollary 7.8 (iv) that if A and B are tran-

sitive, and Q(dim(A)) ∩ Q(dim(B)) = Q, then C is transitive. 12
The following definition generalizes the primality of modular categories.
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Definition 7.12. Let E be a symmetric fusion category, and C a nondegenerate braided
fusion category C over E . We say that C is E-prime if it has no nondegenerate braided
fusion subcategory over E except E and C. An E-prime braided fusion category is called
E-simple if it is not pointed. For E = sVec, we simply use the terms s-prime and s-simple
instead of sVec-prime and sVec-simple.

Note the definition of E-simple categories is consistent with the definition of s-simple
categories introduced in [18].Wewill call a super-modular category trivial if it is braided
equivalent to sVec. In particular, sVec±1 are trivial. In viewofTheorem7.6 (iii), nontrivial
s-prime transitive super-modular categories are s-simple. Now we can state and prove
the prime decomposition theorem for transitive super-modular categories (cf. Theorem
3.11).

Theorem 7.13. Let C be a nontrivial transitive super-modular category over sVecε for
some ε = ±1. Then

C 4 C1 !
sVec

· · · !
sVec

Cm, (7.40)

as premodular categories, where C1, . . . , Cm form the complete list of inequivalent s-
simple subcategories of C. Moreover, such factorization into s-simple super-modular
categories over sVecε of C is unique up to permutation of factors.

Proof. By Theorem 7.6 (iii), C has no Tannakian subcategory other than Vec and Cpt =
C′ 4 sVecε. According to [18, Thm. 4.13] (i) and Proposition 7.9

C 4 C1 !
sVec

· · · !
sVec

Cm

as premodular categories for some s-simple subcategories C1, . . . , Cm of C. It follows
from Corollary 7.11 that C1, ..., Cm are transitive and

Q(dim(Ci )) ∩ Q(dim(C)/ dim(Ci )) = Q

for any i = 1, . . . ,m. In particular, these s-simple super-modular subcategories of C
have distinct global dimensions. According to [18, Thm. 4.13] (ii), C1, . . . , Cm are all
the s-simple super-modular subcategories of C. Thus, if

C 4 D1 !
sVec

· · · !
sVec

Dn

as premodular categories for some s-simple super-modular categories D1, . . . ,Dn over
sVecε, then they are equivalent to a complete list of inequivalent s-simple super-modular
subcategories of C. Therefore, m = n and the statement follows. 12

Now, we demonstrate a family of transitive non-split super-modular categories de-
rived from quantum group modular categories.

According to [7], for any k ≥ 0 and l ∈ (Z/8(k + 1)Z)×, the category C = A(0)
4k+2,l

(see Section 4) is super-modular with Irr(C) = {V2 j | 0 ≤ j ≤ 2k + 1}. The fermion of
C is V4k+2. By the fusion rules (4.12), we have V2 j ⊗V4k+2 = V4k+2−2 j . In the following
discussions, we choose

70 = {V2 j | 0 ≤ j ≤ k}.

When k = 0, C is braided equivalent to sVec, and when k ≥ 1, C is non-split.
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Proposition 7.14. For any k ≥ 1, the super-modular category A(0)
4k+2,l is s-simple.

Proof. First, we show that any nontrivial fusion subcategory of C is either C or C′.
Recall that Cpt = C′ and Irr(C′) = {1, V4k+2}. Assume that D is a nontrivial fusion

subcategory of C and D is not pointed. Then D has a simple object X which is not
invertible, and so X ∼= V2 j for some 1 ≤ j ≤ 2k. In particular, we have 4 j ≥ 4, and
2(4k + 2) − 4 j ≥ 4. So by the fusion rules, N 2

2 j,2 j = 1, which means D contains V2.
Since V2 tensor generates C, we have D = C. Therefore, C is s-prime. Since k ≥ 1,
C 3= sVec, so it is s-simple. 12

Proposition 7.15. Let C = A(0)
4k+2,l for some integer k ≥ 1 and l ∈ (Z/8(k + 1)Z)×.

Then C is transitive if and only if k = 2x − 1 for x ≥ 1.

Proof. Recall that the quantum parameter of C is ql = exp( lπ i
4(k+1) ), and Q(S) is a real

subfield of Q8(k+1), so |GC | divides ϕ(8(k + 1))/2, where ϕ is the Euler phi function.
Assume C is transitive. Then |70| = k + 1 must divide ϕ(8(k + 1))/2.

We first observe that k must be odd. Suppose k is even. Then k + 1 ≥ 3 is an odd
integer, and so ϕ(8(k + 1))/2 = 2ϕ(k + 1). Therefore, k + 1 | ϕ(8(k + 1))/2 implies
k + 1 | ϕ(k + 1). This divisibility does not hold for any k > 0. Therefore, k must be odd.

Let k +1 = 2xw, where x ≥ 1 and w is odd. Then ϕ(8(k +1))/2 = 2x+1ϕ(w). Since
k + 1 divides ϕ(8(k + 1))/2, we have w | 2ϕ(w) and hence w | ϕ(w). This can only
happen when w = 1, or equivalently, k = 2x − 1.

Conversely, assume k = 2x − 1 for x ≥ 1 and C = A(0)
4k+2,l . With respect to our

choice of 70, for any 0 ≤ a, b ≤ k, we have

Ŝ2a,2b = [(2a + 1)(2b + 1)]ql .
Following the same argument as in the proof of Proposition 4.3, one can show that C is
transitive. More precisely, since Q(S) ⊂ Q8(k+1) = Q2x+3 , for any 0 ≤ j ≤ k, we have
gcd(2 j + 1, 2x+3) = 1. So there exists σ ∈ Q2x+3 such that σ (q) = q2 j+1. Therefore,

σ

(
Ŝ2i,0
Ŝ0,0

)

= σ ([2i + 1]ql ) =
[(2i + 1)(2 j + 1)]ql

[2 j + 1]ql
= Ŝ2i,2 j

Ŝ0,2 j
.

In other words, σ̂ (V0) = V2 j , and hence C is transitive. 12
In light of Theorem 6.5, it is natural to ask whether there are other non-split transitive

super-modular categories that are s-simple, and we propose the following question at
the end this paper.

Conjecture 7.16. The quantum group categories in Proposition 7.15 are all the s-simple
non-split transitive super-modular categories up to Galois conjugates and spherical
structures.
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