Commun. Math. Phys. 390, 1271-1310 (2022) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04287-5 Mathematical

Physics
q

Check for
updates

Modular Categories with Transitive Galois Actions

Siu-Hung Ng', Yilong Wang?®, Qing Zhang®

1 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA.
E-mail: rng@math.lsu.edu

2 Beijing Institute of Mathematical Sciences and Applications (BIMSA), Huairou, Beijing, China.
E-mail: wyl@bimsa.cn

3 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA.
E-mail: zhan4169 @purdue.edu

Received: 3 May 2021 / Accepted: 23 November 2021
Published online: 21 January 2022 — © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2022

Abstract: In this paper, we study modular categories whose Galois group action on
their simple objects are transitive. We show that such modular categories admit unique
factorization into prime transitive factors. The representations of SL;(Z) associated
with transitive modular categories are proven to be minimal and irreducible. Using
the Verlinde formula, we characterize prime transitive modular categories as the Galois
conjugates of the adjoint subcategory of the quantum group modular category C(sly, p —
2) for some prime p > 3. As a consequence, we completely classify transitive modular
categories. Transitivity of super-modular categories can be similarly defined. A unique
factorization of any transitive super-modular category into s-simple transitive factors is
obtained, and the split transitive super-modular categories are completely classified.

1. Introduction

Modular categories are spherical braided fusion categories over C whose braidings are
nondegenerate. The notion of modular category has evolved from the studies of rational
conformal field theory [36], topological quantum field theory [52] and the quantum
invariants of knots and 3-manifolds such as the Jones polynomial [33,47]. Moreover,
unitary modular categories are the mathematical foundations of topological phases of
matter [56] and topological quantum computing [50,55]. Similar to the role of groups
in the study of symmetries, modular categories are natural algebraic objects to organize
“quantum symmetries”.

An important family of examples of modular categories is obtained from the quantum
group construction [3,49]. In general, for any simple Lie algebra g and a suitable root
of unity g € C, one can construct a modular category by taking the semisimplification
of the category of tilting modules of the quantum group U, (g) specialized at the root
of unity g [1,2]. The associated 3-manifold invariants [4,51] and mapping class group
representations [5,29] are also well-studied in the literature.
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Modular categories have many striking arithmetic properties, such as the Verlinde
formula, which are encoded in the matrices S and 7 (see Section 2). More precisely,

let s := ((1) _01) and t := <(1) i) be the generators of the modular group SL»(Z). For

any modular category C, the assignment p- : s — S, t — T defines a projective
representation of SLy(Z) [3,52]. Another notable arithmetic property of C is the fact
that the kernel of p¢ is a congruence subgroup whose level is equal to the order of the T-
matrix [43]. Moreover, pc admits liftings to linear representations of SL;(Z) which are
also shown to have congruence kernels in [22]. In addition, these liftings enjoy certain
symmetries under the action of the absolute Galois group Gal(Q/Q). These properties
of the liftings are essential to our proofs in this paper.

Since the irreducible characters of the fusion ring of a modular category C can be
indexed by the set Irr(C) of isomorphism classes of simple objects of C [15,19], the
action of Gal(QQ/Q) on these characters induces a permutation action on Irr(C). The
number of Galois orbits is also an invariant of modular categories.

Classification problems are always important in any mathematical theory. There have
been efforts on classifying modular categories by rank [9,10,48], Frobenius—Perron
dimension [8,12] and Frobenius—Schur exponent [13,54]. Note that there are finitely
many modular categories up to equivalence for any given rank [11]. The number of
Galois orbits plays prominent roles in most of these papers (see also [16,32]), which
leads to the idea of classifying modular categories by the number of Galois orbits.

In this paper, we investigate modular categories with only one Galois orbit, which
are called transitive modular categories. The smallest nontrivial example of a transitive
modular category is the Fibonacci modular category, which can be described as the
adjoint subcategory C(slp, 3)©) of the quantum group category C(sly, 3) associated to
sl at level 3. More generally, the adjoint subcategory C(sl, p — 2)@ of C(sly, p — 2)
and its Galois conjugates are prime and transitive modular categories for any prime
p > 3 (see Proposition 4.3). Remarkably, up to equivalence, these are all the nontrivial
prime transitive modular categories. Moreover, every transitive modular category can
be uniquely factorized (up to permutation of factors) into a Deligne product of prime
transitive ones. Specifically, we prove the following two major theorems of this paper
(cf. Theorem 6.4 and Theorem 6.5).

Theorem 1. Let C be a nontrivial modular category. Then C is prime and transitive if
and only if ord(T) is a prime number p > 3 and C is equivalent to a Galois conjugate
of C(sl, p — 2)© as modular categories.

Theorem I1. Let C be a nontrivial modular category. Then C is transitive if and only
if C is equivalent to a Deligne product of prime transitive modular categories whose
T-matrices have distinct orders. In particular, ord(T) is a square-free odd integer whose
prime factors are greater than 3.

To prove these theorems, we first study factorizations of transitive modular categories
in Section 3. For any modular category C, we denote by Q(S) the (Q-extension by
adjoining all the entries of the S-matrix, and denote by G¢ the corresponding Galois
group over Q. Our first observation is that the action of G¢ on Irr(C) is fixed-point free
(Proposition 3.2), and so Irr(C) is a G¢-torsor. Moreover, every fusion subcategory of a
transitive modular category is also transitive and modular (Corollary 3.9). We conclude
that any transitive modular category has a unique factorization into a Deligne product of
prime transitive modular categories in Theorem 3.11. In Section 4, we study the Galois
conjugates of modular categories C(slz, k)© at odd level k. We show that for any prime
p > 5, every Galois conjugate of C(sly, p — 2)© is prime and transitive.
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Inspired by the Galois symmetries of the representations of SL;(Z) associated with
modular categories, we define the notion of minimal representations of SL,(Z) and the
characteristic 2-group of a modular category in Section 5. The minimal representations
of SL,(Z) associated with a modular category C are completely determined by the
eigenvalues of the images of t (Lemma 5.6). Moreover, the characteristic 2-group of C
naturally gives rise to a decomposition of any representation of SL,(Z) associated with
C (see Proposition 5.11). By studying these two notions, we prove in Theorem 5.14 that
any representation of SL,(Z) associated with a transitive modular category C is minimal
and irreducible, and that the order of the T-matrix of C is odd and square-free.

We completely classify transitive modular categories in Section 6 by characterizing
the prime and transitive modular categories. Using the minimality and the irreducibility
of the representations of SL,(Z) associated with transitive modular categories, we show
that the order of the T-matrix of any prime transitive modular category C is aprime p > 5,
and it has the same fusion rules as C(sl, p — 2)®. Applying the classification result of
[30], we show that C must be a Galois conjugate of C(slp, p — 2) ©) (see Theorem 6.4).
Combining with the unique factorization theorem, the full classification of transitive
modular categories is established in Theorem 6.5.

Finally, we discuss transitive super-modular categories in Section 7. We classify
all the transitive split super-modular categories by using the classification of transitive
modular categories (Theorem 7.4). Moreover, a unique factorization of transitive super-
modular categories into s-simple transitive factors is obtained in Theorem 7.13. Then
we exhibit a family of non-split transitive prime categories over sVec and conjecture that
these are all the s-simple transitive super-modular categories up to Galois conjugate.

The paper is organized as follows. In Section 2, we set up notations and give a brief
review on modular categories. In Section 3, we define transitive modular categories and
derive some fundamental properties of them. In particular, we establish the prime fac-
torization theorem in Theorem 3.11. In Section 4, we discuss the prime and transitive
modular categories obtained from the quantum group categories C(sly, p — 2) for any
odd prime p. In Section 5, we study the modular group representations associated with
modular categories. We show in Theorem 5.14 that the representations associated with
transitive modular categories are irreducible and minimal. In Section 6, we character-
ize the prime transitive modular categories in Theorem 6.4, which implies the complete
classification of transitive modular categories in Theorem 6.5. Finally, in Section 7, tran-
sitive super-modular categories are introduced and studied. We classify split transitive
super-modular categories in Theorem 7.4 and prove a unique factorization theorem of
transitive super-modular categories in Theorem 7.13.

Throughout this paper, we tacitly use the following notations: ¢, = exp(2wi/n),
Q. = Q(&,), and i = ¢4 = +/—1. A subcategory of any category is assumed to a full
subcategory, unless stated otherwise.

2. Preliminaries

In this section, we recall some basic definitions and notations. The readers are referred
to [3,27,34] for more details.

2.1. Braided fusion categories. A fusion category is a semisimple, C-linear abelian,
rigid monoidal category with finite-dimensional Hom-spaces and finitely many isomor-
phism classes of simple objects including the tensor unit 1. For any fusion category C,
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we denote by Irr(C) the set of isomorphism classes of simple objects of C. When it is
clear from the context, we will denote the isomorphism class of an object X of C by the
same notation X.

The Grothendieck group of C, denoted by K¢(C), admits a ring structure given by
the tensor product. More precisely, wehave X ® Y = ) ", clrr(C) NZ x.yZforany X, Y €
Irr(C), where

Ny :=dimcC(X ®Y, Z) 2.1)

are called the fusion coefficients. The collection of fusion coefficients N }% y for all
X,Y,Z € Irr(C) is referred to as the fuszon rules of C. The fusion matrix Nx of
X € Irr(C) is defined as (Nx)zy = Nx y forany Y, Z € Irr(C). The largest real
eigenvalue of Ny, denoted by FPdim(X), is called the Frobenius—Perron dimension of
X. The Frobenius—Perron dimension of C is defined as

FPdim(C) := Z FPdim(X)?.
Xelrr(C)

Let C be a fusion category. For any object X € C, the left dual of X is a triple
(X*, evyx, coevy), where X* is an object of C, evy : X* ® X — 1 and coevy : 1 —
X ® X* are respectively the evaluation and coevaluation morphisms associated with the
left dual object X™* of X. A simple object X € Irr(C) is called invertible it X @ X* = 1.
The pointed subcategory of C, denoted by Cyy, is the full abelian subcategory generated
by the invertible objects of C. A fusion category C is called pointed if Cpy = C. The adjoint
subcategory of C, denoted by Caq or C?, is the full abelian subcategory generated by
the subobjects of X®X* for any X € C (cf. [28,31]). Both Cp and Cyq are fusion
subcategories of C.

The left duality of C can be extended to a contravariant monoidal functor (—)*, and so
(—)** defines a monoidal functor on C. A pivotal structure on a fusion category C is an

isomorphism of monoidal functors j : id¢ 3 (—)**. A fusion category equipped with
a pivotal structure is called a pivotal fusion category. If C is a pivotal fusion category,
then for any X € C and f € End¢(X), the (left) quantum trace of f can be defined as

trj(f) :=evyro((jx o f) ®idx+) o coevy € Endc(1) =C

A pivotal structure j on C is called spherical if trj(f) = tr;(f*) for any endomorphism
f of C. A spherical fusion category is a fusion category equipped with a spherical pivotal
structure. When the pivotal structure is clear from the context, we will drop the subscript
Jj. In a pivotal category C, the quantum dimension dx of any object X € C is defined to
be dx := tr(idy). It has been shown in [28] that if C is a spherical fusion category, then
dyx 1is a totally real algebraic integer for any object X € C.

The global dimension of any fusion category was introduced in [37, Def. 2.5]. If C
is a spherical fusion category, its global dimension is given by

dim(@C) = ) dy.

Xelrr(C)

In particular, dim(C) is a totally positive algebraic integer. We will denote the positive

square root of dim(C) by /dim(C).
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A braiding on a fusion category C is a natural isomorphism

Bxy X®Y S Y®X

satisfying the Hexagon axioms. A fusion category equipped with a braiding is called a
braided fusion category. Let C be a braided fusion category, and D C C a collection of
objects of C. The Miiger centralizer of D in C (cf. [38]), denoted by C¢ (D), is the full
subcategory of C with the collection of objects given by

{X €C|ByrxoPBxy=1idxgy, VY € D}.

It follows directly from the definition of a braiding that C¢ (D) is a fusion subcategory
of C. In particular, the fusion subcategory C¢(C) is called the Miiger center of C, and is
denoted by C’. A braided fusion category C (or its braiding B) is called nondegenerate
if C' is equivalent to Vec, the category of finite-dimensional vector spaces over C. A
braided fusion category is called a symmetric fusion category if C' = C. By Deligne’s
theorems [20,21], if C is a symmetric fusion category, then dim(C) € Z.

2.2. Modular categories and arithmetic invariants. A premodular category (or aribbon
fusion category) is a spherical braided fusion category. A modular category C is a
premodular category whose underlying braiding  is nondegenerate. The (unnormalized)
S-matrix of a premodular category C is defined to be

Sxy :=tr(By,x o Bx+y), X,Y € Irr(C).

In particular, Sx 1 = S1.x = dx. It has been proved in [38] that a premodular category
is modular if and only if its S-matrix is invertible. Moreover, when C is modular, the
fusion coefficients can be expressed in terms of the S-matrix by the Verlinde formula
(see, for example, [3]):

1 Sx,wSy,wSz+
z Z X, WOY,WOZ* W

N = —
B dim(C) Welr(C) S1.w

(2.2)

Let C be amodular category. A natural isomorphism 6 : id¢ — id¢, called the ribbon
structure of C, can be defined using the spherical pivotal structure of C and the Drinfeld
isomorphism (cf. [41, Sec. 2]). The ribbon structure is compatible with the braiding and
the duality in the following sense:

Oxgy = (Ox ® Oy) o By.x o Bx.y and Ox = (6x)" (2.3)

for any objects X, Y € C.If X € Irr(C), then Oy is a nonzero scalar multiple of idx. We
will use the abuse notation to denote both this scalar and the isomorphism itself by 0x
whenever X is simple. The T-matrix of C is defined to be the diagonal matrix

TX,Y = 5X,Y9Xa X, Y e II‘I‘(C).

It follows from [53] (see also [3, Thm. 3.1.19]) that Ox has finite order forany X € Irr(C),
and so does the T-matrix. The pair of matrices (S, T') is called the (unnormalized) modular
data of C. We may denote the modular data of a modular category C by (S¢, T¢) when
the context needs to be clarified.
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For any m € Z, the m-th Gauss sum [44] of a modular category C is defined as
t(C) = Y dy0%.
Xelrr(C)

If gcd(m, ord(T)) = 1, the m-th (multiplicative) central charge and the m-th anomaly
of C are defined as

o (C)
[T (O)]

It is well-known that |71 (C)| = +/dim(C), and &, (C) is a root of unity (cf. [3,38,44]).

En(C) = and a,(C) := &, (C)°. (2.4)

2.3. Galois actions on modular categories. Let C be a modular category with modular
data (S, T'). For any complex matrix M, we denote by Q(M) the field extension of QQ by
adjoining the entries of M. It has been proved in [43] that Q(S) C Q(T) = Qp, where
N = ord(T). In particular, Q(S) is an abelian extension over (Q, and its Galois group is
denoted by G¢. It is immediate to see that

Q(S) =Q(Sx,y/dy | X, Y € Irr(C)).
By the Verlinde formula, for any Y € Irr(C), the assignment

S
xy : Irr(C) - C, X — %

Y

defines a character of the fusion ring Ko(C), and {xy | Y € Irr(C)} is the set of irre-
ducible characters of Ko(C) (cf. [3]). Thus, for any o € G¢, o(xy) = Xxs(y) for some
permutation ¢ on Irr(C), and the map

Ge — Sym(Irr(C)), 0 +— &

is a group monomorphism. The set of orbits under this G¢-action is abbreviated as
Orb(C). We will denote a Galois automorphism o € G¢ as well as its associated per-
mutation on Irr(C) by &.

For any Galois extension E over Q containing Q(S), the Galois group Gal(E /Q) acts

on Irr(C) via the restriction on Q(S) or the surjection Gal(E/Q) = Gc. Therefore, the
Gal(E /Q)-orbits in Irr(C) are identical to the G¢-orbits. Using the above convention,
for any o € Gal(E/Q), we use 6¢ to represent the restriction of o on Q(S) and also its
permutation on Irr(C). When it is clear from the context, 6¢ will simply be denoted by
6. In particular, one can take E = QQ and so the absolute Galois group Gal(Q/Q) acts
on Irr(C). According to [19], for any o € Gal(Q/Q), X, Y € Irr(C), we have

Sx.,y L Ssxoy
“(m) = /Am0 ()

If C = AX B for some modular categories .4 and B, then Irr(C) = Irr(A) x Irr(B)
under the identification X X Y +— (X, Y). In this case, S¢ = S4 ® S5, the Kronecker
product of the S-matrices. Therefore, Q(S¢) = Q(S4)Q(SR), the composite field of
Q(S4) and Q(SR). Let F = Q(S4) N Q(SpB), and L = Gal(F/Q). The restrictions on
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[F define two epimorphisms res 4 : G4 — L and resg : Gg — L. Their fiber product
G 4 o G, defined as

GpoeGp:={(6,7) € Gy x Gp|resq(6) =resp(T)},

satisfies the commutative diagram

GaeGp 225Gy

PB J/ lreSA

G resp M

where p 4, pi are coordinate projections. By the universal property of the fiber product,
the restriction epimorphisms w4 : G¢ — G4 and ng : G¢ — Gp induce a group
homomorphism

f:Gec—> GaeGp, f(oc)=(54,08B) (2.6)

for any 6¢ € Gg. It follows from [24, Prop. 14.4.21] that f is an isomorphism. This
proves the first part of statement (i) of the following lemma. The second part follows
directly from [24, Cor. 14.4.20].

Lemma 2.1. Let C = A X B for some modular categories A, B, and let
F =Q(S4) NQ(SR).
Then:

(i) The map f : Gc — G4 e Gp, f(6¢c) = (64,0R), defines an isomorphism of
groups, and

G 4l - 1G]
Gol|l = ——.
Gel="Fr g

(ii) For any o € Gal(Q/Q), X € Irr(A) and Y € Irr(B), we have

2.7)

60(XRY) = 64(X) K 65(Y).

(iii) For any Oy € Orb(A) and Op € Orb(B), G¢ acts on O 4 x Op, under the
identification of Irr (C) = Irr(A) x Irr(B), and the number of G ¢-orbits in O 4 x Op
is bounded by [F : Q]. In particular, the numbers of Galois orbits of these categories

satisfy
| Orb(A)| - [Orb(B)| < | Orb(C)| < | Orb(A)| - | Orb(B)| - [F : Q.

Proof. The equality (2.7) follows directly from [24, Cor. 14.4.20] and the definition of
Ge.

The action of G¢ on Irr(C) is equivalent to the action of G 4 e G on Irr(A) x Irr(B)
by the definition of the Galois group actions. The statement (ii) follows immediately
from this observation.

To prove (iii), consider any X € O4 and Y € Op. By definition,

Stabg. (X K Y) C Stabg , (X) x Stabg(Y).
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Therefore, by Burnside’s lemma (see, for example, [24, Ex. 18.3.8]) and (2.7), we have

1 < number of G¢-orbits in O 4 x Op

1
= Gal > | Stabg. (X K V)|
¢ (X,Y)eO 4 x0p

1
< Gl Y IStabg (X)| - | Stabg (Y)]
¢ (X,Y)eO 4 x0p
Gl - IG5
=22 B _F.ql
Gel

Now, we can establish the last inequalities by summing over all O 4 x Og € Orb(A) x
Orb(B). O

3. Unique Factorization of Transitive Modular Categories

In this section, we introduce the definition of transitive modular categories. These mod-
ular categories have spectacular properties which provide the foundations for the classi-
fication. We prove in Theorem 3.11 that every fusion subcategory of a transitive modular
category is a transitive modular subcategory and the prime factorization of a transitive
modular category is unique up to permutation of prime factors.

Definition 3.1. A modular category C is said to be transitive if G¢ (or Gal(Q /Q)) acts
transitively on Irr(C), i.e., | Orb(C)| = 1.

Recall that a transitive subgroup G of the symmetric group &, is called regular if
the G-action on {1, ..., n} is fixed-point free (cf. [57]).

Proposition 3.2. If C is a transitive modular category, then G¢ is regular and |G¢| =
[ Ire(C)].

Proof. Since C is a transitive modular category, G¢ is an abelian transitive subgroup of
Sym(Irr(C)). By [57, Prop. 4.4], G¢ is regular. In particular, |G¢| = | Irr(C)]. O

Since G¢ isregular, forany X € Irr(C), there isaunique 6 € G suchthat X = 6 (1).
Therefore, we simply identify G¢ with Irr(C) via the identification 6 +— & (1). For
convenience, we will use 1 and id interchangeably. In particular, the action of 6 on & is
equal to the product 6 i for any 6, i € Gg.

Thus, for any transitive modular category C, its modular data can be indexed by G¢.
Moreover, the S-matrix can be expressed in terms of the dimensions of simple objects
as in the following lemma.

Lemma 3.3. Let C be a transitive modular category. For any &, i € Irr(C), we have
Se.p = 0(dp)ds = [i(ds)d,,. (3.8)

Consequently, all the entries of the S-matrix are totally real algebraic units, and every
simple object of C is self-dual.
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Proof. Recall from Section 2.3 that

a Sen\ _ S&,@,
dy d;
so we have S5 ; = [1(ds)d);. Since S is symmetric, we also have S5 5 = 6 (dp)ds.

According to [11, Prop. 3.6], d5 = dj 1) is an algebraic unit for all 6 € G¢. Since

both ds and d;; are totally real (cf. [28]), S5  is a totally real unit. In particular, the
1

matrix § = JcﬁTKY)S is a unitary real symmetric matrix, and so we have id = s“ = C,
where Cx y = dx, v+ is the charge conjugation matrix (cf. [3,28]). Therefore, every
simple object of C is self-dual. O

Corollary 3.4. Let C be a transitive modular category. Then there exists a unique element
00 € G¢ such that 60(d;) = FPdim(i) for all ji € G¢, and

60(dim(C)) = FPdim(C).

Proof. Since the Frobenius—Perron dimension defines a character of the fusion ring
Ko(C) and the simple objects are in one-to-one correspondence to the characters of the
fusion ring (see Section 2.3), there exists a unique simple object 69 € G¢ such that
X6, (1) = FPdim(f2) for all 1 € G¢. Therefore, by Lemma 3.3, we have

o Spse A
FPdim (i) = x5,(it) = A oo(dp).
O

The second assertion follows directly from the first statement and the definitions of
dim(C) and FPdim(C) . O
Now, we can prove the first major observation on transitive modular categories.

Theorem 3.5. Let C be a transitive modular category. Then:

(i) Forany 6, i € Irr(C), if 6 # [i, then dg # dl%. In particular, if i # id, then
d; #1 and (dim(C)) # dim(C).

(i) If X is an invertible object in C, then X = 1. In particular, Cy =~ Vec as fusion
categories.

(ii)) Q(S) = Q(dim(C)) = Qdx | X € Irr (C)).
Proof. Suppose there exist 6 # i € Irr(C) such that dg = dﬁ. Then ds = edy for

some ¢ € {+1}. By Lemma 3.3, for any = Irr (C), we have
S&,): = )»(d(})a'jL = K(8dﬁ)d3\ = Sk(dﬁ)di = S,&,):'
Consequently, the rows S5 , and S . of S are linearly dependent, which contradicts the
invertibility of the S-matrix. This proves the first assertion of statement (i).
Note thatdy = d1 = 1. Therefore, for any i # id, we have a’l% # 1. In particular, up

to isomorphism, there is no other invertible object in C than 1, which implies statement
(i1). Moreover, by (2.5), we find

(G N a4 3.9
H\ dim©) _“(dim(C))_dim(C)' (39)
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Hence,
dim(C) .
f(dim(C))
and we have completed the proof of statement (i).
Since Q(dim(C)) is a subfield of Q(S), it is abelian and hence Galois over Q. By
(1), there is no nontrivial element of G¢ fixing dim(C). By the Fundamental Theorem

of Galois theory, Q(dim(C)) = Q(S). By the definition of Q(S), we always have the
inclusions

2
&2 #1,

Q(im(C)) € Qd, | i1 € Ge) < Q(S).
The equality Q(dim(C)) = Q(S) implies Q(S) = Q(d, | e Ge). O

Corollary 3.6. If C is a transitive modular category, then the underlying braided fusion
category has a unique pivotal structure up to isomorphism.

Proof. By [11, Lem. 2.4], there is a bijective correspondence between Irr(Cp) and
isomorphism classes of pivotal structures of the underlying fusion category of C. By
Theorem 3.5 (ii), Irr(Cpy) is trivial since C is transitive. Therefore, the underlying pivotal
structure of the modular category C is the only one up to isomorphism. |

Recall that a fusion category C is called weakly integral if FPdim(C) € Z, and is said
to be rrivial if it is tensor equivalent to Vec.

Corollary 3.7. If C is a transitive modular category and D C C a nontrivial fusion
subcategory, then dim(D) & Z. In particular, C does not contain any nontrivial weakly
integral fusion subcategories.

Proof. Suppose D is a fusion subcategory of C such that dim(D) € Z. Let 69 € G¢
be the canonical element realizing the Frobenius—Perron dimension in Corollary 3.4.
Then 6¢(dim(D)) = FPdim(D) and hence FPdim(D) € Z. In other words, D is weakly
integral. By [28, Prop. 8.27], for any i € Irr(D), ao(dg) = FPdim(f1)? € Z. Therefore,

dﬁ € 7Z. By Lemma 3.3, dj is a real algebraic unit for any fi € G¢, and so dﬁ = 1.

However, by Theorem 3.5, this means i = id and hence Irr (D) = {1}. This proves the
first statement of the corollary.

Note that every weakly integral fusion category B satisfies FPdim(B) = dim(B) € Z
(cf. [28]). Therefore, if B is a weakly integral fusion subcategory of C, then B must be
trivial by the preceding assertion. |

Remark 3.8. As a consequence of Corollary 3.7, if C is a transitive modular category
satisfying dim(C) € Z, then C is trivial.

In the following, we study fusion subcategories and Deligne products of transitive
modular categories.

Corollary 3.9. Every fusion subcategory of a transitive modular category C is a modular
subcategory of C.

Proof. Let D be a fusion subcategory of C. Then D is premodular with the braiding
and the spherical pivotal structure inherited from C. Now consider the Miiger center
D' = Cp(D) of D. It is a symmetric fusion subcategory of D and hence of C. Then,
by [20,21], dim(D’) is an integer. By Corollary 3.7, D’ is equivalent Vec as a fusion
category. Therefore, D is modular. |
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Example 3.10. The adjoint subcategory C := C(slp, 3)(©) of the quantum group modular
category C(slp, 3) is a Fibonacci modular category. It has two isomorphism classes of
simple objects 1 and 7 such that t ® T = 1 @ 7 (cf. [48]). The S-matrix of C is given

by
aw:
s=(a, %)

where d; = “Tﬁ Therefore, Q(S) = Q(+/3) and G¢ = Z, with the generator & :
V5 > —+/5. Therefore, C is transitive.

Recall that a modular category C is prime if every modular subcategory of C is
equivalent to C or Vec. By [39, Thm. 4.5], every modular category admits a prime
factorization,i.e.,it1s equivalent to a finite Deligne product of prime modular categories.

Theorem 3.11. Let C be a transitive modular category. Then:

(i) every fusion subcategory of C is a transitive modular subcategory, and
(ii) the prime factorization of C is unique up to permutation of factors.

Proof. Let A be an arbitrary fusion subcategory of C. It follows from Corollary 3.9 that
A is a modular subcategory of C. Let B := C¢(.A), the Miiger centralizer of A in C.
Then we have an equivalence of modular categories

C~AXB

by the double centralizer theorem [39, Thm. 4.2]. B

Asnotedin Section 2.3, forany XX Y € Irr(C) = Irr(AXB) and any o € Gal(Q/Q),
we have 6¢(X W Y) = 6 4(X) K 65(Y). Since C is transitive, for any X € Irr(A), there
exists o € Gal(Q/Q) such that

A1) Rop(lp) =6c(1aX1p) = X K1g.

Therefore, G 4 acts transitively on Irr(.4). This completes the proof of (i).

It follows from [39, Thm. 4.5] that C admits a prime factorization. By Corollary 3.7,
Cpt = Vec. Therefore, by [17, Prop. 2.2], the prime factorization of C is unique up to
permutation of factors. O

Proposition 3.12. If A, B are transitive modular categories and C = AX B, then

|Gal - 1G5l

| Orb(C)| =
|Gl

= [Q(dim(A)) N Q(dim(B)) : QI. (3.10)

In particular, if A, B are nontrivial modular categories and they are Galois conjugate
to each other, then A X B is not transitive.

Proof. Since A, B are transitive, as discussed at the beginning of this section, the action
of G 4 (resp. Gg) on Irr(A) = G 4 (resp. Gg = Irr(B)) is just the left multiplication.
By Lemma 2.1, G4 ® Gg = G is a subgroup of G4 x Gp, and the action of G¢
on Irr(C) = Irr(A) x Irr(B) = G4 x Gpg is equivalent to the left multiplication by
G 4 o G. Therefore, the orbits of this G 4 e Gi-action are the cosets of G 4 @ G in
G 4 x G, which implies the first equality in (3.10). The second equality in (3.10) is a
direct application of Lemma 2.1(i) and Theorem 3.5(iii).
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Suppose A and B are nontrivial Galois conjugate modular categories. Then the exten-
sion Q(dim(A)) = Q(dim(B)) and Q(dim(.A)) is a proper extension of QQ (cf. Theorem
3.5). Therefore, we have

| Orb(A K B)| = [Q(dim(A)) N Q(dim(B)) : Q] = [Q(dim(A)) : Q] > 1,
which means .4 X B is not transitive. This completes the proof of the last assertion. O

The following corollary provides a necessary and sufficient condition for the transi-
tivity of a Deligne product.

Corollary 3.13. Let C, D be modular categories. Then C X D is transitive if and only if
the following two conditions hold: both C, D are transitive and

Qdim(C)) N Q(dim(D)) = Q.

Proof. If C X D is transitive, then, by Theorem 3.11, C and D are also transitive.
By Proposition 3.12, 1 = |Orb(C X D)| = [Q(dim(C)) N Q(dim(D)) : Q], and so
Q(dim(€)) N Qdim(D)) = Q.

Conversely, assume C and D are transitive modular categories and Q(dim(C)) N
Q(dim(D)) = Q, then [Q(dim(C)) N Q(dim(D)) : Q] = 1. It follows from Proposi-
tion 3.12 that C X D is transitive. O

4. Primality of Transitive Quantum Group Modular Categories

A quantum group modular category C(g, k) can be constructed from a simple Lie al-
gebra g and a positive integer k, which is called the level. This modular category is a
semisimplification of the tilting module category of the quantum group U, (g) special-
ized at a root of unity g determined by k and g. The readers are referred to [3,49] and
the references therein for details.

In this paper, we focus on the cases when g = sl,. Let k be a positive integer and
q = exp (Z5). For any r € Q, we define

- . Tir
= eX .
9 P k+2

The quantum integer [n]; for any root of unity ¢ # =1 is defined as

=
c—¢
The isomorphism classes of simple objects of C(sl,, k) are indexed by the integers

a € [0, k]. The modular data (S, T') of the modular category C(sly, k) is given by (cf.
[3], see also [47] with a different convention)

[n]; =

Sap =M@+ DB +D]y, Tap=084pq" P2, 0<a,b<k. (411

One can replace g by any Galois conjugate ¢’ = ¢* for some [ relatively prime to 2(k +2)
to get another modular category C(sly, k, ¢'). The simple objects of this modular category
are also indexed by the integers in [0, k] and its modular data is also given by (4.11)
with ¢ replaced by ¢'.
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For the discussions of the remainder of this paper, we will simply write Ay ; for the
modular category C(sly, k, ql ) where ged(l, 2(k + 2)) = 1. Let V, denote the isomor-
phism class of the simple objects of .4y ; indexed by the integer a € [0, k]. Then Vj is
the isomorphism class of the tensor unit 1. The fusion rules of .4 ; are the same for any
possible integer /, and they are given by (cf. [3])

1, ifla—b| <c<min(a+b,2k —a—Db)
5717 = andc=a+b (mod 2); 4.12)
0, otherwise.

One can observe directly from the fusion rules that Ay ; is Z,-graded, where the
homogeneous component A,(CJ l) j € {0, 1}, is the C-linear subcategory (additively)
generated by the simple objects V, satisfyinga = j (mod 2) for any integer a € [0, k].
Moreover, the adjoint fusion subcategory of Ay ; is Ak ;» Wwhich is a modular subcategory
of Ay ; if and only if k is odd (cf. [6,51]), and

k—1
Irr(AL) = {vzj 10<j< T} (4.13)

In particular, when k = 1, A(O) is tensor equivalent to Vec, and when k = 3, Agol) 1s a
Fibonacci modular category (see Example 3.10).

For any fusion category C, we say that a simple object X € Irr(C) fensor generates
C if every simple object of C is isomorphic to a summand of a tensor power of X. The
following observation could be known to experts but we include it here for completeness.

Lemma 4.1. For any positive odd integer k and 1 € (Z)2(k +2)Z)*, every nontrivial

simple object of .Ak | tensor generates A,(((,)l). In particular, .A,(SI) is a prime modular
category.

Proof. Since A is trivial, the statements are true for k = 1. We assume k£ > 3. By

the fusion rules (4 12), when k = 3, Vo®V> = Vo @ V»; when k > 3 is odd, for any

15]5%, we have

Vaj @ Vo = Va0 ® Vo; @ Vajpa.
Therefore, V5 tensor generates A,(COZ). Moreover, for any 1 < j < ’%1 we have 2 <
min(4j, 2k —4j), so sz 2

Therefore, V,; tensor generates A(O) O

= 1, which means V> is a direct summand of V,;®V>;.

For any odd integer k and [ € (Z)2(k +2)Z)*, the modular data (S©@, T©) of A,(i)l)
isindexed by j =0, ..., T and is given by

‘ - _ k—1
Sim =@+ D@m+ D]y T1 =8I, 0< jim < ———. (4.14)

It is well-known that the first central charge of Ay ; is given by (cf. [3])

ki
E1(Ax,1) = exp (4(;(?2)) .
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By definition (see (2.4)), the first anomaly of Ay is

3kmi
A1) = &4 )? = .
o1 (Ak,1) = §1(Ax,1) CXP<2(k+2)>
By the fusion rules, Irr((Ag,1)pt) = {Vo, Vi}, and (A 1)pt is a modular subcategory of
Ak.1. By [23, Cor. 3.27), C.a, , (Ar,Dp0) = AL} Therefore,

Ak,1 > «4;(((?; X (Ak,1)pt

as modular categories by the double centralizer theorem [39, Thm. 4.2]. Consequently,
by [44, Lemma 3.12], a1 (A1) = al(A,(((?)l) - a1 ((Ag,1)pt)- Following (4.11), we have

1+
Oll((Ak,l)pt) = m =i~

Therefore,

(4.15)

A = D, (Uit

(A P\ 26+ 2)

In the literature, A,((?i is often referred to as the quantum group modular category
“SO(3) at level k7 or “PSU(2) at level k”. The ribbon categories with these fusion
rules for odd k are completely classified in [30, Cor. 8.2.7], with a slightly different
parametrization.

Lemma 4.2. For any positive odd integer k, the modular categories

0) Z §
Ar, _—
ki LS (Z(k ; 2)2)

Jorm a complete list of inequivalent ribbon categories with the fusion rules of SO(3) at
level k. If k +2 = p > 3 is a prime, each of these modular categories is equivalent to a

Galois conjugate OfA;OZZ’l =C(slh, p —2)O.

Proof. The first part follows directly from [30, Cor. 8.2.7]. If k +2 = p > 3 is a prime,
there are exactly |(Z/2pZ)*| = p — 1 equivalence classes of ribbon categories with the

fusion rules of SO(3) at level k. Note that all Galois conjugates of A,(((,)% have the same
fusion rules. Hence, they are equivalent to the modular categories in the list. According
to (4.15), oy (Al(nolz,l) = exp (%ﬂ) € Q,, which is aroot of unity of order p or

p
2p for p > 3. By definition, the first anomalies of the Galois conjugates of .A,({Oi are the

Galois conjugates of o (A,(c(’)i). Therefore, there are at least ¢(p) = p — 1 equivalence

classes among the Galois conjugates of A,((O)l, and we are done by the first assertion. O

Now, we can show a family of these quantum group modular categories are prime
and transitive in the following proposition.

Proposition 4.3. Let p be any odd prime andl € (Z./2p7.)* . Then the modular category

Afvolz ; Is prime and transitive.
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Proof. By Lemma 4.1, A© )2 ; 1s prime. Therefore, it suffices to show that A( ) Zoq 18
transitive.

The underlying root of unity ¢’ is the primitive 2p-th root of unity. Since p is
odd, Q, = Q(g") = Q(g?), it suffices to show that Gal(Q,/Q) acts transitively on

Irr(A(O) 2.0)

For any nonnegative integer m < pT_3, gcd(2m + 1,2p) = 1. So there exists o €
Gal(Q,/Q) such that o (¢) = g*"™*1. Thus, we have

s 2j+ H2m+1 s
G<_) = o[+ D]y = O Dl i

0 0
s [2m + 1], s

for any nonnegative integer j < p 3 Therefore, 6 (Vo) = Vo, and hence Gal(Q,/Q)
acts transitively on Irr(A(O) 2.0)- O

Proposition 4.4. Let py, ..., p¢>3 be distinct primes. For any 1y, ..., l;)e(Z/2p\ 7)™
X« X(Z)2peZ)*, the Deligne product

_ 10 0)
- AP1—2711 g Apz—Z,lz

is a transitive modular category.

Proof. We proceed to prove the statement by induction on £. The statement obviously
holds for £ = 1 by Proposition 4.3. Now we assume py, ..., pg > 3 are distinct primes
and (I1,...,1ly) € (Z)2p\Z)* x --- x (Z)2peZ)* for some integer £ > 1. By the

induction assumptlon C= &e A(O) 2, is a transitive modular category. Note that

£—1
dim(C) = [ [dim(A))_,,) €Q,; and dim(AS)_, )€ Qp,.

where p, = pi...pe—1. Since Qp/ NQp, = Q, it follows from Corollary 3.13 and
Proposition 4.3 that C X A(O) _p.1, Is transitive. O

5. Representations of SL;(Z) Associated with Modular Categories

In this section, we show that the representations of SL,(Z) associated with transitive
modular categories are irreducible and minimal. As a consequence, the order of the T-
matrix of any nontrivial transitive modular category is square-free and its prime factors
are greater than 3.

Let C be a modular category with modular data (S, 7). We denote by GL(C) the
group of all invertible matrices over C indexed by Irr(C), and Vp = Ko(C)®zC with
the standard basis E¢c = {ex | X € Irr(C)}. Note that S, T € GL(C), and the group
GL(C) acts on V¢ via the standard basis Ec, namely A(ey) = Y Xel(C) Axyex for
any A € GL¢(C) and Y € Irr(C). We often identify GL (V) with GL-(C) in this
manner.
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Recall that s := ((1) _01) and t := <(1) }) are generators of the group SL»(Z),

4

subjected to the relations s* = id and (st)3 = 52, and the assignment

pc : SLa(Z) — PGL(Ve), s+— S, t—T (5.16)

defines a group homomorphism (cf. [3,52]). This projective representation p- can be
lifted to an ordinary representation (p, V) such that the diagram

SLy(Z) —2— GL(Vp)

Ny

PGL(V,)

commutes, where the vertical map GL (V) — PGL(Vp) is the natural surjection. Any
lifting (p, V) of pe, called a representation of SLy(Z) associated with C, yields an
action of SL»(Z) on V¢ given by

a-ey :=p@ler)= Y p@xrlex)

Xelrr(C)

forany a € SLy(Z). We call V¢ an SL;(Z)-module of C throughout this paper. If (p, V)
is a representation of SL(Z) associated with C, then the pair (s, t) := (p(s), p(1)),
called the normalized modular data, uniquely determines p, and the matrices s, t are
unitary and symmetric (cf. [28]). Moreover, the group of 1-dimensional representations
of SLy(Z) acts transitively on representations of SL,(Z) associated with C by tensor
product (cf. [22]).

For any positive integer m, we denote by m,, : SLy(Z) — SL(Z/m1Z) the natural
surjection. We say that arepresentation ¢ : SL>(Z) — GL,(C)isoflevel mif¢p = ¢~>onm
for some representation q3 :SLo(Z/mZ) — GL,(C) and m = ord(¢(t)). By [22, Thm.
I1], if p is a representation of SL;(Z) associated with C, then p is of level n = ord(p (t))
and p(a)x.y € Q, forany a € SLy(Z) and X, Y € Irr(C). In particular, s, ¢ are matrices
defined over Q,,. Thus, for o € Gal(Q,,/Q), (°p, V) is also a representation of SL(Z)
where “p(a) = o (p(a)) for any a € SL,(Z), and the corresponding o -twisted SL> (Z)-
action on Vg is denoted by

%a-v="(a)(v) (5.17)

forany v € V.

Let (p, V¢) be alevel n representation of SL>(Z) associated with a modular category
C. The action of the Galois group Gal(Q,/Q) on the normalized modular data (s, )
satisfies some interesting conditions as follows: for o € Gal(Q, /Q), there exists a sign
function &, : Irr(C) — {£1} such that

o(sx,y) = & (X)ssx),y = €c (Y)sx 6(v) (5.18)

forany X, Y € Irr(C)(cf. [15,19]), and

o (tx,x) = 15 (x).6 () (5.19)
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for any X e Irr(C) (cf. [22, Thm. II (iii)]). Moreover, the absolute Galois group
Gal(Q/Q) acts on the normalized modular data via the restriction

resgn : Gal(@/@) — Gal(Q,/Q).

The condition of the action of Gal(Q /Q) on s defines a Gal(Q /Q)-action on V. Let
8o € GL(V¢) be defined by

(8o)x,y = &0 (X) 85(x).7-
Then, (5.18) and (5.19) can be rewritten as
0(s) =gos =58, 0%(1) =gole, (5.20)
and the assignment

¢, : Gal(Q/Q) — GL(Vp), o > g, (5.21)

defines a group homomorphism (cf. [15]). Therefore, for any o € Gal(@/@), we have
%b(a) = gop(a)g; ! forall a e SLy(Z). (5.22)

In particular, (p, Vo) = (";), Ve) as representations of SLy(Z). _
Now, Gal(Q/Q) acts on V¢ via the representation (¢,, V) of Gal(Q/Q), namely

0 -ex = golex) = &5 (X) e5(x) (5.23)

forany o € Gal(@/@) and X € Irr(C). Thus, in view of [22, Thm. II (iii)] or (5.22), for
any a € SLy(Z), v € Vg and 0 € Gal(Q/Q), we have

_ o2
g (a-v) = g p@W) = gop(@g, g () ="a- (0 - v). (5.24)

By [22, Thm. II (iv)], if 0 (&,) = ¢ for some integer a coprime to n, then
g0 = p(t'st’st’s ™), (5.25)

where b is an inverse of @ modulo n. Therefore, the Gal(Q/Q)-action on V¢ is uniquely
determined by p, and in light of (5.25), every SL;(Z)-submodule of V¢ also inherits the
action of Gal(Q/Q).

5.1. Minimal representations of SL,(Z). To proceed, we set up the following conven-
tions. We will denote by spec(M) the set of the eigenvalues of an linear operator M on a
finite-dimensional complex vector space. For any finite multiplicative abelian group A,

A% :={d? | a € A}

is a subgroup of A of order |A|/|22(A)|, where 2,(A) is the (largest) elementary 2-
subgroup of A. In particular, for any positive integer m, 2(Gal(Q,,/Q)) is simply
denoted by Q5" and we define

020m) = |(Z/m)* | = |Gal @/ Q7.
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It is immediately seen that ¢, is a multiplicative function. Moreover, for any prime p,
we have

Lp—Dpm! if p is odd;
@(p™) = § 2" 3 if p=2andm > 3; (5.26)
1 if p=2andm =1, 2.

Suppose (s, t) is a normalized modular data of a modular category C. By (5.19), the
assignment (o, {) — o2(¢) defines a Gal(Q/Q)-action on spec(r), and the Gal(Q/Q)-
orbit of 7x x, for any X € Irr(C), is then given by

Gal(Q/Q) - tx.x = {0*(tx.x) | o € Gal(Q,,/Q)}

where m = _ord(tx,x). In particullar, |Gal(@/@) - tx.x| = ¢2(m). We denote by
spec(t)/ Gal(Q/Q) the set of Gal(Q/Q)-orbits of spec(z).

Lemma 5.1. Let (p, V) be a representation of SL,(Z) associated with a modular cate-
goryC. If (plw, W) is a subrepresentation of (p, V), then spec(p (t)|w) is closed under
the action of Gal(Q/Q) on spec(p(t)). In particular,

spec(p(t)|w)/ Gal(Q/Q) C spec(p(t))/ Gal(Q/Q),

and every direct sum decomposition of the SL;(Z) representation (p, V¢) determines a

partition of spec(p(t))/ Gal(Q/Q).

Proof. Forany ¢ € spec(p(t)), B; = {ex | t-ex = {ex}isabasis for the corresponding
eigenspace of p(t). Let ¢ € spec(p(t)|w) and w € W\ {0} such thatt-w = {w. Then w

is a C-linear combination of B, . Thus, forany o € Gal(Q/Q), we have o = o2(O)w
ando™ - wew by (5.25). It follows from (5.24) that

t-c lw)y=0""1. ("zt- w)=0c2()o - w,

and so az(g’) € spec(p(t)|w). O

The minimal possible dimension of an SL;(Z)-submodule of V¢ of the preceding
proposition inspires the following definition.

Definition 5.2. A level m representation (¢, W) of SL;(Z) is called minimal if dim(W) =
@2(m) and

spec(p (1) = {o2(¢)) | o € Gal(Q,,/Q)}

for some [ € (Z/mZ)*. In this case, (¢, W) or the corresponding SL;(Z)-module is
said to be minimal of type l.

Corollary 5.3. Let (p, Vo) be a representation of SLy(Z) associated with a modular
category C. If (plw, W) is a minimal subrepresentation of (p, V¢), then (plw, W) is
irreducible.
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Proof. Since (p, V) is of some level n = ord(¢), ker(p|w) is a congruence subgroup of
SL>(Z). Let m be the level of (p|w, W). Since (p|w, W) is minimal, dim(W) = ¢;(m)
and

spec(p(t)|w) = {02(¢}) | 0 € Gal(Q,,/Q)} for some ! € (Z/mZ).

In particular, Gal(@/ Q) acts transitively on spec(p(t)|w). If (p|y, U) is a nontrivial
subrepresentation of (p|w, W) and ¢ € spec(p(t)|y), then the Gal(Q/Q)-orbit of ¢ is
spec(p (t)|w). Therefore,

dim(U) = |spec(p(D|w)| = @2(m) = dim(W).

Therefore, U = W and hence (p|w, W) is irreducible. O

The following examples are building blocks of all the minimal irreducible represen-
tations of SLy(Z).

Example 5.4. For any odd prime p, there are precisely two inequivalent irreducible
representations of SL,(Z) of level p and dimension ¢2(p) = (p — 1)/2, denoted by
(175.7 , C72(P)y or simply nf (j = %£1), which can be described as follows (see, for example,

[25, Sec. 4]). Leta € (Z/pZ)*, and set j = <ﬁ>, the Legendre symbol of a modulo
p
p. For any integers x, y € [1, (p — 1)/2],

27i ax?

2ij . (4maxy
nf(s)x,y = ——sin (

T ) and 77 (Ox,y = 8xy exp(

) (5.27)

where

5 Jp if p=1 (mod4),
VPT =i /pif p=3 (mod 4).

The representation type of r;ﬁ.7 is independent of the choice of a with (ﬁ) = j. The
P

standard basis for C#2(P) is an eigenbasis of nf (t) and the representation nf is uniquely
determined by spec(nf(t)), which is either {02(¢,) | o € Gal(Q,/Q)} or {02(;;;) |

o € Gal(Q,/Q)} where a is quadratic nonresidue modulo p. In particular, nil are level
p minimal representations of SL>(Z).

Example 5.5. The isomorphism classes of 1-dimensional representations of SL> (Z) form
a cyclic group of order 12 under tensor product, and they are completely determined
by the images of t. If x is a 12-th root of unity, we denote by x, the 1-dimensional
representation of SL>(Z) such that x,(t) = x. In particular, X;:l = Xt = nil, and
the level of x is the order of x. Since ord(x) | 12 and @2 (d) = 1 for any positive integer
d | 12, every 1-dimensional representation of SL,(Z) is minimal.

We close this subsection with the following characterization of minimal irreducible
representations of SL;(Z) which extends the preceding examples to a general setting.
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Lemma 5.6. Let (¢, V) be a level n irreducible representation of SLo(Z). If (¢, V) is
minimal of type |, thenn = d - p1 ... pg for some positive integer d | 12 and distinct
primes py, ..., pe > 5. Inthis case, there existunique ly € (Z/d7)* andl; € (Z]p;Z)*

such that ¢} = fio{ll,ll ...{ll,i and
~ P1 pe
¢—Xx®77jl® ®njea

[

where x = gflo and j; = (—l) In particular, ¢ is uniquely determined by {,ﬁ up to
i

equivalence.

Proof. Let p be a prime factor of n, and m a positive integer such that n = p™ - no,
where n, is a positive integer not divisible by p. Setn; = p”'. By the Chinese Remainder
Theorem, there exist irreducible representations ¢; : SL>(Z) — GL(V;) of level n; such
that

¢ = P1Q¢2.
Therefore, for any w € spec(¢ (1)),
w=wi w

where w; € spec(¢;(t)). Since (¢, V) is minimal of type [, ® = 02(4“,{) for some
o € Gal(Q,/Q), which means it is a primitive n-th root of unity. Thus, w; is primitive
n;-th root for i = 1, 2. Note that the group u,, of n-th roots of unity is an internal direct
product of (,, and p,,, the pair (w1, wy) is uniquely determined by w. More precisely,
there exists a unique /; € (Z/n;Z)* such that! = l;n/n; in Z/n;Z. Then

I _ o I
g‘n_ ny  Snp

and
wj =0’ (Cfil)
fori = 1,2. As o runs through Gal(Q, /Q), we find
(0* (&) | o € Gal(@n, /Q))
is a subset of spec(¢; (t)). Therefore, dim(V;) > ¢»(n;) and so
p2(n) = dim(Vy) - dim(V2) = g2(m1) - @2(n2) = @2(n).
This implies dim(V;) = @ (n;) and
spec(9i () = (o2 (511 ) | o € Gal(@,,/Q).

Thus, both ¢ and ¢, are minimal of type /1 and /; respectively.

The level p™ irreducible representations of SL;(Z) were classified by [45,46] (see
also [26, Tbl. 1-8]). Since ¢ is an irreducible representation of level p™ and dimension
@2(p™), whose values are given by (5.26), we find

)1 if p is odd;
=V1or2if p=2.
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In this case, ¢; = nil if p > 3 (cf. Remark 5.4) and ¢; is 1-dimensional if p < 3.
Since p can be any prime factor of n, we obtain the factorizationn = d - p; ... p; for
some positive integer d | 12 and pj, ..., p¢ are distinct primes greater than 3.

If one denotes the preceding irreducible representation ¢ by ¢?, then, by induction,
we have

o =¢! ® ® ¢?, where ¢? = ® or
prime p>3 prime p<3
pln pln

is 1-dimensional. There exista unique integer/,, (mod p) satisfying/ = [,n/p (mod p)
for each odd prime divisor p of n, and a unique ly € (Z/d7Z)* satisfying | = lopn/d
(mod d). Then, we have

I
g=¢p [] ¢ and ¢ =¢"®.
prime p>3
pln

[
Therefore, ¢p?¢ = Xlo and ¢ = nfp, where j, = (—p> (cf. Examples 5.4 and 5.5).
d p

Consequently,

~ p
P=x0® & 0

prime p>3
pln

5.2. Characteristic 2-group of modular categories. Let C be a modular category with
the modular data (S, T'). For any normalized modular data (s, ) of C, Q(S) € Qn <
Q,, where N = ord(T) and n = ord(¢) (cf. [22,43]). The restriction of the Galois

automorphisms of @, to Q(S) defines an epimorphism res%’gs) : Gal(Q,/Q) — G of
groups. Note that by [22, Prop. 6.7], we have

ker(resg’zs)) = Gal(Q,/Q(S)) € Q. (5.28)

Definition 5.7. Let (s, #) be a normalized modular data of a modular category C, and
n = ord(z). The image of the elementary 2-subgroup 25 of Gal(Q,/Q) under the

restriction map res%’(‘s) : Gal(Q,/Q) — G is called the characteristic 2-group of C,
and denoted by He.

In view of (5.28), we have the exact sequence of abelian groups:

Q
incl n rest‘S)

1 — Gal(Q,/Q(S)) Q25 He — 1. (5.29)
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Proposition 5.8. The characteristic 2-group He of C is independent of the choice of the
normalized modular data (s, t) of C. Moreover, if n = ord(t), then

Gal(Q,
Ge/Hp = —2oen/E) (S"/Q)’
2

In particular, |Gc|/|He| = @2(n).

Proof. Let (s, t) and (s, t') be normalized modular data of C and let (p, Vi) and (o', V¢)
be the corresponding representations of SL;(Z) associated with C respectively. Then
o = x®p for some 1-dimensional character of SL»(Z). Since x!'?> = 1, 1’ = xt for
some 12-th root of unity x. Let m = ord(¢), and [ = lcm(m, n). Then Q; = Q,,,(x) =

Qn (x). By definition, resgfl(ﬂé) C QF. For any 0 € Q7, there exists an extension

T € Gal(Q;/Q) such that 7|g, = o. Since x2 =1, 72(x) = x. Thus, 2 = id and
hence T € le Therefore,

resg! (h) = 4.
By the same argument, we also have

res%in (QIZ) = Q.
Since the diagram

Q
I‘CSQm

Gal(Q;/Q) ————— Gal(Qn/Q)

reSQlS
res l N(‘ lres%’("s)
Gal(Q./Q) Ge

I4
Qn
1esgy(s)

of restriction maps is commutative, we have
Qm Q 1 Qn
resgys) (§23') = resgyg) (23) = resqs) (23).

This proves the first assertion of the statement.
By (5.29), we also have the following commutative diagram of abelian groups with
exact rows:
res%?s)

1 —— Gal(Q,/Q(S)) — 2L Qn s He 1

idl incl l o
resg(s)

1 —— Gal(Q,/Q(S)) ~2L5 Gal(Q,/Q) —— Go — 1.

Therefore,

Gal(@,/Q)/ Gal(Q,/Q(S)) . Gal(Qi/Q)

GelHe = = gn Gal @0
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Corollary 5.9. LetC be amodular category with the modular data (S, T). If N = ord(T')
is not a multiple of 4, then

Q N
He = resQéVS)(Qz ).

Proof. Since 4 1 N, by [22, Lem. 2.2], there exists a level N representation (p, V¢) of
SL,(Z) associated with C. Therefore, p(t) = t has order N. Now, the result follows
directly from Definition 5.7 of He. ]

Example 5.10. Let A be a finite abelian group and ¢ : A — C* a nondegenerate
quadratic form. The pointed modular category C = C(A, g) has the S- and T-matrices
given by

 q@)q )

Sap = , Tyup=96
a,b q(ab) a,b a,bq(a)

for any a, b € A.

(i) If |A] is odd, then Q(S) = Q(T) = Qp, where N = ord(T). Since |A| is odd, and
so is N. Therefore, by Corollary 5.9, Hp = Qév 1s nontrivial.
(ii) If A = (a) is a cyclic group of order 2 and and g (a) = +i, then C is called a semion
category. In this case, ord(T) = 4 and Q(S) = Q. Therefore, He is trivial.
Let (p, Vi) be a level n representation of SL;(7Z) associated with C, and (s, r) the
corresponding normalized modular data. Since 2 = He is an epimorphism of ele-
mentary 2-groups, there exists a subgroup He C 7 such that

res%’(‘s) : Hc = He (5.30)
is an isomorphism. Now, recall that t~he Gal(Q/Q)-action on V¢ via ¢, factors through
Gal(Q,,/Q) (cf. (5.21)). Therefore, Hc acts on V¢ in the same way (cf. (5.23)), namely

o -ex = golex) = &5 (X)es(x)
for any o € Hc. One can decompose Ve as an He-module into its isotypic components

Ve = @ vz,

xelr(He)

where Irr(Hc) denotes the set of irreducible characters of He, and VCX the isotypic
component of V¢ corresponding to the irreducible character x of He.

Proposition 5.11. Let C be a modular category and (p, V) a representation of SLo(Z.)

associated with C. Then for any x € Irr(Hp), the isotypic component VCX is an SLy(Z)-
submodules of V¢, and

Ve= P V (5.31)
xelr(He)

is a decomposition of SLy(Z)-modules. Moreover, if there exists a simple object X €
Irr (C) such that Staby, (X) = {id}, then all the VCX ’s are non-zero and pairwise inequiv-
alent.
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Proof. By (5.24), forany v € V}, 0 € He, and a € SLy(2),

o-(a-v)= "2a-(a-v) = x(o)a-v.
Therefore, VCX is an SLj(Z)-invariant subspace of (p, V), and the SL;(Z)-module
decomposition (5.31) follows immediately.
Let x, x’ be distinct irreducible characters of I:IC such that VCX % 0 and Vg/ = 0.
Then, there exists o € Hg such that x (o) # x'(0). By (5.25), g = p(a) for some
a € SLy(Z), and the restrictions of p(a) on VCX and VCX / are the distinct scalars x (o) and

x' (o) respectively. Therefore, VCX and VCX "are inequivalent representations of SL(Z).
For each x € Irr(lf]c),

Py = —— x(0)gs

is an idempotent operator on V¢ commuting with the action SL»(Z) such that VCX =
P, (V). Therefore, VCX = Oifandonly if P, = 0.If {gs | 0 € He) is C-linearly
independent, then P, # 0 and hence VCX # 0 forall x € Irr(He).

Let X € Irr(C) be such that Stabg,, (X) = {id}. Suppose >
oy € C. Then

vely %080 = 0 for some

D asgolex) = Y aoto(X)esx) =0.

UEI:IC UGFIC

Since Staby,, (X) = {id}, {esx) | 0 € Hc} is a set of distinct basis elements of V¢ and

hence o, = 0 forall o € I:Ic. Therefore, {g, | 0 € ﬁc} is C-linearly independent, and
SO VCX # 0 for all x € H¢. This completes the proof of the proposition. |

Proposition 5.12. Let (p, V) be a level n representation of SL,(Z) associated with a
modular category C. If p is irreducible, then Hg is trivial, the S-matrix of C is real, and
C is self-dual. Moreover, there exists X € Irr(C) such that p(t)x x is a primitive n-th
root of unity.

Proof. 1f p is an irreducible representation of SL;(Z), the decomposition (5.31) of p,
determined by the characteristic 2-subgroup H¢, must be trivial. Suppose there exists a
nontrivial element ¢ in Hp. Then 6 (X) # X for some X € Irr(C) and so the eigenspaces
E of g, corresponding to the eigenvalues +1 are nontrivial. Note that both £ and E_
are stable under the SL;(Z) action, and Vo = E, @ E_. This contradicts the irreducibility
of V¢. Therefore, Hc is trivial.

Let 0 € Gal(Q,/Q) denote the complex conjugation. Then 6 (X) = X* for X €
Irr(C). Since Hg is trivial, o|gs)y = id and so X* = 6(X) = X for X € Irr(C).
Therefore, S¢ is real and C is self-dual.

Letn = pi'...p," be the prime factorization of n, where py, ..., pg are distinct
prime factors of n. Since p is irreducible, by the Chinese Remainder Theorem, there
exists a level p?i irreducible representation (p;, V;) of SLo(Z) foreachi = 1,...,¢
such that

(p, Vo) = (p1, VI)® - - - ®(pe, Vi).
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Since (p;, V;) is of level p?i , there exists a nonzero eigenvector v; € V; of p;(t) with

an eigenvalue w; which is a primitive p?" -th root of unity. Thus, p(t) has an eigenvalue
¢{ = wi...wy which is a primitive n-th root of unity. Since {ex | X € Irr(C)} is an
eigenbasis for p(t), there exists X € Irr(C) such that p(t)x x = ¢. O

5.3. The SLy(Z)-modules of transitive modular categories. In this section, we show
that the representations of SL,(Z) associated with any transitive modular category C is
minimal and irreducible, and that the order of 7¢ is odd and square-free.

Let C be a transitive modular category, (p, V) a level n representation of SL,(Z)
associated with C, and (s, t) the corresponding normalized modular data. As before, the
Galois group G is identified with Irr(C) via the bijection 6 +— 6 (1). Then, we have

spec(t) = {155 1 6 € Ge) = {0(¢) | 0 € Gal(Q,/Q)}, (5.32)

where ¢ = 1 1. Here, the last equality is a consequence of (5.19). Therefore, Gal(@ /Q)
acts on spec(#) transitively, and so every eigenvalue of ¢ is a primitive n-th root of unity.
In particular,

Q@) =Qu = Q).

Lemma 5.13. The characteristic 2-group He is given by

He={6€Gclts s =111}

eigenvalue of t has algebraic multiplicity |H¢|.

Proof. Let¢ =tq.1. Since Q(¢) = Q,, we have

5 ={o € Gal(Qu/Q) | 0%(¢) = ¢} = {0 € Gal(Q,/Q) | 15 5 = ¢}

Thus, if 6 € He, then there exists o € ) such that o'|g(s) = 0, whichmeans t; 5 = ¢.
Conversely, if & € G¢ such that #5 5 = ¢, then there exists o € Gal(Q,/Q) such that
oloes) = 6. By (5.19), 02(¢) = 156 = ¢. Thus, 0 € Q%, and hence 6 € He. This
proves the first statement.

Let 6,7 € G¢, and T € Gal(Q,/Q) such that 7|y = 7. If 15 5 = t; 7, then
Is.6 = 72(¢) or

Therefore, ~'6 € He and so T He = 6 He. Conversely, if T He = 6 He, then 6 = T
for some i € Hg, and hence

2
o6 =lpip=T (pp) =1

Now, we can prove the major theorem of this section.
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Theorem 5.14. Let C be a nontrivial transitive modular category. Then every represen-
tation of SLy(Z) associated with C is minimal and irreducible. Moreover, the order of
the T-matrix T of C is odd and square-free, and every prime factor of ord(T) is greater
than 3.

Proof. Let (p, V) be a level n representation of SL;(Z) associated with C, and H the
characteristic 2-group of C. By Propositions 3.2 and 5.11, with H¢ defined in (5.30), V¢
admits an SL;(Z)-module decomposition

ve= @ V¢

xelr(He)

such that VCX % 0forall x € I:Ic. We proceed to determine Vg for each x € Irr(ﬁc).
Recall that the He-action on Ve is given by

o-ep = golep) =es(il)esp

for any o € I:Ic and 1 € G¢. For any 1 € G, the subspace Vi, of V¢ spanned by

{esp | 6 € Hc} is closed under this I:Ic—action, and t acts as the scalar 7; 5 on V; by
Lemma 5.13. Therefore, V; admits an isotypic decomposition

Vo = @ fo.

x€lrr(He)
Since gig = idy,, the character v/, of Hp afforded by V, is given by
V(o) =|Hel| - 86,40 forany o € He.

Therefore, as an Hc-module, V}; is equivalent to the regular representation of Hc. Con-
sequently, dim(V[f) = 1 foreach y € IH(HC).
Let A be a complete set of coset representatives of He in G¢. Then,

Ve =P Vi
LEA
is a decomposition of FIC -modules. Therefore,
X _ X
V=DV
e
for each y € Irr(I:Ic), and dim(Vg) = |G¢l/|Hc| = ¢2(n) by Proposition 5.8. Let

(pX, VCX) denote the corresponding subrepresentation of (p, V). Then

spec(pX (1) = {ts.6 | 6 € A} = {0*(t1.1) | 0 € Gal(Q/Q)}

by Lemma 5.13. Therefore, for any x € Irr(I:Ic), the level n representation (pX, VCX) of
SL>(Z) is minimal of type [ € (Z/nZ)*, where [ is determined by {,ﬁ = t1,1. Hence,
by Corollary 5.3, (pX, Vg) is irreducible for each x € I:Ic.
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It follows from Lemma 5.6 that VCX~ = VCX/ as SLy(Z)-modules for any yx, x' €

Irr(He). In view of Proposition 5.11, He must be trivial and so does H¢. Therefore,
(p, V) 1s minimal and irreducible, andn =d - py ... pg whered | 12 and py, ..., pe¢
are distinct primes greater than 3. Moreover,

p=xp

for some 1-dimensional representation x and a level m = p;p ... p; minimal represen-
tation (p’, V') of SL,(Z). By tensoring p with the dual representation x* of x, we find
(0’, V') is equivalent to a representation of SL;(Z) associated with C. By [22, Thm II
(1)], we have

ord(T) | m | 120ord(T)

which implies ord(7') = m since ged(m, 12) = 1. O

6. Classification of Transitive Modular Categories

In this section, we prove that a nontrivial prime and transitive modular category must
be equivalent to Aéolz ; for some prime p > 3 and ! € (Z/2pZ)*. In view of Theorem

3.11, we complete the classification of transitive modular categories in Theorem 6.5.
The minimal irreducibility of the representations of SL;(Z) associated with transitive
modular categories is crucial to the characterization of the prime ones.

We begin with the realization of minimal irreducible representations of SL»(Z) by
transitive modular categories.

Lemma 6.1. Let p > 3 be a prime. Then every level p minimal irreducible representa-

tion of SLa(Z) is equivalent to a representation of SLy(Z) associated with “459012, ; for
somel € (Z/2pZ)*.

Proof. Recall from Proposition 4.3 that .A(polZ’ ; isaprime and transitive modular category
for any prime p > 3 and [ € (Z/2pZ)*. Moreover, the order of the T-matrix of A;OEZ’ /
is p. By [22, Lemma 2.2], there exists a level p representation (p, C#2(P)) of SL»(Z)
associated with A;OZZJ, and we set t = p(t). Then, by Theorem 5.14, (p, Ce2(P) is a

minimal irreducible representation of SL,(Z) of type a where ;g = t1.1. Therefore, by
Lemma 5.6,

(o, C2P) = (nf,C»P),  where j = (%)

For any | € (Z/2pZ)*, define 0; € Gal(Q,/Q) by 01(¢p) = ;;,. Since p(a) is
a matrix over Q,, for any a € SLy(Z) (cf. [22, Thm. II]), p;(a) := o;(p(a)) defines
another level p representation of SL,(Z), and (p;, C#2(P)) is a representation of SL,(Z)

associated with Afvolz ;- Since oy(f1,1) = ;I‘,’l, we have

[
(o1, CPP)) = (), C#P)), where ji = (“—)
‘ p

Therefore, every level p minimal irreducible representation of SL>(Z) is equivalent to a
representation of SL,(Z) associated with AI(DOIZ, ; forsome [ € (Z/2p7Z)*, as desired. O
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Corollary 6.2. Let n = py ... pg for some distinct primes p1, ..., pe > 3. Then every
level n minimal irreducible representation of SLy(Z) is equivalent to a representation
of SLa(Z) associated to a transitive modular category

_ 10 0
D= AP1—2,11 b9 Ape—llz

forsomel, € (Z)2p,2)*,a=1,...,4L

Proof. Let (¢, V) be alevel n minimal irreducible representation of SL,(Z). By Lemma
5.6, there exists level p, minimal irreducible representation (nf.a “, V,) of SL»(Z) for each

a=1,...,£such that
(9, V)= (77;711, VD® - ®(77ff, Ve)

where V, = C#2(P«) ByLemma6.1, (1 Z “ V,)isequivalent to arepresentation (o4, Vp,)

of SL,(Z) associated with a transitive modular category D, = Agl)_z L for some

lo € (Z2psZ)*. Let D = Dy X --- X Dy. Then D is transitive by Proposition 4.4
and

(pv VD) = (/Ol’ V'D])@ : '®(p€a V'D[)

is a representation of SL,(Z) associated with D. Now, we have

(¢, V) = (p, VD).
O

Theorem 6.3. Let C be a nontrivial prime and transitive modular category. Then the
order of the T-matrix is a prime number greater than 3.

Proof. By Theorem 5.14, ord(T¢) = N is odd and has a prime factor p > 3. It fol-
lows from [22, Lem. 2.2] that there exists a level N representation (p, V¢) of SL2(Z)
associated with C. Again, by Theorem 5.14, (p, V) is minimal and irreducible.

Suppose N is not a prime. Then N = pg for some odd square-free integer ¢ not
divisible by p and all the prime factors of g are greater than 3. In particular, ¢;(g) > 1.1In
view of Lemma 5.6, there exist minimal and irreducible SL; (Z)-representations (¢, Vi)
and (¢, V») of levels p and g respectively such that

(0, Vo) = (¢1, V1) ® (¢2, V2). (6.33)

It follows from Lemma 6.1 and Corollary 6.2 that there exist modular categories Bi, B2
such that (¢;, V;) is equivalent to a representation (p;, Vj,) associated with B; and

B = A;Olzyl for some [ € (Z/2pZ)™.

Note that (p1, V5,)®(p2, V3,) is a representation of SL;(Z) associated with B = B X
B> and

(p, Ve) = (p1, VB)®(p2, VB,). (6.34)

Note that the eigenvalues of p(t) are all distinct.
Let E; be the standard basis for V,. Then, E; is an eigenbasis of p; (t) and

Ep = {x1®x2 | (x1,x2) € E1 X E3}
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is an eigenbasis of p1 (H)®p2(t) for Vg = V5, ®Vp,. Since E¢c = {ex | X € Irr(C)} is
an eigenbasis of p(t) = ¢ for V¢, the equivalence (6.34) implies there exists a bijection
® : Irr(C) — Ep x E3, which is defined as follows: for any X € Irr(C), there exists a
unique pair (x1, x2) € E1 x Ej satisfying

(P1(OR®P (1)) (x1®x2) = tx x - X1®x2,

and we define ®(X) := (x1, x2).

Let ®(1) = (b1, b), and D := & YE; x {bp}) C Irr(C). Let D be the full
subcategory of C additively generated by the simple objects whose isomorphism classes
are in D, i.e. D is a semisimple subcategory of C with Irr(D) = D. We proceed to show
D is a fusion subcategory of C.

By [10,Lem. 3.17], there exists an intertwining operator U : (p, V) — (p1®p2, VB)
such that for any X € Irr(C), U(ex) = Uy, x,) X1®x2 for some scalar Uy, r,) = £1
where ®(X) = (x1,x2). Let s®) = p;(s) fori = 1,2 and s = p(s). Then for any
X,Y e Irr(C), we have

1
SX,y = s)(cl)yl )(Cz)yzU(xl XZ)U(YI 2)»

where ®(X) = (x1, x2), ®(Y) = (y1, y2) € E1 x E>. By the Verlinde formula, for any
X,Y € Dand Z € Irr(C), we have

7 SX,WSY, WSz, w
NX’Y B S1,wW
Welrr(C) ’

@ D (@ 2 3
Sxr,wi Sy wiSzi,w ( ) S22, wzU(xl,bz)U(yl,bz)U(Zl,Zz)U(wl,wz)

. Shy,wn
- Z (D ( )

(wi,wp)eB Spi,wiShy,wo Uby,b2) Uwy,wo)

where CI>(X) (x1,b02), ®(Y) = (y1,b2), ®(Z) = (21, 22) and ®(W) = (w1, w2).

Since U(w] wy) = =1, we have
I (D -
NZ U1,b0) Uy1,b2) Uz1,22) Z Sxi,wiSyr, w1 Sz1,wy 2 (@
XY = Up, b (1) by, wp72, W2
(b1,b2) wiE€B sbl w1 wrEBy

M M
U1,b0)Uy1,b0) Uz1,22) Z Sx1wi Syrwi Sz71.w)

(1) ’
U, .by) w1 B, Spywi

= 5172,22

where the last equality is based on the fact that s® is symmetric and unitary. Therefore,
N )%,Y = 0 whenever Z ¢ D. Thus, D is closed under the tensor product of C and hence
a fusion subcategory.

By Theorem 3.9, D is a modular subcategory of C. Since p > 3, we have | Irr(D)| =
|[E1] = ¢2(p) > 1 so D is nontrivial. Moreover, since C is prime, C = D and so
@2(p) = | Irr(C)|. Therefore, ¢2(q) = 1, a contradiction! Therefore, N is a prime. O

Now, we can prove our major theorem of this section.
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Theorem 6.4. Let C be a nontrivial transitive prime modular category. Then C is
equivalent to Aéolz ; for some prime p > 3 and | € (Z/2pZ)* as modular categories.
Moreover, the set

(AD, 11 e @/2p2))

is a complete set of inequivalent transitive prime modular categories whose T-matrices
are of order p.

Proof. Suppose C is a nontrivial transitive prime modular category, then by Theorem
6.3, ord(7¢) is a prime p > 3. It follows from [22, Lem. 2.2] that there exists a level p
representation (p, V) of SL;,(Z) associated with C. Let (s, ¢) denote the corresponding
normalized modular data (s, t) of C. By Theorem 5.14, (p, V) is minimal and irre-

ducible. In view of Lemma 6.1, there exists a modular category D = Ag)lz ; for some
[ € (Z/)2pZ)* and a level p representation (p’, Vp) associated with D such that

(p, Vo) = (o', VD).

Let (s’, t’) be the normalized modular data of D corresponding to (o, Vp). Recall that
Irr(D) ={V; |d € D}y where D ={2j | 0 < j < (p — 3)/2}. We simply write e, for
the basis element ey, for Vp, and the entry p’(a)y, v, as p'(a),,5 for any a € SLy(Z).
As in the proof of Theorem 6.3, we have a bijection ® : D — Irr(C) by comparing
the eigenvalues of the images of t: for ¢ € D, we define ®(a) := X € Irr(C) if
pPMx x = pl(t)a,a-

To simplify notations, we denote S¢ (), o») by Sq,p for any a,b € D. By [10,
Lem. 3.17], there exists a diagonal matrix U, indexed by D, of order at most 2 such that

s =Us'U.
Let x = ®~!(1). Then for any a, b, ¢ € D, the Verlinde formula yields the equations

— roo o
o) _ N Sa,jShjScj _ UaaUbbUce x 5a,j%,j%,
Nowon =D~ 0= D
jeD o *.% jeD X,J
Since D is transitive, there exists o € Gal(Q,/Q) such that 5 (Vy) = Vj and we simply
write 6 (x) = 0. Applying o to the preceding equation, we find

/ / 7
®(c) . Ua,a Ub,bUc,c go(a)eq (b)eqs () S&(a),jsﬁ(b),jsé(c),j
Now.om =" 2 /
X,X jeD Eo (x) sO,j
VL0
V) Vow)

Vs (o)

. . . D (c)
Since the fusion coefficients Ng ) ¢ and Ny, o Vs

are nonnegative, we have

d(c) Vs .
Nd)(a)’(b(b) = NVa(a),Va(m for all a, b, c € D. Therefore, the assignment

®(a) = Vs, forae D,

defines a Z,-based ring isomorphism between K((C) and Ko (D). By Lemma 4.2, C is

equivalent to .A;Olz’ ; as modular categories for some [ € (Z/2pZ)*.

The second statement is an immediate consequence of Lemma 4.2 and Proposition
4.3. O
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Finally, we establish the complete classification of nontrivial transitive modular cat-
egories.

Theorem 6.5. Let C be a nontrivial modular category. Then C is transitive if and only
if C is equivalent to a Deligne product @fl:l/l(p(l)_l 1, as modular categories for some
distinct primes p1, ..., pg >3 andl, € (Z/2p,Z)* .

Proof. If C is transitive, then by Theorem 5.14, ord(7¢) = pj ... pe for some distinct
primes p1, ..., p¢ > 3. It follows from Theorem 3.11, C can be uniquely factorized into
a Deligne product of prime transitive modular categories up to the ordering of factors.

Therefore, by Theorem 6.4, C is equivalent to X‘ﬁ:lAgl)—z ;, as modular categories for
some l, € (Z/2p ).
The converse of the statement follows directly from Proposition 4.4. O

In view of Theorem 6.5, nontrivial transitive modular categories C up to equivalence
are uniquely parameterized by a pair (n, [) in which n = ord(7¢) is a square-free integer
relatively prime to 6 and / is a congruence class in (Z/2n7)>, which can be determined
by the anomaly o (C).

7. Transitivity of Super-Modular Categories

In this section, we investigate super-modular categories with transitive Galois actions.
We first recall the definition of super-modular categories and the Galois group actions
on their reduced S-matrices.

The tensor category of 7Z/27-graded finite-dimensional vector spaces over C
equipped with the super braiding S is denoted by sVec. This braided fusion category sVec
is symmetric and it can be endowed with two inequivalent spherical structures. The non-
trivial simple object f* € sVec is a fermion that means f® f = 1 and By f = —idfgy.
The two inequivalent spherical structures on sVec are distinguished by ds = 1. The
corresponding premodular categories are respectively denoted by sVec, withdy = e.

A premodular category C is called super-modular or a super-modular category over
sVec, if C’ is equivalent to sVec, as premodular categories for some ¢ = +1. Let f
be the transparent fermion of C. Then, for any X € Irr(C), we have dxg s = edx and
Oxg s = —ebx by the twist equation (2.3). Hence, f®X Z X. The transparent fermion
f € C may also be denoted by f¢ if the context needs to be clarified.

The group Irr(C") = {1, f} = Z/27Z acts on Irr(C) by tensor product. We denote by
X the Z/27Z-orbit {X, f®X} of Irr(C), and set of Z/2Z-orbits by Irr(C). By the above
discussions, this Z/2Z-action is fixed-point free, and so there exists a complete set of
representatives I1¢c of Irr(C) such that 1 € Il¢ and I¢ is closed under taking duals. We
call such a set I1¢ of simple objects of C a basic subset of Irr(C), and we simply denote
[1¢ by IT when there is no ambiguity. In general, Irr(C) = [T U (f ® IT) and there is no
canonical choice of IT unless C is a split super-modular category, i.e., C >~ D X sVec,
as premodular categories for some modular category D and some ¢ € {£1}. We call a
super-modular category C non-split if C is not a split super-modular category.

With respect to the decomposition Irr(C) = [T U (f ® IT), the S-matrix of C admits
the block form
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where Sis a symmetric invertible matrix indexed by I1, called the reduced S-matrix of C.
The reduced S-matrix S of C has the unitary normalization § = Y2 _ & which satisfies

Vdim(C)

a Verlinde-like formula [40]. Since C embeds into Z(C) as a premodular subcategory, S
is defined over Qn where N is the Frobenius—Schur exponent of C or the order of the
T-matrix of Z(C) (cf. [43]). The reduced S-matrix of C will be denoted by S‘C when the
clarification is necessary.

It is immediate to see that Q(S) = Q(S) € Q. Similar to modular categories,
we define G¢ = Gal(Q(S)/Q). By [40, Sec. 2.2], for any Galois extension E over
Q containing Q(S) and o € Gal(E/Q), there exists a unique permutation ¢ on IT

satisfying
o ( AX’Y) = 2Xo) (7.35)

S1.y S1.6(v)

for any X,Y € II (see also [14]). The permutation ¢ on IT induces a permutation on
Irr (C), namely & (X) := 6 (X) for X € I, and we denote this permutation on Irr(C) by
the same notation . This gives rise to an action of Gal(E /QQ) on Irr(C) by the restriction
to Q(S). In particular, Gal(@/ Q) acts on Irr(C). Note that the action of Gal(@/ Q) on
Irr (C) is independent of the choices of IT.

Since the group homomorphism *: G¢ — Sym(Irr(C)) is injective, we will identify
G withtheimage of * as for modular categories. In other words, forany o € Gal(Q/Q),
we use 6 to denote both the Galois automorphism on Q(S) and the associated permutation
on Irr(C). Again, we denote the set of Gal(Q/Q)-orbits of Irr(C) by Orb(C).

Definition 7.1. We call a super-modular category C transitive if the Gal(Q/Q)-action
on Irr(C) is transitive.

We first derive some properties of the Galois actions on super-modular categories.
The following lemma is an analog of [11, Prop. 3.6].

Lemma 7.2. Let C be a super-modular category. Then for any o € Gal(Q/Q), dx isa
totally real algebraic unit for X € 6 (1).

Proof. Let I be a basic subset of Irr(C). By [40, Lem. 2.2], for any o € Gal(Q/Q), we
have
) dim(C)

&(1) - m (736)

Since U?Ciﬁm—nf(cc))) has algebraic norm 1, and ds (1) is a totally real algebraic integer (see
[28]), ds 1) is a a totally real algebraic unit. Now the statement follows from the fact

that 6 (T) = {6.(1), f®6 (1)} and g5 ) = d2 ). -

On split transitive super-modular categories, we begin with the following lemma.

Lemma 7.3. Let D be a modular category. Then the split super-modular category C =
D K sVec, for any ¢ = +1 is transitive if and only if D is transitive.

Proof. We can take I1 = Irr(D). The Gal(@/@)-action on Irr(C) is equivalent to its
action on I1, which coincides with the Gal(QQ/Q)-action on the modular category D.
Therefore, the statement follows. O



Modular Categories with Transitive Galois Actions 1303

Combining Lemma 7.3 and Theorem 6.5, we obtain the full classification of split
transitive super-modular categories.

Theorem 7.4. Let C be a nontrivial split super-modular category. Then C is transitive
if and only if C is equivalent to <®5=1A;0a)_2 la) X sVec, as premodular categories for

some ¢ € {X1}, distinct primes p1, ..., p¢ > 3and (I, ...,ly) € (Z]2p1\Z)* x --- X
(Z]2peZ2)*. O

Transitive super-modular categories have similar properties as transitive modular
categories. For example, the following lemma is parallel to Proposition 3.2.

Lemma 7.5. IfC is a transitive super-modular category, then we have |G¢| = | Irr (C)| /2.

Proof. Since G¢ acts transitively on Irr(C), G¢ is regular and so
|Gel = [Irr(O)] = [1rr(C)|/2.
O

Therefore, for any transitive super-modular category C with a basic subset IT of Irr (C),
we can identify G¢ with IT via 6 +— 6(1). Under this identification, we will simply
denote f ® 6 by fo6 for any 6 € G¢. Now, we can compare the following theorem to
Lemma 3.3 and Theorem 3.5.

Theorem 7.6. Let C be a transitive super-modular category with a basic subset T1 of

Irr(C). Let S be the reduced S-matrix of C indexed by G¢ according to the preceding
identification of G¢ and T1. Then:

(i) Forany o, 1 € Ge, we have 3'3711 = 0 (dp)ds = 1(ds)dy. In particular, all entries
of S and S are totally real algebraic units.
(ii) Forany 6, i € G, if 6 # [i, then dﬁ # dl%. In particular, if i # 1, then dﬁ # 1
and i(dim(C)) # dim(C).
(iii) Forany X € Irr(C), ifd)z( € Z, then X € {1, f}. For any fusion subcategoryD C C,
if f € D, then D is a super-modular category, otherwise, D is a modular category.
In particular, C has no nontrivial Tannakian subcategory.

(iv) Q(S) = Q(dim(C)) = Q(ds | 6 € Ge).

Proof. The first equality of statement (i) follows from (7.35) by setting X = 1, Y =1,
and the second equality follows from the fact that S is symmetric. Consequently, by
Lemma 7.2, all entries of S and S are totally real algebraic units.

Now we have (i) and (7.36), the proof of (ii) and (iv) are the same as that of Theorem
3.5 (i) and (iii) by replacing S by .

For statement (iii), assume X € Irr(C) satisfies d)Z( € Z. By the above discussions,
since C is transitive, there exists 6 € G¢ such that X = 6 or X = f¢. In either case,
we have d)zf = dg € Z.By Lemma 7.2, d;; is a real algebraic unit, so d)z( = a’(% = 1.
Consequently, by (ii), we have 6 = 1. Therefore, X =1 or X = f.

Let D C C be any fusion subcategory. Then D is a premodular subcategory of C.
Since the Miiger center D’ of D is a symmetric fusion subcategory of C, we have d)% S/
for any X € D’. Therefore, we have Irr(D’) C {1, f} and hence D is super-modular
(resp. modular) if and only if f € D (resp. f ¢ D). Finally, if D is a Tannakian
subcategory of C, then f ¢ D and so D is modular. Therefore, D braided equivalent to
Vec, and this completes the proof of the theorem. O
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By definition, a super-modular category over sVec, for some ¢ = =+1 is a nonde-
generate braided fusion category over sVec according to [18]. Therefore, if A and B are
super-modular categories over sVec,, then their tensor product AX B = (AKX B)4 is a

sVec

nondegenerate braided fusion category over sVec, where A = 14 X1 ® f4 X fgisa
connected étale algebra in A X B. It is immediate to see that dim(A) = 2 and 64 = id4
for any ¢ = %1. Therefore, A X B admits a spherical structure inherited from A X B

sVec

by [35] , which implies that A X B is a super-modular category.

sVec

Consider the forgetful functor G : AX B — AKX B, and the free-module functor

sVec

F: AXB — AXBdefinedby F(XKXY) = (XXY)®Afor X € A, Y € B. According

sVec

to [35], F is a surjective tensor functor, and G is right adjoint to F. Let dim 4 (M) denote
the categorical dimension of any object M € A X B. We have

sVec
dimg(F(X X Y)) =dimyxgp(X X Y) = dimy(X) - dimp(Y)
forany X € A and Y € B. Therefore, F : AX B — AKX B preserves the spherical

sVec
structures (cf. [42]).
Since f4 X fp acts freely on Irr(A X B), F(X X Y) is simple for any X € Irr(A)
and Y € Irr(B). The transparent fermion of A X 5 is given by

sVec

F(fAaX1p) = fARIg@ T4 X fp=F(4 X fB) (7.37)

and

dim (F(fa W 1p)) = dimy(f4) =&

Therefore, AX B is a super-modular category over sVec,. This proves the first statement

sVec

of the following lemma.

Lemma 7.7. Let A and B be super-modular categories over sVec for some ¢ € {+1}.
Then:

HCc:=A4 & B is a super-modular category over sVecg,

Ir(C) ={F(XXY) | (X,Y) € Irr(A) x Irr(B)},
and
dimsg(F(X X Y)) = dxdy

forany X € AandY € B.
(ii) Let T1 4 and T1g be basic subsets of Irr(A) and Irr (B) respectively. Then

Me={F(XXY)|(X,Y) ey x g}

is a basic subset of Irr(C). Moreover; the correspondmg reduced S-matrix SC of C is
given by the Kronecker product Sc =3 A®S B-

Proof. We continue the preceding discussions to prove (ii). For any X € Irr(A) and
Y € Irr(B), we have

GFIXRY)ZXXY ®(X®f4) X YRfB).
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Therefore, for any (X, Y) # (X', Y') € Irr(A) x Irr(B),
F(XKY)= F(X')RY') ifand only if X' ® Y’ = (X®f4) K (Y& f5).

Forany (X, Y), (X', Y) e lI4 x g, X' XY Z (X®f4) K (YR fB) by the definition
of a basic subset. Since F is a tensor functor, 1o € ¢ and I¢ is closed under taking
dual. It follows from (7.37) that

Irr(C) = I¢ U (fe®Te)

where fc = F(1 4 X fg). Therefore, Il is a basic subset of Irr(C).
By [35, Thm. 4.1], for any (X, Y), (X', Y') € T14 x IIg,

dim(A)(S¢) xRy, xRy’ = (SARB) xKy,x' Ky’ + (SAKB) XRY,(f10X)K(f5RY")
=28 0x,x (SB)x"y

where XX Y = F(X X Y). Since dim(A) = 2, we have

(So)xmy xRy = (S x,x (SB)x' vy’

which is equivalent to S'C =S AR 3’3. O
Recall the definition of the fiber product in Section 2.3.

Corollary 7.8. Let A, B be super-modular categories over sVec, for some ¢ = £1 with
basic subsets T1 4 and Tl of simple objects of A and B respectively. Let C := AX B

and F = Q(S.4) N Q(Sg). Then: "

(1) Themap g : G — G 4eGp, g(6¢) = (6.4, 6B), defines an isomorphism of groups,
and

IGAl-1G3]
Go|l= — 2,
Gel [F: Q]

(ii) For any o € Gal(Q/Q), X € [T 4 and Y € T, we have
6e(F(X K Y)) = F(64(X) Xép(Y)).

(iii) | Orb(A)| - | Orb(B)| < | Orb(O)| < | Orb(A)| - | Orb(B)| - [F : QI.
(iv) If A and B are transitive, then

Gal - Gl | |
| Orb(C)| = T Gel [Q(dim(A)) N Q(dim(B)) : Q.

Proof. In view of Lemma 7.7, by replacing Irr(A), Irr(B), Irr(C) respectively with
[T 4, 1B, and the associated Il¢, the statements (i)-(iii) can be proved in the same
way as Lemma 2.1, and the proof of (iv) is similar to that of Proposition 3.12. O

Proposition 7.9. Let C be a super-modular category over sVec, for some ¢ = £1. If A
is a super-modular subcategory of C, then both A and its Miiger centralizer B = C¢(A)
are super-modular categories over sVec,, and there is an equivalence of premodular
categories over sVec,

Cx~AXB. (7.38)

sVec
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Proof. 1t is clear that A is a super-modular over sVec,. Note that C’ is a premodular
subcategory of BB, which is a nondegenerate braided fusion category over sVec by [18,
Prop. 4.3]. Therefore, by Lemma 7.7, B and .A X B are super-modular categories over

sVec

sVec,.
By [18, Prop. 4.3], there exists a braided tensor equivalence .A X 3 >~ C over sVec.

sVec

In fact, the tensor product functor ® : AKB — C, X XY — X®VY, forany X € A
and Y € B, defines an essentially surjective braided tensor functor. This braided tensor

functor descends to a braided tensor equivalence ® : A X B = C over sVec, which

sVec

satisfies the commutative diagram

AN B ® s C

™ /g . (7.39)

AX B

sVec

By Lemma 7.7, any simple object in A ? B is isomorphic to F(X X Y) for some
(X,Y) € Irr(A) x Irr(B) and

dlmA(F(X X Y)) = dXdY = dX@Y = d@(F(XIZ’Y))

Therefore, ® preserves spherical structures, and hence is an equivalence of premodular
categories. O

Corollary 7.10. Let C be a transitive super-modular category. Then any fusion subcat-
egory of C is transitive modular or super-modular.

Proof. By Theorem 7.6 (iii), any fusion subcategory A C C is either modular or super-
modular. Assume first that A is super-modular. In view of Proposition 7.9 and Corollary
7.8, the proof of transitivity of A is the same as that of Theorem 3.11 with the sets
Irr(A), Irr(B) and Irr(C) of irreducible objects replaced by basic sets of simple objects
I1 4, [ and the corresponding I1¢. Now, we assume A is modular. Then D := Av (/,
the fusion subcategory of C generated by A and C’, is a super-modular subcategory of
C. By the above discussions, D is transitive. Therefore, by Lemma 7.3, A is transitive.
O

Corollary 7.11. Let A, B be super-modular over sVec, for some ¢ = £1. Then AX B

sVec

is transitive if and only if the following two conditions hold: both A, B are transitive,
and Q(dim(A)) N Q(dim(B)) = Q.

Proof. LetC = AX B be transitive. Then both .4 and B are transitive by Corollary 7.10.

sVec

Therefore, by Corollary 7.8 (iv), we have
| Orb(C)| = [Q(dim(A)) N Qdim(B)) : Q] =1,
and so Q(dim(A)) N Q(dim(B)) = Q.
Conversely, it follows immediately from Corollary 7.8 (iv) that if A and B are tran-

sitive, and Q(dim(A)) N Q(dim(B)) = Q, then C is transitive. O

The following definition generalizes the primality of modular categories.
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Definition 7.12. Let £ be a symmetric fusion category, and C a nondegenerate braided
fusion category C over £. We say that C is £-prime if it has no nondegenerate braided
fusion subcategory over £ except £ and C. An £-prime braided fusion category is called
E-simple if it is not pointed. For £ = sVec, we simply use the terms s-prime and s-simple
instead of sVec-prime and sVec-simple.

Note the definition of £-simple categories is consistent with the definition of s-simple
categories introduced in [18]. We will call a super-modular category trivial if it is braided
equivalentto sVec. In particular, sVec are trivial. In view of Theorem 7.6 (iii), nontrivial
s-prime transitive super-modular categories are s-simple. Now we can state and prove
the prime decomposition theorem for transitive super-modular categories (cf. Theorem
3.11).

Theorem 7.13. Let C be a nontrivial transitive super-modular category over sVec, for
some ¢ = £1. Then

C~CIX---KCy, (7.40)
sVec sVec
as premodular categories, where Cy, . .., Cy, form the complete list of inequivalent s-

simple subcategories of C. Moreover, such factorization into s-simple super-modular
categories over sVec, of C is unique up to permutation of factors.

Proof. By Theorem 7.6 (iii), C has no Tannakian subcategory other than Vec and C =
C’ ~ sVec,. According to [18, Thm. 4.13] (i) and Proposition 7.9

C=CiI---XCpy

sVec sVec
as premodular categories for some s-simple subcategories Cy, ..., C, of C. It follows
from Corollary 7.11 that Cy, ..., C,, are transitive and
Q(dim(C;)) N Q(dim(C)/ dim(C;)) = Q
for any i = 1, ..., m. In particular, these s-simple super-modular subcategories of C

have distinct global dimensions. According to [18, Thm. 4.13] (ii), Cy, ..., C,, are all
the s-simple super-modular subcategories of C. Thus, if

CxDiX..-XD,

sVec sVec
as premodular categories for some s-simple super-modular categories Dy, ..., D, over
sVec,, then they are equivalent to a complete list of inequivalent s-simple super-modular
subcategories of C. Therefore, m = n and the statement follows. O

Now, we demonstrate a family of transitive non-split super-modular categories de-
rived from quantum group modular categories.

According to [7], for any k > O and [ € (Z/8(k + 1)Z)*, the category C = "44(1(/)()+2, /
(see Section 4) is super-modular with Irr(C) = {V3; | 0 < j < 2k + 1}. The fermion of
C is V442. By the fusion rules (4.12), we have V2 ® Vagi2 = Vars2—2;. In the following
discussions, we choose

Mo ={V2; |10 <) <k}

When k& = 0, C is braided equivalent to sVec, and when k£ > 1, C is non-split.



1308 S.-H. Ng, Y. Wang, Q. Zhang

Proposition 7.14. For any k > 1, the super-modular category AE&LZ | Is s-simple.

Proof. First, we show that any nontrivial fusion subcategory of C is either C or C’.
Recall that Cpy = C’ and Irr(C’) = {1, Vars2}. Assume that D is a nontrivial fusion
subcategory of C and D is not pointed. Then D has a simple object X which is not
invertible, and so X = V,; for some 1 < j < 2k. In particular, we have 4 > 4, and
2(4k +2) — 4j > 4. So by the fusion rules, N22j,2j = 1, which means D contains V5.
Since V, tensor generates C, we have D = C. Therefore, C is s-prime. Since k > 1,
C # sVec, so it is s-simple. O

Proposition 7.15. Let C = AY),, | for some integer k > 1 and | € (Z/8(k + )Z)*.
Then C is transitive if and only if k = 2* — 1 for x > 1.

Proof. Recall that the quantum parameter of C is ¢! = exp( 4(%1) ), and Q(S) is a real
subfield of Qgk+1), so |G¢| divides ¢(8(k + 1))/2, where ¢ is the Euler phi function.
Assume C is transitive. Then |ITg| = k + 1 must divide ¢ (8(k + 1)) /2.

We first observe that k must be odd. Suppose & is even. Then k + 1 > 3 is an odd
integer, and so ¢(8(k + 1))/2 = 2¢(k + 1). Therefore, k + 1 | ¢(8(k + 1))/2 implies
k+1 | ¢(k+1). This divisibility does not hold for any £k > 0. Therefore, k must be odd.

Letk+1 = 2w, where x > 1 and w is odd. Then ¢(8(k +1))/2 = 2**1p(w). Since
k + 1 divides ¢(8(k + 1))/2, we have w | 2¢(w) and hence w | ¢(w). This can only
happen when w = 1, or equivalently, k = 2* — 1.

Conversely, assume k = 2¥ — 1 forx > 1 and C = Ag,)()ﬂ! ;- With respect to our
choice of Iy, forany 0 < a, b < k, we have

S2a.2 = [(2a+1)(2b +1)],1.

Following the same argument as in the proof of Proposition 4.3, one can show that C is
transitive. More precisely, since Q(S) C Qg+1) = Qy3, forany 0 < j < k, we have
ged(2j + 1,2**3) = 1. So there exists o € Q,u3 such that o (q) = ¢g>/*!. Therefore,

S, [2i + 1)(2j + D] Soin
o[22 ) =oi+11,) = ( _)( J+ DIy 20.2)
S0,0 [2) + 1]q1 S0,2;

In other words, 6 (V) = V2, and hence C is transitive. O

In light of Theorem 6.5, it is natural to ask whether there are other non-split transitive
super-modular categories that are s-simple, and we propose the following question at
the end this paper.

Conjecture 7.16. The quantum group categories in Proposition 7.15 are all the s-simple
non-split transitive super-modular categories up to Galois conjugates and spherical
structures.
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