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Recent work has considered personalized route planning based on user pro�les, but none of it accounts for
human trust. We argue that human trust is an important factor to consider when planning routes for automated
vehicles. This paper presents a trust-based route planning approach for automated vehicles. We formalize the
human-vehicle interaction as a partially observable Markov decision process (POMDP) and model trust as a
partially observable state variable of the POMDP, representing the human’s hidden mental state. We build
data-driven models of human trust dynamics and takeover decisions, which are incorporated in the POMDP
framework, using data collected from an online user study with 100 participants on the Amazon Mechanical
Turk platform. We compute optimal routes for automated vehicles by solving optimal policies in the POMDP
planning, and evaluate the resulting routes via human subject experiments with 22 participants on a driving
simulator. The experimental results show that participants taking the trust-based route generally reported
more positive responses in the after-driving survey than those taking the baseline (trust-free) route. In addition,
we analyze the trade-o�s between multiple planning objectives (e.g., trust, distance, energy consumption)
via multi-objective optimization of the POMDP. We also identify a set of open issues and implications for
real-world deployment of the proposed approach in automated vehicles.
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1 INTRODUCTION
Recent years have witnessed signi�cant advances in the development of automated vehicles, which
have already been tested over millions of miles on public roads [4]. However, fully autonomous
vehicles that do not require human intervention are still decades away due to technology, infrastruc-
ture, and regulation limitations [21]. The majority of automated vehicles available to the general
public nowadays are Level 2 and Level 3 of automation [15], which allow the driver to turn attention
away from the primary task of driving, but the driver must still be prepared to take over control of
the vehicle when necessary. The human’s decision on whether or not to rely on the automation
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is guided by trust. Prior studies have found that distrust is the main barrier to the adoption of
automated vehicles [30]; in addition, users with lower trust levels take over control of the vehicle
more frequently [31]. On the other hand, overtrust in automation can lead to catastrophic outcomes
(e.g., fatal Tesla autopilot crashes [3]). Thus, it is important to take into account the in�uence of
human trust when developing automated vehicles. In this paper, we consider the problem of route
planning for automated vehicles that account for trust.

Existing route planning methods (e.g., [7, 22, 29]) mostly focus on computing routes that optimize
distance, time, and energy consumption metrics. Several recent works (e.g., [11, 16, 50]) consider
personalized route recommendations based on user pro�les (e.g., mobility options, frequently
visited places). However, none of these existing methods explicitly account for human trust. We
argue that human trust is an important factor to consider when planning routes for automated
vehicles. For example, if the driver has lower trust in the automated vehicle’s capability for safely
navigating urban streets with pedestrians constantly crossing as opposed to freeways, the driver
may prefer a freeway despite longer distance.
In this work, we follow the notion of trust in automation de�ned in [38], which views human

trust as a delegation of responsibility for actions to the automation and willingness to accept
risk (possible harm), while the decision to delegate is based on a subjective evaluation of the
automation’s capability for a particular task. To concretize the problem, we consider a motivating
example where the automated vehicle may encounter three types of typical road incidents (i.e.,
pedestrian, obstacle, and oncoming truck). Trust is therefore a�ected by the human’s takeover
decisions and the vehicle’s capability of handling an incident. We adopt the commonly used method
of measuring the subjective belief of trust via user questionnaires. Speci�cally, we designed and
conducted an online user study with 100 participants on the Amazon Mechanical Turk platform.
We asked users to watch various driving videos recorded in the driver’s view and answer questions
about their trust in the automated vehicle’s capability of safely handling the incident shown in the
video on a 7-point Likert scale. They were also asked whether they would like to take over control
of the automated vehicle, imagining that they were the driver. We model the evolution of trust
dynamics (i.e., how trust changes over time) as a linear Gaussian system using data collected from
the online user study. We also build data-driven models to predict human takeover decisions.
We formalize the human-vehicle interaction as a partially observable Markov decision process

(POMDP), which is a general modeling framework for planning under uncertainty [27]. We model
trust as a partially observable state variable of the POMDP, representing the human’s hidden mental
state. In addition, there are three observable state variables representing the vehicle position, the
incident type, and the success/failure of the vehicle handling an incident. The estimated trust
dynamics model informs the probabilistic transition function of the trust variable in the POMDP.
There are two actions: the human’s takeover decision and the vehicle’s route choice. Since the
vehicle does not know about the human’s actual takeover decisions in advance, it assumes that
humans follow the data-driven takeover decision models estimated using the online user study
data. The goal of POMDP planning is to compute an optimal policy that makes route choices which
maximize the expectation of the cumulative reward, with a reward function designed to promote
better user satisfaction and safety of automated vehicles.
We applied the proposed trust-based route planning approach to the motivating example and

obtained two routes: a trust-based route where a human makes takeover decisions based on trust
dynamics and incidents, and a trust-free route (as a baseline for comparison) where the human’s
takeover decisions only depend on incidents. We evaluated and compared the performance of these
two routes via human subject experiments on a driving simulator. We conducted experiments with
22 participants, who were randomly assigned to two equal-sized groups for the between-subject
study (each group has 11 participants, who took one of the two routes). The experimental results
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show that participants taking the trust-based route generally reported more positive responses in
the after-driving survey than those taking the trust-free route.
Contributions. We summarize the major contributions of this work as follows.

• Wedeveloped a trust-based route planning approach for automated vehicles, which is based on
a POMDP framework and uses data-driven models of trust dynamics and takeover decisions.

• We designed and conducted an online user study with 100 participants on the Amazon
Mechanical Turk platform to collect data about users’ trust in automated driving.

• We designed and conducted human subject experiments with 22 participants on a driving
simulator to evaluate the proposed approach, which showed encouraging results.

This paper is an extended version of our previous work [47]. We add the following two new
contributions.

• We analyzed the trade-o�s between multiple planning objectives (e.g., trust, distance, energy
consumption) via multi-objective optimization of a POMDP.

• We discussed the limitations of the proposed approach and identi�ed a set of open issues
and implications for real-world deployment in automated vehicles.

Paper organization. The rest of the paper is organized as follows. We discuss the related work in
Section 2, describe the motivating example in Section 3, present the trust-based route planning
approach in Section 4, describe the driving simulator experiments in Section 5, analyze the multi-
objective optimization results in Section 6, discuss the limitations and open issues in Section 7, and
draw conclusions in Section 8.

2 RELATEDWORK
In this section, we survey the related work on two topics: (1) route planning for vehicles; and
(2) trust in automation. For each topic, we identify gaps in the state-of-the-art and discuss the
connection with this paper.

2.1 Route Planning for Vehicles
The goal of route planning is to compute the optimal routes for vehicles. The most commonly
used metrics include distance, travel time, and fuel consumption. Graph search algorithms such as
Dijkstra’s algorithm [17] and �* algorithm [24] can be applied to �nd the shortest distance path
between any two locations. Computing the fastest route (i.e., with the least travel time) is more
challenging than �nding the shortest distance route. Kanoulas et al. [29] extended the �* algorithm
by considering the speed change at a di�erent time of the day to compute the fastest route. Gonzalez
et al. [22] developed an adaptive fastest route planning method based on information learned from
historical tra�c data, accounting for various factors (e.g., road quality, weather condition, area
crime rate) that may in�uence vehicle speed patterns. Andersen et al. [7] proposed to �nd the most
eco-friendly route by assigning eco-weights based on GPS and fuel consumption data.
There are several recent studies considering personalized route recommendation for users.

Campigotto et al. [11] developed a method for personalized route planning by using Bayesian
learning to update users’ pro�les such as home location, workplace, and mobility options. Dai
et al. [16] recommended a personalized optimal route considering user preferences encoded as a
ratio between di�erent metrics such as distance, travel time, and fuel consumption. Zhu et al. [50]
proposed a personalized and time-sensitive route planning method, in which they inferred users’
preferences with locations and visiting time through historical data.
None of the aforementioned route planning methods considers human trust. In this paper, we

develop a trust-based route planning approach to �ll this gap.
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2.2 Trust in Automation
Trust in the context of human-technology relationships can be roughly classi�ed into three cat-
egories: (1) credentials-based, which is used mainly in security and determines if a user can be
trusted based on a set of credentials [28]; (2) experience-based, which includes reputation-based
trust in peer-to-peer and e-commerce applications, and determines an agent’s trust value based
on its own experience in predicting the probability of the execution of a certain action by another
agent [33]; and (3) cognitive trust, which explicitly accounts for not only the human experience, but
also subjective judgment about preferences and mental states [20]. In this paper, we are interested
in human trust in automated vehicles, and therefore consider the cognitive trust that captures the
human notion of trust. More precisely, we follow the notion of trust in automation proposed in [38],
which indicates a human’s willingness to rely on automation.

Studies have found that human trust changes over time during the interaction with automation,
a�ected by various factors such as the automation’s reliability, predictability, and transparency [23,
45]. Studies have also shown that trust can in�uence a human’s reliance on automation, and the
system is likely to be under-utilized if humans mistrust the automation [19]. For example, a recent
study found that users with lower trust tended to take over control from automated vehicles
more frequently [31]. Inspired by insights from these prior studies, we develop a data-driven trust
dynamics model to represent the evolution of human trust in automated vehicles and a takeover
decision model to associate the likelihood of human’s takeover decision with trust.

Di�erent methods to measure trust have been proposed. User questionnaires are commonly used
to evaluate the subjective belief of trust [41, 49]. For example, the study in [14] asked questions
about users’ trust in automated vehicles on a 7-point Likert scale. In addition, various sensing
technologies have been used for the continuous measurement of human trust in real-time, includ-
ing gaze tracking [25], gestures (e.g., face touching and arms crossed) [39], and biometrics (e.g.,
electroencephalogram and galvanic skin response) [26]. We measure human trust on a 7-point
Likert scale via questionnaires in the online user study, and via continuous user control input (i.e.,
pressing buttons mounted on the steering wheel) in the driving simulator study.

Existing work on trust in automated vehicles includes investigating factors that in�uence users’
adoption of automated vehicles [36, 37, 46], studying the e�ect of alarm timing on drivers’ trust [5],
designing forward-collision warning system [32] and cruise control system [10] to improve users’
trust. By contrast, this paper develops a route planning approach that accounts for trust to improve
the user experience of automated vehicles.
Several recent works have explored the idea of modeling trust with POMDPs. For example, a

POMDP model for trust-workload dynamics in Level 2 driving automation was developed in [6],
and a POMDP-based method for human-robot collaboration in table cleaning tasks was proposed
in [13]. Our work is inspired by these methods, but di�ers from them in the following aspects. First,
we focus on applying trust-based planning for automated vehicles, which requires di�erent POMDP
modeling from existing work. Second, we designed and conducted human subject experiments based
on driving simulations for data collection and model evaluation. Further, we use multi-objective
optimization of POMDPs to analyze the trade-o�s between multiple planning objectives (e.g., trust,
distance, energy consumption).

3 MOTIVATING EXAMPLE
We describe a motivating example of route planning for automated vehicles. Figure 1 shows an
example map, where three types of typical incidents that may occur on the road are considered:
(1) a pedestrian crossing the road, (2) an obstacle ahead of the lane, and (3) an oncoming truck
in the neighboring lane. We can easily generalize to more complex examples with a richer set of
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Fig. 1. An example map with three types of road incidents (pedestrian, obstacle, and oncoming truck). The
number on each road segment indicates its distance (1 unit = 10 miles).

Fig. 2. A schematic view of an automated vehicle navigating from one location to another. When approaching
an incident, the driver may decide to take over and switch to manual driving. The takeover decision can be
influenced by the driver’s trust in the automated vehicle, which evolves over time.

incidents. For simplicity, we assume that each road segment may have up to one incident at a time.
We also assume that the vehicle has information about the potential incident that it may encounter
in the next road segment. Such information can be easily obtained, for example, via sensing and
crowdsourcing tra�c monitoring apps.

Figure 2 shows a schematic view of the automated vehicle traveling from one location to another.
Suppose that the vehicle is approaching an incident in autopilot mode. Due to safety concerns, the
driver may decide to take over control of the vehicle and switch to manual driving. Such takeover
decisions can be in�uenced by the driver’s trust in the automated vehicle’s capability of handling
di�erent types of incidents: the driver with lower trust is more likely to take over. In addition, the
driver’s trust evolves over time depending on the takeover decision and the vehicle’s capability of
handling an incident.

The goal of this work is to develop a trust-based route planning approach that computes an optimal
route for the automated vehicle (e.g., navigating from A to K in the example map) while taking into
account human trust dynamics and takeover decisions.
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4 TRUST-BASED ROUTE PLANNING
We present a trust-based route planning approach for automated vehicles. The key idea is to model
the human-vehicle interaction as a POMDP and compute the optimal vehicle route by solving the
optimal policy using POMDP planning.

4.1 The Proposed POMDP Framework
Formally, a POMDP is denoted as a tuple ((,�,T ,',$, X,W), where ( is a �nite set of states, �
is a set of actions, T is the transition function representing conditional transition probabilities
between states, ' : ( ⇥� ! R is the real-valued reward function, $ is a set of observations, X is
the observation function representing the conditional probabilities of observations given states
and actions, and W 2 [0, 1] is the discount factor. At each time step C , given an action 0C 2 �, a
state BC 2 ( evolves to BC+1 2 ( with probability T (BC+1 |BC ,0C ). The agent receives a reward '(BC ,0C ),
and makes an observation >C+1 2 $ about the next state BC+1 with probability X (>C+1 |BC+1,0C ). The
goal of POMDP planning is to compute the optimal policy c⇤ that chooses actions to maximize the
expectation of the cumulative reward E[Õ1

C=0 W
C'(BC ,0C )].

Figure 3 illustrates a graphical model of the proposed POMDP framework for trust-based route
planning. We factor the state BC at time C into four variables: EC represents the vehicle position, 8C
represents the road incident, ~C represents the automated vehicle’s capability of safely handling the
incident, and DC is a partially observable variable representing the human’s trust in the automated
vehicle (because trust is a hidden human mental state that cannot be directly observed by the
vehicle agent). We factor the action 0C at time C into two variables: the vehicle route choice 2C and
the human’s takeover decision ⌘C . Given the vehicle’s current position EC and the route choice
action 2C , we can determine the next vehicle position EC+1 by the transition function T (EC+1 |EC , 2C ).
The potential incident 8C that the vehicle may encounter is determined by the vehicle position
with probability T (8C |EC ), and the automated vehicle’s capability of safely handling the incident
8C is given by T (~C |8C ). As discussed in Section 2, trust in automation can be in�uenced by many
factors. Here, we model the evolution of trust dynamics with a probabilistic transition function
T (DC+1 |DC ,~C , 8C ,⌘C ), based on a simpli�ed assumption that trust evolves depending on the takeover
decision and the vehicle’s capability of handling an incident. The intuition is that trust may increase
when the human chooses to not take over andwitnesses the automated vehicle successfully handling

Fig. 3. The POMDP graphical model for trust-based route planning. (Each node represents a state variable.
Shadowed nodes are partially observable variables. Squares represent actions. Arrows represent transition
functions.)
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an incident, and the trust may decrease if the automated vehicle fails to handle an incident. We set
the POMDP discount factor as W = 1.
The vehicle agent does not know about the human’s actual takeover action in advance, and it

computes the optimal POMDP policy c⇤ of route choices 2C based on a model that predicts the
human’s takeover decision ⌘C . We consider two di�erent takeover decision models for comparison:
(1) a trust-free model, denoted by c⌘ (⌘C |8C ,~C ), where the human decides whether to takeover
depending on the incident and a �xed belief on the automated vehicle’s capability to handle
certain types of incidents; and (2) a trust-based model, denoted by c⌘ (⌘C |8C ,~C ,DC ), where a human
makes takeover decisions based on the incident and trust, indicating that the human’s belief in the
automated vehicle’s capability changes over time depending on the trust dynamics.
Consider the motivating example described in Section 3. The vehicle position EC is one of the

locations {�,⌫, . . . , } shown in the map (Figure 1). The incident 8C can take one of the four
values: null, pedestrian, obstacle, and truck. The vehicle’s capability ~C of handling incidents has
binary outcomes: success and failure. Since the human’s trust is a partially observable variable DC
representing the hidden mental state, we use an observation variable D̂C to represent the subjective
trust on a 7-point Likert scale (1 and 7 indicate the lowest and highest levels of trust, respectively)
measured via user questionnaires. The available route choices 2C are given by the map. For example,
in location �, the vehicle may choose one of the three routes colored in yellow, red, and green
to navigate to ⌫, ⇠ , or ⇡ , respectively. The human takeover decision ⌘C is a binary choice of
whether or not to take over control of the vehicle and resume manual driving. We can de�ne the
transition functions T (EC+1 |EC , 2C ) and T (8C |EC ) based on the map. We can estimate T (~C |8C ) based
on the historical testing logs of the automated vehicle safely handling incidents. For the motivating
example, we assume that the automated vehicle can always safely handle incidents (but the human
driver has no prior knowledge about this assumption).

We design a reward function shown in Table 1 for the motivating example. Intuitively, we want
to reward for better safety and user satisfaction of automated vehicles. If the automated vehicle
handles an incident successfully, we assign positive rewards based on the di�culty of driving
tasks. When approaching a pedestrian incident, the automated vehicle needs to stop before the
crosswalk and wait till the pedestrian crossing the road. When approaching an obstacle incident,
the automated vehicle needs to perform lane changing in order to avoid a collision with the obstacle.
When there is an oncoming truck in the neighboring lane, the automated vehicle needs to keep
driving in the same lane. Thus, we rank the pedestrian incident as the most di�cult task and assign
the highest reward value of 3, followed by the obstacle incident with a reward value of 2 and the
truck incident with a reward value of 1. On the other hand, if the automated vehicle fails to handle
an incident safely, we assign rewards based on the severity of the incident (e.g., striking a pedestrian
can cause more serious damage than colliding with an obstacle). We assign zero reward to manual
driving, because we want to promote better a user experience and let the driver enjoy non-driving
tasks (e.g., reading or using mobile devices) in the automated vehicle. In addition, we assign a
reward value of 5 to an empty road (i.e., no incident, thus no failure or takeover) to indicate that
this is the most favorable choice.

Table 1. POMDP reward function

Pedestrian Obstacle Truck
Autopilot (Success) 3 2 1
Autopilot (Failure) -9 -6 0
Manual driving 0 0 0
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Fig. 4. Screenshots of driving videos used in the online user study, covering three types of incidents: (a) a
pedestrian crossing the road, (b) an obstacle (a stopped truck) ahead of the lane, (c) an oncoming truck in the
neighboring lane. Each sub-figure shows: (top) the driver’s view when the automated vehicle is approaching
the incident, (middle) the view of autonomous driving if the driver chooses not to take over, (bo�om) the
view of manual driving if the driver chooses to take over.

For the rest of this section, we describe the design of an online user study for data collection in
Section 4.2; we present a data-driven method to estimate trust dynamics T (DC+1 |DC ,~C , 8C ,⌘C ) and
the observation function X (D̂C |DC ) in Section 4.3; we describe the data-driven modeling of trust-free
takeover decision c⌘ (⌘C |8C ,~C ) and the trust-based takeover decision c⌘ (⌘C |8C ,~C ,DC ) in Section 4.4;
and �nally, we apply the proposed approach to the motivating example and present the computed
optimal routes in Section 4.5.

4.2 Online User Study for Data Collection
We designed and conducted an online user study1 with 100 anonymous participants on the Amazon
Mechanical Turk platform. The objective of this study is to collect data about human trust in
automated vehicles. In particular, we investigated how trust evolves with respect to di�erent
incidents on the road and how a human’s takeover decisions are a�ected by incidents and trust.
We created a set of driving videos using the PreScan driving simulation software [1]. Figure 4
shows screenshots of example videos covering three types of incidents (i.e., pedestrian, obstacle,
and oncoming truck) used in the motivating example.

During the online user study, we �rst established the baseline by asking participants about their
trust in automated vehicles on a 7-point Likert scale (i.e., trust ranges from 1 to 7). Then, we showed
a video of the automated vehicle approaching an incident on the road from the driver’s view,
and asked participants if they would like a takeover control of the vehicle and switch to manual

1This study was approved by the Institutional Review Board (IRB) at the University of Virginia.

8



Planning for Automated Vehicles with Human Trust ACM Trans. Cyber-Phys. Sys, ,

driving, imagining that they were the driver sitting inside the automated vehicle. Depending on the
participant’s response, we showed the next video of the vehicle being driven either autonomously
or manually to handle the incident. After that, we asked participants to �ll in a questionnaire which
estimates their updated trust in the automated vehicle. We adapted Muir’s questionnaire [42] and
asked participants to answer the following questions on 7-point Likert scale:
(1) To what extent can you predict the automated vehicle’s behavior from moment to moment?
(2) To what extent can you count on the automated vehicle to do its job?
(3) What degree of faith do you have that the automated vehicle will be able to cope with similar

incidents in the future?
(4) Overall, how much do you trust the automated vehicle?

We averaged a participant’s responses to these four questions into a single rating between 1 and 7
to represent the participant’s updated trust. We repeated the above process nine times (three times
per incident type) with randomized order of incidents.

We did not include any vehicle crash or near-crash videos in this study due to IRB restrictions on
the ethical obligation and potential risks (e.g., some participants may feel uncomfortable watching
such videos). However, participants were not aware of such information in advance. Instead, we
instructed them tomake takeover decisions based on their trust beliefs about the automated vehicle’s
capability to safely handle certain incidents, which may vary based on their prior experience.

The data we collected from each participant has the following format: {D̂0, 80,⌘0, D̂1, . . . , 88,⌘8, D̂9},
where D̂C is the measured user trust, 8C is the incident type, ⌘C is the user decision of takeover or not,
at each time step C . Our study recruitment criteria required that participants must be able to read
English �uently and have an above 95% approval rate on the Amazon Mechanical Turk platform.
We also inserted questions for attention checks during the study to guarantee the data quality.

4.3 Data-Driven Trust Dynamics Model
As described in Section 4.1, the proposed POMDP framework for trust-based route planning
represents human trust as a partially observable variable DC at time step C , which evolves to DC+1
over time depending on the human’s takeover decision ⌘C and the automated vehicle’s capability ~C
to handle incident 8C . Using the data collected from the online user study described in Section 4.2,
we model the trust dynamics and the POMDP observation function as a linear Gaussian system:

T (DC+1 |DC ,~C , 8C ,⌘C ) = N(UCDC + VC ,f2C )

D̂C ⇠ N(DC ,f2D)
where N(`,f2) represents the Gaussian distribution with the mean ` and the variance f ; UC and
VC are linear coe�cients of trust dynamics given ~C , 8C and ⌘C ; and D̂C represents the observations of
trust measured via subjective questionnaires in the online user study. We estimate these parameter
values using full Bayesian inference with Hamiltonian Monte Carlo sampling algorithm [18].

Figure 5 illustrates a visualization of the learned trust dynamics model. There are six probabilistic
transition matrices, corresponding to all combinations of three road incidents and binary human
takeover decisions. Each transition matrix indicates the probability of changing from DC (trust
before value) to DC+1 (trust after value). We observe that trust values are more likely to increase
when a human decides not to take over (top row of Figure 5), while trust values tend to be constant
or decrease when there is a takeover decision (bottom row of Figure 5). These observations are
consistent with the insight from the prior studies (see Section 2) that takeover decisions are often
correlated to trust.
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Fig. 5. Visualization of probabilistic transition matrices of the learned trust dynamics model, where DC and
DC+1 are shown as trust before and trust a�er values ranging from 1 to 7, and each matrix corresponds to a
pair of incident and takeover decision.

4.4 Data-Driven Takeover Decision Models
In the POMDP framework, we use the variable ⌘C to denote the human’s takeover decisions (i.e.,
whether or not to take over control of the vehicle) when approaching an incident 8C at time step C .
Such takeover decisions may also be in�uenced by human trust DC . In the following, we present
two takeover decision models based on whether or not to consider trust as an in�uencing factor.
Trust-free takeover decision model. Let 18 denote human’s belief in the automated vehicle’s
capability of safely handling an incident 8 , which remains constant in the trust-free model. Let
?C denote the probability of the human deciding not to take over at time step C . We de�ne ?C =
S(18A s,8 + (1 � 18 )A f,8 ), where S(G) = 1

1+4�G is the sigmoid function, A s,8 and A f,8 are rewards of the
automated vehicle handling the incident 8 with success and failure (see Table 1), respectively. We
model the takeover decision with a Bernoulli distribution, denoted by ⌘C ⇠ B(?C ).
Trust-based takeover decision model. Let 18C denote the human’s belief in the automated vehi-
cle’s capability of safely handling an incident 8 at time step C , which evolves over time depending
on the human trust DC . Thus, we model the belief as a sigmoid function 18C = S(^8DC + _8 ), where
^8 and _8 are linear coe�cients associated with the incident 8 . We assume that the human trust
DC follows a Gaussian distribution, denoted by D̂C ⇠ N(DC ,f2D) where D̂C are the measured trust
values from the online user study. We de�ne the probability of the human deciding not to takeover
as ?C = S(18CA s,8 + (1 � 18C )A f,8 ), which is de�ned similarly to the trust-free model, but using the
dynamic belief 18C instead of the constant 18 . Finally, the takeover decision is given by the Bernoulli
distribution ⌘C ⇠ B(?C ).
Data-driven modeling results. We applied full Bayesian inference with the Hamiltonian Monte
Carlo (HMC) sampling algorithm [18] to estimate parameters in both the trust-free and trust-based
models, using the data collected from the online user study. In Bayesian inference, Markov chain
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Fig. 6. Predictions of takeover likelihood with respect to trust and incidents, using trust-based and trust-free
takeover decision models.

Monte Carlo (MCMC) methods are often used to obtain samples from a probability distribution.
HMC improves the previous MCMC methods on random walk by simulating a physical system
using Hamiltonian dynamics. We refer to [9] for further introduction of HMC. We employed Stan
statistical computation software [12] for the implementation of the Bayesian inference through
HMC.

The results of log-likelihood show that the trust-based model (-359.37) �ts the collected data better
than the trust-free model (-446.83). The di�erence in log-likelihood results shows that accounting
for trust in the takeover decision model can achieve better prediction performance, which supports
our assumption that human takeover decisions are in�uenced by trust. Figure 6 shows model
predictions of takeover probability with respect to trust and incidents. With the trust-free model,
since the takeover decision does not depend on human trust, we observe three straight lines for
three incidents. With the trust-based model, we observe the general trends of decreasing takeover
likelihood with increasing trust, which is consistent with �ndings in the prior studies (see Section 2).
Furthermore, we observe from the results of both models that it is more likely for a human to decide
to take over with riskier incidents: pedestrian with the highest takeover probability, followed by
obstacle and truck.

4.5 Planning for the Motivating Example
We applied the Approximate POMDP Planning (APPL) Toolkit [2], which is an implementation of
the point-based SARSOP algorithm for e�cient POMDP planning [34], to compute the optimal
policies of the proposed POMDP framework. For the motivating example, depending on the use of
trust-based and trust-free takeover decision models, we obtained two optimal routes:

• trust-based route: A-D-G-J-K
• trust-free route: A-C-E-H-K

Note that the main di�erence between these two routes is the order of road incidents. In the
trust-based route, the ordered incidents occurring in each road segment are: oncoming truck (A-D),
null (D-G), obstacle (G-J), and pedestrian (J-K). In the trust-free route, the incidents follow the order
of: pedestrian (A-C), null (C-E), obstacle (E-H), and oncoming truck (H-K). We evaluate and compare

11



ACM Trans. Cyber-Phys. Sys, , S. Sheng et al.

the performance of these two routes via human subject experiments2 on a driving simulator, as
described in the next section.

5 DRIVING SIMULATOR EXPERIMENTS
We describe the design, procedure, and results of our driving simulator experiments as follows.

5.1 Experiment Design
Apparatus. Figure 7 shows the driving simulator setup used for the experiments. The hardware
platform is based on the Force Dynamics 401CR driving simulator, which is a four-axis motion
platform that tilts and rotates to simulate the experience of being in a vehicle. The platform includes
the seat, interlocked seat belt, interlocked doors, display screen, steering wheel, brake, paddle
shifters, and throttle. There are two buttons mounted on the steering wheel (bottom zoomed-in
view in Figure 7). We programmed the simulator’s control input such that the driver can switch
between automated and manual driving by pressing the two buttons simultaneously. In addition,
we used the same set of buttons to measure participants’ trust in automated vehicles during the
experiments. The driver can press the left (resp. right) button to decrease (resp. increase) the trust
value ranging from 1 to 7.
Driving scenario.We created a driving scenario based on the motivating example described in
Section 3, using the PreScan driving simulation software [1]. We also programmed an autopilot
controller for the simulated automated vehicle, which has the capability of leveraging the integrated
sensors (e.g., radar, Lidar, and GPS) in PreScan for various driving tasks such as lane keeping,
detecting and handling incidents.
Manipulated factor.We manipulate a single factor: the route that the autopilot controller follows.
As stated in Section 4.5, the two conditions are: trust-based route and trust-free route.

2This study was approved by the Institutional Review Board at the University of Virginia.

Fig. 7. Driving simulator setup. The top zoomed-in view shows the GUI displaying the driver’s current trust
value, along with other information such as driving mode, speed, gear, incident alarm, vehicle action. The
bo�om zoomed-in view shows the steering wheel with bu�ons for takeover commands and user trust input.
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Dependent measures. We are interested in studying the route which brings more cumulative
reward. We recorded the participants’ takeover decisions and calculated the cumulative POMDP
reward using the reward function de�ned in Table 1.
Hypothesis. We hypothesize that participants taking the trust-based route can obtain higher
cumulative POMDP rewards than those taking the trust-free route.
Subject allocation. We recruited 22 participants (average age: 23.7 years, SD=4.3 years, 31.8%
female) from the university community. Each participant was compensated with a $20 gift card
for completing the experiment. The recruitment criteria required all participants to have a valid
driver’s license, at least one year of driving experience, and regular or corrected-to-normal vision.
To avoid participants’ bias, we adopted a between-subject study design: we randomly allocated 11
participants to take the trust-based route and the other 11 participants to take the trust-free route.

5.2 Experiment Procedure
Upon arrival, a participant was instructed to read and sign a consent form approved by the Institu-
tional Review Board. We conducted a �ve-minute training session to familiarize the participant with
the driving simulator setup. Then, the participant was instructed to drive through the trust-based
or trust-free route with the simulated automated vehicle, depending on the assigned study group.
The journey started in autopilot mode. When the vehicle approached an incident (i.e., pedestrian,
obstacle, or truck), it alerted the participant by issuing an auditory alarm and displaying textual
information about the incident type in the GUI. If the participant decided not to takeover, the
vehicle would continue in the autopilot mode to handle the incident. The participant can take over
control of the vehicle and switch to manual driving at any point during the experiment. If the
participant did takeover, he was required to switch back to autopilot mode after the vehicle passing
that incident. We asked the participant to periodically record their trust in the automated vehicle
using the buttons on the steering wheel (see bottom left in Figure 7). After the driving session, we
asked the participant to answer the following survey questions on a 7-point Likert scale (1 means
strongly disagree, four is neural, seven means strongly agree).

Q1 I believe that the automated vehicle can get me to the destination safely.
Q2 I �nd the route easy to drive.
Q3 I �nd it easy to take over control of the automated vehicle.
Q4 I have a concern about using the automated vehicle to drive through this route.
Q5 I believe that the selected route is not dangerous.
Q6 I think the selected route �ts well with the way I would like to drive.
Q7 I can depend on the reliability of the automated vehicle.

It took about 40 minutes for each participant to complete the entire experiment.

5.3 Results
We calculated the cumulative POMDP rewards (using the reward function de�ned in Table 1) for
each participant, based on their takeover decisions when approaching incidents along the route.
Figure 8 shows the box plot of cumulative rewards for all participants. We observe that participants
taking the trust-based route tend to achieve higher cumulative rewards than participants taking the
trust-free route, which is consistent with our study hypothesis. We also performed one-way analysis
of variance (ANOVA) to evaluate this hypothesis, i.e, comparing the observed � -test statistics with
� (31,32) (� -distribution with between-group degree of freedom 31 and within-group degree of
freedom 32). The observed statistics � (1, 20) = 9.14 is greater than the critical value at signi�cance
level 0.01. Thus, our study hypothesis is supported by ANOVA results statistically.
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Fig. 8. The cumulative rewards of participants taking trust-based and trust-free routes.

Fig. 9. Participants’ average takeover likelihood when the vehicle approaching di�erent incidents in the
trust-based and trust-free routes.

Figure 9 shows the average takeover likelihood of all participants for di�erent incidents along the
two routes. It is not surprising to �nd that participants are more likely to take over in the trust-free
route than the trust-based route. With both routes, participants have higher probabilities to take
over when approaching a pedestrian than an obstacle, while none of them choose to take over the
control when there was an oncoming truck in the neighboring lane. A possible explanation is that
participants are more likely to take over when approaching incidents that are more challenging to
handle or can cause more severe damages. These trends are consistent with the takeover predictions
computed using the online user study data (see Figure 6).

Figure 10 shows how participants’ average trust in the automated vehicle evolves as they drive
through di�erent locations along the two routes. For the trust-based route, we observe that the
average trust increases in the route segment A-D; this may result from the automated vehicle
successfully handling the incident of the oncoming truck in this segment. The trust continues to
increase in the segment D-G, which is an empty road without any incident. However, the trust
decreases in the next segment G-J where the vehicle needs to change lanes to avoid an obstacle,
and the trust further decreases in the last segment J-K where the vehicle needs to stop and wait for
a pedestrian to cross the road. The decrease in average trust may be explained by the occurrence
of more challenging and riskier incidents. For the trust-free route, we observe that the average
trust drops sharply in the �rst route segment A-C with a pedestrian incident. However, the trust
continues to increase slowly for the rest of the route. The average trust of participants taking the
trust-based route is generally higher than taking the trust-free route.
Figure 11 summarizes the participants’ responses to the after-driving survey questions. The

results of Q1 indicate that participants who experienced the trust-based route had higher belief in
the automated vehicle’s capability of driving safely than participants who experienced the trust-free
route. The results of Q2 show that participants found the trust-based route easier to drive than the
trust-free route. The results of Q3 illustrate that participants driving through the trust-based route
found it easier to take over control of the vehicle than those driving through the trust-free route.
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Fig. 10. The evolution of participants’ average trust along the trust-based and trust-free route. (The shadow
represents the 95% confidence interval.)

Fig. 11. A�er-driving survey results. (Each box plot shows the maximum, the first quartile, the median, the
third quartile, and the minimum. Each dot represents an outlier.)

The results of Q4 show that participants who experienced the trust-based route had less concern
about the automated vehicle than those who experienced the trust-free route. The results of Q5
indicate that participants tended to have a neutral opinion about how dangerous the routes are.
The results of Q6 show that participants thought the trust-based route �ts the way they would like
to drive better than the trust-free route in general. The results of Q7 �nd that participants driving
through the trust-based route perceived higher reliability of the automated vehicle than those who
experienced the trust-free route.

In summary, our human subject experimental results show that

• Participants taking the trust-based route generally resulted in higher cumulative POMDP
rewards (where the reward function was designed to promote better user satisfaction and
safety of automated vehicles) than those taking the trust-free route.

• Participants were more likely to take over in the trust-free route than in the trust-based route,
and riskier incidents led to higher takeover likelihood.

• Participants’ trust in the automated vehicle evolved during the driving experience and was
in�uenced by di�erent types of incidents.

• Participants experienced the trust-based route hadmore positive responses in the after-driving
survey than those driving through the trust-free route.
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6 MULTI-OBJECTIVE OPTIMIZATION ANALYSIS
In the previous sections, we computed optimal POMDP policies based on a reward function (Table 1)
designed to promote better user satisfaction and safety of automated vehicles. In reality, users
may want to achieve multiple planning objectives at once (e.g., minimizing the distance while
maximizing user satisfaction) when it comes to choosing the best route for automated vehicles.
Thus, in this section, we apply multi-objective optimization to the proposed POMDP framework
and analyze the trade-o�s between various planning objectives.

6.1 Objectives for Route Planning
We consider the following typical route planning objectives in this section. Each objective is
modeled as a di�erent reward function, described below 3, and the expected cumulative value of
the rewards are either minimized or maximized.

• User satisfaction: de�ned by the reward function described in Section 4.1 and shown in Table 1.
• Distance: modeled with a reward function that gives the distance of each route segment (as
annotated in Figure 1), determined by the route choice 2C made in each vehicle position EC .

• Energy consumption rate: we compute the average rate, by summing the energy consumption
per unit distance for each route segment and dividing the sum by the total distance; energy
consumption depends on the human’s takeover decision, where we assume that the energy
consumption rate of manual driving is 1.25 times higher than automated driving, since the
latter is likely to be more energy e�cient.

• Total energy consumption: modeled with a reward function that gives the energy usage for
each route segment; this is computed as the distance multiplied by the energy consumption
rate, with the latter as described above.

• Average trust: computed by summing the driver’s trust level DC at each waypoint and dividing
the sum by the total number of waypoints along the entire route.

• Trust at destination: computed via a one-o� reward attached to the �nal route segment, whose
value is the driver’s trust levelD= and = is the time step of reaching the destination; since trust
evolves dynamically along the route, this value is likely to be di�erent from the average trust,
both of which would in�uence the driver’s adoption of automated vehicles in the future.

6.2 Pareto Optimal Solutions
Multi-objective optimization seeks to balance the trade-o�s between multiple objectives, where a
single global solution that optimizes each individual objective simultaneously may not exist. If user
preferences about the relative importance of objectives are known (represented as weights over
objectives), a multi-objective optimization problem can be reduced to a single-objective optimization
problem by taking the weighted sum of those objective values [40, 44]. When user preferences
are not speci�ed a priori (sometimes it is di�cult to come up with weights over objectives), a set
of Pareto optimal solutions (i.e., those for which no objective can be optimized further without
worsening some other objective) can be computed to assist decision-making.

We implemented a prototype procedure to compute Pareto optimal solutions for POMDPs based
on the PRISM model checker [35]. Our implementation is based on PRISM’s POMDP solver [43]
and a sampling of objective weights. Note that we switch POMDP solvers, because the APPL tool
used in Section 4.5 does not directly support multi-objective optimization of POMDPs.

We apply the prototype implementation to the multi-objective planning of objectives described
in Section 6.1. Figure 12 plots the Pareto optimal solutions of multi-objective POMDP planning
considering various combinations of planning objectives. Speci�cally, the top row of Figure 12
3See the concrete model �le at https://www.prismmodelchecker.org/�les/tcps-trust
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Fig. 12. Pareto optimal solutions of multi-objective POMDP planning. The red line represents the Pareto
curve. Each dot on the red line represent a Pareto optimal policy of the POMDP. Any point in the gray area
represents a pair of objective values that can be achieved by a feasible POMDP policy.

illustrates the trade-o�s between maximizing the trust at destination vs. (a) maximizing the user
satisfaction, (b) minimizing the distance, (c) minimizing the total energy consumption, and (d)
minimizing the energy consumption rate; the bottom row of Figure 12 shows the trade-o�s between
maximizing the average trust vs. (e) maximizing the user satisfaction, (f) minimizing the distance,
(g) minimizing the total energy consumption, and (h) minimizing the energy consumption rate. As
shown in Figure 12, there does not exist a global solution that optimizes each pair of objectives at
the same time. Instead, users may be presented with these Pareto optimal solutions to choose a
point (on the Pareto curve) that corresponds to a Pareto optimal policy for the POMDP.
Di�erent user preferences over objectives can result in di�erent POMDP policies (i.e., routes

for vehicles). Let the weight vector ÆF = (F1,F2) denote the user preference over two di�erent
objectives, where 0  F1,F2  1 and F1 + F2 = 1. We choose a sample of weight vectors ÆF
by iteratively considering all values of F1 in the range [0, 1] in increments of 0.01, and taking
F2 = 1 �F1. We then compute the optimal policy c⇤

ÆF for each ÆF by solving the POMDP with the
reward function ' ÆF = F1'1 +F2'2, where '1 and '2 are the reward functions for each objective.
We compute a corresponding value vector Æ+ = [+1,+2], where+1 and+2 denote the expected values
of each objective for the policy c⇤

ÆF . We thus obtain a set of value vectors for the set of weight
vectors, which consititute the points on the Pareto curve.

Suppose that the planning objectives are to (1) minimize the distance, while (2) maximizing the
trust at the destination, as shown in Figure 12(b). When ÆF = (1, 0), the resulting Pareto optimal
point is the bottom left red dot shown in Figure 12(b), which yields a POMDP policy corresponding
to the shortest route A-C-E-I-K in the map shown in Figure 1. When ÆF = (0, 1), the resulting Pareto
optimal point is the top right red dot in Figure 12(b), which yields a di�erent route A-D-F-H-K
with longer distance but higher trust at the destination. When ÆF = (0.5, 0.5), the resulting Pareto
optimal point is the middle red dot in Figure 12(b), which yields the route A-B-E-I-K seeking to
balance the trade-o�s between two objectives.

7 DISCUSSION
7.1 Limitations
There are several limitations of this work. First, we only consider three types of typical road
incidents (i.e., pedestrian, obstacle, and oncoming truck). While it is straightforward to extend the
POMDP framework with a richer set of incidents, we will need to design and conduct new online
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user studies to collect data about trust in the automated vehicle’s capability of safely handling these
new incident types and build new data-driven trust dynamics model.
Second, we only apply our approach to the motivating example with a small map featuring a

limited number of waypoints. We believe that the proposed POMDP framework can be applied
to larger problems (e.g., larger maps, more locations, and more route choices). For example, the
SARSOP algorithm used in Section 4.5 is able to scale up the POMDP problems with 105 states.
However, the bottleneck lies in the evaluation. We will need to design and conduct new human
subject experiments to evaluate the resulting routes of these new problems, which can be costly
and time-consuming.

7.2 Open Issues and Implications on Real-World Deployment
We envision that this work can contribute to route planning in future automated vehicles, which
would account for human trust dynamics and the trade-o�s between multiple planning objectives
(e.g., distance, energy consumption, safety, user satisfaction). However, the following open issues
need to be addressed before making the proposed approach ready for real-world deployment.
The �rst issue is: how do we measure, calibrate and model individual drivers’ trust dynamics

in real time? In this work, we build a data-driven trust dynamic model based on the aggregated
data collected from 100 participants of an online user study. In a real-world deployment, each
individual’s trust dynamics may vary for di�erent drivers and change over time. There is a need
for building personalized trust dynamic models and calibrating the model using real-time sensing
data about human trust. In addition, there are challenges such as lowering the barrier of entry (e.g.,
using low-cost hardware and software) for collecting real-time human sensing data in vehicles,
and how to guarantee the privacy of collected human data and its usage in model learning and
planning.
The second issue is: how do we compute POMDP policies for large-scale planning problems

in complex, adaptive tra�c conditions that automated vehicles may encounter in the real world?
These challenges would require not only improving the scalability of POMDP solvers, but also the
computational e�ciency in order to obtain planning results in real time. One promising direction is
to consider online POMDP algorithms (e.g., DESPOT [48]) that have been successfully implemented
for real-time autonomous driving [8]. However, there is a lack of online POMDP algorithms for
multi-objective optimization.

8 CONCLUSION
In this paper, we present a trust-based route planning approach for automated vehicles. We model
the human-vehicle interaction as a POMDP and compute optimal routes for the vehicle by solving
the POMDP planning problem. In order to incorporate trust into route planning, we build data-
driven models of trust dynamics and takeover decisions using data collected from an online user
study with 100 participants on the Amazon Mechanical Turk platform. We applied the proposed
trust-based route planning approach to a motivating example and obtained a trust-based route
and a trust-free route (a baseline for comparison). We evaluated these two routes via human
subject experiments with 22 participants on a driving simulator. The results show that participants
taking the trust-based route generally resulted in higher cumulative POMDP rewards (where the
reward function was designed to promote better safety and user experience of automated vehicles),
were less likely to take over control of the vehicle, and reported more positive responses in the
after-driving survey than those taking the trust-free route. We also observed that participants’
trust changed over time during the study and was in�uenced by di�erent road incidents. These
observations are consistent with the �ndings of prior studies. In addition, we analyze the trade-o�s
between multiple planning objectives (e.g., trust, distance, energy consumption) via multi-objective
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optimization of POMDP. We also identify a set of open issues and implications on the real-world
deployment of the proposed approach in automated vehicles.
This work makes the �rst step towards incorporating human trust into route planning for

automated vehicles. There are a few directions for future work. First, we would like to consider a
richer set of incident types to re�ect the complex road conditions that automated vehicles may
encounter in the real world. Second, we would like to improve and evaluate the scalability of the
proposed approach. Furthermore, we would like to explore the POMDP modeling of other factors
that may in�uence human trust in automated vehicles, such as system transparency, vehicle speed,
driving styles, and user’s situational awareness. Finally, we would like to investigate personalized
modeling of individual driver’s trust dynamics.
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