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ABSTRACT

Automatically improving and repairing software using search-based

methods is an active research topic. Many current systems use ex-

isting source code as the ingredients of repairs, either through evo-

lutionary computation derived random mutation or other heuristic

operators. However, these code transformation operators are not

always well-matched to the granularity of the source code on which

they operate. This paper proposes a static source-to-source prepro-

cessing step to produce code with more uniform granularity that

exposes relevant program components to the repair process. This

approach, called Program Repair Enhancement via Preprocessing

(PREP), has been applied to three different repair tools, each of

which uses different code transformation operators and search al-

gorithms. In every case, applying PREP before the search allows the

tool to repair software defects that were previously unattainable

by that tool. PREP finds 88 unique previously-unreported correct

repairs across these tools. This result is significant because it is ap-

plicable to most search-based software improvement methods, and

it addresses the fundamental issue of how to match the granularity

of the representation to the granularity of operators.
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gineering.

KEYWORDS

automated program repair, transformation, rewriting, search-based

software engineering

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’22, July 9ś13, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00
https://doi.org/10.1145/3512290.3528864

ACM Reference Format:

Pemma Reiter, Antonio M. Espinoza, Adam Doupé, Ruoyu Wang, Westley

Weimer, and Stephanie Forrest. 2022. Improving Source-Code Representa-

tions to Enhance Search-based Software Repair. In Genetic and Evolutionary

Computation Conference (GECCO ’22), July 9ś13, 2022, Boston, MA, USA.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3512290.3528864

1 INTRODUCTION

Automated program repair (APR) is an active sub-field of software

engineering, with dedicated tracks in top conferences exploring a

variety of approaches, ranging from search-based methods [7, 16]

to constraint solving [14, 15] and machine learning [10]. Despite

the intensity and diversity of these efforts, today’s APR tools typi-

cally generate semantically-correct repairs at a rate below 50% [26].

Further, most methods do not attempt to synthesize program code

de novo, and, instead, define code transformation operators, such

as mutation, which manipulate existing code, following what is

known as the statement-level redundancy assumption [13] or the

plastic surgery hypothesis [2]: A substantial fraction of human-

generated software repairs are composed entirely of tokens that

exist in the program, providing a rationale for code transformations

that manipulate existing code fragments.

If the ingredients of APR search methods are adequate, why

do the implemented tools fail to find more repairs? There are

many possible explanations, such as search budgets, details of

operators, and so forth. The obstacle we explore in this paper is

code representationÐAPR operator incongruity. Code representation

refers to an APR tool’s internal representation of input source code,

consisting of elements. APR operators, henceforth operators, access

elements of a code representation and perform actions such as

copy, delete, or replace. Incongruity occurs when the representation

elements are poorly matched with the operators.

We identify two types of incongruity:

(1) Statement Incongruity: Occurs when relevant represen-

tation elements for creating patches are not accessible to

operators, although they are present in the program.

(2) Type Incongruity: Occurs when representation elements

of similar, compatible types are not used by operators.

In this paper, we focus on changing the code representation,

leaving both APR tools and operators intact. Our insight is that

simple syntactic changes to code representation can make more

elements accessible to operators and reduce incongruity.
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Instead of directly modifying the code representation, we employ

source-to-source code transformation in a pre-processing step that

restructures the source code to expose more elements to the oper-

ators. This allows us to be compatible with existing source-level

repair algorithms, including those that apply a patch represen-

tation [16, 28, 29] (a list of edits) to source code, and those that

mutate a code representation [7] (e.g., an abstract syntax tree). To

address statement incongruity, we extract nested elements from

complex statements. To address type incongruity, we statically cast

similarly-typed elements (expressions and variables) to existing ele-

ments (variables). These transformations preserve original program

semantics.

The implementation of our method is called Program Repair

Enhancement via Preprocessing (PREP). Since PREP operates on the

source code, it complements existing APR algorithms, as we show

in our evaluation. We apply PREP to three tools which represent

different underlying algorithm classes: f1x, GenProg, and Prophet.

We evaluate PREP on multiple APR tools over two sets of buggy

programs: the Codeflaws dataset and the DARPA Cyber Grand

Challenge [5] dataset (CGC).

To summarize, this paper makes the following contributions:

• A novel method for improving the congruence between op-

erators and representations in source-level APR. The method

uses general and type-aware source-to-source static code

transformations to address statement and type incongruities

(Section 3).

• An implementation of the method as PREP (Program Repair

Enhancing via Preprocessing) and an evaluation of PREP

on two datasets (Codeflaws and the DARPA Cyber Grand

Challenge) across three independently-developed APR tools

that target the C programming language (f1x, Prophet, and

GenProg). For Codeflaws, we find that PREP, allows these

tools to increase correct repairs found by 2.6%, 7.6%, and

8.8% respectively. For CGC, we find that PREP improves

vulnerability mitigation results by 26.6%, 100%, and 13.6%

respectively (Sections 4 and 5).

• A quantitative approach for assessing how congruent an APR

tool’s operators are to its code representation. Considering

three quite different APR tools, we find that f1x is the most

congruent and GenProg the least (Section 5).

These results are significant because they can be applied to

most search-based software improvement methods, and they ad-

dress the fundamental issue of how to match program representa-

tion to popular operators used in both evolutionary computation-

based and other approaches for APR. To further open and

reproducible science, our prototypes, the curated benchmark

dataset, and all of our experimental results are available at

https://github.com/amespi22/code_rewrite.

2 MOTIVATING EXAMPLE

To motivate the utility of source code transformations, consider

the code snippet from the DARPA Cyber Grand Challenge pro-

gram Palindrome, shown in Listing 1. This code contains a bug

on line 8, where the hardcoded value of 128 in the third param-

eter is too large and admits an overrun of the allocated 64 bytes.

1 int cgc_check (){

2 int len = -1;

3 int i;

4 int pal = 1;

5 char string [64];

6 for (i = 0; i < sizeof(string); i++)

7 string[i] = '\0';

8 if (cgc_receive_delim (0, string , 128, '\n') != 0)

9 return -1;

10 ...

11 }

Listing 1: CGC Challenge : Palindrome with stack-based

buffer overflow.

1 int tlv3;

2 char * tlv4;

3 int tlv5;

4 char tlv6;

5 tlv3 = 0;

6 *tlv4 = string;

7 tlv5 = 128;

8 tlv6 = '\n';

9 tlv1 = cgc_receive_delim(tlv3 , tlv4 , tlv5 , tlv6);

10 if (tlv1 != 0) {

11 return (-1);

12 }

Listing 2: The result of simple source-to-source, static code

transformations.

The human-generated patch replaces this hardcoded value with

sizeof(string).

Ideally, an automated tool would mimic the human-generated

patch. However, this requires that (1) the element sizeof(string)

be available in the source code or repair templates, (2) the tool can

manipulate function parameters, and (3) the tool can access the

repair ingredient.

In our example, condition (1) is satisfied by line 6 in the Palin-

drome source. The conditions (2) and (3) are not so easily met, how-

ever, as they depend on the operators. Although some search-based

methods define operators that manipulate function parameters and

other operands directly, when implemented naively this can greatly

expand the size of the search space, and many current research

prototypes do not operate at that level of granularity. They may

also lack access to the required repair element, e.g., because of

scope or typing issues. From our example, sizeof(string) could

be unavailable for a number of reasons: sizeof(string) is nested

within a larger, atomic expression (i.e., the conditional check of a

loop), the type of sizeof(string) is not available, or the type for

sizeof (i.e., size_t) is not considered compatible with type int.

PREP seeks to remedy both disparitiesÐthose between mutation

operators and code constructs (statement incongruity) and those

between the required int type and size_t (type incongruity).

If one could expose these elements to the operators via a source-

to-source code transformation, they would become available and

potentially help many of today’s APR methods. For example, line 8

could be transformed from Listing 1 to the code shown in Listing 2,

and patch ingredients of similar and valid types could be generated

from the standard C-style elements of Listing 3. Simple trans-
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1 void fix_ingred_service_1_0_2 (){

2 char string [ 64 ];

3 bzero (&string ,( 64* sizeof(char) ));

4 int len;

5 bzero (&len ,sizeof(int));

6 {int len; len = (int)(sizeof ( string )); }

7 ...

8 {int tlv5; tlv5 = (int)(sizeof ( string )); }

9 ...

10 }

Listing 3: Static type-casting fix ingredients examples for

Palindrome.

formations such as these preserve the semantics of the program

while simultaneously allowing the contents of the function call to

be manipulated by many existing APR operators.

To illustrate this point, we ran GenProg [7], an early EC-based

APR tool, on the Palindrome bug, and it failed to find a repair using

the original source code of Listing 1. However, when we reran

GenProg with the semantically-equivalent transformed code from

Listings 2 and 3, it found a correct repair. The repair was found by

a copying a mutation that used line 7 of Listing 2 as the destination

and the declaration in line 8 of Listing 3 as the source expression.

This sort of simplemutation operator is available inmany current

research tools, including those that do not use EC. Our proposed

transformation allows the third argument of cgc_receive_delim

to be replaced without changing any such underlying mutation op-

erators. Our evaluation of PREP includes Palindrome (Section 5.2).

Of the three APR algorithms we studied, GenProg and Prophet both

correctly repair (i.e., find a patch that is equivalent to the human-

supplied patch) Palindrome by using the semantically-equivalent

code generated by our code transformations.

3 CODE TRANSFORMATIONS

We propose to use source-to-source code transformations to reduce

statement and type incongruity between representations and op-

erators for automated program improvement. In this section we

describe our transformations (summarized by examples in Table 1).

Our transformations address both statement (T1śT3) and type (T4)

incongruence. Due to compound statements, T2śT3 transforma-

tions are applied recursively and stop when no further transforms

are applicable.

Decouple assignments from declarations (T1). This transforma-

tion decomposes complex assignments and declarations, allowing

operators to access subsets of compound assignments as elements.

Our code transformations are tool agnostic, and we do not assume

that they separate assignments from declarations. We illustrate this

in Transform 1.

[typ] [var] = [expr] ;

[typ] [var] ;

[var] = [expr] ;

Transform 1: Decoupling assignments from declarations.

(łBeforež code is shown above the dashed line, łafterž code

is shown below.)

Decouple function calls from conditional statements (T2). When

function calls are embedded within conditional statements, it may

be difficult for APR tools to change their parameters. By extracting

the function call and replacing it with an equivalently-typed tempo-

rary variable equal to the return value (show this in Transform 2),

PREP enables manipulation of conditional statements containing

function calls. The APR tool can then mutate the function call

independently (e.g., replacing it with a type-equivalent variable).

Additionally, this transformation allows an APR tool the ability

to replace function call parameters with any equivalently typed

variables when applied in conjunction with transformations T3

and T4. This increases the repair search space while preserving

program semantics.

if ( [func] ([args]) )

[typ] [tmp_var] = [func] ([args]); s.t. typ = return_type(func)
if ( [tmp_var] )

Transform 2: Decoupling function calls from conditional

statements.

Decouple content from function call parameters (T3). Human-

written repairs often replace a function call parameter with another

value located elsewhere in the code (e.g., Section 2). Due to state-

ment incongruity, such repairs may not be expressible by APR tools.

This transformation extracts all function call parameters, declares

temporary variables of the same type and assigns values equal to

the original parameters, and replaces the original parameters with

their respective temporary variables (shown in Transform 3). This

enables APR tools that perform mutation operations such as swap

or append to modify any function call parameter.

[func] ([args])

[typ𝑖] [tmp𝑖] = [val𝑖]; ∀ (typ𝑖,val𝑖) ∈ {val0,...,val𝑁 }=[args]

| s.t. typ𝑖 = parameter_type(func,𝑖)
[func]([tmp0],...,[tmp𝑁 ])

Transform 3: Decoupling content from function call parame-

ters.

Type compatibility and static casting (T4). Many APR tools ag-

gressively screen potential patch element components. For example,

patch elements are commonly required to match in name and type.

Aggressive screening benefits standard APR tools by eliminating

early compilation failures in strongly-typed languages. However,

many screening approaches may conservatively rule out useful re-

pairs because they use strict notions of type equivalence that do not

account for type congruity or safe casting (cf. physical typing [3]).

This transformation casts statements and expressions of equivalent

types to a target type to generate usable type-compatible elements.

We illustrate this in Transform 4. This allows APR tools to access a

richer set of patch ingredients while remaining type safe.

To preserve semantic equivalence across all transformations, as

well as the original source’s intended scope and functionality, we
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{ [typ𝑏] [var𝑏]; [var𝑏] = ([typ𝑏]) [e𝑎]; }

| ∀ S ∈ Scopes
| ∀ (typ𝑏,var𝑏) ∈ Variable_declarations(S),
| ∀ (typ𝑎,e𝑎) ∈ Expressions(S)
| s.t. typ𝑏 = variable_type(var𝑏 ) ,
| typ𝑎 = resolved_type(e𝑎 ) ,
| and equivalently_typed(typ𝑎 ,typ𝑏 ) is True

Transform 4: Creating type-compatible elements through

static casting.

Transformations

Type Example

T1 type name = value ->
type name

name = value

T2 if(func(args)) ->
type tmp_var = func(args)

if (tmp_var)

T3 func(arg1, arg2) ->

type tmp1 = arg1

type tmp2 = arg2

func(tmp1,tmp2)

T4 {type tmp1; tmp1 = (type) expr2; }

Table 1: Transformation types and examples.

transform conditional and loop statements with a single statement

as their body into multi-line scope statements by introducing blocks.

4 EXPERIMENTAL DESIGN AND SETUP

We selected three APR tools that operate on C code, each of which

uses different methods for creating patches to buggy code. GenProg

is an EC-based method with mutation operators that rely on the

statement-level redundancy assumption. Prophet uses code tem-

plates that are discovered with machine learning. Finally, f1x relies

on constraint solving. By testing each of these tools on the same

datasets we can examine the degree to which each is limited by the

incongruity problem and the degree to which our transformations

can improve off-the-shelf methods.

4.1 Datasets

We evaluate our static code transformations on two datasets: Code-

flaws [21] and theDARPACyber GrandChallengeDataset (CGC) [5].

Codeflaws was intentionally created for program repair tools and

obtained from the Codeforces online database [4]. The Codeflaws

dataset provides a buggy source file, the corresponding human-

repaired source file, a build mechanism, and test content (input,

output, and evaluation scripts). It provides heldout test content,

which supports testing patches for overfitting. We consider any

patch that passes all heldout tests to be łcorrect.ž Codeflaws directly

supports multiple APR tools.

The CGC content was created by security-focused software con-

tractors as challenge problems for autonomous Cyber Reasoning

Systems for the 2016 DARPA Cyber Grand Challenge (CGC). It con-

tains a collection of 32-bit binary programs, their corresponding

source code, at least one negative, i.e., proof-of-vulnerability (POV)

test, and a mechanism for generating new test cases.

Using a Linux variant [22] of the CGC benchmark, we have mod-

ified the CGC dataset to run with program repair tools, including

the program source code, a build mechanism, and test content. Each

program may have multiple POVs associated with it; we use the

term scenario to refer to each programśPOV pair. The CGC dataset

has a less strict repair requirement than Codeflaws: a program’s

vulnerability is considered mitigated if the program no longer raises

an exception when the POV is executed.

For the CGC dataset evaluation, we first screened for a subset

of scenarios that could easily support all three APR tools. Specifi-

cally, C programs (baseline and developer-supplied patch) must (1)

compile with both gcc and clang, (2) exhibit expected behavior on

negative and positive tests, and (3) correspond only to a single pro-

gram executable used to evaluate all test content (100 C programs).

Of these 100 valid C-programs [18], we selected a subset (27) from

those which a repair algorithm operating on the entire program

source failed to identify a repair within its 8hr budget. These 27 pro-

grams correspond to 55 scenarios for the PREP evaluation, covering

most valid programs’ vulnerability types.

4.2 Tool Configurations

Codeflaws. The Codeflaws dataset includes the tool configura-

tion files required to run both GenProg and Prophet but does not

include the required files for f1x. To keep the configuration of f1x

as simple as possible and admit fair comparison to the other two

tools, we used the same positive and negative tests that are used for

GenProg and Prophet, a test timeout of 1 second and f1x’s option

to create all patches. Unlike GenProg, which was run locally on a

Ubuntu 18.04 machine, we used the default f1x Docker container

to ensure it ran with its intended system configuration. Similar

to f1x, we used a Docker container for Prophet in our Codeflaws

evaluation.

CGC. For the CGC dataset we used standard configurations for

GenProg, Prophet, and f1x. We used the developer-identified set of

buggy source files as the input source code. All test content was

generated from the same testing sources, but we tailored the test

harnesses individually to meet the invocation requirements of each

APR tool.

Our CGC GenProg evaluation runs with both the single-edit mu-

tation search option and with the genetic algorithm (GA) search [7,

24] option using GenProg’s standard population size of 40 for ten

generations. Our runs also expand GenProg’s default locally scoped

strict type matching with the --semantic-check name parameter.

This parameter enables GenProg to use same-named, exactly-typed

externally-scoped variables and their respective statements as in-

gredients for mutation.

Our CGC Prophet evaluation uses standard profiling as the lo-

calizer method [10]. We extended Prophet’s implementation for

multilib build environments, specifically adding support for 32-bit

libraries. This was necessary to allow Prophet to evaluate the 32-bit

CGC dataset.

Our CGC f1x evaluation uses its default configuration, identical

to the Codeflaws f1x evaluation. Similar to Prophet, we extended

f1x for the CGC dataset by adding support for 32-bit libraries. Ad-

ditionally, f1x’s testing requirements did not directly support the

CGC’s Python test harness. Equivalent f1x oracles were generated
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Baseline PREP

Plausible Correct ΔPlausible ΔCorrect

f1x 2190 1379 46 36

Prophet 2475 840 75 64

GenProg 1185 1170 101 99

Total Unique 2761 2046 27 88

Table 2: New repairs enabled by PREP. Codeflaws results for

f1x, Prophet and GenProg. ‘Δ’ indicates the increase discov-

ered after applying PREP.

from the positive test content as well as the DARPA POVXML files

from which the POV executables were generated. However, DARPA

did not provide POVXML files for seven of the 55 CGC scenarios

(shown as ‘NEG’ in Table 3) prohibiting us from testing them with

f1x.

Implementation. PREP is implemented in Python using the

antlr4 [1] parser generator to parse C. Our implementation is avail-

able from https://github.com/amespi22/code_rewrite. We evaluated

the CGC dataset using an f1x docker image built using Ubuntu

16.04 (Binutils 2.26), a Prophet docker image built using Ubuntu

18.04 (Binutils 2.30); while GenProg evaluations were conducted

on Ubuntu 18.04 (Binutils 2.30) development machines.

5 RESULTS

We first report experimental results for Codeflaws and CGC. Using

these results, we then consider their implications for the different

tools in terms of the congruity between their representation and

operators.

5.1 Codeflaws

PREP’s transformations improved the number of plausible and

correct patches for all three tools.

f1x: Because f1x uses symbolic execution to generate patches,

and focuses on conditional statements (including loops), we did not

expect our transformations to have a large effect on its performance.

As Table 2 shows, however, f1x found new patches with PREP that it

was unable to find in the baseline. PREP and f1x together discovered

36 correct patches that the baseline f1x did not, 16 of which are

unique across all tools tested (Figure 1).

Prophet: When Prophet was run with PREP, it discovered 64

new correct patches above its baseline, of which 23 are unique

(Figure 1).

GenProg: When GenProg was run with PREP, it discovered 99

new correct patches that the baseline GenProg missed, 45 of which

are unique. Only two of the 101 candidate repairs failed to pass the

heldout tests, i.e., almost all of the discovered patches were correct.

Collectively PREP, when paired with these three off-the-shelf

repair techniques, discovered 88 new correct patches and 27 unique

plausible patches, as shown in Table 2. By ‘unique’, we mean that

the correct patch was found by only one PREP-enabled tool and was

not found by any of the baselines. Many of the plausible patches

found by the baseline runs and by the PREP-enabled tools were

not correct according to the dataset’s definition. For example, there

were 2,761 unique plausible patches in the baseline, of which 2,046

were found to be correct, leaving 715 plausible yet incorrect (overfit)

patches. Using PREP, each tool was able to correctly repair some of

these overfit patches.

Of the new patches discovered with PREP, most were unique to

each tool and there was very little overlap, as shown in Figure 1.

This indicates that PREP is not just helping one tool discover a patch

that other tools can find, but in several cases, it is helping them

to discover unique patches. Overall, PREP improved each tool’s

correct repair success: GenProg had a relative increase of 8.8%,

f1x of 2.6%, and Prophet of 7.6%. This improvement is particularly

relevant because techniques such as GenProg are often associated

with lower-quality repairs that overfit to visible tests (e.g., [17]):

techniques that can reduce overfitting and instead produce correct

patches are highly desired.

5.2 Cyber Grand Challenge

In the CGC evaluation, we first applied PREP and then provided the

result as input to f1x, GenProg, and Prophet. There were twenty-

two repairs of interest, i.e., CGC Scenarios (from Table 3). For four

of these repairs, applying PREP alone mitigated the vulnerabil-

ity (e.g., introducing well-typed temporary variables may cause a

compiler to emit code with a different stack layout, potentially dis-

rupting certain buffer overruns). We focus on the remaining repairs

in which the vulnerability was mitigated by a repair tool operating

on PREP-transformed code. For 15 of the top 22 rows of Table 3,

Prophet was unable to find a repair on the original source code, but

discovered a repair with PREP. In row 1 (cotton_swab_arithmetic.1),

GenProg was unable to find a repair when provided only the origi-

nal source code, but found a repair with PREP. For two scenarios

(Music_Store_Client.2 and Music_Store_Client.3), GenProg did not

find a vulnerability mitigation within the 8hr time period, but found

themwith PREP.We see that PREPwas not as effective at improving

f1x results, aiding in the discovery of only one patch (HackMan.1).

Overall, the PREP-enabled tools found mitigations for eigh-

teen new scenarios, which they failed to find when using the

original source code: six new uniquely-mitigated scenarios were

found with PREP. For the CGC results, we manually reviewed

the APR-generated repairs. This review found that two vulnerabil-

ity mitigations were equivalent to the developer supplied repairÐ

these correct repairs were found by both GenProg and Prophet for

Palindrome using PREP-enabled source only. While GenProg took

advantage of all four transformations in its correct repair, Prophet

utilized T1śT3.

With PREP, we observed an increased number of timeouts in

the given search budget (DNF for Did Not Finish), particularly for

large programs such as CGC_Planet_Markup_Language_Parser.

This is perhaps not so surprising, because our transformations

increase the representation granularity, and therefore, increase the

search space for operators that rely on existing code ingredients.

There are cases in which the baseline tool found a repair with the

original source code but failed with the PREP-transformed code.

We analyzed these repairs carefully, particularly for Prophet, and

found that the baseline repairs were overfit in each case. With the

original source, the tool found patches that (1) changed the control

flow of the source code with terminating statements, (e.g., exit),
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45

16

23

2

1

1

0

f1x

GenProg Prophet

Figure 1: PREP enables each tested tool to find unique correct

repairs in the Codeflaws dataset. Each number is a count of

how many correct (not simply plausible) repairs the tool

discovered with PREP that it failed to discover without PREP.

Patches that were also found in the non-PREP baseline are

not counted.

or (2) removed the initialization of variables or reset them (e.g.,

malloc).

Determining why these particular patches were overfit with-

out PREP and correct with PREP is nuanced. We note, however,

that the code transformations can change stack behavior, which

influence outcomes for the tools. The transformations targeting

fault-locations, T1śT3, introduce new local variables, which can in-

crease stack usage and influence the nature of existing stack-based

vulnerabilities. Our fix ingredient transformation, T4, initializes

variables using bzero, effectively zeroing out portions of the stack.

Taken together, these factors could reduce the chance of a tool mis-

takenly removing a variable initialization or malloc, increasing the

chance of avoiding an incorrect repair, particularly with variables

used for boundary checks.

Overall, PREP affected the relative plausible repair rate for Gen-

Prog by 13.6%, f1x by 26.6%, and Prophet by 100.0% (includes PREP-

only mitigations). We note that even though PREP increases the

search space while the search budget/configuration remained con-

stant, the overall change was positive for each tool. Although it

appears that Prophet outperformed GenProg and f1x, note that the

total vulnerabilities mitigated by GenProg was 80% in the baseline

whereas prophet and f1x were both 27.3%. In comparison to Code-

flaws and its correctness criteria, passing visible CGC tests requires

less effort.

These results suggest that our proposed code transformations

enable existing tools to expand their reach by providing a repre-

sentation that is more congruent with their code transformation

operators.

5.3 Representation and Operator Congruence

PREP addresses two sources of incongruity between representations

and operators: statement incongruity and type incongruity. For

statement, we focused on a problem that plagues many software

repair toolsÐfunction parameters, which can occur both outside

f1x GenProg Prophet
Scenario.POV PREP

only
base PREP base PREP base PREP

cotton_swab_arithmetic.1 ✓ ✓ ✗ ✓ ✗ ✗

Diary_Parser.1 ✓* ✗ ✓* ERR ✓* ✗ ✓*
Diary_Parser.3 ERR ERR ERR ERR ✗ ✓

Diary_Parser.4 ERR ERR ERR ✓ ✗ DNF
FablesReport.4 DNF DNF ✓ ✓ ✗ ✓

FISHYXML.1 ✗ ✗ ✓ DNF ✗ ✓

FSK_BBS.1 DNF DNF ERR ERR ✗ ✓

Griswold.4 ✓ ✓ ✓ ✓ ✗ ✓

HackMan.1 ✗ ✓ ✓ ✓ ✗ ✓

HIGHCOO.1 ✗ ✗ ✓ ✓ ✗ ✓

Music_Store_Client.2 ERR ERR DNF ✓ ✗ ✗

Music_Store_Client.3 ✗ ✗ DNF ✓ ✗ ✗

online_job_application2.1 NEG NEG ✓ ✓ ✗ ✓

On_Sale.2 ✓* NEG ✓* ERR ✓* DNF ✓*
Palindrome.1 ✗ ✗ ✓ ✓ ✗ ✓

Palindrome2.1 ✓* NEG ✓* ✓ ✓* ✗ ✓*
SCUBA_Dive_Logging.1 ERR ERR ✓ ✓ ✗ ✓

SCUBA_Dive_Logging.2 NEG NEG ✓ DNF ERR ✓

simplenote.1 ✗ ✗ ✓ DNF ✓ ✗

simplenote.2 ✓ ✓ ✓ ✓ ✓ ✗

stack_vm.1 ✗ ✗ ERR DNF ✗ ✓

The_Longest_Road.1 ✓* ✗ ✓* ✓ ✓* ✗ ✓*
CGC_Planet_Ma..._Parser.1 DNF DNF ✓ DNF ✗ DNF
CGC_Planet_Ma..._Parser.2 DNF DNF ✓ ✓ DNF DNF
CGC_Planet_Ma..._Parser.3 DNF DNF ✓ ✓ ✗ ✗

CGC_Planet_Ma..._Parser.4 DNF DNF ✓ ✓ DNF ERR
CGC_Planet_Ma..._Parser.5 DNF DNF ✓ ✓ ✗ DNF
CGC_Planet_Ma..._Parser.6 DNF DNF ✓ ✓ ✗ DNF
CGC_Planet_Ma..._Parser.7 DNF DNF ✓ ✓ ✗ DNF
FablesReport.1 DNF DNF ✓ ✓ ✗ ✗

FablesReport.2 DNF DNF ✓ ✓ ✗ ✗

FablesReport.3 DNF DNF ✓ ✓ ✗ ✗

FablesReport.5 DNF DNF ✓ ✓ ✗ ✗

FISHYXML.2 ✗ ✗ ✓ DNF ✗ DNF
Griswold.1 ✓ ✓ ✓ ✓ ✗ ✗

Griswold.2 ✓ ✓ ✓ DNF ✗ ✗

Griswold.3 ✓ ✓ ✓ ✓ ✗ ✗

HackMan.2 NEG NEG ✓ ✓ ✓ DNF
KTY_Pretty_Printer.1 ✓ ✓ ✓ ✓ ✓ ✓

KTY_Pretty_Printer.2 ✓ ✓ ✓ DNF ✓ DNF
KTY_Pretty_Printer.3 ✓ ✓ ✓ DNF ✓ ✓

KTY_Pretty_Printer.4 ✗ ✗ ✓ DNF ✓ ✓

KTY_Pretty_Printer.5 ✗ ERR ✓ ✓ ✓ ✓

Minimalis..._Manager_3M.1 ✓ ✓ ✓ ✓ ✓ ✓

Minimalis..._Manager_3M.2 ✓ ✓ ✓ ✓ ✓ ✓

Movie_Rental_Service.1 ✓* ✓ ✓* ERR ✓* ✓ ✓*
Music_Store_Client.1 ✓ ✓ ✓ ✓ ✗ ✗

On_Sale.1 NEG NEG ERR ERR DNF DNF
QuadtreeConways.1 ✓ ERR ✓ ✓ ✓ ✓

Rejistar.1 NEG NEG ✓ ✓ ERR DNF
SOLFEDGE.1 ✗ ✗ ✓ ✓ ✓ ✓

SOLFEDGE.2 ✗ ✗ ✓ ✓ ✓ ✓

SPIFFS.1 DNF DNF ✓ ✓ ✓ ✓

Street_map_service.1 ✓ ✓ ✓ DNF ERR ✗

WordCompletion.1 ✗ ✗ ✓ DNF ✗ ✗

Table 3: CGC Results. Baseline versus PREP results for f1x

robust configuration, GenProg evaluation for all single-edit

mutations and GA search, and Prophet with profile-based

localization. ‘✓’ indicates that a patch was found, ‘✗’ that no

patch was found, ‘DNF’ that the tool did not finish in the

8hr. search budget, ‘ERR’ indicates tool errors, ‘NEG’ when

no f1x-compatible negative test was available, ‘*’ identifies

examples where PREP mitigate the negative test (POV) on

its own with no repair tool.
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and inside conditional statements (if and case). We can use the

number of new patches that a tool discovers with PREP as a proxy

for the congruence of its operators with the program elements that

are accessible from its representation. Using the Codeflaws results

(Table 2), we can rank these tools from most to least congruent: f1x

(36), Prophet (64), and GenProg (99). This finding aligns with, and

provides an additional dimension of support for, recent discussions

of APR overfitting (e.g., [17, 27]) and repair search spaces (e.g., [11,

19]).

6 RELATEDWORK

Because PREP is the first tool that we know of to perform static

source-to-source transformations to aid APR tools, related work

falls under two categories, static code transformations and APR

toolsÐmany of which are evolutionary computation (EC) or genetic

algorithm (GA) based [6, 7, 16, 25, 28, 29].

6.1 Static transformations

The work most similar to ours is Comby [23], a tool that performs

static code transformations for general use, e.g., refactoring, re-

pair, or rewriting. Comby performs static code transformations for

multiple target languages by focusing on context free language

properties utilizing templates and a parser combinator. We were

unable to leverage Comby in this context as the transformations

we make require type information (a known limitation of Comby).

Comby has the ability to extract function arguments for use in a

code rewrite, however there is no mechanism to retrieve the argu-

ment’s type, which is required to make a proper variable declaration

in our rewriting methods. In addition, Comby has no mechanism

with which to make our T4 transformation.

6.2 APR tools

There are three main approaches APR tools take: search-based

(e.g., [7, 20]), templated (e.g., [8]), and semantic approaches such as

symbolic execution (e.g., [14, 15]). Hybrid models such as Prophet

and ARJA-e [29] exist and combine two or more approaches to reap

the benefits of each. Although our code transformation method

is generic, the templated approach is similar in principle to ours.

These templated approaches typically identify static code patterns

that are historically related to bugs and apply templated fixes to the

buggy code via transformations. In addition, tools such as ARJA [28]

and the work of Oliveira et al. [16] tackle the incongruity problem

by addressing patch representation.

Oliveira et al. [16] discuss increasing fault granularity by creating

a new patch representation (as compared to GenProg). This method

does not increase the granularity of the possible patch atoms (the

smallest element that can be used in a single edit patch) but allows

the GA to more easily mix atoms when searching for a patch. While

this method embeds a finer-grained approach, its specialized patch

representation and crossover operators only function within the

APR tool application, and results in uncompilable program variants.

Similar to Oliveira et al., ARJA [28] focuses on a lower-granularity

patch representation. Additionally, ARJA reduces the search space

through the application of rules which screen out edit operations

deemed łmeaninglessž as well as increasing the likelihood of suc-

cessful compilation through fix ingredient screening. In this screen-

ing, ARJA also applies a łtype-matchingž method that translates

variables or methods from a patch statement to a compatible in-

scope variable or method.

ARJA-e [29] is a hybrid approach that leverages both the same

premise as ARJA, the statement-level redundancy assumption (the

plastic surgery hypothesis [2]) and repair templates adapted from

PAR [8], and integrates edits of different granularities into their

patch representation.

PAR [8] is a patch-based approach, which defines ten fix tem-

plates from fix patterns identified from human-written patches.

PAR applies a fix template to a fault location and evaluates whether

or not the context is appropriate, e.g., a łnull pointer checker tem-

platež ensures that the fault location contains an object reference

and rewrites the AST with a null check of that object reference.

Different levels of granularity of the program’s AST are indirectly

supported through some fix templates, like łParameter Replacerž

and łExpression Replacerž, which replace variables or expressions

in statements or method parameters with type compatible elements

from the same scope. Another state-of-the-art template-based re-

pair tool, TBar [9] identifies additional fix patterns, totaling 15, yet

faces similar scope limitations with respect to replacement vari-

ables and expressions. While such template-based APR tools do

have granularity-aware fix patterns, these are applied to the internal

representation of the input program by the tools themselves.

Our strategy is different from ARJA, ARJA-e, PAR, and TBar, in

that our granularity-increasing transformations are independent

from an APR tool. Additionally, our transformation strategy identi-

fies type-compatible fix ingredients agnostic of scope, then gener-

ates assignments between same-named declared variables and these

ingredients, type-casting between compatible standard C types (e.g.,

considering size_t, uint16_t, and unsigned short int as com-

patible in a notion more aligned with physical typing [3]).

7 DISCUSSION

We discuss the broader implications of our results and its limita-

tions.

Of preprocessing on congruence. Our evaluation shows that sim-

ple source code transformations can improve the ability of multiple

tools Ð using a variety of repair methods Ð to find repairs for soft-

ware defects. Including PREP, the total number of correct repairs

found by GenProg improved by 2.5%, Prophet by 1.6%, and f1x by

0.9%. This improvement is similar to incremental, tool-specific ad-

vances reported for APR algorithms, e.g., SPR to Prophet (+0.5%

correct) [12] and ARJA [28] to ARJA-e [29] (+9.4%), but PREP’s

improvements generalize across multiple tools.

Of scope. We chose to add type-compatible fix ingredients (T4)

in a distinct external scope to ensure that the transformations are

semantically equivalent. This implementation choice limits colli-

sions with existing code elements, avoiding the need to conduct

additional dataflow analysis before inserting new code. Although

this choice did not impact GenProg, which has flexibility regarding

ingredients and scope, the other tools limit fix ingredients by scope.

For example, Prophet limits Value Replacement expressions to
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the same basic block. This means that for Prophet to take advantage

of T4 ingredients, the type-compatible fix ingredients would need

to be introduced into the appropriate scope.

On completeness of transformations. We initially selected PREP’s

four transformations by studying the motivating example, using

GenProg which failed to find a valid solution from all single-edits

of the original program. We then investigated why other APR tools

did not repair programs that clearly had the set of expressions nec-

essary for the repair. Notably, PREP’s four transformation rules are

not complete; for example, it does not include a rule to decompose

binary operations with complex operands into independent expres-

sions. However, each such code transformation also increases the

search space, creating a trade-off between generality and efficiency.

PREP represents our best guess about this trade-off, providing a

small, general set of transformations that yield improvement across

all tools that we studied.

Of code representation. Our results show that even small changes

to the source code can greatly affect the code representation that a

tool operates over. PREP effectively forces the granularity of the

code representation to be more congruent with many operators.

It is well-known that existing software-repair methods typically

find repairs that involve one or at most two code mutations. The

transformations we propose in PREP lead to a more uniform repre-

sentation granularity because they separate out composite program

elements into their constituent parts, e.g., decoupling function calls

from conditionals. We speculate that such changes could enable

EC-based repair tools to find more complex, epistatic, repairs by

making it easier to recombine program elements [19]. These trans-

formations can potentially disrupt an existing congruence, e.g., if a

composite statement comprises a correct repair element and is con-

gruent with an operator. Although we encountered a few such cases

in our evaluation, on investigation those examples corresponded

to repairs that were overfit to the test cases (see Section 5.2).

Despite their widespread use in industry, test cases can often lead

to overfitting by providing an inadequate specification of correct

functionality. Although we did not change the content of any tests

in our evaluation, we found several examples of overfit patches in

the baseline that had been reported for the different tools. These

were blocked (not discovered) in the PREP-enabled evaluation. This

shows how the source-level representation, particularly the run-

time ramifications of the representation, can affect how tools search

for a valid repair (cf. [11, 17, 27]).

During the Codeflaws GenProg evaluation, we also discovered a

limitation with its configuration, which caused it to incorrectly in-

terpret global variables that use macro definitions. Because PREP’s

preprocessing expands macros (required for T1śT4), PREP miti-

gated this particular issue.

On the stack. Although our transformations produce semantics-

preserving code, they alter how stack resources are used during

run time. Our transformations introduce new local variables within

existing functions (T1śT3) and call new functions which initialize

local variables with default values (T4). These transformations can

change how the stack is used, depending on the resulting source

code and compilation parameters. How compilers manage the stack

during compilation is directed at a high level by the user through

command-line options, directives, or pragmas.

For example, stack behavior can be changed by adding

optimizations (at least -O1) or applying parameters, such as

-fcombine-stack-adjustments. When new local variables are de-

fined in the source code, a specific location is reserved on the

stack based on the type and size of the variable. By contrast, when

constant values such as strings or integers are used as function pa-

rameters, the compiler does not reserve additional stack space, but

instead directly loads the value or address of the value into registers

according to the calling convention. Although this location could be

reused for other content when leaving the reserved variable’s scope,

this implies that the stack behavior will be different, potentially

mitigating some existing stack-based bugs and vulnerabilities.

Although stack usage is transient, the introduction of new func-

tions that initialize a number of local variables can change the

values of stack locations, effectively resetting part of the stack to

some default value. This can cause APR tools to not select patches

that rely on stack dynamics. During testing, we observed that some

positive and negative tests were volatile with respect to stack be-

havior.

Caveats. We ran f1x using two test oracle configurations on the

CGC dataset. For the first evaluation, f1x found patches that did not

pass the positive tests when evaluated outside of the f1x Docker

container. We conjectured that this was caused by a virtualization

or containerization instability, and we updated the test oracle to

evaluate tests with 3 consecutive runs to ensure consistency and

reduce any nondeterminism. In this second test oracle, if any run

failed, that failure was reported, but all three test runs were required

to report a pass for that test. This second oracle is the basis of the

results we reported for f1x on the CGC dataset.

8 CONCLUSION

The source-to-source transformations encoded in PREP were de-

veloped to improve the performance of search-based APR tools

by reducing incongruities between code representations and mu-

tation operators. When the tools are executed with PREP they

discover patches that were previously not discovered, finding 88

new unique correct patches for the Codeflaws dataset. Because

it operates on source code, PREP is general and applicable across

tools, and it can be used in tandem with existing repair methods be-

cause it does not require modifications to the underlying algorithm.

Although we implemented the PREP prototype for C, we believe

that our approach would produce similar improvements for other

imperative or object-oriented languages. We hope that our work

not only improves the power of existing source-based software

repair methods, but that it also draws attention to fundamental

questions about how best to tailor search-based methods for the

domain of software repair.
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