What Can Program Repair Learn From Code Review?

Madeline Endres
University of Michigan
Ann Arbor, Michigan, USA
endremad@umich.edu

Stephanie Forrest
Arizona State University
Tempe, Arizona, USA
steph@asu.edu

ABSTRACT

Over the past fifteen years, research on automated program repair
has matured, and transitions to industry have begun. However, an
impediment to wider adoption is concern over automatically gen-
erated patch correctness. A review of 250 program repair research
papers suggests that this concern can be addressed by adapting
practices from modern code review, such as multiple anonymized
reviews and checklists with well-defined terminology, to better
evaluate the correctness and acceptability of plausible patches. In
this paper, we argue that adopting such practices from modern
code review for automated program repair research can increase
developer trust, paving the way for wider industrial deployments.

CCS CONCEPTS

- General and reference — Evaluation; - Software and its en-
gineering — Automatic programming.

KEYWORDS

Automated program repair, code review, patch correctness, human
evaluations

ACM Reference Format:

Madeline Endres, Pemma Reiter, Stephanie Forrest, and Westley Weimer.
2022. What Can Program Repair Learn From Code Review? . In International
Workshop on Automated Program Repair (APR’22), May 19, 2022, Pittsburgh,
PA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524459.
3527352

1 INTRODUCTION

Automated program repair (APR) is a popular research topic in soft-
ware engineering [1] with a few initial industrial deployments [2, 3].
Despite recent successes, however, wide acceptance of APR is lim-
ited by concerns about machine patch correctness. Often generated
through random mutation and validated primarily with test suites,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

APR’22, May 19, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9285-3/22/05...$15.00
https://doi.org/10.1145/3524459.3527352

Pemma Reiter
Arizona State University
Tempe, Arizona, USA
pdreiter@asu.edu

Westley Weimer
University of Michigan
Ann Arbor, Michigan, USA
weimerw@umich.edu

automated patches are susceptible to overfitting [4]. Various meth-
ods from held out test-cases to specification-based proofs have been
proposed to improve the automated evaluation of patch correctness
and quality. Ultimately, however, human expertise remains an es-
sential component; proposed patches are typically evaluated either
by human inspection or by comparison to an extant developer-
supplied patch. Unfortunately, these inspections and comparisons
tend to be unstructured and performed by a single annotator in
APR research evaluations. This is an error-prone approach which
misses the diverse range of human expectations.

We propose the APR community adopts insights from modern
code review practices to improve the trustworthiness of automat-
ically generated repairs. In industry, humans use code review to
decide if a patch is correct, i.e., to assess the trustworthiness of
developer-written code. By defining organizational expectations,
specifying terminology and systematic criteria, and gathering mul-
tiple viewpoints, modern code review provides a consistent eval-
uation framework that increases organizational trust in accepted
code. While exact procedures vary, modern code review generally
involves both automated and formalized manual checks; because
humans have multiple expectations, no single practice suffices. Key
code review practices include: (1) continuous integration testing, (2)
checklists and policies, (3) multiple reviewers, and (4) anonymized
review. We observe, however, that APR researchers have focused
almost exclusively on (1) when evaluating proposed patches and
tools. In this paper, we consider (2)-(4) in turn and, using evidence
from our review of 253 APR papers, highlight best practices from
code review that we believe should be incorporated into future APR
evaluations.

2 BACKGROUND

We now briefly discuss background relevant to our proposal. Specif-
ically, we outline how trust impacts deployment decisions in in-
dustrial software engineering, consider the factors that influence
perceived trustworthiness of automated software, and finally dis-
cuss deployment risks that are specific to APR.

Deployment Decisions—Risk vs. Reward: Industrial deploy-
ment of new technology [5] is generally determined by assessments
of risk/reward tradeoffs. The primary potential reward of adopting
APR is the efficient and timely production of software bug patches,
improving software reliability and saving developer debugging time.
Like all software tools, however, APR-generated patches are not
risk-free. This tradeoff is captured in psychology, where trust is

APR’22, May 19, 2022, Pittsburgh, PA, USA

often defined as a willingness to accept risk by balancing it against
confidence in reward. We claim that understanding how developers
gain trust in software tools is critical for understanding and encour-
aging future APR deployments. A common approach to inspiring
trust, for example, is designating a “champion” or advocate who is
familiar with the tool and can personally explain risks and rewards
and how to avoid mistakes [6]. We argue that human assessments
of risk (i.e., trust) dominate deployment decisions for APR.

Trustworthiness of APR: Trustworthiness is a measure of con-
fidence that an interaction will result in a positive outcome, while
accepting the consequences of failure. Intuitively, developer confi-
dence can be enhanced by properties like software longevity, reuse,
and adaptation. More formally, software’s trustworthiness is pri-
marily influenced by: reputation (software’s perceived quality based
on external information); transparency, (software’s perceived under-
standability); and performance (software’s perceived ability to meet
project requirements) [7]. As a result, developer software judge-
ments depend on varied individual experiences, and are prone to
inconsistency and bias. For example, reviewers may have different
expectations for human vs. automated repairs; recent studies find
that reviewers trust automated patches more when labeled as hu-
man generated [8, 9]. This implicit bias against machine-generated
patches is a barrier to trust. By adopting practices that are common
in code review such as anonymized evaluations, APR’s trustworthi-
ness can be enhanced, potentially leading to wider acceptance.

Risks of APR: We now examine a key risk associated with APR
that hampers trust, namely, that it may produce a “repair” that fails
to meet human expectations for performance or transparency. This
concern extends beyond first generation APR, applying equally to
recent proposals [4, 10-12], such as those based on constraints or
supervised learning. There are certainly other risks associated with
APR (e.g., the process could take too long for real-time releases; it
could introduce security vulnerabilities; it could be too expensive).
Meeting human expectations, however, is essential for establishing
trust and accelerating adoption [6, 7, 13]. Critically, human expec-
tations are context-sensitive. For example, student expectations of
tools using patches as educational hints are markedly different from
developer expectations of professional debugging tools, security
analyst expectations of patches, or open-source pull request merge
expectations. In particular, students may be primarily interested in
patches that they find easily readable and helpful for their own de-
bugging while security analysts might be primarily concerned with
the security implications of a potential patch. This multifaceted
complexity suggests that automated metrics alone are insufficient
for evaluating APR tools.

3 POSITION: CODE REVIEW FOR APR

To improve acceptability and trustworthiness of APR evaluations
we propose the APR research community (1) adopts established
practices from modern code review, and (2) incorporates multiple
types of assessments, such as structured manual evaluation, to meet
multiple human expectations.

Position 1—expectations of APR should be modeled on code review
expectations: We propose that researchers approach the evaluation
of a given APR patch through the lens of modern code review. As
discussed earlier, modern code review considers both qualitative

Madeline Endres, Pemma Reiter, Stephanie Forrest, and Westley Weimer

and functional factors, and it uses multiple structured techniques to
reduce bias and inconsistency such as requiring multiple reviewers,
anonymizing the patch, and giving reviewers explicit checklists to
consider. In addition, many organizations require that reviewers be
familiar with the code base and that the review include at least one
person involved with developing the modified module.

Modern code review often augments human capabilities with
automated static and dynamic analyses such as style checkers,
linters, bug finding tools, and integration tests [14]. We observe that
the APR research community has focused predominantly on this
last approach (automated testing) and largely overlooked the others;
while simple manual inspection is common in APR evaluations,
systematic and structured evaluation akin to that of modern code
review is rare. Integrating these overlooked code review practices
into APR evaluation is a step towards more robust patch correctness
evaluations which can transfer to an industrial setting.

Position 2—APR evaluations should diversify to capture multi-
faceted human expectations and increase developer trust: Test-suite
validation is the most common APR evaluation methodology. De-
spite recent advances in detecting overfitting, plausible patches that
are deemed acceptable by test cases can still overfit their associated
test suite necessitating additional review [4, 10, 15]. In addition,
humans generally expect non-functional properties such as read-
ability or maintainability. As a result, assessing a patch solely on
automated regression tests is insufficient.

These two issues, overfitting and non-functional properties, can
both be addressed through the code-review-inspired systematic
manual inspection of patch quality and correctness described in
Position 1. However, manual inspection alone (even systematic in-
spection) is insufficient to thoroughly assess a patch. Some patches
address defects that are challenging for humans to reason about,
such as race conditions or security vulnerabilities. Further, it is
well-known that human reviewers make mistakes [16] and are
vulnerable to biases concerning a patch’s apparent author [9, 17].
Manual patch assessments that do not mitigate these error sources
are insufficient on their own. This points to the need for multiple
metrics used collectively, including both automatic and human-
based assessments.

4 APR AND CODE REVIEW POLICIES

We were interested in the following question: How do empirical
APR studies validate the quality of a proposed patch? To address this
question, we surveyed all of the 253 papers in the Monperrus living
APR Bibliography (downloaded, December 2020) that evaluate APR
tools or repairs [1]. Each paper in this dataset was read by at least
one of the current paper’s authors. We identified all papers in the
dataset that reported a human assessment of patch correctness or
quality (133 papers).

We find that 53% of APR evaluations have some form of human
involvement, and these human assessments fall into three general
categories: manual patch correctness and/or quality inspection by
paper authors, a user study with external reviewers, or developer
feedback (e.g., industrial deployment or number of pull requests
accepted). Although author-based manual inspection is by far the
most common, only 28% reported methodological details such as the
number of reviewers or a formalized annotator decision process. Of

What Can Program Repair Learn From Code Review?

those that do report such details, even fewer contained high-quality
evaluations that resemble today’s best code review practices. This
lack of rigor increases the likelihood of mistakes, thereby weakening
research validity of there empirical studies. Table 1 summarizes the
results of our evaluation.!

Year ’02-10 ’11-13 ’14-15 16 17 18 19 20 All
Papers 24 29 28 17 21 45 51 38 253
Has Humans 6 11 15 10 12 27 30 22 133
Authors Inspect 4 8 13 10 10 22 22 19 108
Has Methods 0 1 6 3 1 3 7 8 30
User Study 2 4 30 2 4 6 4 25
Has Developers 1 1 1 3 6 3 17

Table 1: Papers with human-based patch correctness or qual-
ity evaluations. Has Humans is the number of papers with
non-automated patch evaluations; Authors Inspect is where
authors explicitly used manual review for patch correct-
ness or quality; Has Methods is papers with manual inspec-
tion that explicitly report methodological details such as the
number of reviewers per-patch or a systematic decision pro-
cedure beyond an unelaborated assertion of checking for se-
mantic equivalence with the developer patch; User Study is
those that involve non-author evaluation of patches or tools;
and Has Developers is those with either industrial deploy-
ments or open source developer interaction.

We next consider four existing code review practices used in
human software engineering, which could strengthen APR empiri-
cal evaluations and improve the validity of results: (1) continuous
integration testing, (2) checklists, (3) multiple reviewers, and (4)
blinding.

Briefly, continuous integration enables scaling of software pro-
grams by automating software builds and testing when integrating
code changes, thus assuring continued code correctness and a clean
environment for code review [18]. Code inspection checklists (i.e.
checklists) formalize functional and non-functional software re-
quirements to enable code reviewers to perform consistent and
effective evaluations [19, 20]. Because code review quality is associ-
ated with an individual reviewer’s personal metrics, like workload
and experience, completing a code review usually requires feed-
back from multiple reviewers [21]; similarly, anonymizing the code
review process by double-blinding participants addresses personal
biases that can impact code review quality and consistency [22].

We now discuss these four code review practices in more detail,
highlighting their relevance to APR in the context of our literature
review. Because earlier APR research focuses predominantly on the
first of these four existing code review practices (continuous inte-
gration), in this paper we recommend that the community consider
the other three human-driven practices to create a more systematic
evaluation process.

Practice 1—Continuous Integration and Test Suite Overfitting:
Modern code review generally requires that code pass automated

! The data from which Table 1 was generated is available at https://docs.google.com/
spreadsheets/d/1JwdM8uxEI5BixVL-my0iRBKbqY5go315_5bISDLhzj0/edit?usp=
sharing

APR’22, May 19, 2022, Pittsburgh, PA, USA

tests before being integrated into a project’s main code base, a
process often done using continuous integration. Continuous inte-
gration is one way of enabling the requirement of automated testing
at scale by automating software builds and testing [18]. Continuous
integration testing refers to the automated testing component of
continuous integration.

Automated software tests often feature multiple suites of in-
creasing cost and quality: developer-local unit tests, continuous
integration testing (and other static analyses), and more expensive
test suites (e.g., full integration/regression tests run overnight or
each weekend). APR patches would also likely be required to pass
all automated test levels before final integration. Consequently,
APR papers commonly use test suites to evaluate potential patches.
However, both heuristic and semantics-based APR approaches are
prone to overfitting to test suites [4, 10]; potential patches that
overfit to tests can negatively affect non-tested functionality.

Researchers sometimes address overfitting by using held-out
tests to validate repairs after a patch has been proposed [4] or
by using heuristics such as test-case execution similarity [12], to
guide repair search. More recent work has also proposed systematic
metrics and methods for mitigating biases in automated evaluation
of APR patches [15]. Although promising, these automated efforts
alone do not yet determine patch correctness and quality with
sufficient probability to meet developer expectations [16]; in current
APR deployments such as SapFix at Facebook, APR patches are
integrated into code review processes with manual inspection [2].
We argue that the APR research community should follow this
example by integrating formal manual code review processes into
evaluations of patch correctness.

Practice 2—Code Review Checklists and Nebulous Repair Qual-
ity’ Definitions: Including manual review of APR patches can help
better evaluate how candidate patches meet expectations. Human
expectations, however, are diverse. For example, a programmer con-
cerned with program efficiency might rate a patch differently from
a security analyst. As a result, organizations using modern code
review generally train developers with checklists of functional and
non-functional properties to specifically look for when reviewing
code [23]. At a high level, an extensive checklist ensures adher-
ence to (1) accepted coding standards; (2) a defined architecture;
(3) a set of accepted Non-Functional requirements, like maintain-
ability, reusability, reliability, security, and performance; (4) Object-
Oriented Analysis and Design (OOAD) principles. In practice, check-
lists often direct the reviewer through sets of questions, like: “Are
names of variable, methods, and classes meaningful?”(coding stan-
dards), “Is load balancing appropriately used?”(performance), and
“Is the least privilege principle enforced?”(security). Using check-
lists, developer training, and coding standards reduces annotator
variance and helps prevent mistakes.

Annotator variance is prevalent in APR evaluations, potentially
affecting not only individual annotators’ consistency but also study
generalizability (e.g., reproducibility or comparisons to related
work). The low level of internal annotator consistency is clear;
one recent study found that 35/187 (19%) of patches determined
“correct” by informal manual inspection of the authors of three APR
papers were actually incorrect when subjected to a more robust
evaluation [16]. And, our analysis shows that APR papers rarely
report (30/108) explicit rubrics for manual patch correctness and

APR’22, May 19, 2022, Pittsburgh, PA, USA

quality decisions beyond an unelaborated definition such as “se-
mantically equivalent to”. We suggest that APR researchers both
report and adopt more rigorous rubrics and checklists to increase
internal consistency and improve patch classification transparency.

Inconsistency across APR evaluations goes beyond individual
variations. We also observe variance with terms and definitions
complicating comparative review. One such ambiguity is with patch
correctness. When manually reviewing, researchers generally de-
fine patch correctness either in relation to a historical developer fix
or based on annotator understanding of intended program behavior.
However, there is variance within these categories. For instance,
several papers assess whether a patch is semantically equivalent to
the developer patch while others look for functional equivalence.
While similar, semantic and functional equivalence have different
connotations which can lead to different annotator assessments.
This complicates the task of comparing patch correctness evalua-
tions across studies, negatively impacting reproducibility.

The lack of terminology standardization in APR evaluations
is even more prevalent regarding patch quality. For example, we
observe that APR user studies measure a wide range of quality
properties through participant survey responses including useful-
ness, helpfulness, trustworthiness, maintainability, pertinence, and
relevance. Other studies simply ask participants to rate quality on
a Likert scale. Measuring diverse properties is desirable: software
quality is nuanced, not one-dimensional. An issue arises when re-
searchers try to compare patch quality evaluations between tools
and studies. It is rarely possible to fairly compare human study
results between papers. For instance, results rating helpfulness can-
not be directly equated to results rating usefulness. Slight word
differences can have significant impact on responses. For example,
Scalabrino et al. found significant differences in user perceptions of
code “understandably” and code “readability” [24]. We encourage
the APR research community to not only produce more structured
manual evaluations, but also to standardize patch correctness and
quality terminology (cf. [25]) to better support reproducible re-
search.

Practice 3—Multiple Reviewers and Annotator Counts: Beyond
checklists and structured reviews, another way that modern code
review (and even traditional code inspection) increases confidence
in error-prone human annotators is through multiple reviewers,
which reduces the likelihood that all reviewers make the same
mistake, especially if reviewers include diverse expertise, familiarity
with the code base, or are respected senior developers. This effect
applies in many domains [26]. Organizations that employ such
guidelines would not merge a pull request with only one reviewer.

The importance of avoiding reviewing bias and mitigating re-
viewer error rates requires that APR patch correctness and quality
evaluations be determined by more than one annotator. Unfor-
tunately, such redundancy is not currently standard for manual
inspection in APR papers. We observe that very few (14/108) papers
with manual review by the paper authors report using multiple
annotators. An additional 11 papers collected multiple annotations
through a user study for a total of 25/133 papers with human par-
ticipation. Due to limited methodological detail in many papers, it
is possible that more studies used multiple reviewers than those
which were explicitly stated in the paper text. However, we note
that of the 18 papers who specified the number of annotators, 4

Madeline Endres, Pemma Reiter, Stephanie Forrest, and Westley Weimer

explicitly used a single reviewer, indicating that using multiple
reviewers is not universally adopted. This analysis points to the
need for the APR research community to adopt more rigorous stan-
dards for author-driven patch correctness evaluations using the
methods outlined above. In addition, relevant statistics such as
inter-annotator agreement should be reported.

Practice 4—Blinded Code Review and Bias and Trust: A final ele-
ment of code review that is relevant to APR is the impact of human
biases on patch acceptance. Modern code review acknowledges that
biases influence code quality assessments in nuanced ways. For ex-
ample, Terrell et al. found that while women are more likely to have
open source pull requests accepted than men, pull requests from
women who were project outsiders were less likely to be accepted
than those of male outsiders. [17]. Avoiding such biases is required
for accurate assessment of risks and rewards.

A few recent APR studies have also identified bias surrounding
automated patches, particularly bias connected to labeling a repair
as generated by a developer or a machine. For instance, Huang et
al. found that participants were significantly less likely to accept a
patch labeled as machine generated, even if the patch was actually
generated by a human developer [9]. This is important because
non-functional properties are often more important the functional
ones in subjective human tool [6, Sec. 4] and patch or code assess-
ments [7]. Such issues are independent of test suites and overfitting,
but because different humans have different biases and different
expectations, one practice (such as using multiple annotators) is
not enough to mitigate this concern. We argue that the lessons
learned about bias in code review can also inform correctness and
quality evaluations for automatically produced patches. In author
inspection and user studies of APR patches, for example, study
instruments could avoid indicating if a given patch was machine
or human generated as much as possible.

5 DISCUSSION AND CONCLUSION

While we acknowledge that formalized code review can be expen-
sive, especially in academic settings, we argue that the benefits
of more reproducible research, evaluation error mitigation, and
increased trust are worth the cost. Additionally, although the time-
consuming nature of more rigorous patch evaluations by humans
may reduce the feasible size of some empirical studies, we argue
that quantity over quality is not helpful in this circumstance and
that smaller studies that are more carefully conducted will ulti-
mately prove more useful to the APR community in evaluating the
relative merits of different methods and research prototypes.

This is especially true because APR patches tend to fix sim-
ple bugs: the adoption cost for researchers will relatively low. We
therefore conclude with actionable suggestions for incorporating
checklists, multiple reviewers, and anonymized review into future
manual APR evaluations:

Incorporating Checklists and Definitions:

o Encourage annotators to adopt a standard rubric and publish the
rubric along with the results.

e Liuetal [11, Sec. 3.3] provides an example set of rules for system-
atically determining similarity of a plausible patch to a human’s.

Incorporating Multiple Reviewers:

What Can Program Repair Learn From Code Review?

e Use 2-3 independent reviewers to evaluate each patch. When
appropriate, report inter-annotator agreement and/or have a
second evaluation pass to resolve annotator disagreements.

e Consider including reviewers with varying levels of expertise,
and if possible, including one reviewer who is a code-base expert.

Incorporating Blind Review and Mitigating Bias:

e Include one reviewer unfamiliar with the tool’s implementation.

e Anonymize who or what wrote the patch. If possible, do not let
participants know they are rating patches from multiple sources.

e Huang et al. [9, Sec. 3] give an example of a relevant “deceptive”
experimental setup.

Evaluating whether or not APR patches meet human expecta-
tions is critical to understanding programmer trust, a key prereq-
uisite for future deployments. We propose applying insights from
modern code review such as multiple reviews, checklists, and blind-
ing, to better evaluate if these expectations are met. We further
advocate for increased research trust through transparency and
reproducibility and call on researchers to open source their source
code, patches, and patch correctness results for public review, fur-
ther mitigating the risk of manual patch assessment — we thank
our anonymous reviewer for this important point.

As human expectations for patches are varied and context de-
pendant, a single evaluation approach generally does not suffice.
Unfortunately, the bulk of published APR evaluations contain only
automated approaches and/or unstructured error-prone manual
evaluation. We argue that future APR evaluations employ multiple
automated and systematic manual review metrics in tandem for a
more robust understanding of patch trust and acceptability.

ACKNOWLEDGMENTS

We acknowledge the partial support of the NSF (CCF 1908633, CCF
1763674) and a Google Faculty Research Award.

REFERENCES

[1] M. Monperrus, “The Living Review on Automated Program Repair,” Dec. 2020,
working paper. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01956501

[2] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and
A. Scott, “SapFix: Automated end-to-end repair at scale,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2019, pp. 269-278.

[3] S.O.Haraldsson, J. R. Woodward, A. E. I. Brownlee, and K. Siggeirsdottir, “Fixing
bugs in your sleep: How genetic improvement became an overnight success,” in
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
2017, p. 1513-1520.

[4] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse than the
disease? overfitting in automated program repair,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, 2015, pp. 532-543.

[5] T.Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology transfer
in practice,” IEEE Software, vol. 23, no. 6, pp. 88-95, 2006.

[6] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix, “Using
static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp. 22-29, 2008.

[7] G.M. Alarcon, L. G. Militello, P. Ryan, S. A. Jessup, C. S. Calhoun, and J. B. Lyons,
“A descriptive model of computer code trustworthiness,” Journal of Cognitive
Engineering and Decision Making, vol. 11, no. 2, pp. 107-121, 2017.

[8] I Bertram,]. Hong, Y. Huang, W. Weimer, and Z. Sharafi, “Trustworthiness percep-

tions in code review: An eye-tracking study,” in Proceedings of the 14th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement

(ESEM), 2020, pp. 1-6.

Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, and W. Weimer, “Biases

and differences in code review using medical imaging and eye-tracking: genders,

humans, and machines,” in Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, 2020, pp. 456-468.

[9

=

(10]

(1]

(23]

[25

[26]

APR’22, May 19, 2022, Pittsburgh, PA, USA

X.B.D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting in semantics-based
automated program repair,” Empirical Software Engineering, vol. 23, no. 5, pp.
3007-3033, 2018.

K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. D. A. Bissyande, D. Kim, P. Wu, J. Klein,
X. Mao, and Y. Le Traon, “On the efficiency of test suite based program repair:
A systematic assessment of 16 automated repair systems for Java programs,” in
42nd ACM/IEEE International Conference on Software Engineering (ICSE), 2020.
Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch correctness
in test-based program repair,” in Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 789-799.

T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model checking with
SLAM,” Commun. ACM, vol. 54, no. 7, p. 68-76, Jul. 2011.

V. Balachandran, “Reducing human effort and improving quality in peer code
reviews using automatic static analysis and reviewer recommendation,” in 2013
35th International Conference on Software Engineering (ICSE), 2013, pp. 931-940.
K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. F. Bissyandé, “A critical
review on the evaluation of automated program repair systems,” Journal of
Systems and Software, vol. 171, p. 110817, 2021.

D. X. B. Le, L. Bao, D. Lo, X. Xia, S. Li, and C. Pasareanu, “On reliability of
patch correctness assessment,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 524-535.

J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill, C. Parnin, and
J. Stallings, “Gender differences and bias in open source: Pull request acceptance
of women versus men,” Peer] Computer Science, vol. 3, p. e111, 2017.

P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving software
quality and reducing risk. Pearson Education, 2007.

J. R. de Almeida, J. B. Camargo, B. A. Basseto, and S. M. Paz, “Best practices
in code inspection for safety-critical software,” IEEE software, vol. 20, no. 3, pp.
56-63, 2003.

M. C. Code and G. Carullo, “Implementing effective code reviews.”

0. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey, “Investigating
code review quality: Do people and participation matter?” in 2015 IEEE interna-
tional conference on software maintenance and evolution (ICSME). IEEE, 2015,
pp. 111-120.

E. R. Murphy-Hill, J. Dicker, M. Hodges, C. D. Egelman, C. N. C. Jaspan, L. Cheng,
L. Kammer, B. Holtz, M. A. Jorde, A. M. K. Dolan et al., “Engineering impacts of
anonymous author code review: A field experiment,” 2021.

S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical study of the
impact of modern code review practices on software quality,” Empirical Software
Engineering, vol. 21, 2015.

S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and
R. Oliveto, “Automatically assessing code understandability: How far are we?” in
2017 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2017, pp. 417-427.

L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements in
software engineering. Springer Science & Business Media, 2012, vol. 5.

S. Nowak and S. Riiger, “How reliable are annotations via crowdsourcing: A
study about inter-annotator agreement for multi-label image annotation,” in
Proceedings of the International Conference on Multimedia Information Retrieval,
ser. MIR ’10. New York, NY, USA: Association for Computing Machinery, 2010,
p. 557-566.

	Abstract
	1 Introduction
	2 BACKGROUND
	3 POSITION: CODE REVIEW FOR APR
	4 APR AND CODE REVIEW POLICIES
	5 DISCUSSION AND CONCLUSION
	References

