
What Can Program Repair Learn From Code Review?

Madeline Endres
University of Michigan

Ann Arbor, Michigan, USA
endremad@umich.edu

Pemma Reiter
Arizona State University
Tempe, Arizona, USA
pdreiter@asu.edu

Stephanie Forrest
Arizona State University
Tempe, Arizona, USA

steph@asu.edu

Westley Weimer
University of Michigan

Ann Arbor, Michigan, USA
weimerw@umich.edu

ABSTRACT

Over the past fifteen years, research on automated program repair

has matured, and transitions to industry have begun. However, an

impediment to wider adoption is concern over automatically gen-

erated patch correctness. A review of 250 program repair research

papers suggests that this concern can be addressed by adapting

practices from modern code review, such as multiple anonymized

reviews and checklists with well-defined terminology, to better

evaluate the correctness and acceptability of plausible patches. In

this paper, we argue that adopting such practices from modern

code review for automated program repair research can increase

developer trust, paving the way for wider industrial deployments.

CCS CONCEPTS

• General and reference → Evaluation; • Software and its en-

gineering→ Automatic programming.
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1 INTRODUCTION

Automated program repair (APR) is a popular research topic in soft-

ware engineering [1] with a few initial industrial deployments [2, 3].

Despite recent successes, however, wide acceptance of APR is lim-

ited by concerns about machine patch correctness. Often generated

through random mutation and validated primarily with test suites,
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automated patches are susceptible to overfitting [4]. Various meth-

ods from held out test-cases to specification-based proofs have been

proposed to improve the automated evaluation of patch correctness

and quality. Ultimately, however, human expertise remains an es-

sential component; proposed patches are typically evaluated either

by human inspection or by comparison to an extant developer-

supplied patch. Unfortunately, these inspections and comparisons

tend to be unstructured and performed by a single annotator in

APR research evaluations. This is an error-prone approach which

misses the diverse range of human expectations.

We propose the APR community adopts insights from modern

code review practices to improve the trustworthiness of automat-

ically generated repairs. In industry, humans use code review to

decide if a patch is correct, i.e., to assess the trustworthiness of

developer-written code. By defining organizational expectations,

specifying terminology and systematic criteria, and gathering mul-

tiple viewpoints, modern code review provides a consistent eval-

uation framework that increases organizational trust in accepted

code. While exact procedures vary, modern code review generally

involves both automated and formalized manual checks; because

humans have multiple expectations, no single practice suffices. Key

code review practices include: (1) continuous integration testing, (2)

checklists and policies, (3) multiple reviewers, and (4) anonymized

review. We observe, however, that APR researchers have focused

almost exclusively on (1) when evaluating proposed patches and

tools. In this paper, we consider (2)ś(4) in turn and, using evidence

from our review of 253 APR papers, highlight best practices from

code review that we believe should be incorporated into future APR

evaluations.

2 BACKGROUND

We now briefly discuss background relevant to our proposal. Specif-

ically, we outline how trust impacts deployment decisions in in-

dustrial software engineering, consider the factors that influence

perceived trustworthiness of automated software, and finally dis-

cuss deployment risks that are specific to APR.

Deployment Decisions—Risk vs. Reward: Industrial deploy-

ment of new technology [5] is generally determined by assessments

of risk/reward tradeoffs. The primary potential reward of adopting

APR is the efficient and timely production of software bug patches,

improving software reliability and saving developer debugging time.

Like all software tools, however, APR-generated patches are not

risk-free. This tradeoff is captured in psychology, where trust is
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often defined as a willingness to accept risk by balancing it against

confidence in reward. We claim that understanding how developers

gain trust in software tools is critical for understanding and encour-

aging future APR deployments. A common approach to inspiring

trust, for example, is designating a łchampionž or advocate who is

familiar with the tool and can personally explain risks and rewards

and how to avoid mistakes [6]. We argue that human assessments

of risk (i.e., trust) dominate deployment decisions for APR.

Trustworthiness of APR: Trustworthiness is a measure of con-

fidence that an interaction will result in a positive outcome, while

accepting the consequences of failure. Intuitively, developer confi-

dence can be enhanced by properties like software longevity, reuse,

and adaptation. More formally, software’s trustworthiness is pri-

marily influenced by: reputation (software’s perceived quality based

on external information); transparency, (software’s perceived under-

standability); and performance (software’s perceived ability to meet

project requirements) [7]. As a result, developer software judge-

ments depend on varied individual experiences, and are prone to

inconsistency and bias. For example, reviewers may have different

expectations for human vs. automated repairs; recent studies find

that reviewers trust automated patches more when labeled as hu-

man generated [8, 9]. This implicit bias against machine-generated

patches is a barrier to trust. By adopting practices that are common

in code review such as anonymized evaluations, APR’s trustworthi-

ness can be enhanced, potentially leading to wider acceptance.

Risks of APR:We now examine a key risk associated with APR

that hampers trust, namely, that it may produce a łrepairž that fails

to meet human expectations for performance or transparency. This

concern extends beyond first generation APR, applying equally to

recent proposals [4, 10ś12], such as those based on constraints or

supervised learning. There are certainly other risks associated with

APR (e.g., the process could take too long for real-time releases; it

could introduce security vulnerabilities; it could be too expensive).

Meeting human expectations, however, is essential for establishing

trust and accelerating adoption [6, 7, 13]. Critically, human expec-

tations are context-sensitive. For example, student expectations of

tools using patches as educational hints are markedly different from

developer expectations of professional debugging tools, security

analyst expectations of patches, or open-source pull request merge

expectations. In particular, students may be primarily interested in

patches that they find easily readable and helpful for their own de-

bugging while security analysts might be primarily concerned with

the security implications of a potential patch. This multifaceted

complexity suggests that automated metrics alone are insufficient

for evaluating APR tools.

3 POSITION: CODE REVIEW FOR APR

To improve acceptability and trustworthiness of APR evaluations

we propose the APR research community (1) adopts established

practices from modern code review, and (2) incorporates multiple

types of assessments, such as structured manual evaluation, to meet

multiple human expectations.

Position 1Ðexpectations of APR should be modeled on code review

expectations: We propose that researchers approach the evaluation

of a given APR patch through the lens of modern code review. As

discussed earlier, modern code review considers both qualitative

and functional factors, and it uses multiple structured techniques to

reduce bias and inconsistency such as requiring multiple reviewers,

anonymizing the patch, and giving reviewers explicit checklists to

consider. In addition, many organizations require that reviewers be

familiar with the code base and that the review include at least one

person involved with developing the modified module.

Modern code review often augments human capabilities with

automated static and dynamic analyses such as style checkers,

linters, bug finding tools, and integration tests [14]. We observe that

the APR research community has focused predominantly on this

last approach (automated testing) and largely overlooked the others;

while simple manual inspection is common in APR evaluations,

systematic and structured evaluation akin to that of modern code

review is rare. Integrating these overlooked code review practices

into APR evaluation is a step towards more robust patch correctness

evaluations which can transfer to an industrial setting.

Position 2ÐAPR evaluations should diversify to capture multi-

faceted human expectations and increase developer trust: Test-suite

validation is the most common APR evaluation methodology. De-

spite recent advances in detecting overfitting, plausible patches that

are deemed acceptable by test cases can still overfit their associated

test suite necessitating additional review [4, 10, 15]. In addition,

humans generally expect non-functional properties such as read-

ability or maintainability. As a result, assessing a patch solely on

automated regression tests is insufficient.

These two issues, overfitting and non-functional properties, can

both be addressed through the code-review-inspired systematic

manual inspection of patch quality and correctness described in

Position 1. However, manual inspection alone (even systematic in-

spection) is insufficient to thoroughly assess a patch. Some patches

address defects that are challenging for humans to reason about,

such as race conditions or security vulnerabilities. Further, it is

well-known that human reviewers make mistakes [16] and are

vulnerable to biases concerning a patch’s apparent author [9, 17].

Manual patch assessments that do not mitigate these error sources

are insufficient on their own. This points to the need for multiple

metrics used collectively, including both automatic and human-

based assessments.

4 APR AND CODE REVIEW POLICIES

We were interested in the following question: How do empirical

APR studies validate the quality of a proposed patch? To address this

question, we surveyed all of the 253 papers in the Monperrus living

APR Bibliography (downloaded, December 2020) that evaluate APR

tools or repairs [1]. Each paper in this dataset was read by at least

one of the current paper’s authors. We identified all papers in the

dataset that reported a human assessment of patch correctness or

quality (133 papers).

We find that 53% of APR evaluations have some form of human

involvement, and these human assessments fall into three general

categories: manual patch correctness and/or quality inspection by

paper authors, a user study with external reviewers, or developer

feedback (e.g., industrial deployment or number of pull requests

accepted). Although author-based manual inspection is by far the

most common, only 28% reported methodological details such as the

number of reviewers or a formalized annotator decision process. Of
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those that do report such details, even fewer contained high-quality

evaluations that resemble today’s best code review practices. This

lack of rigor increases the likelihood ofmistakes, therebyweakening

research validity of there empirical studies. Table 1 summarizes the

results of our evaluation.1

Year ’02-10 ’11-13 ’14-15 ’16 ’17 ’18 ’19 ’20 All

Papers 24 29 28 17 21 45 51 38 253

Has Humans 6 11 15 10 12 27 30 22 133

Authors Inspect 4 8 13 10 10 22 22 19 108

Has Methods 0 1 6 3 1 3 7 8 30

User Study 2 4 3 0 2 4 6 4 25

Has Developers 1 1 1 1 1 3 6 3 17

Table 1: Papers with human-based patch correctness or qual-

ity evaluations. Has Humans is the number of papers with

non-automated patch evaluations; Authors Inspect is where

authors explicitly used manual review for patch correct-

ness or quality; Has Methods is papers with manual inspec-

tion that explicitly reportmethodological details such as the

number of reviewers per-patch or a systematic decision pro-

cedure beyond an unelaborated assertion of checking for se-

mantic equivalence with the developer patch; User Study is

those that involve non-author evaluation of patches or tools;

and Has Developers is those with either industrial deploy-

ments or open source developer interaction.

We next consider four existing code review practices used in

human software engineering, which could strengthen APR empiri-

cal evaluations and improve the validity of results: (1) continuous

integration testing, (2) checklists, (3) multiple reviewers, and (4)

blinding.

Briefly, continuous integration enables scaling of software pro-

grams by automating software builds and testing when integrating

code changes, thus assuring continued code correctness and a clean

environment for code review [18]. Code inspection checklists (i.e.

checklists) formalize functional and non-functional software re-

quirements to enable code reviewers to perform consistent and

effective evaluations [19, 20]. Because code review quality is associ-

ated with an individual reviewer’s personal metrics, like workload

and experience, completing a code review usually requires feed-

back from multiple reviewers [21]; similarly, anonymizing the code

review process by double-blinding participants addresses personal

biases that can impact code review quality and consistency [22].

We now discuss these four code review practices in more detail,

highlighting their relevance to APR in the context of our literature

review. Because earlier APR research focuses predominantly on the

first of these four existing code review practices (continuous inte-

gration), in this paper we recommend that the community consider

the other three human-driven practices to create a more systematic

evaluation process.

Practice 1ÐContinuous Integration and Test Suite Overfitting:

Modern code review generally requires that code pass automated

1The data from which Table 1 was generated is available at https://docs.google.com/
spreadsheets/d/1JwdM8uxEI5BixVL-my0iRBKbqY5go3l5_5bISDLhzj0/edit?usp=
sharing

tests before being integrated into a project’s main code base, a

process often done using continuous integration. Continuous inte-

gration is one way of enabling the requirement of automated testing

at scale by automating software builds and testing [18]. Continuous

integration testing refers to the automated testing component of

continuous integration.

Automated software tests often feature multiple suites of in-

creasing cost and quality: developer-local unit tests, continuous

integration testing (and other static analyses), and more expensive

test suites (e.g., full integration/regression tests run overnight or

each weekend). APR patches would also likely be required to pass

all automated test levels before final integration. Consequently,

APR papers commonly use test suites to evaluate potential patches.

However, both heuristic and semantics-based APR approaches are

prone to overfitting to test suites [4, 10]; potential patches that

overfit to tests can negatively affect non-tested functionality.

Researchers sometimes address overfitting by using held-out

tests to validate repairs after a patch has been proposed [4] or

by using heuristics such as test-case execution similarity [12], to

guide repair search. More recent work has also proposed systematic

metrics and methods for mitigating biases in automated evaluation

of APR patches [15]. Although promising, these automated efforts

alone do not yet determine patch correctness and quality with

sufficient probability tomeet developer expectations [16]; in current

APR deployments such as SapFix at Facebook, APR patches are

integrated into code review processes with manual inspection [2].

We argue that the APR research community should follow this

example by integrating formal manual code review processes into

evaluations of patch correctness.

Practice 2ÐCode Review Checklists and Nebulous ‘Repair Qual-

ity’ Definitions: Including manual review of APR patches can help

better evaluate how candidate patches meet expectations. Human

expectations, however, are diverse. For example, a programmer con-

cerned with program efficiency might rate a patch differently from

a security analyst. As a result, organizations using modern code

review generally train developers with checklists of functional and

non-functional properties to specifically look for when reviewing

code [23]. At a high level, an extensive checklist ensures adher-

ence to (1) accepted coding standards; (2) a defined architecture;

(3) a set of accepted Non-Functional requirements, like maintain-

ability, reusability, reliability, security, and performance; (4) Object-

Oriented Analysis and Design (OOAD) principles. In practice, check-

lists often direct the reviewer through sets of questions, like: łAre

names of variable, methods, and classes meaningful?ž(coding stan-

dards), łIs load balancing appropriately used?ž(performance), and

łIs the least privilege principle enforced?ž(security). Using check-

lists, developer training, and coding standards reduces annotator

variance and helps prevent mistakes.

Annotator variance is prevalent in APR evaluations, potentially

affecting not only individual annotators’ consistency but also study

generalizability (e.g., reproducibility or comparisons to related

work). The low level of internal annotator consistency is clear;

one recent study found that 35/187 (19%) of patches determined

łcorrectž by informal manual inspection of the authors of three APR

papers were actually incorrect when subjected to a more robust

evaluation [16]. And, our analysis shows that APR papers rarely

report (30/108) explicit rubrics for manual patch correctness and



APR’22, May 19, 2022, Pittsburgh, PA, USA Madeline Endres, Pemma Reiter, Stephanie Forrest, and Westley Weimer

quality decisions beyond an unelaborated definition such as łse-

mantically equivalent tož. We suggest that APR researchers both

report and adopt more rigorous rubrics and checklists to increase

internal consistency and improve patch classification transparency.

Inconsistency across APR evaluations goes beyond individual

variations. We also observe variance with terms and definitions

complicating comparative review. One such ambiguity is with patch

correctness. When manually reviewing, researchers generally de-

fine patch correctness either in relation to a historical developer fix

or based on annotator understanding of intended program behavior.

However, there is variance within these categories. For instance,

several papers assess whether a patch is semantically equivalent to

the developer patch while others look for functional equivalence.

While similar, semantic and functional equivalence have different

connotations which can lead to different annotator assessments.

This complicates the task of comparing patch correctness evalua-

tions across studies, negatively impacting reproducibility.

The lack of terminology standardization in APR evaluations

is even more prevalent regarding patch quality. For example, we

observe that APR user studies measure a wide range of quality

properties through participant survey responses including useful-

ness, helpfulness, trustworthiness, maintainability, pertinence, and

relevance. Other studies simply ask participants to rate quality on

a Likert scale. Measuring diverse properties is desirable: software

quality is nuanced, not one-dimensional. An issue arises when re-

searchers try to compare patch quality evaluations between tools

and studies. It is rarely possible to fairly compare human study

results between papers. For instance, results rating helpfulness can-

not be directly equated to results rating usefulness. Slight word

differences can have significant impact on responses. For example,

Scalabrino et al. found significant differences in user perceptions of

code łunderstandablyž and code łreadabilityž [24]. We encourage

the APR research community to not only produce more structured

manual evaluations, but also to standardize patch correctness and

quality terminology (cf. [25]) to better support reproducible re-

search.

Practice 3ÐMultiple Reviewers and Annotator Counts: Beyond

checklists and structured reviews, another way that modern code

review (and even traditional code inspection) increases confidence

in error-prone human annotators is through multiple reviewers,

which reduces the likelihood that all reviewers make the same

mistake, especially if reviewers include diverse expertise, familiarity

with the code base, or are respected senior developers. This effect

applies in many domains [26]. Organizations that employ such

guidelines would not merge a pull request with only one reviewer.

The importance of avoiding reviewing bias and mitigating re-

viewer error rates requires that APR patch correctness and quality

evaluations be determined by more than one annotator. Unfor-

tunately, such redundancy is not currently standard for manual

inspection in APR papers. We observe that very few (14/108) papers

with manual review by the paper authors report using multiple

annotators. An additional 11 papers collected multiple annotations

through a user study for a total of 25/133 papers with human par-

ticipation. Due to limited methodological detail in many papers, it

is possible that more studies used multiple reviewers than those

which were explicitly stated in the paper text. However, we note

that of the 18 papers who specified the number of annotators, 4

explicitly used a single reviewer, indicating that using multiple

reviewers is not universally adopted. This analysis points to the

need for the APR research community to adopt more rigorous stan-

dards for author-driven patch correctness evaluations using the

methods outlined above. In addition, relevant statistics such as

inter-annotator agreement should be reported.

Practice 4ÐBlinded Code Review and Bias and Trust: A final ele-

ment of code review that is relevant to APR is the impact of human

biases on patch acceptance. Modern code review acknowledges that

biases influence code quality assessments in nuanced ways. For ex-

ample, Terrell et al. found that while women are more likely to have

open source pull requests accepted than men, pull requests from

women who were project outsiders were less likely to be accepted

than those of male outsiders. [17]. Avoiding such biases is required

for accurate assessment of risks and rewards.

A few recent APR studies have also identified bias surrounding

automated patches, particularly bias connected to labeling a repair

as generated by a developer or a machine. For instance, Huang et

al. found that participants were significantly less likely to accept a

patch labeled as machine generated, even if the patch was actually

generated by a human developer [9]. This is important because

non-functional properties are often more important the functional

ones in subjective human tool [6, Sec. 4] and patch or code assess-

ments [7]. Such issues are independent of test suites and overfitting,

but because different humans have different biases and different

expectations, one practice (such as using multiple annotators) is

not enough to mitigate this concern. We argue that the lessons

learned about bias in code review can also inform correctness and

quality evaluations for automatically produced patches. In author

inspection and user studies of APR patches, for example, study

instruments could avoid indicating if a given patch was machine

or human generated as much as possible.

5 DISCUSSION AND CONCLUSION

While we acknowledge that formalized code review can be expen-

sive, especially in academic settings, we argue that the benefits

of more reproducible research, evaluation error mitigation, and

increased trust are worth the cost. Additionally, although the time-

consuming nature of more rigorous patch evaluations by humans

may reduce the feasible size of some empirical studies, we argue

that quantity over quality is not helpful in this circumstance and

that smaller studies that are more carefully conducted will ulti-

mately prove more useful to the APR community in evaluating the

relative merits of different methods and research prototypes.

This is especially true because APR patches tend to fix sim-

ple bugs: the adoption cost for researchers will relatively low. We

therefore conclude with actionable suggestions for incorporating

checklists, multiple reviewers, and anonymized review into future

manual APR evaluations:

Incorporating Checklists and Definitions:

• Encourage annotators to adopt a standard rubric and publish the

rubric along with the results.

• Liu et al. [11, Sec. 3.3] provides an example set of rules for system-

atically determining similarity of a plausible patch to a human’s.

Incorporating Multiple Reviewers:
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• Use 2ś3 independent reviewers to evaluate each patch. When

appropriate, report inter-annotator agreement and/or have a

second evaluation pass to resolve annotator disagreements.

• Consider including reviewers with varying levels of expertise,

and if possible, including one reviewer who is a code-base expert.

Incorporating Blind Review and Mitigating Bias:

• Include one reviewer unfamiliar with the tool’s implementation.

• Anonymize who or what wrote the patch. If possible, do not let

participants know they are rating patches from multiple sources.

• Huang et al. [9, Sec. 3] give an example of a relevant łdeceptivež

experimental setup.

Evaluating whether or not APR patches meet human expecta-

tions is critical to understanding programmer trust, a key prereq-

uisite for future deployments. We propose applying insights from

modern code review such as multiple reviews, checklists, and blind-

ing, to better evaluate if these expectations are met. We further

advocate for increased research trust through transparency and

reproducibility and call on researchers to open source their source

code, patches, and patch correctness results for public review, fur-

ther mitigating the risk of manual patch assessment Ð we thank

our anonymous reviewer for this important point.

As human expectations for patches are varied and context de-

pendant, a single evaluation approach generally does not suffice.

Unfortunately, the bulk of published APR evaluations contain only

automated approaches and/or unstructured error-prone manual

evaluation. We argue that future APR evaluations employ multiple

automated and systematic manual review metrics in tandem for a

more robust understanding of patch trust and acceptability.
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