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Summary

� Local adaptation to climate is common in plant species and has been studied in a range of

contexts, from improving crop yields to predicting population maladaptation to future condi-

tions. The genomic era has brought new tools to study this process, which was historically

explored through common garden experiments.
� In this study, we combine genomic methods and common gardens to investigate local

adaptation in red spruce and identify environmental gradients and loci involved in climate

adaptation. We first use climate transfer functions to estimate the impact of climate change

on seedling performance in three common gardens. We then explore the use of multivariate

gene–environment association methods to identify genes underlying climate adaptation, with

particular attention to the implications of conducting genome scans with and without correc-

tion for neutral population structure.
� This integrative approach uncovered phenotypic evidence of local adaptation to climate

and identified a set of putatively adaptive genes, some of which are involved in three main

adaptive pathways found in other temperate and boreal coniferous species: drought toler-

ance, cold hardiness, and phenology. These putatively adaptive genes segregated into two

‘modules’ associated with different environmental gradients.
� This study nicely exemplifies the multivariate dimension of adaptation to climate in trees.

Introduction

Local adaptation arises when different populations of the same
species genetically diverge to produce phenotypes that maximize
their fitness in their local environment, regardless of the efficiency
of these phenotypes in other environments (Kawecki &
Ebert, 2004). This process is commonly encountered in plants
(Leimu & Fischer, 2008) and has been extensively studied in
trees (Savolainen et al., 2007; Sork, 2018), which are often dis-
tributed across large climatic gradients that enhance divergent
selection that shapes local adaptation. Trees also frequently are
foundational species, structuring the habitat and its associated
ecosystem (Ellison et al., 2005), and are of important agricultural
and economical value. Motivations for studying local adaptation
in trees thus include enhancing plantation productivity (Wang
et al., 2010), selecting optimal source populations (Steane et al.,
2014), and restoring disturbed habitats (Prober et al., 2015).
More recently, studies have considered local adaptation when
evaluating tree species capacity to respond to ongoing climate
change (Alberto et al., 2013), including assessments of popula-
tion adaptability (Visser, 2008; Hoffmann & Sgr�o, 2011), future
maladaptation (Fitzpatrick & Keller, 2015) and the feasibility of
assisted migration (Aitken et al., 2008; Aitken & Bemmels, 2016;
Browne et al., 2019).

Given that locally adapted genotypes should have higher
fitness in their native environment than genotypes originating
from other environments (Kawecki & Ebert, 2004), a good
way to detect local adaptation is to transfer individuals from
various environmental sources (a.k.a. provenances) into a new
environment (i.e. common garden) and assess whether local
individuals show higher fitness than foreign ones (Blanquart
et al., 2013; Lascoux et al., 2016). Common gardens (a.k.a.
provenance trials) have become powerful tools in both applied
and basic research to study tree adaptation to climate (Lan-
glet, 1971; Savolainen & Pyh€aj€arvi, 2007; Browne et al.,
2019). Recently, local adaptation has also increasingly been
investigated using large genomic datasets (Savolainen et al.,
2013; Whitlock, 2015), either to identify genes involved in
the divergent expression of known adaptive traits (Wadgymar
et al., 2017) or to examine the association between genetic
variation and environmental gradients in a landscape genomics
framework (Sork et al., 2013; Tiffin & Ross-Ibarra, 2014;
Hoban et al., 2016; Martins et al., 2018). Exploring the geo-
graphic distribution of adaptive alleles also yields valuable
information on species adaptation strategies and associated
landscape constraints (Steane et al., 2014). Recent studies
show that different groups of loci involved in local adaptation
to climate can vary in different ways along environmental
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gradients or at different spatial scales in forest tree species
(Mahony et al., 2020; Gugger et al., 2021).

Finding the genes underlying local adaptation is largely
achieved using genome scan approaches belonging to the geno-
type–environment association (GEA) family (Hoban et al.,
2016). Here, an important recent development is the use of mul-
tivariate approaches that avoid problems with multiple testing of
the same loci in response to different predictors and allow identi-
fication of complex environmental gradients that drive adapta-
tion (Fitzpatrick & Keller, 2015; Forester et al., 2018). Another
challenge of GEA methods is to distinguish the genomic patterns
left by demographic history from those resulting from environ-
mental selection, which often covary and blur the search for selec-
tion (Frichot et al., 2015; Whitlock & Lotterhos, 2015; Hoban
et al., 2016). A common approach to avoid false positives due to
demographic history is to account for population structure by
conditioning the models with measures of neutral genetic varia-
tion as covariates (Tibbs Cortes et al., 2021). Nonetheless, if neu-
tral genetic variation strongly covaries with environmental
gradients, then removing the statistical signal associated with
neutral variation is likely to also remove signals associated with
environmental selection (Savolainen et al., 2013), leading to a
higher frequency of false negatives and failure to detect locally
adapted variants (Sork et al., 2013; Ahrens et al., 2021). The field
of ecological genomics still struggles with how to identify genes
underlying local adaptation when demographic and environmen-
tal gradients strongly covary, as is the case for many temperate
species that experienced range contractions and expansions ori-
ented along latitudinal gradients during previous glacial cycles
(Hewitt, 1999).

One such species is red spruce (Picea rubens Sarg.) – a temper-
ate conifer endemic to north-eastern America with a distribution
that spans 13° of latitude, and 800 m of elevation (Verrico et al.,
2019), making the species a good candidate for climatically-
driven divergent selection. However, as red spruce colonized its
current range from a southern refugium after the Last Glacial
Maximum (LGM), it followed a south–north expansion route
(T. Capblancq et al., unpublished) such that the climatic gradi-
ents that drive local adaptation strongly covary with neutral pop-
ulation structure and geographic distance. As such, the species
provides an interesting case for disentangling those confounded
factors and for exploring the outcomes of multivariate GEA
approaches.

Here, we tested for local adaptation to climate in red
spruce and explored associated genetic and abiotic factors
across the species range. We first analyzed the influence of
climate transfer distance on seedling performance in three
common gardens and found phenotypic evidence of adapta-
tion to climate, confirming the presence of local adaptation
in red spruce and supporting the search for associated
adaptive genes. Then, to identify genomic signatures of
local adaptation, we used multivariate GEA methods and
compared the results obtained when correcting or not for
neutral population structure. By investigating the function
and variation of the loci that were most strongly associated
with climate gradients, we identified putatively adaptive

genes involved in (1) response to drought or cold, (2) reg-
ulation of flowering time, and (3) mechanisms of DNA
and RNA repair. These candidate genes clustered into two
different ‘modules’ based on their variation in allele fre-
quencies along climatic gradients, resulting in markedly dif-
ferent trajectories of spatial turnover across geographic and
climatic landscapes. Despite some challenges posed by the
demographic history of red spruce, our results revealed the
occurrence and underlying genetic basis of local adaptation
to climate in this important tree species. Our study
improves understanding of the process of local adaptation
in conifer tree species and opens the door to future geneti-
cally informed measures for managing red spruce adapta-
tion under environmental change.

Materials and Methods

Establishing the presence of local adaptation

To assess the presence of local adaptation in red spruce, we tested
the influence of climate transfer distance on seedling early-life
performance at three different common garden sites. 1700 seed-
lings from 340 families (single mother trees) and 65 localities
were grown in raised beds at three locations: Ashville, North Car-
olina, Frostburg, Maryland, and Burlington, Vermont, USA
(Fig. 1; Table S1).

The experiments followed a randomized block design with five
blocks/site and one seedling/family/block, leading to 5100 seed-
lings experiment-wide (1700 seedlings/site9 3 sites). Seedlings
were germinated in spring 2018 and raised in a glasshouse at the
University of Vermont before being planted in the gardens in
June 2019 (c. 1 yr old). The experiment ran for two complete
growing seasons and one winter season, ending in October 2020.
Seedling height was recorded at the beginning and end of the
experiment, and we used the increment – Height Growth – as a
proxy of seedling early-life performance (dead seedlings were
scored zero). An estimate of trait value for each family was pro-
duced using the BLUPs (best linear unbiased predictors) of a lin-
ear mixed model that included a combined bed-rack variable
(five beds/garden and five racks/bed = 25 bed-racks/garden) and
family (340 seedling mother trees) as random effects, indepen-
dently for each garden.

To assess phenotypic evidence of local adaptation, we tested
for the predicted negative relationship between Height Growth
and climate transfer distance estimated between each source
locality and the gardens. We selected 11 variables that captured
the climatic niche of our sampling of red spruce’s distribution,
while exhibiting minimal collinearity and characterizing biologi-
cally relevant environments for adaptation in trees (Fig. S1).
These variables were: degree days below 0°C (DD_0), degree
days above 18°C (DD18), mean annual solar radiation (MAR),
precipitation as snow (PAS), May to September precipitation
(MSP), mean annual relative humidity (RH), extreme maximum
temperature (EXT), climatic moisture deficit (CMD), Continen-
tality (TD), end of the frost free period (eFFP), potential evapo-
transpiration (PET). All variables came from the climateNA
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database (Wang et al., 2016) except PET, which was obtained
from the ENVIREM database (Title & Bemmels, 2018).

We used climate normals for 1961–1990 to describe the cli-
mate of source localities and values for 2019 and 2020 to
describe climate at the common garden sites. A climate transfer
distance – the difference between the climate normals at a source
locality and the climate experienced at a common garden site –
was estimated between each source locality/garden pair using a
multivariate approach. A principal component analysis (PCA)
was conducted on a standardized matrix including the climatic
values of source localities and garden sites together. We estimated
Euclidean distances between each source locality and the three
gardens using all 11 principal components (PCs). We then tested
the association between climate transfer distance and mean
Height Growth estimated for each source locality using linear
and quadratic regressions. We hypothesized that, if red spruce
exhibited local adaptation to climate, an increased climate
transfer distance would negatively affect seedling fitness in the
common gardens.

Genomic data acquisition

We used population genomic data from a previously published
whole-exome capture sequencing experiment conducted on the
340 mother trees described earlier (Table S1) (Capblancq et al.,
2020a). Since no reference genome for P. rubens is available, we
mapped the sequence reads against the Norway spruce (Picea
abies) reference genome (Nystedt et al., 2013). We used ANGSD
(Analysis of Next Generation Sequencing Data) (Korneliussen
et al., 2014), to produce genotype likelihoods for each individual
and covered genomic site, accounting for uncertainty associated

with the low coverage of these data (mean coverage = 2.28 reads/
individual/site). We followed the same bioinformatic protocol
and filtering options as in Capblancq et al. (2020a) except that
we mapped to Norway spruce instead of the white spruce (Picea
glauca) reference genome to take advantage of the former’s infor-
mation on functional annotation (available at www.congenie.
org). One individual having poor quality sequences and seven
individuals identified as artificially transplanted trees from differ-
ent locations (Capblancq et al., 2020a) were removed from the
dataset, leaving a final genomic dataset of 332 individuals from
64 localities and 917 234 single nucleotide polymorphisms
(SNPs).

We used pcangsd (Meisner & Albrechtsen, 2018) to produce,
from genotype likelihoods, a posterior expectation of the geno-
type ranging continuously from 0 to 2, called genotype dosage,
for each polymorphic site and individual. During this step we
also filtered loci that had a minor allele frequency below 10%
across the complete sampling, leaving 335 588 loci in the filtered
dataset. The genotype dosages were averaged and divided by two
within each of the 64 localities to estimate minor allele frequen-
cies. We also used pcangsd to produce a genetic covariance matrix
for the 332 individuals, which we used to find the loadings of the
individuals along the different PCs characterizing the genetic
variation across the sampling. The loadings of localities along the
first two genetic PCs were used as conditioning variables in
downstream analyses to account for population structure.

Exploring the drivers of genetic variation

To estimate the relative influence of environment, geography and
demographic history in driving genetic variation across red spruce
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Fig. 1 Geographic distribution of red spruce Picea rubens in eastern North America (according to Little Jr. (1971)) with the locations of the 65 source
localities and the three common garden sites analyzed in this study.
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populations, we conducted a series of partial redundancy analyses
(pRDAs). We conducted the pRDAs using three groups of vari-
ables. First, we used locality geographic coordinates to produce
distance-based Moran’s Eigenvector Maps (dbMEMs) and kept
the first three dbMEMs as proxies of geographic structure across
sampling sites (Legendre & Legendre, 2012). Second, we used
loadings along genetic PC1 and PC2 (see earlier), as proxies of
neutral genetic structure. Third, we used the 11 selected climate
variables to characterize environmental variation across the sam-
pled localities. Variance partitioning was carried out using local-
ity allele frequencies as the response variable in different models:
a full model using all variables as explanatory variables, and three
partial models using either the 11 climate variables, the three
dbMEMs or the two genetic PCs as explanatory variables and the
other variables as conditioning variables. The full model returned
the total amount of variance (a.k.a. inertia) explained by climate,
geography and neutral genetic structure together while each of
the pure models returned the unique portion of variance
explained by each one of these factors after conditioning on the
remaining variables. The analyses were conducted using the func-
tion rda of the R-package VEGAN (Oksanen et al., 2015).

Detection of adaptive loci

We searched for loci covarying strongly with climatic gradients
using two multivariate GEA methods: a genome scan approach
based on redundancy analysis (RDA) described in Capblancq
et al. (2018), and the genome scan approach described in Fitz-
patrick et al. (2021) based on Gradient Forest (GF) models using
either raw allele frequencies (GF-raw) or allele frequencies after
correction for population relatedness (GF-X). In brief, the RDA-
based method rearranges redundant genetic variation associated
with environmental variation along composite axes and identifies
the loci that are strongly associated with the most important axes
(Capblancq et al., 2018). The GF-based approaches use the
machine-learning random forest algorithm to evaluate how much
of the among-population variance in allele frequencies at a locus
is explained by a set of environmental variables, summarized as
R2 (Fitzpatrick et al., 2021). Both RDA and GF carry an assump-
tion of monotonicity; however, RDA assumes that the relation-
ship between genetic and environmental variation is linear
whereas GF is nonparametric and makes no assumption about
the particular form of the gene–environment relationship. Both
methods were conducted using population (e.g. locality) allele
frequencies obtained from the genotype dosages and our 11 cli-
mate variables. To test if these multivariate methods departed
from established univariate methods, we repeated these analyses
using BAYENV2 (G€unther & Coop, 2013) and LFMM (Frichot
et al., 2013).

As described in the Introduction, it is common to account for
population structure during a genome scan analysis to minimize
false positives arising due to neutral loci that show allele fre-
quency variance among populations. However, correcting for
population structure could artificially increase false negatives and
result in a failure to detect true positive loci under selection. This
trade-off becomes especially problematic for species like red

spruce in which the expected drivers of climate-driven selection
are strongly collinear with geography and neutral genetic struc-
ture. To explore this issue, the RDA was performed either with
no correction for population structure (hereafter RDA-raw) or
using the averaged locality scores on the first two axes of the
genetic PCA as conditioning variables (hereafter RDA-
corrected). Similarly, GF was conducted on raw locality allele fre-
quencies (hereafter GF-raw) and on standardized allele frequen-
cies corrected for population relatedness (hereafter GF-X;
Fitzpatrick et al., 2021) as obtained from BAYENV2 (G€unther &
Coop, 2013) and a population allele frequency (co)variance
matrix (‘omega’) estimated using 100 000 iterations of the
MCMC chain. We then used the omega matrix to obtain esti-
mates of the standardized allele frequencies using the ‘-f’ flag, and
saved 190 draws from the posterior distribution to integrate over
uncertainty in the estimates.

Finally, to identify loci that were putatively under selection by
climate, we rank-ordered loci and identified the top 0.2% (i.e.
671 loci) from each method’s statistics – Mahalanobis distances
from RDA (RDA-raw and RDA-corrected) and R2 from GF
(GF-raw and GF-X) – and retained loci common to at least two
of the four genome scans. Following (Coop et al., 2010; Yoder
et al., 2014), we chose a rank-based assessment of outliers,
because the GF-raw and GF-X method does not produce P-
values, and because significance thresholds in genome scans are
always somewhat arbitrary. Our goal here was to obtain a set of
loci that was enriched for loci involved in adaptation to climate.
We also tested the link between seedling early-life performance
and genotypic variation using linear mixed models with Height
Growth as response variable, individual genotypes (coded as
semi-quantitative variable: 0/1/2) as fixed effect and source local-
ity as a random effect, independently for each common garden
site and for each of the 335 588 loci. We hypothesized that
Height Growth, as a proxy of fitness, should be better explained
by a set putatively adaptive loci as compared to nonadaptive loci,
which we tested comparing R2 values of the two groups of loci
using a Wilcoxon–Mann–Whitney test. We used the R-packages
‘LME4’ (Bates et al., 2015) and ‘R2GLMM’ (Johnson, 2014) to com-
plete the different analyses.

Functional annotation and ontology of candidate loci

We used SNPeff (Cingolani et al., 2012) and the positions of the
putatively adaptive loci (i.e. selected during the genome scan
analyses) along the P. abies reference genome to annotate adap-
tive variants to functional classes: upstream and downstream of
genes, introns, synonymous, nonsynonymous, intronic, or inter-
genic sites. When the markers fell within or nearby (< 5 k base
pairs up or downstream) known genes we used the ConGenIE
suite (https://congenie.org, Sundell et al., 2015) to find the
gene’s functional annotation and look for their involvement in
adaptation in other species. Finally, to assess if the list of anno-
tated candidate genes were overrepresented for particular molecu-
lar functions or biological processes, we conducted a gene
ontology (GO) term enrichment analysis using the ConGenIE
online GO enrichment tool.
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Distribution of adaptive variation across the landscape

To map the climatic and spatial distribution of adaptive genetic
variation, we conducted an RDA using raw locality allele fre-
quencies from only putatively adaptive loci as response variables
and the 11 climatic variables as explanatory variables. We then
retrieved from this adaptively-enriched RDA the loadings of each
environmental predictor and used those scores to predict an
adaptive genetic index for each pixel of the range, as described in
Capblancq et al. (2020b). Different ‘modules’ of outlier loci were
also identified based on their positions along the adaptively
enriched RDA axes using a Euclidean k-means clustering algo-
rithm, implemented in the R-package STATS (R Core
Team, 2020). We used the absolute value of the adaptive loci
scores on RDA1 and RDA2 to identify two clusters representing
(1) loci particularly associated with RDA1 (i.e. high absolute
RDA1 score and low RDA2 score) and (2) loci particularly asso-
ciated with RDA2 (i.e. high absolute RDA2 score and low RDA1
score).

Results

Seedling response to climate transfer in the common
gardens

Red spruce showed significant evidence of local adaptation based
on phenotypic performance in the common gardens. We found a
significant negative association between seedling growth and cli-
mate transfer distance in all three gardens (Fig. 2), with quadratic
regressions returning R2 values of 0.39 in Vermont, 0.38 in
Maryland and 0.32 in North Carolina. Linear regressions were
also highly significant, with R2 ranging from 0.21 to 0.37
(Fig. S2). The decrease in Height Growth between source locali-
ties experiencing the smallest climate transfer and those experi-
encing the largest climate transfer ranged from c. 3 cm in
Vermont to c. 10 cm in Maryland (Fig. 2). Note here that climate
transfer distance (i.e. the difference in climate between a source

locality and a common garden site) is estimated using a multi-
variate approach based on a climatic PCA and thus only returns
positive values, as opposed to univariate transfer distance which
can be negative if the garden site climate value is higher than the
one at the source locality.

Strong confounding effect of genetic structure and
geographic distance on the genetic–environment
relationship

We observed a high degree of explanatory power in pRDA mod-
els predicting allele frequencies from geography, neutral genetic
structure, and climate, but also a significant amount of confound-
ing between all three groups of predictors. Together, climate,
geography and neutral structure explained 41% of variance in
allele frequencies among red spruce localities (Table 1). After
conditioning allele frequencies on neutral genetic structure and
geography, the pure effect of climate was no longer significant,
but did explain 14% of the total genetic variation (34% of the
variation that was explainable by the full model). The pure effect
of neutral genetic structure was significant and explained 3% of
total genetic variance (8% of explainable variation) while geogra-
phy significantly explained 5% (12% of explainable variation).
Interestingly, we found that 45% of explained genetic variance
was confounded among the different groups of predictors, and
reflected the high degree of collinearity between climate, geogra-
phy and neutral genetic structure (Fig. S3).

Genomic signature of adaptation to climate

A total of 335 588 loci exhibited a minor allele frequency > 0.1
and were included in the multivariate GEAs. We observed sub-
stantial overlap between RDA and GF when neutral population
structure was not accounted for, with 149 loci (i.e. 22% of
each set) found by both methods (Figs 3, S4). On the contrary,
congruence was low when correcting for population structure,
with only 15 common loci (2%) between methods, and no
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Fig. 2 Association between climate transfer distance based on 11 variables and seedling fitness represented by mean Height Growth per source locality at
the three red spruce common garden sites. The significance of the association was tested in each garden using a quadratic regression, the resulting P-values
for the quadratic term and R2 are shown on each panel. Lines show model predictions and the gray areas show the 95% confidence intervals.
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visible covariation between GF R2 and RDA Mahalanobis dis-
tance (Fig. 3a). Noticeably, accounting for population structure
substantially reduced the variance in allele frequencies explained
by climate using GF, which reached a maximum of R2 = 0.954
when modeling raw allele frequencies (i.e. GF-raw) but only a
maximum of R2 = 0.016 when modeling allele frequencies cor-
rected for population structure with BAYENV2 (i.e. GF-X). The
loci identified when accounting or not for population structure
showed little overlap between the two RDA genome scans (24/
1342 loci) and between the two GF genome scans (41/1342
loci) (Fig. 3b). For downstream analyses, we considered as puta-
tive adaptive loci the 240 loci in the top 0.2% for at least two
of the four genome scan procedures (Fig. 3b). When we com-
pared the proportion of genetic variance explained by the 11
climate variables for the four sets of loci identified as outliers
by each method, we observed that they showed the expected
association with climate variation (0.43 < R2 < 0.84), more so
than a corresponding random set of loci (R2 = 0.31) (Table S2).
The 240 putatively adaptive loci had the second highest R2

(0.81), just below the set of loci identified with GF-raw
(R2 = 0.84) and above the RDA-raw set of loci (R2 = 0.71). The
R2 values obtained with loci identified by GF-X and RDA-
corrected (0.62 and 0.43, respectively) were lower than those
obtained for GF-raw and RDA-raw but higher than the ran-
dom set (R2 = 0.31).

The results of the multivariate genome scans partially over-
lapped with the top loci identified using LFMM and BAYENV2 uni-
variate methods (Fig. S5). The greatest overlap was between
LFMM and RDA-raw (204 loci) and GF-raw (268 loci). Interest-
ingly, there was greater overlap between the multivariate and uni-
variate methods than between BAYENV2 and LFMM (179 loci),
even though many more loci were considered for these two uni-
variate scans due to the multiplication of the top 0.2% loci set
(i.e. one per environmental variable, N = 6606 for BAYENV2 and
5604 for LFMM). To a smaller extent, LFMM results also overlapped
with RDA-corrected (104 loci) or GF-X (65 loci) while BAYENV2
results were less congruent with RDA or GF, corrected or not,
with only 16 to 51 loci in common (Fig. S5).

The relationship between seedling early-life fitness, represented
by Height Growth, and candidate loci for climate adaptation was
consistent with polygenic adaptation across each of the three
common gardens (Fig. 4). Individual GEA outlier loci explained
c. 1–3% of phenotypic variance on average, which was signifi-
cantly higher compared to nonoutlier loci (< 0.01% on average).

Molecular pathways and genes associated with local
adaptation in red spruce

We found that most of the 240 putatively adaptive loci (147/240–
61.3%) fell within or close (< 5 kb) to 125 known genes

Table 1 The influence of climate, geography and neutral genetic structure on red spruce genetic variation was decomposed through a series of partial
redundancy analyses (pRDAs).

Partial RDA models Inertia P (> F) Proportion of explainable inertia Proportion of total inertia

Full model: F ~ clim.+ struc. + geog. 1154.8 0.001*** 1 0.41 (R2)
Pure climate: F ~ clim. | (geog.+ struc.) 394.5 0.289 0.34 0.14 (R2)
Pure geography: F ~ geog. | (clim.+ struc.) 143.1 0.001*** 0.12 0.05 (R2)
Pure ancestry: F ~ struc. | (clim.+ geog.) 94.3 0.001*** 0.08 0.03 (R2)
Confounded climate/geography/structure 523.0 0.45 0.19
Total unexplained 1657.8 0.59
Total inertia 2812.6 1.00

The statistical significance is given for each model (***, P ≤ 0.001) together with the percentage of explained genetic variance compared to the variance
explained by the full model and compared to the total variance present in the dataset. The proportion of total variance explained given in the last column
corresponds to the R2 of the regression for the tested models.

(b)

RDA−raw

RDA−corrected GF−raw

GF−X

457

638 504

574

17

125

41

0

9

17

1

624

0

0

(a)

Fig. 3 Results of the genome scans with (a) the correspondence between redundancy analysis (RDA) and gradient forest (GF) methods when using raw
allele frequencies (left panel) or allele frequencies corrected for population structure (right panel), and (b) a Venn diagram showing the overlap of the top
0.2% loci identified with each procedure. Note the large difference in y-axis scale between the two panels of (a).
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(Table S3). Among these 125 candidate genes, 105 were annotated
as protein-coding with a proposed function (Table 2). Many of
these genes are known to be involved in other species’ adaptation
to climatic gradients. In particular, our list of annotated candidate
genes included At4g33300, involved in drought resistance and
defense response in Abies alba (Behringer et al., 2015) and Ara-
bidopsis thaliana (Bonardi et al., 2017); NBR1 which is involved in
response to heat and drought stress in Arabidopsis thaliana (Zhou
et al., 2013); HSFB-2B, commonly involved in heat stress regula-
tion in plants (Guo et al., 2016); FPA, that regulates flowering time
in Arabidopsis thaliana via a pathway that is independent of day-
length (Schomburg et al., 2001); a ribosomal RNA (rRNA) methy-
lase known to play a role in response to stress by enhancing or
reducing translation of specific messenger RNAs (mRNAs) (Liber-
man et al., 2020); DNA damage-binding 1, involved in Brassicaceae
adaptation to high altitude (Guo et al., 2018); DHAR2, involved in
ascorbate production, which mitigates reactive oxygen species
(ROS) free radicals produced in response to abiotic stress in Ara-
bidopsis thaliana (Terai et al., 2020). A complete list of genes and
their involvement in adaptation to climate in other plant species is
given in the Notes S1.

The GO functional enrichment test returned one enriched
biological process (false discovery rate (FDR) < 0.05): carbohy-
drate metabolic process (GO: 0005975), and three enriched
molecular functions: protein binding (GO: 0005515; and its par-
ent GO-term, binding (GO: 0005488)), and polygalacturonate
4-alpha-galacturonosyltransferase activity (GO: 0047262).

Distribution of adaptive alleles across climatic and
geographic landscapes

The adaptively enriched RDA conducted on the 240 putatively
adaptive loci identified two main gradients of adaptation to

climate in red spruce (Fig. 5). The first axis of variation
(RDA1, 94.1% of variance) contrasted localities characterized
by a large amount of precipitation as snow (PAS), many
degree-days below 0°C (DD_0) and high continentality (TD)
– typically found in Southern Quebec and Northern USA
mountainous areas – with localities experiencing higher poten-
tial evapotranspiration (PET), a later end of the frost-free per-
iod (eFFP) and a higher degree of solar radiation (MAR) –
found primarily in the Central and Southern Appalachians.
The second axis, RDA2 (2.6% of variance) was more strongly
associated with an altitudinal gradient, differentiating lowland
areas with higher degree-days above 18°C (DD18), higher
extreme temperature events (EXT) and higher climatic mois-
ture deficit (CMD) from high elevation locations, which
experience more summer precipitation (MSP) and lower tem-
peratures.

We also found that the two main gradients of adaptation were
driven by two different clusters among the identified 240 puta-
tively adaptive loci, which were grouped into ‘modules’ based on
their RDA loadings (Fig. 6). The first module (Cluster 1) gath-
ered most of the adaptive loci (207/240) and included, among
others, the genes At4g33300, NBR1, HSFB-2B and FPA, which
are known to be involved in adaptation along temperature and
drought gradients (Fig. 6a). The mean population allele fre-
quency within Cluster 1 returned a strongly clinal pattern of co-
variation with RDA1, especially with degree-days below 0°C
(Figs 6b, S6). The second module (Cluster 2) consisted of 33 loci
that included genes involved in response to acute stresses such as
an rRNA methylase, DNA damage-binding 1, and DHAR2
(Fig. 6a). Mean allele frequencies for this cluster covaried with
RDA2, which was strongly correlated with extreme maximum
temperature (Figs 6b, S6).

Discussion

Red spruce shows local adaptation to climate across its
range

We detected in red spruce common gardens a strong negative
correlation between seedling growth and climate transfer dis-
tance and estimated that around a third of the variation in
height growth could be attributed to disruption of local
adaptation caused by moving seedlings from their source cli-
mates. This negative impact of climate transfer on seedling
performance, assessed for many localities (65) and at three
garden sites, provides strong confirmation that red spruce is
genetically adapted to local climatic conditions. Our results
confirm that red spruce is no exception to the ubiquity of cli-
mate adaptation among members of the Picea genus (Mimura
& Aitken, 2010; Rossi, 2015; Milesi et al., 2019; Depardieu
et al., 2020).

At all three common garden sites, we found that the reduc-
tion in seedling performance could be substantial, with up to
10 cm of reduction in height over two growing seasons, repre-
senting a 25% height increment decrease in comparison to
the maximal value observed (c. 40 cm). We used height

Fig. 4 Explanatory power of linear mixed models that regressed Height
Growth in the red spruce common gardens against genotypes and used
source locality as random effect. The distribution of genotype fixed effect
partial R2 values is shown for each garden and averaged across all three
garden sites. The 240 loci identified as putatively under selection for
climate (i.e. genome scan outliers) were compared to the nonoutlier loci
using Wilcoxon–Mann–Whitney test: highly significant differences
(P-value << 0.001) were found at each garden site as well as for the average.
The boxplot black line shows the median of the distribution when the col-
ored box frames the values between the lower and upper quartiles and the
outlier points correspond to values beyond the lower quartile � 1.59 in-
terquartile range and the upper quartile + 1.5 9 interquartile range.
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Table 2 List of the 125 genes associated with the putatively adaptive loci identified by the genome scans in red spruce, including gene names, a description
of the associated protein functions, the number of loci identified as outliers for each gene, the gene cluster they belong to based on redundancy analysis
(RDA) scores and the genotype–environment association (GEA) methods that detected the underlying loci.

Gene Description Chromosome Confidence Cluster Nb loci GEA method

MA_10227813g0010 Cysteine and histidine-rich domain-containing
RAR1

MA_10227813 High 1 1 RDA-corr/GF-X

MA_103156g0020 VIN3 1 MA_103156 High 1 2 RDA-raw/GF-raw
MA_10425950g0010 Probable carotenoid cleavage dioxygenase

chloroplastic
MA_10425950 High 1 1 GF-raw/GF-X

MA_10426447g0010 Rac-like GTP-binding 5 MA_10426447 High 1 2 RDA-raw/GF-raw/GF-X
MA_10427427g0010 Beta-galactosidase 5-like MA_10427427 High 1 1 RDA-raw/GF-raw
MA_10429414g0020 Ubiquitin carboxyl-terminal hydrolase 18-like MA_10429414 High 1 1 RDA-raw/GF-raw
MA_10429519g0010 Probable disease resistance At4g33300 MA_10429519 High 1 2 RDA-raw/GF-raw
MA_10429540g0010 Pentatricopeptide repeat-containing

At4g14850
MA_10429540 High 1 1 RDA-raw/GF-raw/GF-X

MA_10430323g0010 Polyadenylate-binding RBP47B MA_10430323 High 1 2 RDA-raw/GF-raw
MA_10431352g0010 PREDICTED: uncharacterized protein

LOC104601792 isoform X2
MA_10431352 High 1 1 RDA-raw/GF-X

MA_10432774g0010 E3 ubiquitin- ligase listerin MA_10432774 High 1 1 RDA-raw/GF-raw
MA_10434569g0010 Glycerol-3-phosphate dehydrogenase

(NAD+) cytosolic-like
MA_10434569 High 1 1 RDA-raw/GF-raw

MA_10434999g0010 DDB1- and CUL4-associated factor 8 MA_10434999 High 1 1 RDA-raw/GF-raw
MA_10435282g0010 Zinc finger CCCH domain-containing ZFN-

like isoform X2
MA_10435282 High 1 1 RDA-raw/GF-raw/GF-X

MA_10435314g0010 Flowering time control FPA MA_10435314 High 1 1 RDA-raw/GF-raw
MA_10436174g0010 NBR1 homolog MA_10436174 High 1 1 RDA-raw/GF-raw
MA_10437228g0010 Probable cyclic nucleotide-gated ion channel

chloroplastic
MA_10437228 High 1 1 RDA-raw/GF-raw

MA_107207g0010 RETICULATA-RELATED chloroplastic-like MA_107207 High 1 1 RDA-raw/GF-raw
MA_11235g0010 Unknown MA_11235 High 1 1 RDA-raw/GF-X
MA_118674g0010 Probable galacturonosyltransferase 13

isoform X1
MA_118674 High 1 2 RDA-raw/RDA-corr/GF-raw

MA_122077g0010 Chloroplastic MA_122077 High 1 2 RDA-raw/GF-raw
MA_12771g0010 Importin subunit beta-1 MA_12771 High 1 1 RDA-raw/GF-raw
MA_128244g0010 Myb-related Zm38-like MA_128244 High 1 1 RDA-raw/GF-raw
MA_130934g0010 Probable galacturonosyltransferase-like 3 MA_130934 High 1 1 RDA-raw/GF-raw
MA_132866g0010 Probable ubiquitin-conjugating enzyme E2 18 MA_132866 High 1 1 RDA-corr/GF-X
MA_13800g0010 na MA_13800 High 1 1 RDA-raw/GF-raw
MA_14836g0010 TRANSPORT INHIBITOR RESPONSE 1-like MA_14836 High 1 1 RDA-raw/GF-raw
MA_177060g0010 na MA_177060 High 1 1 RDA-raw/GF-raw
MA_180963g0010 Rare cold inducible MA_180963 High 1 1 RDA-raw/GF-raw
MA_18142g0010 Serine–glyoxylate aminotransferase MA_18142 High 1 1 RDA-raw/GF-raw/GF-X
MA_1829g0010 Aspartate carbamoyltransferase chloroplastic MA_1829 High 1 1 RDA-raw/GF-raw
MA_20599g0020 Pentatricopeptide repeat-containing

At2g13600-like
MA_20599 High 1 1 RDA-raw/RDA-corr

MA_21020g0010 Plastid division PDV1 MA_21020 High 1 1 RDA-raw/GF-raw
MA_30433g0010 DUF179 domain-containing MA_30433 High 1 2 RDA-raw/GF-raw/GF-X
MA_3259g0010 Coatomer subunit epsilon-1 MA_3259 High 1 1 RDA-raw/GF-raw
MA_3352g0010 Transcription factor PCL1 MA_3352 High 1 1 RDA-raw/GF-X
MA_3745g0010 ALA-interacting subunit 3 MA_3745 High 1 4 RDA-raw/GF-raw/GF-X
MA_37500g0010 Unknown MA_37500 High 1 1 RDA-raw/GF-raw
MA_3809g0010 Zinc finger CCHC domain-containing 8

isoform X2
MA_3809 High 1 1 RDA-raw/GF-raw

MA_415377g0010 Transcription termination factor chloroplastic-
like

MA_415377 High 1 1 RDA-raw/RDA-corr

MA_45528g0010 Probable calcium-binding CML49 MA_45528 High 1 2 RDA-raw/RDA-corr/GF-X
MA_46875g0010 Pentatricopeptide repeat-containing

At1g20230
MA_46875 High 1 1 RDA-corr/GF-X

MA_5374g0010 Heat stress transcription factor B-2b-like MA_5374 High 1 2 RDA-raw/GF-raw
MA_571234g0010 Unknown MA_571234 High 1 1 RDA-raw/GF-raw
MA_60015g0010 PREDICTED: uncharacterized protein

LOC103336100
MA_60015 High 1 1 RDA-raw/GF-raw

MA_60789g0010 PREDICTED: uncharacterized protein
LOC103724222

MA_60789 High 1 1 RDA-raw/GF-raw/GF-X
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Table 2 (Continued)

Gene Description Chromosome Confidence Cluster Nb loci GEA method

MA_6619g0010 Cyclin-A1-4 isoform X1 MA_6619 High 1 1 GF-raw/GF-X
MA_6634g0010 DNA topoisomerase 2 MA_6634 High 1 1 RDA-corr/GF-X
MA_735g0010 BP28CT domain-containing U3snoRNP10

domain-containing
MA_735 High 1 1 RDA-raw/GF-raw/GF-X

MA_74926g0010 Carboxyl-terminal-processing peptidase
chloroplastic

MA_74926 High 1 1 RDA-raw/GF-raw

MA_78965g0010 Peptidyl-prolyl cis-trans isomerase Pin1 MA_78965 High 1 1 GF-raw/GF-X
MA_83834g0010 Hypothetical protein L484_013434 MA_83834 High 1 2 RDA-raw/GF-raw/GF-X
MA_88112g0010 E3 ubiquitin- ligase MARCH8-like isoform X1 MA_88112 High 1 1 RDA-raw/GF-raw/GF-X
MA_88535g0010 Probable galacturonosyltransferase-like 7 MA_88535 High 1 1 RDA-raw/GF-raw
MA_8859g0020 na MA_8859 High 1 1 RDA-raw/GF-raw
MA_88915g0010 Probable E3 ubiquitin- ligase ARI8 MA_88915 High 1 1 RDA-raw/GF-raw
MA_9019430g0010 na MA_9019430 High 1 1 RDA-raw/GF-raw
MA_94664g0010 PREDICTED: uncharacterized protein

LOC107412951 isoform X1
MA_94664 High 1 1 GF-raw/GF-X

MA_97731g0010 Katanin p80 WD40 repeat-containing subunit
B1 homolog isoform X1

MA_97731 High 1 1 RDA-corr/GF-X

MA_98067g0010 Pentatricopeptide repeat-containing
At5g04780-like

MA_98067 High 1 1 RDA-raw/GF-raw

MA_9905g0010 2–3 ethylene-responsive transcription factor MA_9905 High 1 1 RDA-raw/GF-raw
MA_10270424g0010 Probable tRNA N6-adenosine mitochondrial

isoform X2
MA_10270424 Low 1 1 RDA-raw/GF-raw

MA_10427318g0010 na MA_10427318 Low 1 1 RDA-raw/GF-raw/GF-X
MA_110335g0010 na MA_110335 Low 1 1 RDA-raw/GF-raw/GF-X
MA_181884g0020 na MA_181884 Low 1 2 RDA-raw/GF-raw/GF-X
MA_491983g0010 Unknown MA_491983 Low 1 1 GF-raw/GF-X
MA_50524g0010 Lactosylceramide 4-alpha-

galactosyltransferase-like
MA_50524 Low 1 3 RDA-raw/GF-raw

MA_10045090g0010 NAD(P)-binding rossmann-fold MA_10045090 Medium 1 1 RDA-raw/GF-raw
MA_10182517g0010 Methyltransferase 6 MA_10182517 Medium 1 2 RDA-raw/GF-raw/GF-X
MA_10261150g0010 PREDICTED: uncharacterized protein

LOC102625808 isoform X2
MA_10261150 Medium 1 1 RDA-raw/GF-raw

MA_10427896g0020 Signal recognition particle 19 kDa MA_10427896 Medium 1 2 RDA-raw/GF-X
MA_10430375g0020 Cytochrome b5 domain-containing RLF MA_10430375 Medium 1 1 RDA-raw/GF-raw
MA_10431074g0010 Transmembrane 161B MA_10431074 Medium 1 1 RDA-raw/GF-raw
MA_10432806g0020 LAG1 longevity assurance homolog 3-like MA_10432806 Medium 1 1 RDA-raw/GF-raw
MA_10433025g0010 tRNA wybutosine-synthesizing 2 3 4 isoform

X1
MA_10433025 Medium 1 1 GF-raw/GF-X

MA_10433880g0010 SUPPRESSOR OF npr1- CONSTITUTIVE 1-
like isoform X2

MA_10433880 Medium 1 1 RDA-raw/GF-raw/GF-X

MA_10434616g0010 Pentatricopeptide repeat-containing
mitochondrial

MA_10434616 Medium 1 1 RDA-raw/RDA-corr

MA_10435503g0020 U-box domain-containing 44-like MA_10435503 Medium 1 1 RDA-raw/GF-raw
MA_10436633g0020 Disease resistance RPP13 4 MA_10436633 Medium 1 1 GF-raw/GF-X
MA_10437267g0010 Probable ubiquitin-conjugating enzyme E2 23 MA_10437267 Medium 1 1 RDA-raw/GF-raw
MA_112985g0010 Ribosomal lysine N-methyltransferase 3-like

isoform X1
MA_112985 Medium 1 1 RDA-raw/GF-raw

MA_115260g0010 Uncharacterized protein LOC18422833 MA_115260 Medium 1 1 RDA-raw/GF-raw
MA_118687g0010 5-formyltetrahydrofolate cycloligase MA_118687 Medium 1 1 RDA-raw/GF-raw
MA_118899g0010 Probable phosphatase 2C 59 isoform X1 MA_118899 Medium 1 1 RDA-raw/GF-raw
MA_119384g0010 Pyruvate dehydrogenase (acetyl-transferring)

mitochondrial
MA_119384 Medium 1 1 RDA-raw/GF-raw

MA_141850g0010 H ACA ribonucleo complex subunit 2 MA_141850 Medium 1 1 RDA-raw/GF-raw
MA_15092g0010 Unknown MA_15092 Medium 1 1 RDA-raw/GF-X
MA_340419g0010 na MA_340419 Medium 1 1 RDA-raw/GF-raw
MA_361488g0010 Chloroplastic MA_361488 Medium 1 1 RDA-corr/GF-X
MA_477513g0010 Thioredoxin chloroplastic-like MA_477513 Medium 1 1 RDA-raw/GF-raw
MA_486420g0010 TITAN isoform X1 MA_486420 Medium 1 2 RDA-raw/GF-raw
MA_50056g0010 GRIP MA_50056 Medium 1 1 GF-raw/GF-X
MA_66499g0010 Pentatricopeptide repeat-containing

At2g13600-like
MA_66499 Medium 1 1 RDA-raw/GF-X

MA_705952g0010 Adenylylsulfatase HINT3 isoform X2 MA_705952 Medium 1 1 RDA-raw/GF-raw
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growth here as a proxy of early-life fitness to demonstrate
local adaptation (Blanquart et al., 2013), and other work by
our group indicates that genetic divergence in adaptive phe-
nology traits (e.g. bud break and bud set) likely underlie these
growth differences (Prakash et al., 2022). Another recent study
of red spruce provenances planted at five different trial sites in
eastern Canada found a similar result in adult trees, showing
that two fitness traits (height and diameter at breast height
(DBH)) were correlated with climate transfer distance (Li
et al., 2020). Li et al. (2020) employed garden sites that had
cooler temperature regimes in comparison with most of their
source locations, and observed a negative fitness impact of
transfer to colder climates, with a strong influence of mean
annual temperature, length of the frost-free period and num-
ber of growing degree days above 5°C. All together, these
results confirm that red spruce exhibits local adaptation to cli-
mate and provides rationale for identifying environmental gra-
dients and genomic variation that underlie this adaptation.

Collinearity between geography, neutral genetic structure,
and climatic gradients

Characterizing genetic–environment relationships remains a
source of intense methodological and empirical development
(Savolainen et al., 2013; �Cali�c et al., 2016; Hoban et al., 2016)
and there is growing appreciation of the relative contribution of
climatic selection, geographic distance and demographic history
to spatial variation in allele frequencies (Joost et al., 2013; Orsini
et al., 2013; Wang & Bradburd, 2014). However, a key challenge
is that these factors tend to be confounded in natural landscapes
(Forester et al., 2018; Price et al., 2019). For red spruce, we
found that a large portion (45%) of the explained variance in
locality allele frequencies was shared between these three factors,
likely reflecting south-to-north post-glacial expansion along the
Appalachian Mountains, which created collinearity between red
spruce’s geographic distribution, genetic structure, and climatic
gradients (T. Capblancq et al., unpublished). This latitudinal

Table 2 (Continued)

Gene Description Chromosome Confidence Cluster Nb loci GEA method

MA_737390g0010 Unknown MA_737390 Medium 1 1 RDA-raw/GF-raw
MA_780508g0010 na MA_780508 Medium 1 1 RDA-raw/GF-raw
MA_82878g0010 na MA_82878 Medium 1 1 RDA-raw/GF-raw
MA_86597g0020 Nucleolar pre-ribosomal-associated 1 MA_86597 Medium 1 1 RDA-raw/GF-raw
MA_9232936g0010 Zinc finger 593 MA_9232936 Medium 1 1 RDA-raw/GF-raw
MA_9293176g0010 Translation elongation factor-1 MA_9293176 Medium 1 1 RDA-raw/GF-raw
MA_93738g0010 UDP glucose: glyco glucosyltransferase MA_93738 Medium 1 1 RDA-raw/GF-raw
MA_95297g0010 DNA topoisomerase 6 subunit B MA_95297 Medium 1 1 RDA-raw/GF-raw
MA_9859326g0010 Unknown MA_9859326 Medium 1 1 RDA-raw/GF-raw
MA_102606g0010 CHROMATIN REMODELING 4-like isoform

X1
MA_102606 High 2 1 RDA-raw/GF-X

MA_10427262g0010 Accelerated cell death 11 MA_10427262 High 2 1 RDA-raw/GF-X
MA_10428623g0010 High mobility group B 15 isoform X1 MA_10428623 High 2 1 RDA-raw/GF-X
MA_10436445g0020 TPR2 isoform X1 MA_10436445 High 2 1 RDA-raw/GF-X
MA_104862g0010 Duplicated homeodomain-like superfamily

isoform 1
MA_104862 High 2 2 RDA-raw/GF-X

MA_123124g0020 Apoptotic chromatin condensation inducer in
the nucleus

MA_123124 High 2 1 RDA-raw/RDA-corr

MA_125412g0010 Probable L-type lectin-domain containing
receptor kinase

MA_125412 High 2 1 RDA-raw/GF-X

MA_41156g0010 DNA damage-binding 1 MA_41156 High 2 1 RDA-raw/GF-X
MA_474261g0010 Pentatricopeptide repeat-containing

chloroplastic-like
MA_474261 High 2 1 RDA-raw/GF-X

MA_49114g0010 na MA_49114 High 2 1 RDA-raw/GF-X
MA_66837g0010 MARD1 MA_66837 High 2 1 RDA-raw/RDA-corr
MA_767345g0010 B-cell receptor-associated MA_767345 High 2 1 RDA-raw/RDA-corr
MA_86450g0010 Glutathione S-transferase DHAR2-like MA_86450 High 2 1 RDA-raw/RDA-corr/GF-X
MA_91467g0010 Pectate lyase MA_91467 High 2 1 RDA-raw/GF-X
MA_9156578g0010 Serine threonine- kinase pakA-like MA_9156578 High 2 1 RDA-raw/GF-X
MA_10071760g0010 Beta-galactosidase 8 MA_10071760 Low 2 1 RDA-raw/GF-X
MA_10433070g0010 na MA_10433070 Medium 2 1 RDA-raw/RDA-corr
MA_10433219g0010 D-tagatose-1,6-bisphosphate aldolase

subunit kbaZ
MA_10433219 Medium 2 1 RDA-raw/RDA-corr

MA_300643g0010 Probable LRR receptor-like serine threonine-
kinase At1g56140

MA_300643 Medium 2 2 RDA-raw/RDA-corr

MA_72912g0010 na MA_72912 Medium 2 2 RDA-raw/RDA-corr
MA_78838g0010 rRNA methylase MA_78838 Medium 2 1 RDA-raw/GF-X
MA_97492g0010 Anaphase-promoting complex subunit 2 MA_97492 Medium 2 1 RDA-raw/GF-X

na, not available.

New Phytologist (2022)
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

Research

New
Phytologist10

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18465 by U

N
IV

ER
SITY

 O
F M

A
R

Y
LA

N
D

 C
EN

TER
, W

iley O
nline Library on [17/10/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



alignment presents a challenge for genome scans attempting to
disentangle the variation resulting from neutral vs selective pro-
cesses. It has become common practice to condition genome
scans with proxies of neutral population structure, which reduces
the risk of false positives (De Villemereuil et al., 2014; Frichot
et al., 2015). However, removing the effect of population struc-
ture also reduces or eliminates signals of climatic selection (Savo-
lainen et al., 2013), thereby increasing false negatives, i.e. failing
to discover genes actually involved in climate adaptation (Bergel-
son & Roux, 2010; Anderson et al., 2011). When we corrected
our GEA scans by neutral population structure, our results
showed that (1) the overall correlation between climate and
genetic variation dramatically shrank; (2) adaptive loci identified
by both RDA and GF substantially decreased; and (3) we failed
to find many candidate genes associated with response to abiotic
and biotic stress in other plant species that were only detectable
in red spruce when not accounting for population structure. This
failure to detect a strong signal of climate adaptation after cor-
recting for population structure is likely the result of missing
many or most of the loci contributing to climate adaptation, evi-
dence for the existence of which comes from phenotypic mea-
surements in our common garden experiments (Fig. 2). Further,
we found that among RDA models fitted on different sets of out-
liers, climate consistently explained more of the allele frequency
variance (R2) for sets of outliers that were not corrected for popu-
lation structure, and more than twice the R2 of random loci
(Table S2). This suggests that a large amount of the genetic archi-
tecture underlying climate adaptation in red spruce is only cap-
tured in the uncorrected genome scans, even if the latter also
come with a high likelihood of false positive loci due to neutral
population structure.

While our findings may represent an extreme example of con-
founding between neutral and adaptive genetic variation, we sus-
pect this issue is not unique to red spruce. Other temperate species
experienced south–north expansions after the LGM (Hewitt, 1999)
and many adaptations are associated with photoperiod and/or tem-
perature, which are themselves correlated with latitudinal gradients,
setting up the pre-conditions for confounding geography, genetic

structure, and selection. As such, we believe that correcting GEA
for population structure might be counterproductive in some situa-
tions where environmental variation strongly covaries with recolo-
nization routes. If we want to capture genomic regions involved in
adaptation along these gradients, we may have to accept a higher
frequency of false positives as well and use additional sources of evi-
dence such as functional annotation or experimental validation to
help refine our understanding of the role that individual genes or
genomic variants may play. This is an important issue confronting
the field of ecological genomics, and our study serves as one case
that attempts to address this challenge.

Candidate genes of adaptation to climate in red spruce

Three main interconnected axes of adaptation to climate are usu-
ally described in the literature of temperate and boreal coniferous
species: drought tolerance (Moran et al., 2017), cold hardiness
(Aitken et al., 2004; Chang et al., 2021) and phenological timing
of growth and dormancy (Gyllenstrand et al., 2007). The set of
putatively adaptive genes we identified in red spruce using differ-
ent GEA methods includes genes involved in all three of these
adaptive pathways.

Degree days below 0°C (DD_0) and extreme temperature
(EXT) were among the most important climatic factors in the
genome scans and we found many genes involved in response to
heat and/or drought stress, confirming the role of both extreme
cold and heat stress in driving climate adaptation in spruce
(Depardieu et al., 2020, 2021). Additionally, we observed signifi-
cant functional enrichment for carbohydrate metabolism, which
is described in the literature as an important component of
drought response in conifers (Moran et al., 2017), possibly
because the accumulation of sugars (e.g. carbohydrates) help
plants to resist dehydration and desiccation (Perdiguero et al.,
2012). We also identified some genes of the ABA (abscisic acid)
pathway (e.g. MARD1). ABA is known to initiate responses to
drought stress (Hamanishi & Campbell, 2011), with high ABA
concentration acting as a signal for plants to close their stomata
and prevent water loss (Moran et al., 2017). We also found genes

(a) (b)

Fig. 5 Red spruce adaptive landscape with (a) a redundancy analysis (RDA) biplot showing the association between adaptive loci and climatic drivers of
adaptation in the adaptively enriched genetic space and (b) spatial projection of adaptive genetic turnover through extrapolation of the RDA model to the
complete range of red spruce. The loci coordinates used in (a) have been multiplied by four for better visibility and the scale of (b) shows gradual variation
between the two extreme genetic compositions (0 and 1) associated with extreme values of each RDA axis.
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associated with other aspects of drought tolerance, such as the
NBR1 involved in heat and drought stress (Zhou et al., 2013),
HSFB-2B involved in heat stress regulation (Guo et al., 2016),
and ACD11 (accelerated cell death 11), whose overexpression is
triggered by an increase of ABA and improves salt and drought
tolerance in Arabidopsis thaliana (Li, 2019).

Multiple studies also show the importance of circadian clock
genes in tree adaptation to phenology cues such as temperature and
photoperiod (Holliday et al., 2010; Chen et al., 2012; Keller et al.,
2012; Olson et al., 2013). According to the results of the different
GEA procedures we used in this study, the FPA gene was one of
the strongest selection candidates, which regulates flowering time
in Arabidopsis thaliana via the autonomous pathway, independent
of daylength (Schomburg et al., 2001). In common garden studies
by our group, we have shown strong genetic differentiation in bud
set phenology traits in red spruce, including at broad latitudinal
scales (Prakash et al., 2022) and at fine scales between genotypes
sourced from low vs high elevations on the same mountain that
experience essentially identical photoperiod regimes (Butnor et al.,
2019; Verrico, 2021). This could suggest that red spruce phenology
is driven by temperature in addition to, or in interaction with, pho-
toperiod, consistent with results from growth chamber experiments
in white spruce (Hamilton et al., 2016). FPA has also been shown
to play a role in post-transcriptional modification of mRNAs from
other expressed genes in response to dehydration stress (Sun et al.,
2017), making this candidate a particularly intriguing target for
further investigation.

Lastly, genes involved in pathogen resistance are present in our
list of candidates, as has been reported in other GEA studies of cli-
mate selection in forest trees (Chhatre et al., 2019). Pathogen
resistance is a well-known driver of local adaptation in trees (Fetter
et al., 2017), and pathogen prevalence or resistance often covaries
along latitudinal and temperature gradients (Moreira et al., 2014).
In a recent genome-wide association study (GWAS) in Norway
spruce, pathogen resistance was found to be associated with a reg-
ulator of the ABA pathway, which is also involved in plant water
balance, suggesting the potential for pleiotropy between biotic and
abiotic stress (Capador-Barreto et al., 2021). Along the same lines,

one of our top candidate genes (At4g33300) is involved in
drought tolerance but also known to be associated with pathogen
defense response in silver fir (Behringer et al., 2015).

Future work is needed to better understand how these candi-
date genes underlie variation in climate-adaptive traits. Nonethe-
less it is already clear that these loci are acting through pathways
that contribute to variation in early-life seedling performance in
our three common gardens. Indeed, the association of individual
loci identified as outliers by our GEA procedure explained
around 1–3% of Height Growth on average, far exceeding the
association of nonoutliers. This level of variance explained by sin-
gle loci is consistent with the highly polygenic nature of quantita-
tive traits involved in local adaptation in plants (Savolainen et al.,
2013; Lee et al., 2014; Josephs et al., 2017).

Adaptive genetic variation across climatic landscapes

Interestingly, we found that two distinct groups of genes were
associated with two different environmental gradients and
showed different patterns of variation across the landscape. The
first axis of adaptive variation, driven by a majority of the identi-
fied candidate genes (103/125), showed clinal variation in allele
frequencies along a gradient defined by the number of degree-
days below 0°C. Across the 207 SNPs associated with these 103
genes, average allele frequencies varied from 0.25 to 0.77 and
some specific loci showed even larger differential in allele fre-
quency (e.g. the FPA gene, Fig. S6). The inflection point of the
genetic cline was found around 700 degree-days below 0°C, sug-
gesting a coordinated shift at this portion of the gradient from
one set of alleles to the other across multiple genes. This pattern
also suggests the genetic basis of local adaptation in these genes
may reflect antagonistic pleiotropy (Anderson et al., 2011; Savo-
lainen et al., 2013), with one allele being better suited for north-
ern and continental regions – characterized by many below
freezing days, abundant snow, low potential evapotranspiration,
and short growing seasons – whereas the alternative allele is bene-
ficial at lower latitudes and more coastal areas – characterized by
longer growing seasons. This cluster included many genes
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Fig. 6 Adaptive loci clustering and clines along climatic gradients. (a) Results of the k-mean clustering procedure performed on the absolute value of the
outlier loci loadings along the two first axes of the adaptively enriched redundancy analysis (RDA). (b) Adaptive genetic clines along gradients of growing-
degree days below 0°C and annual mean precipitation gradients, with their 95% confidence intervals represented by colored bands around the fitted line.
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involved in response to abiotic stress, especially heat and drought
(e.g. NBR1), but also genes involved in phenology or response to
stress (e.g. FPA) and resistance to pathogens (e.g. At4g33300).

The second axis of adaptation was supported by fewer genes
(22) and showed a different pattern of variation. Here, the mean
allele frequency across the 33 associated SNPs remained low
along the associated climatic gradient (e.g. extreme temperature/
elevation) before increasing substantially when approaching the
upper bound of the gradient, suggesting a threshold effect.
Among the 22 genes included in this group, we found genes
involved in response to acute stresses in other plant species, for
example DAHR2, which plays a role in adaptation to high-light
conditions in Arabidopsis thaliana (Terai et al., 2020) or DNA
damage-binding 1, involved in Brassicaceae adaptation to high
altitude (Guo et al., 2018). This suggests that specific alleles are
selected at low elevations where red spruce trees more often expe-
rience extreme events of heat and/or drought but are not under
selection in areas where climatic conditions never reach such
extremes. Experimental testing would be required to confirm this
hypothesis, but it could be evidence of conditional neutrality
where some alleles are favored in one environment and are neu-
tral in other environments (Anderson et al., 2011).

Conclusion

Our results unravel the pattern of local adaptation to climate in red
spruce in the face of confounding effects of demographic history.
Local adaptation is reflected in divergent adaptive gene pools along
a latitudinal gradient but also at specific lowland localities. We
showed that seedling fitness decreased due to local maladaptation
induced by a climate-transfer experiment into three common gar-
dens. This raises the question of potential future disruption of exist-
ing gene–environment relationships by rapid climate change,
which could eventually lead to population decline. We also showed
that genes associated with tolerance to drought, cold hardiness and
phenology were important components of red spruce adaptation to
climate. For these genes, we found large allelic turnover along cli-
matic gradients, confirming the presence of standing genetic varia-
tion that could be used to avoid maladaptation. These results can
now be used to develop models and tools that can take advantage
of information on adaptive intraspecific variation to help inform
future management strategies and buffer the negative impact of cli-
mate change on forest ecosystems.
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