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ABSTRACT: Methods for solving the Schrodinger equation
without approximation are in high demand but are notoriously
computationally expensive. In practical terms, there are just three
primary factors that currently limit what can be achieved: 1) system
size/dimensionality; 2) energy level excitation; and 3) numerical
convergence accuracy. Broadly speaking, current methods can deliver
on any two of these three goals, but achieving all three at once
remains an enormous challenge. In this paper, we shall demonstrate
how to “hit the trifecta” in the context of molecular vibrational
spectroscopy calculations. In particular, we compute the lowest
1000 vibrational states for the six-atom acetonitrile molecule

(CH,;CN), to a numerical convergence of accuracy 1072 em™ or

better. These calculations encompass all vibrational states throughout most of the dynamically relevant range (i.e., up to ~4250 cm™
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above the ground state), computed in full quantum dimensionality (12 dimensions), to near spectroscopic accuracy. To our
knowledge, no such vibrational spectroscopy calculation has ever previously been performed.

1. INTRODUCTION

Methods for solving the Schrodinger equation have seen an
explosive growth in recent years, as the importance of
incorporating quantum effects in numerical simulations in
order to obtain experimentally accurate data becomes
increasingly recognized. In the last two decades, the accurate
solution of the nuclear-motion or (ro)vibrational Schrodinger
equation, in particular, has started to become feasible—if not
routine—for polyatomic molecular systems. This development
has made “exact quantum dynamical” (QD) calculations
possible for small polyatomic systems, allowing theoretical
calculations to start catching up with extremely accurate
experimental measurements. Today, in the field of high-
resolution molecular spectroscopy, experiment and quantum
theory provide equally important and often complementary
contributions to our understanding and thus strengthen each
other."

Spectroscopy is, of course, a universal tool and, as such, serves
as a workhorse across a wide range of scientific disciplines. Even
just in the vibrational context, these include low temperature
and ultracold physics, atmospheric science and combustion
chemistry, astrophysics and remote sensing, chemical physics
and quantum chemistry, geochemistry and astrobiology, and
quantum control and quantum computing, among others.
Developing codes to perform rovibrational molecular spectros-
copy calculations is thus not only useful for the considerable
number of researchers working in these computational fields but
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also impacts a much broader range of experimental commun-
ities, for whom accurate (ro)vibrational spectroscopic data is of
vital importance.

On the other hand, performing numerically exact QD
simulations of (ro)vibrational spectroscopy for specific molec-
ular systems is notoriously computationally expensive—a
situation that, to date, has greatly limited the applications to
which such simulations can be applied. In practical terms, there
are three main directions along which there is a need to push the
limits of present-day technology. These are 1) system size, i.e., the
number of degrees of freedom or dimensions (vibrational
modes) that can be treated explicitly quantum mechanically; 2)
energy excitation, the total number of accurately computed
(ro)vibrational quantum states or energy levels; and 3)
numerical accuracy, measured in terms of convergence with
respect to all possible computational parameters such as basis
size (ie., the equivalent of what could be called the “complete
basis set full configuration interaction limit” in the electronic
structure realm).
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Limitation 1) is, of course, very well-known, with six or more
atoms (i.e., 12 or more explicit quantum dimensions) certainly
regarded as the “frontier”, at present. Limitation 2) is equally
important but nowhere near as often concerned with—at least
not within the realm of theoretical/numerical treatments.
Experimentalists, however, know full well that six-or-more
atom molecules can present anywhere from 10°—107, or even
more, spectroscopically active (ro)vibrational bands. Even H;*,
the “smallest polyatomic molecule”, presents a total of 390,855
bound rovibrational states.” Benzene exhibits 1 million or so
vibrational states lying below even just the first overtone of its
highest fundamental!*™® Therefore, a theoretical calculation
that is restricted to tens or even a couple of hundred total
computed states—or that focuses on just the fundamental
frequencies—may, in practical terms, be of limited value. As for
Limitation 3), of course, the definition of “spectroscopic
accuracy” depends very much on the precise experimental
apparatus, especially whether one is conducting infrared or
microwave (pure rotation) experiments. A conservative rule-of-
thumb estimate might be 107> cm™" or better—although for our
purposes, we will regard a calculation that is numerically
converged (with respect to all possible parameters) to better
than 107> cm™ as achieving “high-resolution spectroscopic
accuracy’.

Broadly speaking, the current state-of-the-art numerical
methodologies can deliver on pushing the limits of any two of
the above three limitations, but achieving all three goals at once
remains an enormous challenge. As a representative but
incomplete summary, codes employing tensor methods as
developed, e.g, by Carrington and co-workers” and Martinez
and co-workers,”” can readily provide 1) and 3) together but not
2). In contrast, the SwitchBLADE"'°™*2 code, developed in our
group, can provide 1) and 2) together but not 3). Then, there are
the “black-box” rovibrational molecular spectroscopy codes,
such as ScallT**~"* (also developed in our group), DOPI,""~*'
DEWE,”>™** and GENIUSH’*”’ (developed in the group of
Csaszar, the latter further developed by Matyus and co-
workers”®), DVR3D*’ (developed by Tennyson and co-
workers), and Trove’”*' (developed by Yurchenko and co-
workers). Due in some cases to design and in others to the
canned direct-product basis sets (DPBs) and coordinate systems
used by default, the black-box codes are typically limited in terms
of 1), though they can provide 2) and 3) quite readily.

Of course, the above is a broad or typical characterization
only—a panoramic snapshot of where things currently stand, for
the most part. It must be recognized that development of all of
the above methods is ongoing. Indeed, in this paper, we shall
describe a combination strategy, wherein the “best of two
worlds”—i.e., from the SwitchBLADE and ScallT codes
described above—is successfully merged together in order to
achieve all three desired goals at the same time. We then apply the
resultant combined code, which we call “SwitchIT”, to a well-
studied benchmark system—the acetonitrile (CH;CN) mole-
cule.

In a nutshell, SwitchIT works as follows. Instead of using
canned DPBs for all of the various system dimensions (as would
be the default for ScallT), the so-called “outer” group of
dimensions is represented using a highly efficient, non-DPB of
the SwitchBLADE form. The result is an exponentially smaller
outer basis—yet one that still retains the sparse, block-structured
matrix form necessary for ScallT to function effectively. In this
manner, SwitchIT defeats the traditional exponential scaling of
computational cost (implied by the use of DPBs), while keeping
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the high accuracy and convenience that DPBs provide and also
allowing for effective massive parallelization across near-exascale
supercomputing clusters.

In this manner, we are able, in the present work, to “hit the
trifecta” in our CH;CN calculations. Specifically, we computed
the lowest-lying 1000 vibrational energy levels of CH;CN to
spectroscopic numerical convergence accuracy, as defined
above. Such calculations encompass all vibrational levels up to
~4250 cm ™" above the ground state, which are computed here in
full quantum dimensionality (12 dimensions). Such calculations
are well beyond what has previously been achieved for this
system.n’ﬁ"?’3 Indeed, to our knowledge, no such vibrational
spectroscopy calculation has ever previously been performed—at
least not for a system with reasonably strong inherent coupling.
On the other hand, given the generality and effectiveness of the
method, we anticipate there will be many more such calculations
to follow.

As our most immediate next step, we plan to extend the
present CH;CN investigation up to ten thousand vibrational
states, all computed to near-spectroscopic accuracy. This will
require a further modification to the SwitchIT code that
incorporates a quadrature approximation for the “inner”
dimensions—resulting in a sparser matrix form and, therefore,
much larger possible matrix sizes. In the future, other molecular
systems of spectroscopic interest will also be considered. More
broadly, we hope to make our generic code available to the
various scientific communities described above—thus extending
spectroscopically relevant exact QD calculations to both larger
and more general molecular systems than have heretofore been
the case.

2. THEORY

The numerical challenges associated with computing more and
more exact rovibrational eigenstates of molecules of increasing
size, to increased levels of numerical convergence accuracy,
increase very dramatically. To address these challenges, one can
utilize massively parallel computers, such as high performance
computing clusters (HPCCs), up to tens or even hundreds of
thousands of cores. However, to effectively apply them, one
needs to develop scalable algorithms—which presents its own set
of challenges in the exact quantum dynamics context. Over the
past two decades, two different massively parallel codes have
been developed in our group to overcome those challenges.

In this section, we discuss the two established codes that are
used in this study—i.e., SwitchBLADE and ScallT—as well as
how these can be most profitably combined together to form the
new code, “SwitchIT”. In this initial study, we consider only
anharmonic force field (AFF) potential energy surfaces (PESs)
and also certain refinements that are tailored for the CH;CN
molecules. However, the basic procedure may be applied more
generally, to arbitrary PESs.

2.1. SwitchBLADE. SwitchBLADE,"'°~"3 Switchable Basis
set Linear Algebra modules for Dimensionally independent
Eigensolves, is a black-box code designed to implement highly
efficient non-DPB representations. Whereas the individual basis
functions are separable across all dimensions, the global
truncation of the basis set itself is highly correlated—not only
across all d configuration space dimensions but also, where
applicable, across all 2d phase space dimensions. This highly
correlated truncation of the basis can be finely tuned for specific
applications, thus resulting in an exponential reduction in the
required basis size, n. This, in turn, allows comparatively large
systems (i.e, d values) to be tackled explicitly. As a result,
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remarkably high (k/n) ratios may be obtained, where k is the
number of states computed to a given accuracy threshold.'***

An important feature of the SwitchBLADE approach is that
direct methods are employed to solve the matrix eigenproblem.
On the one hand, this offers a great advantage, in that
LINPACK-like ScaLAPACK*>>~*’ parallel dense matrix linear
algebra routines may be employed—of the precise sort that are
routinely used to establish parallel scalability benchmarks across
the largest supercomputers currently in existence. This all but
ensures the effective parallel scalability of SwitchBLADE on any
cluster, even using a combination of intranode (shared memory)
and internode (distributed memory) parallelization (previously,
up to 7200 cores have been used for a single job). There is also
the advantage that all n eigenstates (or k converged eigenstates)
are computed at once.

On the other hand, direct methods treat all matrices as dense
(even if in reality this is not the case), requiring order n* storage.
This means that the basis sizes n are limited by the largest
matrices that can be directly diagonalized on currently available
clusters—which is about n 10%. This is rather small, in
comparison to the basis sizes that can be achieved using more
specialized methods that exploit special matrix structure such as
sparsity.”>**~* Consequently, the numerical accuracy of the
majority of the k converged levels is relatively low—i.e., only a
few cm™! or tens of cm™}, for the largest d values considered to
date (up to d = 30).

The current SwitchBLADE code is limited to AFF (or related)
PESs, although this is by no means an inherent limitation. In
particular, the AFF restriction enables analytic determination of
the PES matrix elements. Consequently, SwitchBLADE
introduces no quadrature or other errors beyond basis set truncation,
meaning that numerical convergence is fully variational from
above. As for the basis functions themselves, SwitchBLADE was
originally designed for phase-space-localized basis sets such as
“weylets” and (momentum)-symmetrized Gaussians
(SGs).**~* However, it has also been adapted for use with
correlated truncated harmonic oscillator (HO) basis sets, as are
used in this work. The HO basis is preferred here, because the
lower lying states are much more accurately numerically
converged [although (k/n) ratios are also much smaller]. "'~

By now, SwitchBLADE has been successfully applied to
uncoupled and coupled harmonic oscillator model problems'’
and to various AFF PES molecules such as P,O and CH,NH,""
CH3CN,12 benzene,* and the OCHCO* molecular ion."* Also, a
modified version of the algorithm used to apply phase space
truncation to the SG basis of SwitchBLADE has been
transformed into a new code, CRYSTAL,"* used to detect
and find “holes”—as well as legitimate transition states—in large-
dimensional PESs.

2.2.ScallT. ScalIT,"*~'® or “Scalable Iteration”, is a black-box
molecular rovibrational spectroscopy code, designed to provide
highly accurate solutions to the time-independent, nuclear-
motion Schrodinger equation—including those lying in the
highly energetically excited region of the spectrum. Like
SwitchBLADE—and as the first part of its name implies—ScallIT,
too, was designed to scale effectively across massively parallel
supercomputing clusters (to date, a few thousand cores have
been used for a single job). The “ITeration” part of the name
refers to ScallT’s use of efficient sparse iterative matrix
diagonalization methods, as opposed to the direct matrix
methods used by SwitchBLADE. As a consequence, ScalIT can
accommodate very large sparse matrices (up to n &~ 10” if not
larger), provided they adhere to a certain sparse block structure

~
~
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that arises naturally in the context of certain DPB representa-
tions such as discrete variable representations (DVRs; see
section 2.4).50

On the other hand, since the DPB restriction is always
imposed, this could limit the system dimensionalities, d, that
might be considered—especially when ScallT is run in “black
box” mode, using standard coordinate systems and canned basis
sets. There are, for instance, high-level ScalIT modules designed
specifically to compute the (ro)vibrational states of triatomic
and tetraatomic molecules, using Jacobi coordinates, and
standard associated Legendre polynomial or Wigner rotation
function basis sets for the bend and rotation angles. In this
context, ScallT calculations have been performed to date only
up to d = 8—e.g., in a calculation of the rovibrational states of the
Ne, rare gas tetramer.”’ Other such black-box ScallT
calculations include (among others) the rovibrational states of
HO,,”>"** homonuclear (Ne;** and Ar;*®) and heteronuclear
(Ne,Ar’” and Ar,Ne®®) rare gas trimers, SO,,” 0,,°%%" and
H,* as well as the vibrational states of acetylene (HCCH).**

Even when running in “black box” mode, ScallIT automatically
employs a few numerical optimization strategies, such as use of
the phase-space optimized DVR (PSO—DVR) basis representa-
tion for all radial coordinates,””****~%” which minimizes the
radial basis sizes required. In addition, the preconditioned
inexact spectral transform (PIST) method,*”"® working in

011_)'}1_r173tion with optimal separable basis (OSB) precondition-
ing as applied to the standard iterative quasiminimal
residual (QMR) algorithm,">*° ensures the ability of ScallT to
accurately compute even extremely energetically high-lying
quantum states (e.g., the “vinylidene” states of HCCH”). A very
brief description of the above combination of methods is
presented in the Appendix; many further details may be found in
the references listed above.

Despite past successes as described above, it was always a part
of ScallT’s design that even more impressive achievements
would be possible by running the code in “expert” mode. In
practice, this means replacing ScallT’s canned Hamiltonian
matrix construction routines with customized codes that make
use of highly efficient, correlated basis sets, designed for specific
applications. Note that, whereas ScallT does indeed rely
inherently on DPBs, it does so only across groups of
dimensions—or “effective” dimensions—that may be chosen
nearly arbitrarily by the expert user. If, then, the goal is to impose
as little DPB restriction on the basis set as possible (so as to
result in the smallest n and largest d values), then the number of
groups or effective dimensions should be reduced to the minimal
value of just two.

2.3. SwitchIT: Overview. The above two-tiered approach is
what is adopted in the merged SwitchIT code of the present
work, as described in more detail in this subsection.

Note that the current bottleneck of SwitchBLADE is the
comparatively small basis sizes n that can be worked with, mainly
due to the use of direct dense matrix eigensolvers, as discussed—
whereas the primary advantage is the flip side of the same coin,
i.e,, a remarkably efficient basis that defeats exponential scaling
in principle. ScalIT, on the other hand, suffers from the
exponential scaling of n with d (as do all DPB methods) but
overall can handle far larger n values, due to its sparse matrix
eigensolve algorithms.

How, then, should the codes be most profitably merged
together? One simple and effective strategy is to introduce
SwitchBLADE into ScallT, rather than the other way around.
More specifically, we run the two-tier version of ScallT

https://doi.org/10.1021/acs.jctc.1c00824
J. Chem. Theory Comput. 2021, 17, 7732-7744


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00824?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

described above, as the main code. However, instead of using
canned basis sets to represent the two reduced-dimensional
subsystem Hamiltonians, a SwitchBLADE HO representation is
used. This has the advantage of greatly reducing the overall basis
size that is required (in comparison to pure ScalIT) while, at the
same time, greatly expanding the overall basis size that can be
worked with (in comparison to pure SwitchBLADE). In this
manner, we achieve the “best of both worlds”.

Note that ScallIT’s OSB routines give rise to an adiabatic
approximation across the two dimension groups (subsystems),
which are therefore not treated identically. We therefore give the
two groups different names, ie, “inner” and “outer”, with
individual basis functions of the former parametrized by
quantum numbers of the latter. For definiteness, and consistency
with earlier treatments, we refer collectively to the inner
subsystem dimensions as “x” and the outer subsystem
dimensions as “y”.

In order to ensure the sparse block diagonal structure required
by ScallT, it is most convenient (but not necessary) to work with
a DPB representation for the inner subsystem.”'”’* For
conceptual purposes, this could be, e.g, a PSO DVR basis
(i-e., a standard of black-box ScallT, as discussed)—although in
reality, we will wind up using something else (see the next
subsection). In contrast, the outer subsystem basis is completely
unconstrained and so is taken to consist of the eigenstates of the
outer subsystem Hamiltonian. The outer subsystem diagonal-
ization problem, in turn, is represented (and solved) using
SwitchBLADE.

Note that optimal sparsity is obtained by having ny, = n,,
where 1y, represents the size of the inner/outer basis, and n =
nun,. Given that n, is tremendously reduced due to the use of
SwitchBLADE, but n,, is not, maintaining such a balance
requires that most dimensions be lumped into the outer, rather
than inner, category. Conversely, the PSO basis sets are ideal for
capturing anharmonic behavior, and so, the inner subsystem
should consist of the dynamically most important dimensions.
These are general guidelines, although the implementation as
discussed in the next subsection is based on a slightly different
set of considerations.

The above discussion presumes an inner-outer decomposi-
tion of the form

HA(x, y) = A (x) + I:Iy@) + A(x, y), where (1)
H(x) = T,(x) + V(x),
Hy) = T,(y) + V,(y), and

A(x, y) = V(x, y) = V(%) = V(). @)

Here, T represents kinetic energy operators, and v represents
potential energy operators, respectively.

Now, when represented in matrix form using the basis sets as
described above, H,(x) becomes a block-diagonal matrix, and
H,(y) becomes a “diagonal-block” (actually fully diagonal in this
case) matrix.”' ~”* Both of these contributions are highly sparse.
Of course, the most interesting case is the inner-outer coupling
contribution, A(x, y), presumed to have a potential energy form.
As such, the matrix representation in the above basis is diagonal
with respect to x but not y. This is what is meant by the
“diagonal-block” form, and it is precisely what is needed by
ScallT.
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2.4. SwitchIT: Quadrature, Normal Modes, and
Subsystems. Now, on to some more technical details—
including those particular to the CH3;CN application, for
which a quartic AFF PES is employed (section 3). We point
out first of all that the implementation as described in the
previous subsection—like all DVR methods—is characterized by
quadrature error, above and beyond basis set truncation error.
When spectroscopically accurate calculations are desired, very
often the former error comes to dominate the latter—a situation
that greatly slows down numerical convergence.””’®"’
Consequently, there is an impetus toward reducing quadrature
error as much as possible, even at the expense of using less
efficient basis sets.

In the case of CH;CN (and a good many other systems)—
remarkably—an effective basis may be chosen in which almost all
quadrature error vanishes, even as the sparse block-structured
form required by ScallT is retained. As a consequence,
numerical convergence becomes nearly perfectly variational.
However, explaining how to achieve this serendipitous state of
affairs first requires a slight detour into a brief discussion of the
various representations involved.

The conceptually simplest representation is the variational
basis representation (VBR), for which a) the orthogonal basis
functions are delocalized and b) the individual matrix elements
are computed exactly. Therefore, for any given operator, the
corresponding VBR matrix has no quadrature error. Now, if we
diagonalize the VBR matrix representation of the coordinate
operator % itself, the resultant eigenvalues constitute the DVR
grid points. The eigenvectors define a unitary transformation to
a new set of basis functions—the DVR functions—that are
localized and Dirac-delta-like.

Next, we introduce some evidently new notion. For any given
operator, let the finite variable representation (FVR) denote the
exact matrix representation in the DVR basis. Note that the FVR
is unitarily equivalent to the VBR and thus also has no
quadrature error. However, the FVR is not typically used in
practice. Instead, a simplifying approximation is generally
employed, involving the part of the operator that can be
expressed as a function of coordinates (e.g,, the potential energy
contribution, in the case of Hamiltonian operators). Specifically,
the approximation replaces the exact FVR for this function with
a diagonal matrix consisting of the values of the function
evaluated at the DVR grid points. The result—which is highly
convenient but most definitely has quadrature error—is the
discrete variable representation or DVR.

Now, in our approach, instead of using a PSO DVR to
represent the inner subsystem, an exact FVR is used, based on a
correséponding classical orthogonal polynomial (COP)
DVR”*~*" (Gauss-Hermite in our case). Of course, for a single
power of x, the above discussion implies that the corresponding
FVR and DVR matrices are identical. Put another way, the DVR
has no quadrature error in this case—or conversely, the exact
FVR is diagonal.

For a COP DVR, moreover, the quadrature error for ¥ is very
well characterized and known to be “small” in some sense.
Specifically, adding just one more quadrature point would
eradicate the COP DVR quadrature error for x* completely.
Now, keeping in mind that “x” actually denotes a collection of
dimensions, x = (xy,x,,...), across which the FVR is actually a
DPB, it becomes clear that any bilinear form such as xx, also
admits an exact, diagonal representation in a DVR/FVR.

Next, we consider the C;, symmetry of the CH;CN molecule
and the impact this has on the vibrational normal modes and the
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quartic AFF PES. In general, we expect there to be a
combination of singly degenerate modes (which are invariant
under C; rotations) and doubly degenerate modes (which are
not). In the case of CH;CN, there are four modes of each
degeneracy, giving rise to a total of 12 modes in all. We shall take
the (4D) inner subsystem (x) to consist of the even-symmetric
components of the four doubly degenerate modes, whereas the
(8D) outer subsystem (y) will consist of the remaining four
doubly degenerate components plus the four singly degenerate
modes. Note that the outer subsystem dimensionality is much
larger than that of the inner subsystem, as desired.

There are also important ramifications of this choice for
quadrature, as we shall see. To understand this, we must first
provide a precise definition of the effective inner and outer
Hamiltonians in eq 2. This should be done in such a manner as
to minimize quadrature. As we shall see, H,(x) and H, () shall
be represented exactly, meaning that the only source of
quadrature error comes from A(x, y)—which should therefore
be made as small as possible. As it happens, this is precisely the
task of the PSO DVR methodology, i.e., to provide “optimal”
inner and outer PESs from the standpoint of minimizing A(x, y).

For an arbitrary PES, the optimal or PSO inner subsystem (x)
PES is obtained by relaxing with respect to all outer dimensions
(y) and vice versa. For any AFF PES, the inner and outer PSO
PESs are not themselves AFFs, due to inner-outer correlation.
However, the optimal PESs of AFF form can be shown to be
simply V. (x) V(x, 0) and V/, (y) V(O ). These are thus used
to define H. (x) and H (y)

2.5. SwitchlT: Matrlx Representations. We now return to
the issue of matrix representations for the two subsystems and
their coupling, each of which must be treated separately. For the
inner subsystem, the matrix representation of H,(x) is exact (i.e.,
no quadrature error), since an exact Gauss- Hermite FVR is used.
This is implemented in two steps. First, the H (x) Hamiltonian
is represented in a DPB HO VBR of size n;, = n,n,n3n,, where n;
is the number of basis functions used for dimension x;, etc.
Then, the VBR matrix is transformed to the FVR, one dimension
at a time, using the eigenvectors of the respective inner
coordinate operators, (X;, &y, X3, X4), as computed in the same
HO VBR basis. We denote the resulting n;, X n;, matrix as H,
where i labels a particular 4D inner Gauss- Hermlte quadrature
point, (x1, &b, &5, &)

The outer subproblem, H Q/) is solved directly in Switch-
BLADE, using a correlated truncated harmonic oscillator (HO)
basis set (with a total basis size of n,,.). Note that since the outer
PES is also of quartic AFF form, this representation is also exact,
in the sense that it contributes no quadrature error. The
eigenfunctions of the H Q}) obtained from the direct matrix
diagonalization—i.e., the qﬁ,(y) serve as the outer basis for the
final calculation and must therefore be stored. To this end, the
standard PDSYEV ScaLAPACK eigensolver of SwitchBLADE
has been changed to PDSYEVR. Of course, not all ng,,
eigenvectors are required, and only the lowest-lying n, < ny,
eigenvectors are retained. That said, the ratio (n,,/n,) is much
smaller than might be expected for an 8D calculation, due to the
inherent efficiency of the SwitchBLADE calculation.

Finally, there is the inner-outer coupling contribution, A(x,
). Here, the matrix representation must be diagonal in y—and,
therefore, diagonal-block as a whole—in order to satisfying the
sparse block structure required by ScallT. Accordingly, we
represent this contribution using a Gauss-Hermite DVR, rather
than FVR, for the inner dimensions. There is, as a result, some
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quadrature error that gets introduced; however, it is quite small,
as may be seen as follows.

First, from the definition of V.(x) and ¥/ (), it is clear that
every monomial term in A(x, ) has at least one power of x and
one power of y. Furthermore, since Ax, ) is a quartic AFF, each
term must be no less than first-order and no higher than third-
order, in x or in y. Finally, by definition, the x coordinates are
even-symmetric, 1mply1ng that only second-order x factors
contribute to any given A(x, y) term. The coupling potential
must therefore take the form

A(x y)_z (3)x2y+z (4)22 ()
3

where ¢ and 5,4) are cubic and quartic force constants,
respectively. Note that in eq 3, the expression x* refers to any
possible product of inner dimensions, etc. For all second-order
cross terms in x—e.g., the bilinear x,x,—the quadrature is exact,
as discussed previously. Only for the four x}-type terms is there
any quadrature error at all, and even then it is small, because a
COP DVR is employed.

Using the direct product of the inner FVR/DVR, and the
outer basis, d)-, the total Hamiltonian takes the matrix form

x y
Hyjp = Hydy + B6; 0, + Ay (x)8

(4)

where

)= [60)* A6, D40 & s)

The Aj(x;) matrix representing the inner-outer coupling
contribution, A (x, ¥), can be obtained analytically, by evaluating
the integral of eq S for each «; inner grid point separately. The
integrations are performed not using the ql)j(y) themselves but
using the underlying HO basis functions in terms of which they
are represented—for which analytic formulas are known. This
requires a rectangular HO-to-¢ transformation, involving the
lowest-lying n, of n,, outer eigenfunctions, as discussed.

3. POTENTIAL ENERGY SURFACE (PES)

Previous vibrational state computations carried out for the
CH,CN system'>*>*" utilized some version of the hybrid
coupled cluster/DFT quartic AFF PES of Pouchan et al.** The
harmonic part of this PES was computed using CCSD(T)/cc-
pVTZ, while the cubic and quartic force constant coefficients
were computed at the B3YLP/cc-pVTZ level. Although
currently this is the best available potential for CH;CN of
which we are aware, its accuracy is limited—partially due to the
fact that only force constant coefficient values larger than 6 cm™
were reported. Therefore, quantitative agreement (to spectro-
scopic accuracy) between our calculated energy levels and their
experimental counterparts certainly cannot be expected.**

A more serious concern is that some of the crucial
implementational details needed to actually generate the
Pouchan PES are absent from ref 32. In particular, coefficients
are reported for only one set of components for the doubly
degenerate modes—resulting in an effectively 8D rather than
12D PES. Thus, the PES must somehow be expanded for full
12D computations, which necessarily leads to ambiguity.
Indeed, this has been done differently in two different previous
vibrational state studies,'>>* albeit consistent in both cases with
the requisite Henry and Amat relations.**~*°

Additionally, although the coefficients of the CH;CN PES
have been reported adopting an unconstrained summation
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convention (USC) [ie., labeling the third- and fourth-order
coeflicients as ¢’s rather than the k’s of the constrained
summation convention (CSC)], the resultant PES exhibits a
“hole” lying well below the zero-point vibrational energy
(ZPVE). Such a PES is clearly unsuitable for a calculation of
1000 or more vibrational states! Accordingly, we have chosen to
interpret the reported USC ¢ values as CSC k values. This has
the effect of increasing the hole energy from ~7700 to 15 857
cm™, according to a recent calculation performed using our PES
“hole finder” code, CRYSTAL."*** The motivation for this
reinterpretation of the coeflicients was the notion that CSC k
values may have actually been what was originally intended—as is
certainly the case, e.g., for the methylenimine (CH,NH) PES
constructed by the same authors.®” Although this turned out not
to be the case for CH;CN, it does not really matter; at the end of
the day, the above procedure provides us with a viable
benchmark 12D PES for the purpose at hand.

That said, PES ambiguity does make direct comparison with
earlier vibrational state computations a bit tricky. In particular,
Avila and Carrington computed™ the lowest-lying 200 or so
vibrational states, using the USC Pouchan PES and their own
8D-to-12D expansion scheme. Halverson and Poirier com-
puted'” 100 000 vibrational states using SwitchBLADE, albeit to
much lower accuracy for the high-lying states. They also used the
CSC Pouchan PES, with a different 8D-to-12D expansion
scheme that is properly invariant with respect to permutations of
the mode labels (unlike the approach used in ref 33).

Most of the SwitchIT results presented in this paper were
computed using the CSC Pouchan PES with the permutation-
invariant expansion scheme. In addition, we have taken
advantage of developments in massively parallel supercomputers
over the past few years, in order to redo the earlier
SwitchBLADE computations of ref 12 (and also fix a small
error)—specifically, using an HO basis with what is called the
“square root” truncation (SQRT) scheme (section 4.1) in order
to obtain an up-to-date comparison here. Finally, we have also
performed one SwitchIT computation of the USC Pouchan PES,
using the most converged basis set from the CSC computations.
The latter enables a partially meaningful comparison with the
earlier study of ref 33, although the two PESs used are still not
identical, due to different 8D-to-12D expansion schemes. Note
that complete specifications of both PESs used in this work are
provided in the Supporting Information, which should go some
way toward avoiding further such ambiguities in the future.

4. RESULTS AND DISCUSSION

4.1. Numerical Convergence. 4.1.1. 8D Outer Subsystem
Convergence. We begin with a discussion of the numerical
convergence of the 8D outer subsystem problem. Since this
subsystem consists of just the odd-symmetric components of the
four doubly degenerate modes, plus the four singly degenerate
modes, the resultant V,(y) = V(0, y) 8D outer PES is simply the
original unexpanded 8D PES as reported in ref 32 (albeit
reinterpreted under a CSC). As discussed, the 8D outer
subsystem problem is solved directly via SwitchBLADE, using
a quadrature-free HO VBR representation.

The specific correlated truncation scheme used is the SQRT
method,'” which appears to be the most suitable for our purpose
of reaching high accuracy over the entire dynamically relevant
energy range. In the SQRT scheme, the truncation weights, w,
for individual normal modes are roughly proportional to the
square roots of the normal-mode frequencies. A given 8D HO
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basis function is then retained for the matrix representation of
H (y) if and only if

lel + W2]2 + ..+ w7j7 + ij8 < feye (6)
where j, labels the particular HO basis function used for
dimension y, = g, etc, and the cutoff value n, is the sole
numerical convergence parameter. Ordering the dimensions
such that the singly degenerate modes come first, we have y =
()’1; ] J’s) - (fh; 92 93 94 %y; qéy) Q7y; qSy) (see also the
Supporting Information). The corresponding SQRT weights as
applied here are w = (wy, .., wg) = (3, 3,2, 2,3, 2,2, 1),
respectively.

As dlscussed the target 1000 12D vibrational states extend up
to ~4250 cm™". For the 8D outer Hamiltonian, H (y), there are
only 181 quantum states within this same energy range. To
obtain a suitable outer basis, ¢)(y) we increased ncut until those
181 states were all converged to around 0.01 cm™ or better. This
required 1, = 26, leading to a primitive 8D outer basis size of
Nout 133 051. Anticipating that a few thousand H (y)
eigenstates would be needed for the final 12D computation,
we saved the lowest-lying 10 000, which is thus the maximum
possible value for n,,.

4.1.2. 4D Inner Subsystem Convergence. To represent the
4D inner subsystem (consisting of the even-symmetric
components of the four doubly degenerate modes), we used a
DPB Gauss-Hermite FVR. The target 12D energy range
includes only 54 4D quantum states. Although obtaining the
eigenvalues of the inner subsystem is not actually necessary for
the full 12D computation per se, it nevertheless provides
important insight about the convergence accuracy of the inner
basis set, and so we performed such a calculation. Again, the goal
was to compute all 54 of these lowest-lying 4D states to 0.01
cm™" or better.

The numerical convergence of the 4D inner subsystem
problem was evaluated in two steps. First, a set of computations
was performed for which each of the four individual basis sizes,
(ny, ny, n3, n,) [or maximum excitations, (i}, iy, i3, iy)] was
determined using eq 6. This enables convergence to be
determined through a single parameter n., for which the
value n.,, = 25 was found to be the smallest to achieve the desired
convergence. Note that unlike the outer subsystem problem, the
inner subsystem basis is not actually truncated via the SQRT
scheme, as it is a “rectangular” or DPB basis. Instead, the SQRT
weights are used to determine the individual DPB basis sizes,
(ny, ny, n3,my) = (9, 13, 13, 26), corresponding respectively to the
inner subsystem dimensions, x = (x;, %5, %3, %4) = (g5 Q6w G700
gsx)- The total inner basis size is thus equal to the quadruple
product, n;, = nynynsn, = 39 546.

In the second numerical convergence step, the four n values
listed above were varied individually, so as to reduce the total
inner basis size n;,, while still retaining the desired accuracy. In
this manner, we were able to reduce the inner basis considerably,
down to (ny, ny, n3, n,) = (6, 6,9, 22), and n,, = 7128.

4.1.3. Inner-Outer Coupling and Full 12D Hamiltonian
Matrix Diagonalization. The inner-outer coupling matrix,
Ajj/(x,-), was obtained as described in section 2.5. This required
combining the 4D Gauss-Hermite FVR code with the
“Hamiltonian matrix builder” portion of the SwitchBLADE
code. Creating the coupling matrix could be a few thousand
times more expensive than creating the 8D—or even the 12D—
Hamiltonian matrix of SwitchBLADE proper. Therefore, the
Hamiltonian matrix builder code was tweaked to utilize sparsity
so as to run much more efficiently. Even so, creating and
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Figure 1. Numerical convergence of the lowest-lying 1000 vibrational energy levels of CH;CN as computed using SwitchIT with the CSC Pouchan
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Figure 2. Numerical convergence of the lowest-lying 1000 vibrational energy levels of CH;CN as computed using SwitchIT with the CSC Pouchan
PES, with respect to the three convergence parameters: inner basis size (n;,); primitive outer basis size used in 8D outer computation (1., = 25 and 26
correspond to 1., = 105 299 and 133 051, respectively); and final outer basis size used in full 12D computation (1,).

transforming A (x;) still remains very demanding computa-
tionally; executing this step is comparable to the effort needed to
diagonalize the full 12D Hamiltonian matrix.

As discussed, the diagonalization of the full 12D Hamiltonian
matrix was carried out using ScallT. Having only two-
dimensional layers (i.e., inner and outer) reduces the overall
sparsity and therefore the overall matrix sizes that can be
implemented on the computing facilities at our disposal.
Moreover, the comparatively large inner basis size, 1, results
in slow OSB preconditioner construction—which sometimes
made it difficult to complete the largest computations within our
48-h queue limitation. Nevertheless, for our final 12D eigenvalue
computation, we were able to obtain all 1000 vibrational states
from a single job, using a single PIST spectral window.

4.1.4. Full 12D Convergence. For the full 12D computation,
a detailed convergence test was carried out involving all three
numerical convergence parameters: inner basis size (n:,);
primitive outer basis size used in 8D outer computation (Mou);
and final outer basis size used in full 12D computation (n,).
With regard to the two parameters also used in the subsystem
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convergence tests, i.e., n;, and n,, the values needed to converge
the full 12D computation turned out to be very similar to those
needed for the subsystem problems as discussed above. With
regard to n,, we find that n, = 2000 suffices to converge all 1000
12D vibrational states to less than 107 cm™.

Detailed convergence data with respect to n, is presented in
Figure 1. Note that for a given basis size, there is a fairly sharp
cutoff in the number of accurately converged states k, beyond
which the convergence error suddenly increases from a tiny
fraction of a cm™ up to 10 cm™" or so. This pattern has been
observed before and is what we refer to as the “efficiency
cliff”.**~** In any event, by n, = 2000, the cliff has moved beyond
the first k = 1000 vibrational states, as desired.

In Figure 2, we present convergence data with respect to all
three numerical convergence parameters. In particular, we
report energy level differences between our best converged
computation and the next best converged computation with
respect to each of the three convergence parameters. The largest
differences are in the 0.01—0.05 cm™ range. However, there are
only a few of these large differences, and also they all correspond
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Table 1. Selected Values for the Lowest-Lying 1000 Vibrational Energy Levels of CH;CN, in cm ™', as Computed Using SwitchIT
with the CSC Pouchan PES, from Our Best Converged Calculation (Column 2)“

SwitchIT SwitchBLADE
no. level A(n, = 1900) A(ng, = 25) A(ny, = 5940) A(ng, = 20) A, =22)
1 9914.947 0.000 0.000 —0.001 0.00 0.00
2 363.470 0.000 0.000 0.000 0.00 0.00
3 363.471 0.000 0.000 0.000 0.00 0.00
4 728.460 0.000 0.000 0.000 0.00 0.00
S 728.460 0.000 0.000 0.000 0.00 0.00
6 729.929 0.000 0.000 0.000 0.00 0.00
7 907.00S 0.000 0.000 0.000 0.00 0.00
8 1052.366 0.000 0.000 0.000 0.00 0.00
9 1052.366 0.000 0.000 0.000 0.00 0.00
10 1094.949 0.000 0.000 0.000 0.03 0.00
11 1094.950 0.000 0.000 —0.001 0.03 0.00
12 1097.85S —-0.001 0.000 —0.001 0.03 0.00
13 1097.856 —0.001 0.000 —0.001 0.03 0.00
14 1269.787 —0.001 0.000 0.000 0.03 0.00
15 1269.813 0.000 0.000 0.000 0.01 —0.02
16 1399.899 0.000 0.000 0.001 —0.03 —0.03
17 1415.74S 0.000 —0.001 —0.002 0.02 —0.01
18 1415.823 0.000 0.001 —0.001 0.03 0.00
19 1415.840 0.000 —0.001 —0.001 0.02 —-0.02
20 1415.862 0.000 0.001 —0.001 0.03 0.00
21 1462.923 —0.001 —0.001 —0.002 0.03 0.00
22 1462.925 0.001 0.000 —0.001 0.03 0.00
23 1467.234 —0.001 —0.001 —0.002 0.03 0.00
24 1467.247 0.003 —0.001 0.000 0.02 —-0.01
25 1468.681 0.002 0.000 0.000 0.02 —0.01
26 1486.895 0.001 0.000 —0.001 0.00 0.00
27 1486.923 0.008 0.000 0.001 —0.03 -0.03
28 1634.114 0.000 0.001 0.000 0.02 —-0.01
29 1634.123 —-0.001 —0.001 —-0.001 0.01 -0.02
30 1635.581 0.000 0.000 0.000 0.02 —-0.02
100 2460.983 0.000 0.000 —0.002 0.02 0.02
200 2893.310 0.000 0.002 —0.002 0.08 0.02
300 3237.703 0.002 0.000 0.000 0.05 0.00
400 3424.543 0.000 0.000 —0.002 0.10 0.07
500 3633.657 0.001 0.004 0.000 0.22 0.15
600 3767.138 0.000 0.001 0.000 0.08 0.0S
700 3919.836 0.001 0.000 —0.001 0.42 0.0S
800 4015.580 0.003 0.007 0.000 0.18 0.07
900 4104.314 0.000 0.001 —0.001 0.56 0.07
1000 4236.126 0.002 —0.001 —0.004 0.20 0.02

“The first entry denotes the ground state ZPVE, whereas subsequent entries are frequencies (energy differences) relative to the ground state.
Columns 3—5 present numerical convergence data, in the form of differences relative to the penultimate calculations as presented in Figure 2.
Columns 6 and 7 present differences relative to SwitchBLADE calculations, as presented in Figure 3.

to the very large change in n,,, that occurs as n,, is incremented
from 25 to 26. Also, it should be borne in mind that these errors
characterize the penultimate computation (in this case, ., = 25),
not the final computation. Note that, due to the very small
quadrature error, we are still very much in the regime where basis
set truncation error dominates. This means that even small basis
size changes lead to large reductions in truncation errors—as a
result of which, we are fairly confident that our final values are
indeed all converged to within 0.01 cm™. In any event, errors
presented in Figure 2 with respect to the other two convergence
parameters, n, and n,, are already sufficiently small in almost
every single case.

4.2, Full 12D Energy Levels and Comparison with
Previous Results. 4.2.1. Full 12D Energy Levels. Selected
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energy levels as computed using our most converged basis set
(n;, = 7128, n,, = 26 with n,,, = 133 051, and n, = 2000) and
their individual convergence data (given as energy level
differences with the penultimate calculations of Figure 2) are
listed in Table 1. Note that a comprehensive list of all 1000
computed energy levels is provided in the Supporting
Information. From Table 1, we find most of the energy
differences to be much less than 1072 cm™!—closer to 1073 cm™,
in fact, even for the 1000th state.

4.2.2. Comparison with SwitchBLADE Calculations. As
discussed, there is an interest in comparing the present SwitchIT
data with the corresponding results obtained from a straight
SwitchBLADE computation. At the time that ref 12 was written,
we were only able to extend the HO SQRT SwitchBLADE

https://doi.org/10.1021/acs.jctc.1c00824
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Figure 3. Energy level differences of the lowest-lying 1000 vibrational energy levels of CH;CN as computed using HO SQRT SwitchBLADE (SB) and
compared to the most converged SwitchIT computations (SI), for the CSC Pouchan PES. The two different SB n values considered, i.e., n ., = 20 and

feq = 22, correspond to basis sizes n = 582 150 and n = 1 211 394, re

spectively.
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Figure 4. Energy level differences of the lowest-lying 200 vibrational energy levels of CH;CN as computed using three different computations: Avila
and Carrington, Jr. (AC) ;>* present SwitchIT (S1); and present SwitchBLADE (SB) with n,, = 22. In all three cases, USC Pouchan PESs are used;
however, the SI and SB USC PES are somewhat different from the AC USC PES.

computations out to #., = 20. This corresponds to a total basis
size of n = 582 150, divided into even and odd symmetry blocks
of n, =293 395 and n, = 288 755 basis functions, respectively. In
the present study, we were able to extend these calculations out
to #1y = 22, for which the corresponding basis sizes more than
double (i.e., n=1211394,n,= 609 471, and n, = 601 923). The
latter calculation required around 20 h and 3500 cores per
symmetry block, running on the Frontera cluster. Note that all
1000 of the computed lowest-lying HO SQRT SwitchBLADE
energy levels are also provided in the Supporting Information.

It should be noted that the above n, values are substantially
smaller than the n., = 26 value used in the most converged
SwitchIT calculations! We therefore fully expect that for the
SwitchBLADE calculations, the efficiency cliff will occur at k
values far smaller than 1000—although the n, = 22 case should
be substantially better than the n , = 20 case. Indeed, this is the
reason why SwitchBLADE much more readily delivers on goals
1) and 2) from section 1 but not 3).

The above expectations are indeed found to hold true, as can
be seen in Figure 3, as well as in the last two columns of Table 1.
Here, we present computed energy level differences for the two
HO SQRT SwitchBLADE computations, relative to the most
converged SwitchIT computation of this study. To begin with,
the largest differences are all positive (with SwitchIT energy
levels being lower)—again indicating that basis set truncation
error dominates. The largest errors are also on the order of
several cm ™', indicating the undesirable “top” of the efficiency
cliff. For n., = 20, around 50 states have errors larger than 1
cm™, but also only around 50 states have errors less than 0.01
cm™. For n, = 22, the agreement is significantly better, with
more than 250 states having errors less than 0.01 cm™.

Of course, these are not the lowest 250 states! In practical
terms, one cannot predict which states they are, without doing a
more accurately converged computation, as we have done here
using SwitchIT. As a final comment on the SwitchBLADE study,
we point out that if an HO SQRT SwitchBLADE computation
with 7., = 26 could be performed, it might be able to provide
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similar accuracy as the SwitchIT computation presented here. Is
such a computation feasible? We can actually compute the
necessary basis sizes, i.e., n =4 618 092,n,=2 318 231,and n,=2
299 861. Given the r® scaling of the direct matrix methods used
by SwitchBLADE, this lies beyond our current computing
capabilities—thus further justifying the SwitchIT approach.

4.2.3. Comparison with Avila and Carrington, Jr. In order
to compare with the earlier study of Avila and Carrington, Jr.,**
we must work with the USC Pouchan PES for CH;CN rather
than the CSC version. Even then, the PES used here is not
identical to that used in ref 33, as discussed in section 3. Rather
than undertake a completely new convergence study for the
USC case, we simply reused the most converged basis from the
CSC Pouchan PES computation. As an additional check, to
ensure that the results are not completely off the mark, we also
performed an HO SQRT SwitchBLADE computation for the
USC PES, using n,, = 22. Note that Avila and Carrington, Jr.
only computed the lowest-lying 200 energy levels, for which
Figure 3 suggests the above SwitchBLADE computation ought
to perform reasonably well. (Note that a USC version of Figure 3
may be found as Figure S1 of the Supporting Information.)

In Figure 4, we present energy differences for the lowest 200
energy levels of the USC Pouchan PES, as obtained from the
three different computations, i.e., Avila and Carrington, Jr.
(AC); present SwitchIT (SI); and present SwitchBLADE (SB).
Asis clear from Figure 4, ST and SB agree to within 0.1 cmlorso
for almost all levels, as expected, suggesting a corresponding
level of numerical convergence for these calculations. The
agreement of SI and SB with AC is also quite good, however,
considering that the two PESs are, in fact, different. In particular,
it is clearly visible from the figure that around half of the levels
agree to better than 0.25 cm™'—which is noteworthy, given that
AC only claims to achieve a convergence of 0.2 cm™" or so and
even then only for the lowest-lying 40 energy levels. There are
several energy levels, however, with differences of around 1.5
cm™! and also three adjacent levels with differences in the 3.5—
6.0 cm™" range. The regularity of these discrepancies suggests to
us that they are most likely primarily due to excitations in one or
two specific modes.

As a final note, one might also consider a comparison with the
vibrational energy levels as computed in the original PES paper
of Pouchan and co-workers.>> However, differences here are so
great that one cannot even conclude which of the two Pouchan
PES interpretations, USC or CSC, is the more likely. AC has also
concluded that meaningful comparison with the energy level
results of ref 32 is not possible.”

5. CONCLUSIONS

Our goal for this project was to compute each and every one of
the lowest-lying 1000 vibrational states of CH;CN, in full
quantum dimensionality (12D), to an overall numerical
convergence accuracy of 107> cm™ or better. This goal has
been achieved, using the SwitchIT approach. Note that although
only energy level results are presented here, it would also be
straightforward to extract eigenfunctions using our existing code,
if these were needed. In any event, this study represents the first
time that every vibrational state within the most dynamically
relevant range (~4250 cm™ in this case) of a six-or-more-atom
molecule has been computed to spectroscopic accuracy, to our
knowledge. Especially when combined with recent develop-
ments in highly accurate PES construction,** " we fully expect
such capability to usher in a new era in rovibrational molecular
spectroscopy—wherein comprehensive, experimentally relevant

7741

spectroscopic line lists can be generated ab initio for much larger
molecules than previously envisioned.

The three goals described above are highly desirable, as they
represent the limits of modern-day computational molecular
spectroscopy. As discussed in section 1, there are a number of
codes and methods that can achieve any two out of three—
including two prior codes developed by the authors, ie.,
SwitchBLADE and ScalIT. Until now, however, none have been
able to deliver the “trifecta”. The success of SwitchIT in this
regard is directly due to its ability to combine SwitchBLADE and
ScallT in such a way as to achieve the “best of both worlds”. In
particular, SwitchIT profits from the highly efficient correlated
basis representations of the former, while still exploiting the
sophisticated sparse matrix structure and eigensolver algorithms
of the latter. Note that for comparison’s sake, an up-to-date
SwitchBLADE computation was also performed for the same
CH;CN system—which was found to have errors as high as 1
cm™! for some of the lowest-lying 1000 energy levels. SwitchIT,
then, appears to go beyond what is possible using other codes.

In any event, the study conducted here represents only the
beginning of what SwitchIT has to offer. For our next project, we
plan to extend the range of near-spectroscopically accurately
computed CH;CN energy levels up to the first ten thousand
states—which lie energetically up to around 6550 cm™" above the
ground state.'” For this calculation, it is possible that the lowest-
lying hole of the CSC Pouchan PES, located at 15 857 cm™'**
(i.e, 5942 cm™ above the ground state), might cause problems.
This state of affairs might require yet another PES modification.
On the other hand, the SwitchIT calculations performed here for
the USC Pouchan PES suggest that the situation might also be
workable as is. In any event, HO basis sets are far less amenable
to damage caused by PES holes than are SG basis sets.

The upcoming 10 000-state CH;CN study will also require
some additional code development. At present, SwitchIT divides
a given molecular system into two parts: the “inner” subsystem,
consisting of the dynamically most important dimensions,
represented in a Gauss-Hermite or other FVR/DVR, and the
“outer” subsystem, represented using highly correlated Switch-
BLADE basis sets (HO or SG). In this representation, the inner-
outer coupling contribution to the Hamiltonian takes on the
requisite “diagonal block” form, even as the inner and outer
subsystem Hamiltonians are represented exactly.

Going forward, however, the larger basis sizes necessary to
reach k = 10 000 states will necessitate a matrix with more
sparsity—and, therefore, more dimensional layers. This will be
achieved by subpartitioning the inner subsystem, at the expense
of introducing additional quadrature error, through the inner-
subsystem coupling contributions. The increased quadrature
error will necessitate larger n;, values—but then, much larger ny,
and n, values will now also become possible. Another, more
minor difference from the computations performed here is that
computing all 10 000 states will require multiple PIST spectral
windows.

Of course, once the 10 000-state calculation of CH;CN
described above is completed, other molecular systems of
spectroscopic interest will also be considered. Other types of
calculations will also be considered—e.g., of the rovibrational
states. Within the context of the existing SwitchIT codes, the
addition of rotational degrees of freedom would be most easily
accommodated using the Eckart-Watson formalism.”*> This
would, however, entail a certain amount of new coding.
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B APPENDIX

Iterative eigensolvers such as Lanczos operate by building a
“Krylov subspace” from successive multiplications of an
arbitrary (typically random) starting vector by the Hamiltonian
matrix, H.>**"* These matrix—vector product operations are
fast if H is sparse, as is presumed. Moreover, only O(k) such
multiplications are needed to compute the lowest k eigenvalues.
This situation is highly favorable if k < n, but our goal is to go
beyond Limitation 2).

To this end, we can apply Lanczos to the matrix (EI — H)™
rather than to H. The resultant calculation quickly converges the
target eigenvalues closest to the energy E, which can be chosen
anywhere in the spectrum. This is the basis of PIST.®*~"° Of
course, the matrix (EI — H) ™ itself is not known and not sparse.
So, the action of the matrix on a vector, w = (EI — H) v, is
simulated numerically via the linear solve problem, (EI — H)w =
v, where w is the unknown vector. In practice, sparse iterative
Krylov solvers are used, such as the generalized minimal residual
method (GMRES)*** and QMR.">*° These methods optimize
the expansion coeflicients for a particular solution vector by
employing a minimization or projection procedure at each
Krylov iteration. For the present bound-state-calculation
purpose, either GMRES or QMR is suitable, although QMR is
better suited, in general, e.g, for resonance and scattering
calculations.*””

Implemented as described above, the number of linear solve
iterations becomes very large in practice, when E is high up in the
spectrum. To greatly reduce this number, preconditioning is
employed. Preconditioning consists of multiplying the linear-
solve matrix (EI — H) by an approximate inverse (that can be
inexpensively computed), in order to minimize the condition
number of the product matrix. In particular, OSB precondition-
ing”'~’* uses an optimized adiabatic approximation that
preserves the sparse block-structured form required by ScallT.
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