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In a recent article [AIP Adv. 11, 045033 (2021)], we carried out exact quantum
dynamical calculations and computed ro-vibrational energy levels and wave
functions for the H+

3 molecular ion up to the dissociation threshold (at J = 46)
using a recently developed potential energy surface (PES) [Mol. Phys. 117, 1663
(2019)]—arguably, the most accurate to date—together with the ScalIT suite of
parallel codes. In this work, we further improved the convergence accuracy and
range of our ScalIT calculations for all J values up to J=20 to a few 10–5 cm−1 (or
better). In addition, we performed an ab initio assignment of the ro-vibrational
energy levels, providing vibrational ‘v1, v2, |l|’ and rotational ‘J, G, U, K’ quantum
labels formore than 2,200 ro-vibrational states, including every single 0 ≤ J ≤ 20
state up to and above the barrier to linearity at 10,000 cm−1. The main
underlying motivation of our work is to provide a list of reliably labeled,
spectroscopically accurate energy levels in a format that can be used in
spectroscopic line lists, which are based on both experimental and
theoretical levels. Such line lists are of huge importance in various
astrochemical and astrophysical contexts.
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1 Introduction

The H+
3 molecular ion [1]—the smallest tri-atomic molecular system, with just three

protons and two electrons—is a central molecule in molecular astrophysics and
astrochemistry. It is the most common molecular ion in the Universe, serving as the
main conduit of chemical reactions in outer space. H+

3 can be found in the interstellar
medium [2], supernova remnants [3], the atmospheres of gas giants, and exoplanets [4, 5],
and also plays an important role in star formation [1]. Partially due to its simplicity, H+

3

serves as a benchmark system for several different areas of science, in particular, high-
resolution ro-vibrational spectroscopy experiments, accurate ab initio electronic structure
calculations and potential energy surface (PES) development, high performance quantum
dynamics calculations, and reaction dynamics. Despite its simplicity, the near-
dissociation spectrum of H+

3 [6, 7]—recorded 40 years ago!—still remains unassigned.
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H+
3 has been studied very extensively both experimentally and

computationally in the last four decades, as was recently
summarized in a very nice review [1].

On the experimental side, numerous spectroscopic studies
have been conducted [6–14]. Of course, the primary challenge
with respect to labeling is that experiments provide only
spectroscopic transitions, not the ro-vibrational energy levels
themselves. Although symmetry and selection rules help,
extracting the latter from the former remains a challenge,
and has traditionally been something of a “black art.”
Recently, more systematic approaches have been developed,
based on graph theory and “spectroscopic networks” (SNs) [15,
16], in which the vertices represent rovibrational energy levels,
and the lines represent experimentally observed spectroscopic
transitions, to extract empirical energy levels directly from
experimental data, with well-defined and realistic
uncertainties. In particular, the MARVEL code (Measured
Active Rotational–Vibrational Energy Levels) [17, 18], has
been applied to ro-vibrational spectroscopic data of H+

3 that
were collected from 26 separate experimental sources [13]. The
resultant energy levels and assignments replaced the earlier
work of [8]. A MARVEL analysis was also carried out for two
isotopologues, H2D+ and D2H+ [14], with the database last
updated in 2019 [19]. Thus far, the number of validated, and
therefore recommended, experimental quality ro-vibrational
energy levels of H+

3 are 652, [19] of which 259 belong to
ortho-H+

3 (I = 3/2) and 393 to para-H+
3 (I = 1/2), with I

being the quantum number of the total nuclear spin of the
system.

On the theoretical side, due to its spectroscopic importance,
a variety of H+

3 PESs have been developed over the years [11,
12–26]—with the latest two [25, 26] published only very
recently. A number of ro-vibrational state calculations have
also been performed in the past for this system [12, 22–43],
many employing empirical corrections of various kinds (e.g.,
empirically modified vibrational masses [44, 45]) in order to
better match the available experimental data, and also to
capture non-adiabatic effects [24, 25, 34, 37–39, and 41].
The empirical approach might be less effective at higher
energies, [35]—e.g., in the context of reactive collisions,
which have also been extensively studied for H+

3 [46–48].
Additionally, empirical “corrections” can become a bit tricky,
if there is any question as to how to match experimental and
theoretical state labels.

For these reasons, we prefer a fully ab initio computational
approach [43], both with regard to the ro-vibrational state
calculation itself, as well as the determination of state labels. In
particular, to the best of our knowledge, we are the first group
to attempt a fully ab initio assignment of ro-vibrational state
labels for H+

3 . Our first push in this direction was published in
an article last year [43]; however, the set of J values considered
in that work was restricted, and in addition, we did not use
wave functions to help determine ro-vibrational state labels,

but only D3h symmetry labels. In addition, although the
calculations were very well converged (10–4 cm−1), better
convergence would have allowed for a better determination
of symmetry-induced vs. “accidental” degeneracies, which in
turn leads to a less ambiguous state labeling, especially at
higher vibrational and rotational excitation energies. All of
these small deficiencies of the previous work have been
rectified here, as discussed below.

As further motivation for adopting a purely ab initio
approach, we point out that H+

3 has always been targeted as
an important benchmark system for achieving a direct
spectroscopic agreement between theory and experiment.
This has been a long-standing goal, which it can be argued,
has only begun to be obtained fairly recently [12, 24].
Additionally, the highly accurate determination of the ro-
vibrational spectrum of astrophysically relevant molecules
such as H+

3 is motivated by the “weed problem” [49, 50]. In
the interstellar medium and planetary atmospheres, many
different molecules or ions are present at the same time. As
the spectra overlap, it is crucial to obtain highly accurate spectra
in order to unambiguously differentiate the contributions from
different species.

Therefore, creating highly accurate line lists can serve as
an important tool, from both the experimental and
computational points of view. The first such line list was
created by [51] with 669 astronomically important lines.
This was supplemented by [52], with about three million
lines. The newest line list, MiZaTeP [53], contains more
than 120 million lines by bringing together the
experimental spectroscopic data using MARVEL [13], and
theoretical levels computed with the DVR3D code [54–56].
This line list also contains 17 meta-stable states, which are
quantum states with very long lifetimes.

In this work, in order to facilitate the expansion of already
existing H+

3 line lists, we focus our efforts on further improving
the convergence accuracy of our ab initio ro-vibrational energy
level calculations down to a few 10–5 cm−1. This is far beyond the
accuracy of the PES, and certainly much smaller than the
discrepancies within the experiment. Nevertheless, such an
extraordinarily high convergence accuracy is essential with
respect to unambiguous state labeling, as discussed, especially
at higher vibrational and rotational excitation energies.
Additionally, we compute and analyze ro-vibrational wave
functions to determine their “vibrational parent” states [57] as
a further means of providing unambiguous labels. In the present
work, we also consider all values of the rotational quantum
number J, not just selected values—but only up to a maximum
of J = 20. In the previous work [43], we considered higher J
values, all the way up to rotational dissociation (J = 46). Here,
we apply a restriction to comparatively low values, simply
because the quantum label assignment (which is a primary
focus of this work) becomes essentially impossible much
beyond this point.
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In all, we provide vibrational ‘v1, v2, |l|’ and rotational ‘J, G, K,
U’ quantum labels for more than 2,200 ro-vibrational states,
around 1,600 of which are new assignments complementing, and
in certain cases arguably correcting, the ~650 assignments in the
MARVEL database [19]. To the best of our knowledge, no
previous work has attempted to provide purely ab initio
quantum label assignments for computed ro-vibrational
states—certainly not to the extent that we have done here, in
any event.

2 Materials and methods

In a recent article [43], we carried out the exact ro-vibrational
energy level and wave function calculations for the H+

3 molecular
ion for selected J values up to J = 46. As most of the
computational details remain unchanged, here, we only
provide a brief summary of the overall computational
methodology, and focus primarily on the differences from the
previous work.

2.1 ScalIT

The quantum dynamical calculations presented in this article
were performed using the ScalIT [58–62] suite of parallel codes.
ScalIT is a black-boxmolecular ro-vibrational spectroscopy code,
which for tri- and tetratomic molecules employs an analytical
kinetic energy operator expressed in (orthogonal) Jacobi
coordinates. The use of direct product basis sets (DPBs)
including discrete variable representations (DVRs) results in a
Hamiltonian matrix with a sparse structure. For the radial
coordinates, phase–space-optimized DVRs (PSO-DVRs) are
used [63–68] while for the bend and rotation angles, standard
associated Legendre polynomial or Wigner rotation function
basis sets are utilized. The Hamiltonian is diagonalized
iteratively using sparse Krylov subspace methods together
with several different effective numerical optimization
strategies, such as the preconditioned inexact spectral
transform (PIST) method [69–71], optimal separable basis
(OSB) preconditioning [72–75], and the standard iterative
quasi-minimal residual (QMR) algorithm [59, 76]. All of these
methods working together ensure the effective scaling across
massively parallel supercomputing clusters (up to a few thousand
cores) and the ability of ScalIT to accurately compute even
extremely energetically high-lying quantum states. So far,
ScalIT has been used for around a dozen challenging systems,
such as Ne4 and HCCH [43, 50, 68, and 77–86], and via
extending the capabilities of the ScalIT code through the
SwitchIT [87] algorithm to accommodate more complicated
Hamiltonians, even CH3CN [87].

The massively parallel capability of ScalIT is based on MPI
parallelization, which makes the code uniquely qualified to

compute many quantum states with high accuracy for small
molecular systems. Other available ro-vibrational spectroscopy
codes, e.g.,DVR3D [54–56], TROVE [88–90],DOPI [33, 91, 92],
DEWE [57, 93–95], GENIUSH [96, 97], and ElVibRot [98–100],
in general traditionally only offer single node OPENMP
parallelization (although ElVibRot has been made MPI
parallel recently [101]). Also, it is worth mentioning that the
use of GPUs is spreading slowly to the field of ro-vibrational
molecular spectroscopy with a focus on computing ro-vibrational
intensities [102].

2.2 Potential energy surface

In this work, we utilized the recently computed H+
3 PES

referred to as “PES75K+” [25] which is based on the
Born–Oppenheimer ab initio points of the earlier “GLH3P″
PES [12, 24], the first “calibration quality” PES developed for
H+

3 . In our previous work, we compared these two PESs and
discussed the spurious asymptotic wells that appear in the
GLH3P PES [43], which were causing significant numerical
convergence problems for our ScalIT calculations. Although
GLH3P has been used more frequently in previous
computational ro-vibrational spectroscopy studies, PES75K+
has now been shown to provide more accurate energy levels
higher up in the spectrum.

In any event, the H+
3 PES shows this molecular ion to be

quite stable. The first dissociation threshold (to H2 + H+)
occurs at D0 = 35, 076 ± 2 cm−1 [25]. However, there is a much
lower-lying (linear) isomerization barrier at around
10,000 cm−1.

2.3 Previous computational works

For the GLH3P PES [12, 24]—and other earlier PESs,
including the PES developed by Cencek and colleagues [20,
21]—a wide range of ro-vibrational calculations have been
performed [12, 22–24, 27–29, 31, 32, 34–40, 42, and 43].
Most of these are summarized in a fairly recent review
article [40]. In the last couple of years, newer PESs have
been also developed, among them, the PES75K+ PES [25] is
used here, and also a multi-sheet fit PES including more than
one electronic state [26]. By and large, the ro-vibrational studies
have focused on increasing the accuracy of numerical
convergence, as well as pushing the limits of vibrational/
rotational excitation. Indeed, computing ro-vibrational
energy levels of H+

3 near dissociation has a long history [3,
27, 29]. To date, all energy levels were computed up to
dissociation using atomic [30, 33], nuclear [35], and
modified hydrogen masses [35] to investigate the properties
of high-lying vibrational states. More restricted
calculations—both in terms of energy and rotational
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excitation, but also accuracy—were also carried out, up to J =
2 and 15,300 cm−1 [32], and up to J = 3 and the then-
experimental limit of ~17,000 cm−1 [24]. The dependence of
Coriolis coupling on choice of “embedding” or body-fixed
frame was also investigated [42].

2.4 Symmetry

Jacobi coordinates (denoted as r, R, and θ here) are usually
the best choice for describing AB2 triatomic molecules. In such
cases, the full G4 permutation–inversion (PI) symmetry of the
molecules is fully described. Of course, H+

3 , with its three identical
atomic nuclei, is an A3 system, whose energy levels are labeled by
the G12 PI group irreducible representations (irreps) [103]. Note
that G12 is isomorphic with the D3h point group—which, in any
event, describes the global minimum equilibrium structure of H+

3 ,
which is an equilateral triangle with a bond length of 1.65034a0 =
0.873 322Å.

Nevertheless, since Jacobi coordinates, in contrast to
hyperspherical coordinates [104], do not respect the cyclic
permutation operations of the G12 PI group, this poses certain
challenges for the ScalIT calculation performed here, which
essentially presumes an AB2 structure. More specifically, it
becomes necessary to correlate the symmetry labels from the
G4 symmetry-adapted ScalIT calculations to the G12/D3h labels,
using the Γ(D3h) ↓ G4 correlation table [43]. The “challenge” here
actually only concerns the doubly-degenerate D3h irrep pairs,
which are computed in different ScalIT calculations
corresponding to different G4 irreps. In practice, one looks for
identical eigenvalues across two G4 irreps, and identifies those as
comprising, in reality, a single doubly-degenerate G12 irrep pair.
Better convergence accuracy thus greatly improves the
determination of numerically “identical” eigenvalues.
Conversely, whatever pair splitting is observed numerically
may be taken as an additional, independent measure of the
overall numerical convergence accuracy.

The solutions of the AB2 Jacobi Hamiltonian are
computed in four separate “symmetry blocks”,
corresponding to the four (singly-degenerate) irreps of G4.
These irreps can be labeled by two good quantum numbers,
p = ±1 (associated with the exchange of any two identical
nuclei) and ϵ = ±1 (the total parity). In addition, there are the
two good rotational quantum numbers that can be used as
completely reliable labels—i.e., the total angular momentum,
J, and its projection along the space-fixed Z axis, M. The third
rotational quantum number, K, associated with the projection
of Ĵ

→
along the body-fixed z axis, is technically not a good

quantum number—though for H+
3 , it may still often be used as

a state label in practice, together with other approximate labels
described in Section 3.2.

Lastly, given the fermionic nature of the H atom nuclei
(i.e., protons), it is worth mentioning that the Pauli principle

requires the total spin-plus-spatial nuclear wave function to have
a totally anti-symmetric or A2 character (in the S3 permutation
subgroup of the G12 PI group). For three such particles, the eight-
dimensional combined nuclear spin space representation reduces
to an irrep direct sum as 4A1⊕2E. The corresponding spatial wave
functions (i.e., the ro-vibrational states actually computed) are
thus restricted to belonging to either the A2 or E irreps.
Therefore, all A1 ro-vibrational states (including what would
otherwise be the ground vibrational state), are unphysical, and
must be ignored.

3 Results

3.1 Computational details

ScalIT computations were carried out using nuclear masses,
just as in our previous article [43]. The computational
parameters of this work are summarized in Table 1. In DVR

TABLE 1 The total bend-rotation angular basis sizes of each G4

symmetry block, NA+
jK , N

B+
jK , N

A−
jK , and NB−

jK , for all ScalIT calculations
of H+

3 performed here, from total angular momentum J = 0 to J = 20.
The number of bend-angle basis functions in θ, i.e., jmax, is always
equal to 36. The radial basis sizes are Nr = NR = 300, and the radial
ranges (in atomic units) are rmin = 0.5, Rmin = 0.0, and rmax =
Rmax = 5.0.

G1 G2 (S2)
blocks

G4 blocks

J NjK NA
jK NB

jK NA+
jK NB+

jK NA−
jK NB−

jK

0 37 37 0 19 18 0 0

1 109 36 73 18 18 37 36

2 179 108 71 55 53 36 35

3 247 105 142 53 52 72 70

4 313 175 138 89 86 70 68

5 377 170 207 86 84 105 102

6 439 238 201 121 117 102 99

7 499 231 268 117 114 136 132

8 557 297 260 151 146 132 128

9 613 288 325 146 142 165 160

10 667 352 315 179 173 160 155

11 719 341 378 173 168 192 186

12 769 403 366 205 198 186 180

13 817 390 427 198 192 217 210

14 863 450 413 229 221 210 203

15 907 435 472 221 214 240 232

16 949 493 456 251 242 232 224

17 989 476 513 242 234 261 252

18 1027 532 495 271 261 252 243

19 1063 513 550 261 252 280 270

20 1097 567 530 289 278 270 260
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calculations such as those performed here, very often as one
increases the basis size in order to improve numerical
convergence, one crosses over from a regime where the basis
set truncation error dominates, to a regime where the numerical
quadrature error dominates. This is indicated by a fast,
variational convergence (from above) being replaced by a
slow, oscillatory convergence behavior. Usually, when this
crossover has occurred, it becomes computationally
unfeasible to push the calculation much further through a
“brute force” increase in the basis size.

For extremely accurately converged ro-vibrational
calculations, it is therefore necessary to ensure that the
quadrature error is minimized. This requires two conditions.
First, the PES must be very smooth and well-behaved—which,
in the case of PES75K+ (but unlike GLH3P), has already been
established. Second, the “primitive basis” calculations used to
compute the PSO DVR basis representations must be
performed as accurately as possible. To this end, a very large
number of 1,001 primitive sinc-DVR grid points were used in
the PSO DVR calculations for both of the Jacobi radial
coordinates, r and R. The radial ranges used here were also
wider than before [43]; here, we used rmin = 0.5 bohr, and rmax =
5.0 bohr for the r coordinate, and Rmin = 0.0 bohr, and Rmax =
5.0 bohr for the R coordinate.

Having put these measures into effect, our next task was to
increase the basis sizes for the final calculation as far as possible,
in hopes that an extremely high numerical convergence could be
achieved prior to crossing over into the quadrature-error-
dominated regime. We therefore used significantly larger
radial basis sizes than in the previous calculation; i.e., Nr =
300 and NR = 300. The angular dimensions were also
increased compared to our previous work [43]; specifically,
the number of bend-angle basis functions in the Jacobi
coordinate θ was set to jmax = 36 for every J value considered.
The resultant total bend-rotation angular basis sizes for each G4

symmetry block calculation, i.e., NA+
jK , N

B+
jK, N

A−
jK , and NB−

jK, are
listed in Table 1. Using these parameters, we were able to achieve
better than 10–5 cm−1 numerical convergence for all ro-
vibrational states with J ≤ 10.

3.2 State Labeling

The ro-vibrational calculations of H+
3 for each J > 0 were

carried out in four blocks corresponding to the four G4 irreps.
Note that the inversion parity is linked to the value of K, with
even ϵ = +1 parity corresponding to the even K values, and odd
ϵ = −1 parity to the oddK values. Thus, for J = 0, we only have two
even parity blocks. States with |K| mod 3 = 0 are ortho-states with
a spin weighting gs = 4, while those with K not exactly divisible by
3 are para-states with gs = 2 [1]. As the convergence accuracy of
our calculations is very high, the degenerate energy levels can be
unambiguously identified, and therefore, it is easy to assign the

D3h (i.e., G12) irrep labels even for highly vibrationally and
rotationally excited states.

Next, we address the vibrational state labels. The H+
3

molecular ion has two normal modes, the totally symmetric
stretch mode v1 (belonging to the singly degenerate A1 irrep), and
the asymmetric stretch-bend mode, v2 (belonging to the doubly
degenerate E irrep). Displacements of the latter distort the A1

symmetry of the global minimum geometry, thereby producing a
transition dipole moment. Also, being doubly degenerate,
excitations of the v2 mode give rise to a new quantum
number, the vibrational angular momentum l, adopting the
values, l = {v2, v2 − 2, . . . − v2 + 2, − v2}. Therefore, the
vibrational part of the ro-vibrational states can be described
by the labels, ‘v1, v2, |l|‘—although it must be borne in mind that
these quantum numbers are not perfectly “good”. Also note that
the quantum number |l| is linked to the D3h irrep labels. In
particular, the l = 0 vibrational states are always singly degenerate
A1′ states. For |l| > 0, the degenerate pair can be labeled as E′,
unless |l| mod 3 = 0, for which the ± l pair splits into an A1′ and an
A2′ state.

After first determining the D3h irrep labels, we assigned
vibrational state labels to the J = 0 pure-vibrational states,
which were found to be in complete agreement with earlier
studies [9, 10, 12, 13, 24, 32, and 43]. For J > 0, it is advantageous
to first determine the vibrational labels, indicating which
“vibrational parent” state the ro-vibrational state “belongs to”.
This is straightforward to do for low-vibrational and/or
rotational excitations, where the energy level spacing is so
high that the rotational progressions do not overlap. Higher
up in energy, determining the “vibrational parents” becomes
much more challenging. For J = 1, the different ro-vibrational
progressions start to overlap at the 26th vibration at 10,000 cm−1.
Increasing J, this threshold energy value shifts down drastically.
For J = 11, even the ro-vibrational states belonging to the zero-
point vibration start to overlap with the ro-vibrational
progression of the first vibration. Beyond a certain point in
both (v1, v2, |l|) and J, it becomes impossible to assign
vibrational parents based solely on energy values and D3h

symmetry labels.
In order to overcome this difficulty, the GENIUSH code [96,

97] was invoked, which is capable of semi-automatically
assigning vibrational parent labels using the rigid rotor
decomposition scheme (RRD) [57], based on computing wave
function overlaps. To do this, the ScalIT calculations were
repeated using GENIUSH, but with greatly reduced accuracy
(10−2–10−3 cm−1)—which was nevertheless sufficient tomatch the
energy levels with the ScalIT ones. The RRD overlap matrices
were then computed using GENIUSH. In this manner, we were
able to assign vibrational parent labels to much more highly
excited ro-vibrational states—and for many more such
states—than was previously possible.

We next move on to rotational state labels. The H+
3 molecular

ion can be characterized as an oblate symmetric top, for which
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rotational states can be described using the J and K rotational
quantum labels as:

EJK ~ BJ(J + 1) + (C − B)K2. (1)

where EJK is the relative energy of the ro-vibrational state
corresponding to its vibrational parent. Although for H+

3 J is
always a good quantum number, due to the coupling of the
rotational and the vibrational (l) angular momenta in this
case, it has been argued [8, 105–107] that instead of using K, it
is better to use G = |K − l|, which becomes a much better
quantum number at low energies [8]. However, we will assign
values to both.

For l = 0, G = |K|, and so the usual (2J + 1)-fold rotational
progression arises. For |l| > 0, however, the±l values double the
number of the rotational excited states to 2 (2J + 1). For |l| > J,
there is only one rotational progression, where Gmin = (|l| − J) ≤
G ≤ Gmax = (|l| + J). For |l| ≤ J, the rotational excited states can be
separated into two distinct rotational progressions [8, 107], with
0 ≤ G ≤ Gmax = (J + |l|), and 0≤G′≤Gmax′ # (J − |l|), and they
have (2Gmax + 1) and (2Gmax′ + 1) states, respectively. These two

rotational progressions often have different rotational constants
and a trend similar to Eq. 1

EJG ~ BJ(J + 1) + (C − B)G2 (2)
EJG′′ ~ B′J(J + 1) + (C′ − B′)G′2. (3)

As it usually holds that Gmax > J, EJG can become negative—as
happens, e.g., for the A′′

2 state, (v1, v2, |l|, J, G)=(0 2 2 1 3).
This behavior is similar to the negative rotational energies
observed for “quasi-structural” molecules [108] such as H+

5

[109], CH+
5 [110–112], CH4·H2O [113], CH4·CH4, and

H2O·H2O [114].
The presence of the two progressions requires that in

addition to G, a new quantum number, U [8, 107], has to be
introduced. U can take the values “u”, “l”, or “m” to distinguish
between upper and lower energy levels with the same (v1, v2, |l|, J,
G) assignment (note, thatU = “l” always refers to levels within the
G′ progression). Therefore, the rotational part of the wave
function can be unambiguously described by the (J, G, U)
quantum labels. This, however, does not mean that we cannot
assign K values to each ro-vibrational state, as from the definition

TABLE 2 The lowest ro-vibrational energy levels of H+
3, in cm−1, up to J = 20 total angular momentum and their comparison with the literature. The

past calculations employed different PESs and masses (VRM stands for Unequal Vibrational and Rotational Masses) [35].

PES75K+ GLH3P PES Comparison

nuclear mass VRM

J This
work

Ref.
43

Ref.
43

Ref.
35

Ref.
35

Ref.
43

Ref.
43

Ref.
35

Ref.
35

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 64.1277 64.1273 64.1283 64.1283 64.1233 0.0004 −0.0006 −0.0006 0.0044

2 169.3071 169.3075 169.3086 169.3086 169.2872 −0.0004 −0.0015 −0.0015 0.0199

3 315.3617 315.3621 315.3644 315.3644 315.3164 −0.0004 −0.0027 −0.0027 0.0453

4 502.0545 502.0549 502.0588 502.0588 501.9737 −0.0004 −0.0043 −0.0043 0.0808

5 729.0368 729.0372 729.0431 729.0431 728.9106 −0.0004 −0.0063 −0.0063 0.1262

6 995.9055 995.9060 995.9140 995.9141 995.7241 −0.0004 −0.0085 −0.0086 0.1814

7 1302.1793 1302.1798 1302.1903 1302.1904 1301.9329 −0.0005 −0.0110 −0.0111 0.2464

8 1647.3068 1647.3072 1647.3208 1647.3208 1646.9864 −0.0004 −0.0139 −0.0140 0.3204

9 2030.6710 2030.6714 2030.6881 2030.6881 2030.2674 −0.0004 −0.0171 −0.0171 0.4036

10 2451.5921 2451.5925 2451.6127 2451.6127 2451.0967 −0.0004 −0.0206 −0.0206 0.4954

11 2909.3322 2909.3565 2908.7365 −0.0243 0.5957

12 3403.0987 3403.1270 3402.3957 −0.0283 0.7030

13 3932.0489 3932.0815 3931.2291 −0.0326 0.8198

14 4495.2944 4495.3314 −0.0370

15 5091.9050 5091.9053 5091.9466 5091.9467 −0.0003 −0.0416 −0.0417

16 5720.9135 5720.9601 −0.0466

17 6381.3199 6381.3715 −0.0516

18 7072.0957 7072.1524 −0.0567

19 7792.1880 7792.2501 −0.0621

20 8540.5241 8540.5246 8540.5914 8540.5916 −0.0005 −0.0673 −0.0675
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of G, we can assign |K| = |G − |l‖ for the unprimed progressions,
and |K| = G′ + |l| for the primed progressions. Therefore, in the
end, we characterize the rotational part using the (J, G, U, K)
quantum label quartet.

For J > 0, D3h irrep labels are also linked to the quantum
numbers, but it is actually G which is most directly impacted (for
J = 0, |l| =G). TheD3h irrep is A1 or A2 ifG = 0 (if l = 0, we have A1

for even and A2 for odd J values), and for G > 0, similarly to J = 0,
the degenerate pair can be labeled as E unless |l| mod 3 = 0, where
the ± l pair splits into A1⊕A2. For large G values, especially for
G ≥ 12, the two singly degenerate levels can get closer than
10–5 cm−1; therefore, in certain cases, G values have to be taken
into account when assigning D3h labels.

Finally, note that to further aid in the assignment of the
rotational labels, the RRD overlaps of GENIUSH also provide
insights into the value of K. This occurs through the vibrational
parent being assigned (in particular, l) into the G quantum
number, as the symmetric top rigid rotor functions are labeled
by K. This feature of the approach helped us tremendously in
carrying out the task of assigning labels—so long as the RRD
overlap values were significantly large.

3.3 Ro-vibrational energy levels

The ro-vibrational energy levels reported in this article are
presented in cm−1, relative to the zero-point vibrational energy,
4362.1726 cm−1. The levels were obtained for each J, ϵ, and p set
of values in a separate ScalIT calculation with a single PIST
spectral window, usually including 70 to 120 ro-vibrational
states. The number of computed levels and the highest energy
level computed is summarized in Table 3 for each J value. Note
that these numbers include the unphysical states, and the
doubly degenerate states are counted twice. In total,
105 vibrational energy levels were computed, up to
16,500 cm−1, significantly over the isomerization barrier. For
J = 1, the computed states (around 350 in all) covered the range
up to 17,300 cm−1. For 2 ≤ J≤ 7, around 420 to 480 levels were
computed for each J up to the decreasing energy limit of
15,600 to 12,600 cm−1 with the increase of J. For higher J
values, around 300 levels were computed for each J. For
8 ≤ J≤ 20, the energy range increased from 10,800 cm−1 for
J = 8 to up to 16,700 cm−1 for J = 20. All of the computed levels
are included in the Supplementary Material.

In Table 2, the lowest ro-vibrational energy levels of H+
3 for

each J up to J = 20 are compared with past [35, 43] calculations.
The PES75K+ has been only used in our previous study [43] so
far, using nuclear masses. The levels computed here are only
slightly lower than those, by 3–5 × 10–4 cm−1 for all levels. In our
previous study, we also carried out computations [43] using the
GLH3P PES, just as Ref [35], as well. Those two sets of numbers
are identical and slightly higher than the numbers of this work,
by up to 0.07 cm−1. Ref [35] also repeated their calculations by

unequal vibrational and rotational masses, which yielded
eigenvalues lower than ours, by 0.8 cm−1 up to J = 13. We did
not modify our masses because we prefer keeping our
calculations “ab initio”. In the future, we plan to do further
investigations where we include non-adiabatic effects explicitly
through non-adiabatic calculations with multiple PESs. [26].

The main focus of this work is, however, to provide
vibrational and rotational quantum labels for as many states
as possible. In our previous study [43], although D3h irrep labels
were provided for selected J values (J = 10, 20, 30, 40, 46) up to J =
46, we only provided a limited number of vibrational and
rotational quantum label assignments. Only low J values 0 ≤
J ≤ 5 and J = 10 were considered, and even those were mostly
restricted to up to 8,000–9,000 cm−1, so overall, below the
isomerization limit. Only for J = 0 and 1 did we go above
10,000 cm−1. Here, we pushed our efforts further with the help
of wave function overlaps and provided assignments for almost
all states below 10,000 cm−1. In Table 3, we summarize the
number of states labeled in this work for each J value
separately as well as include the labeling threshold, Elab. As
for most J values, not all of the levels were assigned up to the
given threshold energy, we separately include the energy value up
to which all states are labeled, Elab′ .

TABLE 3 For each J value, the total number of states computed
(comp.) and labeled (lab.). Note that the former number includes
the unphysical states as well, and there the doubly degenerate states
are counted twice. Ecomp and Elab are the threshold energies for
computation and labeling, respectively. As not all the states were
labeled up to Elab, a separate threshold was also included, up to
which all the states are labeled (Elab9<Elab).

J Comp Lab Ecomp Elab Elab9

0 105 29 16 460.5 14 056.4 14 056.4

1 354 107 17 327.3 14 193.8 14 193.8

2 429 111 15 662.9 14 850.8 14 319.1

3 442 127 14 409.2 13 641.7 12 680.0

4 450 117 13 514.7 11 892.5 11 624.5

5 467 117 13 131.6 10 116.4 10 116.4

6 421 122 12 236.7 10 166.2 10 166.2

7 477 117 12 634.2 10 023.6 9019.8

8 302 113 10 775.2 10 230.3 9842.5

9 295 117 10 951.7 10 467.7 9893.7

10 311 126 11 398.6 11 077.1 10 187.2

11 293 135 11 374.0 11 237.6 10 899.2

12 300 98 11 840.5 10 713.4 10 673.5

13 298 102 12 289.8 11 132.4 11 132.4

14 301 102 12 845.1 12 035.7 11 789.9

15 295 108 13 373.0 12 990.1 12 168.4

16 300 66 14 013.6 12 695.7 11 445.3

17 311 70 14 759.9 13 694.8 12 067.3

18 300 70 15 268.0 14 720.9 12 845.8

19 303 61 15 959.9 14 263.7 13 409.8

20 310 58 16 736.1 14 997.5 14 213.4
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During this work, 2,210 ro-vibrational levels of H+
3 have been

assigned (v1, v2, |l|) vibrational and (J, G,U, K) rotational quantum
labels. All of the labeled energy levels and their assignments are
included in the Supplementary Material. For 1,571 of these levels,
quantum labels have not been assigned before, while the remaining
639 levels are part of the 652 experimental ro-vibrational levels
currently included in MARVEL. For 33 of these MARVEL levels,
new vibrational (v1, v2, |l|) and/or rotational (J, G, U, K)
assignments have been proposed (see Table 4).

In order to obtain all the quantum labels presented here, our
approach has been adapted keeping in mind the difficulties we

faced in Ref. [43]. Based on the energy formula of Eqs 2, 3, one
would expect a somewhat regular behavior in the shifting of the
rotationally excited energy levels belonging to the same
vibrational parent. However, this seems to hold only for the
l = 0 cases. In Figure 1, the change of B rotational constant is
illustrated as J is increased. Each rotational progression belonging
to a vibrational state can be characterized by a slightly different B
rotational constant, which also shifts slightly by the increase of J.
As the vibrational excitation increases, this shift becomes more
significant (e.g. in case of 0, 2, 0 and 0, 4, 0). However, for the l >
0 vibrational parents, this shift can be more chaotic (see Figure 2)

TABLE 4 Suggested vibrational (v1, v2, |l|) and rotational (J, G, U, K) reassignments of H+
3 MARVEL energy levels.

MARVEL ScalIT

Level Sym ν1 ν2 l2 J G U K Level δE ν1 ν2 l2 G U K

7008.75 E′ 0 1 1 11 7 u 6 7009.14 0.40 0 1 1 5 l 6

7676.65 E″ 1 1 1 9 8 u 7 7677.00 0.34 1 1 1 8 l 9

8135.75 E″ 0 2 2 9 5 l 7 8136.23 0.49 0 2 0 1 m 1

8176.10 E″ 0 2 0 9 1 m 1 8176.60 0.49 0 2 2 5 l 7

8532.45 E′ 1 2 2 4 2 l 4 8533.20 0.75 1 2 0 2 m 2

8872.11 E″ 0 2 2 9 1 u 1 8872.72 0.61 1 1 1 2 l 3

8924.60 E″ 1 1 1 9 2 l 3 8925.22 0.62 0 2 2 1 u 1

9158.44 E′ 0 3 1 7 1 l 2 9159.14 0.70 0 3 3 7 m 4

9251.70 E″ 0 2 2 11 7 u 5 9252.28 0.58 0 2 2 7 l 9

9313.04 E′ 1 2 2 6 4 u 2 9313.88 0.84 2 1 1 7 m 6

9409.49 A′′
2

0 3 3 6 0 m 3 9410.28 0.79 1 2 0 3 m 3

9428.61 E′ 0 3 3 6 1 u 2 9429.39 0.78 1 2 0 2 m 2

9497.27 A′′
2

0 2 2 12 9 u 7 9497.85 0.58 0 2 2 9 l 11

9643.34 E″ 0 2 2 12 7 l 9 9643.78 0.44 0 2 0 7 m 7

9661.29 A2′ 1 2 0 7 6 m 6 9661.61 0.32 1 2 2 6 m 4

11 027.20 E′ 0 5 3 2 5 m 2 11 028.01 0.82 0 5 1 1 l 2

11 108.27 E′ 0 5 1 2 1 l 2 11 109.10 0.83 0 5 3 5 m 2

11 188.65 E″ 2 2 2 3 1 u 1 11 189.51 0.87 0 5 1 2 l 3

11 207.16 E″ 0 5 1 3 2 l 3 11 208.19 1.03 2 2 2 1 u 1

11 298.59 E′ 0 5 3 3 5 m 2 11 299.41 0.82 0 5 1 1 l 2

11 369.04 A2′ 0 5 1 4 3 u 2 11 369.88 0.84 0 5 1 3 l 4

11 484.07 E′ 0 5 1 3 1 l 2 11 484.92 0.86 0 5 3 5 m 2

11 771.38 E′ 0 5 5 2 5 m 0 11 772.46 1.08 0 5 5 7 m 2

11 946.50 E′ 1 4 0 2 2 m 2 11 947.55 1.05 0 5 5 5 m 0

11 984.97 E″ 0 5 3 3 2 m 1 11 985.99 1.02 0 5 5 2 m 3

11 957.57 E″ 0 5 3 2 2 m 1 11 958.60 1.03 0 5 5 4 m 1

12 058.87 E′ 0 5 5 3 5 m 0 12 059.94 1.07 0 5 5 7 m 2

12 208.46 A′′
2

0 5 3 3 0 m 3 12 209.51 1.05 0 5 5 6 m 1

12 267.00 E″ 1 4 0 3 1 m 1 12 268.10 1.10 0 5 5 4 m 1

12 506.09 E″ 1 4 4 1 5 m 1 12 507.17 1.08 0 6 0 1 m 1

12 687.29 E′ 1 4 4 1 4 m 0 12 688.34 1.05 0 6 2 2 m 0

12 840.66 A2′ 1 4 4 3 6 m 2 12 841.77 1.11 2 3 1 2 m 2

13 135.71 E′ 2 3 3 2 1 m 2 13 136.77 1.06 0 6 2 2 m 0
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and it is different for the two distinct rotational progressions,
assigned toG andG′ (see Figures 2, 3). For the (1, 3, 1) vibrational
parent, e.g., the shift seems to first be positive and then it turns
negative as it is in all other cases for both progressions. The G =
0 energy levels of the first 13 vibrational states up to J = 20 are

listed in Table 5, while G′ = 0 energy levels of the first 7 l >
0 vibrational states up to J = 16 are included in Table 6.

Using the RRD method [57] of GENIUSH to compute
wave function overlaps and assign vibrational parents we can
push the labeling a lot further than simply relying on the

FIGURE 2
The shift of the B rotational constants with the increase of the J value for the first 7 l > 0 vibrational parents. The numbers included here
correspond to the G progression.

FIGURE 1
The shift of the B rotational constants with the increase of the J value for the first 6 l = 0 vibrational parents.
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FIGURE 3
The shift of the B rotational constants with the increase of the J value for the first 7 l > 0 vibrational parents. The numbers included here
correspond to the G′ progression.

TABLE 5 The G = 0 energy levels of the first 13 vibrational states (v1, v2, |l|) of H
+
3 up to J = 20.

J 0,0,0 0,1,1 1,0,0 0,2,0 0,2,2 1,1,1 2,0,0 0,3,1 0,3,3 1,2,0 1,2,2 2,1,1 0,4,0

0 0.0 3178.7 4778.7 6262.8 7770.1 9002.4

1 87.0 2627.5 3263.5 4870.6 5655.0 6345.8 7110.7 7858.7 8584.5 9110.3

2 259.9 2813.0 3432.3 5049.3 5290.7 5835.9 6510.7 7328.7 8029.8 8147.6 8762.2 9253.3

3 516.9 3087.6 3683.2 5305.9 5567.8 6103.7 6755.8 7641.7 7869.3 8275.5 8426.2 9024.8 9486.6

4 855.2 3447.3 4013.4 5632.3 5937.1 6454.3 7078.3 8031.5 8248.4 8592.0 8793.6 9368.4 9790.8

5 1271.3 3887.0 4419.6 6023.5 6392.3 6883.0 7475.2 8478.8 8686.6 8978.6 9241.9 9788.4

6 1761.2 4401.3 4898.0 6476.7 6922.0 7384.5 7942.6 8972.9 9189.5 9437.8 9761.4

7 2320.5 4984.2 5444.4 6990.2 7505.5 7953.2 8476.4 9513.2

8 2944.3 5629.4 6054.2 7566.0 8235.5 8583.5 9072.4

9 3627.7 6330.4 6722.9 8146.3 8940.7 9269.7 9726.1

10 4365.7 7080.8 7445.8 8836.7 9689.7 10 006.5 10 433.1

11 5153.4 7883.3 8218.5 9586.4

12 5985.6 8735.0 9036.9

13 6857.9 9574.1 9897.1

14 7765.7 10 471.3

15 8704.9

16 9671.9

17 10 663.6

18 11 677.3

19 12 710.4

20 13 760.6
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energy progressions. However, after a certain point in the
vibrational and/or the rotational energy excitation, the mixing
of the wave functions becomes simply too much for the
vibrational parents to be unambiguously identified. For low
J values, up to J = 6, we were able to get past the isomerization
barrier, and in most cases, we could continue on even further.
As the rotational excitation increases, the highest vibrational
parent we can possibly assign is also decreasing. From J = 7 to
10, we are barely reaching the barrier to linearity, while as J
increases further, the rotational energy contribution is also
getting bigger, therefore we are again getting past the
isomerization barrier (see Table 3). Different vibrational
parents also behave differently, e.g. the overlaps of the (1,2,0)
state breaks down a lot sooner than those of the next few higher-
lying vibrational states. The more spread out progressions are also
more difficult to assign fully including all the states within the
progression. Although the progression belonging to (1,0,0) can be
fully identified up to J = 18, in the progression of (0,1,1) we already
start missing levels at J = 16. The ground vibrational state is the
only vibrational parent for which all the states were found within
the progressions for each J up to J = 20. This, however, might not be
possible for J > 20 values.

In certain cases, it can be observed that the G = 0 (or G′ = 0)
level is not the lowest level of the progression, which seemingly
results in negative rotational excitations [108]. This happens for
both higher vibrational excitations [e.g., for (0,5,1) at J = 1],
higher rotational excitation (e.g., for (0,1,1) at J = 11), or for both
[e.g., for (0,3,3) at J = 3 and for (0,3,1) at J = 6]. In certain cases,
this reversing of the energy levels occurs sooner for the G′
progression [e.g., for (0,3,1) at J = 5].

4 Discussion

In this article, we computed ro-vibrational energy levels and
wave functions for the H+

3 molecular ion using a recently
developed PES [25] and the ScalIT suite of parallel codes.
The calculations included every single J value up to J = 20,
and for each J, all of the levels were computed up to the barrier
of linearity or higher. The convergence accuracy of our
calculations is further improved, now reaching up to a few
10–5 cm−1 (or better). Our work has also been compared to
previous works using different potential energy surfaces and
different masses. Among the nuclear mass computations, the
numbers of the present work were the lowest, signaling that we
are still operating in the “basis set truncation error-dominated
regime” where the numerical convergence is variational from
above.

In addition, we carried out vibrational (v1, v2, |l|) and
rotational (J, G, U, K) quantum label assignments of ro-
vibrational energy levels for more than 2,200 states. To enable
this, GENIUSH calculations were also carried out with lower
accuracy to obtain ro-vibrational wave functions, which were
then used to compute wave function overlaps within the
framework of the rigid rotor decomposition method. These
RRD overlaps helped greatly to identify the vibrational
parents. As part of our efforts, we suggested new vibrational
(v1, v2, |l|) and rotational (J, G, U, K) reassignments for certain
energy levels within the MARVEL database. We are hoping that
the results of this work can be used to further improve previous
efforts toward creating spectroscopic line lists (based on both
theoretical and experimental data), through the list of all labeled
energy levels as provided in the Supplementary Material of this
article.
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TABLE 6 The G9 = 0 energy levels of the first 7 l > 0 vibrational states
(v1, v2, |l|) of H

+
3 up to J = 16.

J 0,1,1 0,2,2 1,1,1 0,3,1 0,3,3 1,2,2 2,1,1

1 2616.9 5645.3 7083.6 8575.2

2 2781.5 5287.3 5807.4 7250.0 8142.8 8734.8

3 3026.1 5552.3 6048.1 7498.6 7867.0 8406.6 8971.5

4 3347.9 5897.3 6364.6 7839.5 8235.1 8748.9 9282.6

5 3743.4 6316.6 6753.7 8138.1 8651.9 9164.2 9664.7

6 4208.7 6804.2 7211.5 8577.3 9125.6 9647.0 10 114.1

7 4739.5 7354.0 7734.2 9075.2

8 5331.3 7960.0 8317.8 9639.2

9 5979.5 8616.7 8959.3

10 6679.6 9318.7 9660.7

11 7427.8 10 063.2 10 351.3

12 8224.1

13 9020.0

14 9891.7

15 10 788.5

16 11 714.8
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