Multi-Protocol IoT Network Reconnaissance

Stefan Gvozdenovic*, Johannes K Becker!, John Mikulskist and David Starobinski®
Department of Electrical and Computer Engineering, Boston University
Boston, MA 02215
Email: *tesla@bu.edu, Tjkbecker@bu.edu, ijkulskis@bu.edu, §staro@bu.edu

Abstract—Network reconnaissance is a core security func-
tionality, which can be used to detect hidden unauthorized
devices or to identify missing devices. Currently, there is a
lack of network reconnaissance tools capable of discovering
Internet of Things (IoT) devices across multiple protocols. To
bridge this gap, we introduce IoT-Scan, an extensible IoT
network reconnaissance tool. ToT-Scan is based on software-
defined radio (SDR) technology, which allows for a flexible
implementation of radio protocols. We propose passive, active,
multi-channel, and multi-protocol scanning algorithms to speed
up the discovery of devices with ToT-Scan. We implement the
scanning algorithms and compare their performance with four
popular IoT protocols: Zigbee, Bluetooth LE, Z-Wave, and LoRa.
Through experiments with dozens of IoT devices, we demonstrate
that our implementation experiences minimal packet losses, and
achieves performance near a theoretical benchmark.

I. INTRODUCTION

The Internet of Things (IoT) device market is currently ex-
hibiting exponential growth (among the 29 billion connected
devices forecast this year, 18 billion will be related to IoT [1]).
These devices run a variety of low-power wireless communi-
cation protocols, such as Bluetooth Low Energy (BLE) [2],
Zigbee [3], Z-Wave [4], and LoRa [5]. which support applica-
tions in smart homes, assisted living, smart grid, health care,
and environmental monitoring.

The heterogeneity of the IoT ecosystem — and in particular
the large number of IoT protocols — represents a major chal-
lenge from a network security monitoring perspective [6], [7].
This heterogeneity makes it hard for network administrators
to run network reconnaissance tasks, which aim at discovering
wireless IoT devices and their properties. Since many IoT
devices are mobile (e.g., wearables and trackers), network
reconnaissance tasks must be run regularly. New laws adopted
by regulators, such as the IoT Cybersecurity Improvement Act
of 2020 [8] in the US, and the upcoming legislation in EU [9],
provide further impetus to the design of effective solutions for
IoT network reconnaissance.

The simplest solution for IoT network reconnaissance is to
use a monitoring device equipped with a different network
card for each protocol. However, even devices operating on
the same protocol may be incompatible if they run different
versions of the protocol (e.g., normal versus long-range Z-
Wave). Using dozens of different USB dongles or network
cards for each protocol is prohibitive for practical network
security auditing. Furthermore, some protocols, like LoRa,
encode the network ID at the PHY layer. In such cases,
common network cards cannot detect devices belonging to

other networks even though they run the same protocol.

Existing software tools for network reconnaissance, such as
Nmap [10], focus on devices with IP addresses. Nmap can
scan IP/port ranges for an arbitrary number of local or remote
hosts and their services. However, this approach is limited to
IP-enabled devices only, and yet many popular IoT protocols,
including BLE, Zigbee, Z-Wave, and LoRa do not support
IP addressing. While there is currently an effort by several
vendors to create a unified, IP-based IoT protocol, called
Matter [11], its level of adoption and backward-compatibility
with legacy devices remain uncertain.

To address this current gap, we propose IoT-Scan, an
extensible, multi-protocol IoT network reconnaissance tool
for enumerating IoT devices. ToT-Scan runs both on the
900 MHz and 2.4GHz bands and currently supports four
popular IoT protocols: Zigbee, BLE, LoRa, and Z-Wave.
Remarkably, ToT—-Scan runs on a single piece of hardware,
namely a software-defined radio (SDR) [12].

IoT-Scan leverages software-defined implementation of
IoT communication protocol stacks, mostly under the GNU
Radio ecosystem [13], [14]. This approach reduces the amount
of hardware needed to address the growing number of IoT
protocols. This further allows for future expansion into new
protocol versions, thus eliminating the need for purchasing or
upgrading protocol-specific hardware [15].

Our main contributions are thus as follows:

e We introduce IoT-Scan, a universal tool for IoT net-
work reconnaissance. ToT-Scan consists both of a col-
lection of efficient and practical IoT scanning algorithms
and of their implementations using a single commercial
off-the-shelf software-defined radio device, namely a
USRP B200 SDR [16].

o We validate the performance of the algorithms through
extensive experiments on a large collection of devices.
We demonstrate multi-protocol, multi-channel scanning
both on the 2.4 GHz band for Zigbee and BLE, and on
the 900 MHz band for LoRa and Z-Wave. Our implemen-
tation allows to promiscuously listen to network traffic,
even when the network ID is encoded at the PHY layer.

« We propose new active scanning algorithms and show
an implementation for Zigbee, which cuts down the
discovery time by 87% (from 365 seconds to 46 seconds)
compared to a sequential passive scanning algorithm.

e We evaluate the efficiency of the scanning algorithm
implementation on the SDR through a theoretical bench-
mark based on the non-uniform coupon collector prob-

lem [17], [18]. We show that passive scan algorithms for
Zigbee and BLE perform near that benchmark.

Threat model. The purpose of ToT-Scan is to enumerate
IoT devices and their properties at a given location (e.g.,
an office, a hospital room, etc.). This can be used to detect
hidden unauthorized devices, some of which may have been
intentionally planted by an adversary for malicious purposes
(e.g., eavesdropping). We assume that these devices transmit
packets, such as beacons, and/or respond to queries according
to their respective wireless protocols. Note that it is hard to
detect devices that do not transmit at all. ToT-Scan can also
be used to identify missing devices which may have been de-
activated or stolen by a malicious party (these devices would
appear in scans up to some point, but disappear afterward).

The rest of this paper is structured as follows. Section II dis-
cusses related work. Section III presents the scanning methods
and algorithms forming the core of ToT-Scan. Section IV
discusses performance metrics for the algorithms, as well
as a theoretical model for benchmarking device discovery.
Section V elaborates on how IoT—-Scan discovers addresses
of devices in each case. Section VI presents our experiments,
including implementation aspects, experimental setup, and
results. Section VII concludes our findings, discusses ethical
issues, and presents an outlook on future work.

II. RELATED WORK

This section presents related work. Most existing work fo-
cuses on protocol-specific techniques. In contrast our work
introduces several cross-protocol algorithms for IoT scanning,
and further benchmarks their performance both theoretically
and experimentally.

Heinrich et al. presents BTLEmap [19], a BLE-focused
device enumeration and service discovery tool inspired by
traditional network scanning tools like Nmap [10]. While
BTLEMap supports both Apple’s Core Bluetooth protocol
stack and external scanner sources, it is limited to Bluetooth
LE by design and does not aim to support multiple protocols.
In contrast, IoT-Scan is not tied to a particular vendor as
a host device, and supports multiple protocols simultaneously,
with one radio source.

Tournier et al. propose IoTMap [20], which models inter-
connected IoT networks using various protocols, and deduces
network characteristics on multiple layers of the respective
protocol stacks. IoTMap requires dedicated radios for each
protocol in order to operate, whereas ToT—Scan achieves de-
vice detection across multiple protocols with a single software-
defined radio transceiver.

In prior work, Mikulskis et al. presented Snout [21] and
showcased scanning of BLE and Zigbee devices under a
common SDR platform. ToT-Scan encompasses additional
protocols, namely LoRa and Z-Wave. Furthermore, our work
introduces novel scanning algorithms and conducts extensive
evaluation of these algorithms, both theoretically and empiri-
cally with dozens of IoT devices. In contrast, the work in [21]
did not present scanning algorithms and had no evaluation
contents (either theoretical or empirical).

Bak et al. [22] optimize BLE advertising scan (i.e., device
discovery) by using three identical BLE dongles. This ap-
proach is not scalable since it requires a new hardware receiver
for each new channel, and equally does not scale beyond the
BLE protocol. In contrast, our SDR-based approach uses the
same SDR hardware to receive multiple protocols.

Kilgour [23] presents a multi-channel BLE capture and
analysis tool implemented on a field programmable gate array
(FPGA). This multi-channel BLE tool allows receiving data
from multiple channels in parallel. However, the focus is
on BLE PHY receiver implementation and related signal
processing rather than actual scanning and enumeration of
devices. In contrast, our work extends beyond Bluetooth LE,
and crucially performs practical device enumeration scans to
quantify scanning performance.

Park et al. describe a Wi-Fi active scan technique performed
using BLE radio using cross-protocol interference [24]. The
active scan algorithms in ToT-Scan are motivated by similar
ideas, but require judicious use of protocol-specific mecha-
nisms (i.e., sending beacon request packets in Zigbee).

Hall et al. [25] describe a tool, called EZ-Wave that can
discover Z-Wave devices passively and actively. The EZ-Wave
tool actively scans a Z-Wave device by sending a “probe”
packet with acknowledgement request flag set. In the older
version SO of the Z-Wave protocol, it was compulsory for
a Z-Wave device to reply with acknowledgements to such
packets. By getting this acknowledgement back, the EZ-Wave
tool learns about a device’s presence. However, the EZ-Wave
tool only supports older versions of Z-Wave protocol. In the
new version (S2) of the Z-Wave protocol, acknowledgements
are not compulsory and this is not a reliable active scan mech-
anism. The old Z-Wave protocol uses only the R1 (9.6 kbps)
and R2 (40 kbps) physical layers. Our work adds R3 (100 kbps
PHY) as well as multi-protocol capabilities. The R1, R2, and
R3 rates are defined in [4, Table 7-2].

Choong [26] implements a multi-channel IEEE 802.15.4
receiver using a USRP2 software-defined radio. Choong de-
scribes a channelization method similar to the receive chain
used in this work (see Section 2) that extracts multiple
channels from a wider raw signal stream. However, Choong’s
work focuses on the performance impact of the SDR host
computer, and is a Zigbee-specific implementation, whereas
our work focuses on device enumeration in a multi-channel as
well as multi-protocol context.

Our Zigbee, BLE, and Z-Wave GNU Radio receiver im-
plementations are based on scapy-radio [14] flowgraphs. Our
LoRa GNU Radio receiver flowgraph is based on a work by
Tapparel et al. [5]. A similar multi-channel LoRa receiver was
implemented by Robyns in [27]. In order to support multi-
radio, multi-channel capabilities, ToT—Scan implements sev-
eral changes to these GNU Radio receiver implementations. In
general, these changes pertain to the signal path between the
SDR source and the receive chains for individual channels and
protocols (i.e., frequency translation, filtering, and resampling,
see Section VI-A). Additionally, our LoRa receiver can listen
to LoRa packets promiscuously.

Algorithm 1: Passive_Scan(ch_list,
dwell_time, scan_time)

> Enumerate devices by repeatedly listening for
duration dwell_time on each channel in ch_list
and stop after scan_time
1 tstart 4"tirne()
2 device_list + {}
39+0
4 while time()—tsqt < scan_time do
> ch_list(i) is the i-th element in ch_list
5 new_dev <+ Listen(ch_list(i), dwell_time)
6 device_list = device_list U new_dev
7 i< (i+1) mod |ch_list|
8 end while
9 return device_list

> Store current time
> Initialize device list

> Set channel counter to zero

III. SCANNING ALGORITHMS

In this section, we introduce SDR-based scanning algorithms
that form the core of ToT-Scan. The notion of channel in this
section refers to a 3-tuple containing the center frequency of
the channel, the channel bandwidth (i.e., a range of frequencies
delineated by the lower and upper frequencies of the channel),
and the protocol type. The concept of instantaneous bandwidth
refers to the range of frequencies captured by the SDR at any
given point of time. The center frequency corresponds to the
frequency at the middle of the range.

A. Single-channel methods

The key building block to any of the following scanning algo-
rithms is the function Listen. This function takes two input pa-
rameters, namely a channel ch (defined by a center frequency,
bandwidth and protocol) and a time period dwell_time after
which the procedure terminates listening to channel ch. During
execution of this procedure, the SDR decodes any packet
received on the channel, and extracts address information that
identifies a device. Upon the expiration of the channel dwelling
time, the procedure returns the list of discovered devices.

Algorithm 1 presents a simple sequential scanning pro-
cedure Passive_Scan that can be used in conjunction with
any IoT protocol. This algorithm represents a baseline against
which the performance of more advanced algorithms can be
compared. The algorithm invokes the Listen procedure in a
round-robin fashion on each channel of a given channel list
ch_list, which is provided as an input to the procedure. The
total scan time is set by the scan_time input parameter. Note
that generally scan_time > dwell_time, and hence each
channel is visited several times during the scan. The algorithm
returns the list of discovered devices.

Sequential passive scanning can be slow, especially if an
IoT protocol supports many channels, but only a few chan-
nels are used. To speed up device discovery, Algorithm 2,
referred to as Active_Scan, implements a two-phase approach.
During the first phase (line 4), it invokes a helper function
Probe_Channels, which sends a probe packet on each chan-

=
24 2410 2430 2440 MHz

ii Captured Signal 10MHz ;

Bluetooth LE Zigbee Zigbee MHz
Channel 37 Channel 15 Channel 16
at 2402 MHz At 2405 Mhz At 2410 Mhz

Figure 1: Find_Channels_In_Range starts at the lowest chan-
nel in the provided list and returns all channels that are in range
of the SDR hardware based on the provided instantaneous
bandwidth parameter.

nel ch in the provided channel_list and waits for a response.
If one or more devices respond, then channel ch is added to
the active_channels list. During the second phase (lines 5—
7), Algorithm 2 performs passive scanning only on channels
appearing in the active_channels list for the remaining scan
time. Algorithm 2 is especially useful for protocols such as
Zigbee, which defines 16 different channels, not all of which
may be in use (see also Section V).

B. Multi-channel methods

The subsequent algorithms expand from single channel scan-
ning to handling multiple channels and multiple protocols,
at the same time. First, we need a method of grouping
channels within the range of the instantaneous bandwidth of
the SDR. The function Find_Channels_In_Range identifies
all channels in an input channel list (ordered by ascending
frequency) by selecting all channels that fit the instantaneous
bandwidth under consideration of their respective center fre-
quencies and channel bandwidths, see Fig. 1. Note that while
some channels overlap, transmissions on these channels do not
occur continuously. Hence, it is possible to decode packets if
they do not collide, which is usually the case.

We further define a helper function Listen_In_Parallel
which simultaneously listens to multiple channels by calling
Listen on all provided channels. Implementing this algorithm
requires extracting multiple signal streams by frequency-
shifting, filtering, and resampling the incoming signal. This
procedure is called channelization. The implementation as-
pects of this procedure are described in Section VI-A.

Multiprotocol_Scan (Algorithm 3) describes a parallel
multi-protocol scan that can be used with any number of
IoT protocols. Based on a list of channels to consider (or-
dered by ascending frequencies), the algorithm starts at the
lowest frequency and determines all channels within range
of the first channel by calling Find_Channels_In_Range.
It subsequently listens to those channels by invoking Lis-
ten_In_Parallel.

Active_Multiprotocol_Scan combines the aforementioned
active scanning and multi-protocol scanning capabilities. It is
useful for scanning multiple protocols, some actively and some
passively (such as a combination of Zigbee and BLE).

Algorithm 2: Active_Scan(ch_list, dwell_time, scan_time)

> Enumerate devices by first identifying the list of active_channels in ch_list and then performing

passive scanning only on those active_channels
1 device_list + {}
2 active_channels < {}
3 tstart (_time()

> Phase 1: Scan active devices

> Initialize list of found devices
> Initialize list of busy channels

> store current time

4 active_channels, device_list < Probe_Channels(ch_list, dwell_time)

> Phase 2:
tscan < scan_time — (time() — tstart)

device_list < device_list U new_dev
return device_list

L 3 & wn

new_dev <+ Passive_Scan(active_channels,dwell_time, tscqn)

Passive-scan known active channels for the remaining time

> Compute remaining scanning time
> Run passive scan on active channels

> Add devices found during passive scanning

Algorithm 3: Multiprotocol_Scan(ch_list, dwell_time, scan_time, bandwidth)

> This algorithm enumerates devices by scanning as many channels as can fit in the instantaneous

bandwidth of bandwidth for a duration dwell_time in each iteration.

1 ch_unscanned < ch_list
2 ch_groups + {}
3 while ch_unscanned # {} do

> All channels in the list are unscanned

> Initialize list of channel groups

> Find channels that can be scanned simultaneously as they fit the instantaneous bandwidth.
4 ch_range < Find_Channels_In_Range(ch_unscanned, bandwidth)

> Scan channels that fit in instantaneous bandwidth BW around center freq.

ch_groups < ch_groups U {ch_range}
ch_unscanned < ch_unscanned \ ch_range
end while
tstart <_time()
device_list + {}
1+ 0
10 while time()—t4s0+ < scan_time do

o e NN N w»

> Add this group to the list of channel groups

> Remove channels from unscanned list

> Store current time
> Initialize list of found devices

> Set channel counter to zero

> Scan all channels of the i’th channel group in parallel
11 new_dev < Listen_In_Parallel(ch_group(i), dwell_time)
> Remove scanned channels from unscanned channel list
12 device_list + device_list Unew_dev i < (i + 1) mod |ch_groups|

13 end while
14 return device_list

IV. PERFORMANCE METRICS AND ANALYSIS
A. Metrics

Our main metric is the discovery time of IoT devices, which
we aim to minimize. Assume there are N devices in total,
with corresponding discovery times 17,75,...,Tx. We are
interested in characterizing the order statistics of these random
variables, i.e., the time elapsing till one device is discovered,
which is denoted X;.y, then till two devices are discovered
which is denoted X5.n, and so on till all devices are discov-
ered, which is denoted X .x. We thus have

Xy = min(Th,Ts,...,TN), (1
Xoony = min({Th,T>,..., Ty} \ X1.n), ()
XN:N = maX(T15T27"'7TN)' (3)

In our experiments, we estimate the expectation of the n-
th order statistics E[X,.n], for n = 1,2,..., N. To obtain
these estimates, we run each scanning algorithm M times and
denote by asglmj\), the time till n devices are discovered at the
m-th iteration, where m = 1,2,..., M. We then compute the
sample mean for the n-th order statistics as follows:

M (m
Zm:l xn:]\)/' .

L)

Tn:N

We also provide (1 — «)100% confidence intervals for our
estimates
&)

[fnzN — €n:N, fn:N + en:N]v

based on computing the sample standard deviation s,.5 and

the confidence interval parameter e,.y as follows:

M

1
= o1

m=1
Sn:N
taj2, -1 X —=)

\/M’

(m)

Sn:N Typ.N — jn:N)Qy (6)

€n:N

with /9 p7—1 denoting the 1 — /2 quantile of the t-
distribution with M — 1 degrees of freedom [28]. In our
experiments, described in Section VI, we run M = 10
independent iterations for each algorithm and consider 95%
confidence intervals (i.e., a = 0.05), hence ¢, /5 1 = 2.262.

B. Theoretical Model

We next propose a theoretical model to estimate the expec-
tations of order statistics of the discovery time, under appro-
priate statistical assumption. The analysis further assumes an
idealized channel environment where no packet loss occurs
(in practice such losses could occur due to imperfect receiver
implementation or interference). In Section VI-C, we show
that the performance of the scanning algorithms approaches
that predicted by the theoretical model, which demonstrates
the efficiency of the algorithms.

1) Statistical assumptions: To model device enumeration,
we need statistics of the inter-arrival times of packets gener-
ated by each device. For the sake of analytical tractability,
we assume that devices transmit in a memoryless fashion, i.e.,
the inter-arrival times of their packets follow an exponential
distribution. Note that the mean and standard deviation of
an exponential random variable are equal. Hence, we expect
that this model can provide a reasonable approximation, if
for each device i, its mean inter-arrival time p,; and standard
deviation of inter-arrival times o; are roughly equal. We stress
that this assumption is not needed for the implementation of
the scanning algorithms, only for their analysis.

To check this assumption, we collected statistics of the inter-
arrival times of packets of the Bluetooth and Zigbee devices
listed in Table I below. Table I indicates that indeed for all
tested BLE devices and most Zigbee devices u; ~ o;.

2) Analysis of order statistics: Enumerating devices
shares similarities with the non-uniform coupon collector’s
problem [17], albeit with certain modifications. The coupon
collector’s problem assumes a probability distribution in which
each draw results in a coupon (i.e., a discovered device). This
cannot be applied directly to a scenario in which devices’
transmission characteristics may result in null coupons, i.e., a
scan iteration in which no new device is discovered. Anceaume
et al. [18] provide a method of calculating the expectation
of the non-uniform coupon collector problem which accounts
for a null coupon. Define the probability vector p in which
po is the probability of no device transmitting, and p; is the
probability of device ¢ transmitting, ¢ = 1,2,...,N. The
expectation for the n-th order statistics X,, y (i.e., the time to

to discover n out of NV devices) is then given by

n—1
1
EXnn(P)] = > Ryvnn », —— ©8)
h=0 Jesh,,Nl —po— Py
where
N—-h—-1
Rynn = ()" : 9
N.nh (-1) < Nen) 9

Here, Sp, v denotes all (]Z) subsets containing exactly h

devices. Denote by J any subset of S}, n that contains exactly
h devices. Then, P; = Zje ;7 p; is the summation of the
transmission probabilities of all devices belonging to J. Note
that the second summation term in Eq. (8) works out to a
summation over all possible subsets J of cardinality h.

Assuming all N devices send packets in an independent and
identically distributed memoryless fashion as discussed above,
the device traffic can be modeled as /N independent Poisson
processes with rate \; = 1/p;. The combined influx of packets
from all the devices then follows a Poisson process with rate
A= Zfil Ai. By selecting a small interval At such that either
zero or one packet arrives during any interval At, we can use
Eq. (8) to compute the expectation of the order statistics of
the discovery time of devices. If all devices transmit on one
channel that is continuously monitored, the probability p; that
device ¢ transmits during an interval At is then

pi = ()\iAt)e_)”'At ~ N At (10)

Note that if all devices are randomly distributed on any
of C available channels, a randomly channel-hopping radio
scanner would receive a transmission from device i with
probability p; /C. This can also be used as an approximation
when the scanner visits channels in a round-robin rather than
in a random fashion.

V. PROTOCOL DEVICE ENUMERATION

In the previous sections, the concepts of “listening to a
channel” and “extracting device addresses” were presented in
a generic way. We now discuss these aspects for all the IoT
protocols implemented in ToT-Scan.

A. Zigbee

IoT-Scan implements both passive and active scans for
Zigbee. A passive scan listens on each channel for a certain
amount of time (i.e., the channel dwell time) repeatedly until
the total scan time expires. With active scanning, channels with
network activity are discovered by sending beacon requests
on each channel. Receiving a beacon frame in response to
a beacon request indicates that there is a network on the
current channel (typically, a Zigbee network has a router or
a coordinator that responds to beacon requests). Subsequent
passive scanning rounds can then be limited to these active
channels (line 6 in Algorithm 2), in order to detect any further
devices that did not respond to active scanning.

B. Bluetooth Low Energy (BLE)

In BLE, data channels are used for communication after a
connection has been established, whereas advertising channels

are used between devices that are in range to discover one
another and exchange metadata. Therefore, ToT-Scan only
scans the three advertising channels (i.e., there is no need
to monitor data channels). Typically, advertising packets are
sent on all three advertising channels for any given advertising
event. This redundancy makes device discovery more resilient
in cases where some of the channels experience interference.
This means that scanning for BLE devices on any one of the
three advertising channels is as good as a multi-channel scan
(sequentially scanning each advertising channel), a fact that
we also verified experimentally.

C. LoRa

In our implementation, we scan Yolink devices listed in
Table I. The major challenge in receiving any Yolink traffic
is in determining the PHY-layer network sync word, because
the existing SDR LoRa receiver implementation [5] accepts
only sync words with a value of zero. Yet, sync word values
containing 0x00 are forbidden in deployed networks and
can only be used for testing. We overcome this challenge
by modifying the LoRa receiver of [5]. Our implementation
allows one to promiscuously listen for all sync words, as well
as configure the bandwidth, the center frequency, the bitrate,
and other parameters. A key advantage of scanning LoRa
using an SDR implementation is that all sync words can be
monitored simultaneously, whereas certified LoRa transceiver
chips are programmed to receive a specific sync word.

D. Z-Wave

IoT-Scan uses the Source ID [29] in the MAC header to
enumerate Z-Wave devices. R1 and R2 Z-Wave PHY imple-
mentations are based on scapy-radio [14]. We built the R3 Z-
Wave PHY receiver flowgraph based on the existing R2 PHY
implementation, the main difference being the bitrate/sampling
which is 2.5 times larger.

VI. EXPERIMENTAL EVALUATION

In this section, we perform an experimental evaluation of the
scanning algorithms of ToT-Scan. We detail SDR imple-
mentation aspects, the experimental set-up (including the list
of tested devices), and the experimental results.

A. Algorithm Implementation

The main software components of our implementation consist
of GNU Radio 3.8 [13] and Scapy-radio 2.4.5 [14]. Scapy-
radio is a pentest tool with RF fuzzing capabilities. Note that
Scapy-radio is based on GNU Radio version 3.7. We ported
receiver flowgraphs to GNU Radio 3.8 gaining great reception
improvements due to the automatic gain control (AGC) option
inside the USRP Source block.

1) Flowgraph control: We implement the scanning algo-
rithms described in Section III in Python. Signal processing
parameters, such as the SDR center frequency, the channel
frequency offsets, and the channel bandwidths, are managed
by a GNU Radio flowgraph. The GNU Radio flowgraph is
imported from the main application as a Python module and
is controlled with its native Python API. This allows for

dynamic control of flowgraph parameters during the runtime
of the flowgraph. Controlling the flowgraph in this way is
crucial for correct time-keeping of the experiments, as it
allows to compensate for seconds of startup delays due to
the initialization of the USRP hardware driver library.

2) Signal processing: The process of converting an un-
filtered full-bandwidth signal from an SDR source into the
receive chain (i.e., the sequence of DSP blocks connected
serially starting with radio source, demodulator, filter, and
clock recovery) of a particular protocol is referred to as
channelization [30]. Channelization is particularly important
in multi-protocol scanning, since it selects (filters out) a few
narrow band signals (receive chains) from the raw wide band
signal. Multi-protocol scans require parallel decoding of two or
more receive chains which can overwhelm the capabilities of a
typical host computer if the processing chain in the flowgraph
is not correctly optimized.

Channelization in ToT-Scan comprises three signal pro-
cessing steps: frequency translation (from the center frequency
of the raw radio signal to the center frequency of the desired
channel), channel filtering (filtering out other protocols and
potential interference), and re-sampling (down conversion) to
reduce the computational load. Reducing the sample rate relies
on Nyquist’s theorem, which dictates that the sample rate of
a signal be at least twice the signal’s bandwidth, in order to
not lose any information.

B. Experimental Setup

We implemented all the scanning algorithms described in
Section III on a single SDR device, namely a USRP B200
device [16], with a PC capable enough to handle data process-
ing in real-time without dropping samples (i.e., overflowing
buffers). Thus, all our experiments were run on a ThinkCentre
8 Core Intel i7 running Ubuntu 20.04.

The devices used in the experiments are listed in Table I.
All scanning experiments were based on IoT devices under
our control, which were placed in the same office room as the
SDR. Any foreign device from the environment was filtered

Table I: Tested IoT devices.

(a) Zigbee Device t4i [s]] oi [s] || (b) BLE Device #i[s]] oi[s]
#1 Wink hub 2 6.0[7.7||#15 Fit2 fitness tracker 4.1] 4.0
#2 Amazon Echo 4.0 7.5] 6.1 #4 Philips Hue Lamp1 4.6 5.6
#3 Ring Base Station 7.9] 7.5(/#5 Philips Hue Lamp2 4.1 4.0
#4 Philips Hue Lamp1 8.4| 7.1|[#6 Philips Hue Lamp3 39| 3.8
#5 Philips Hue Lamp2 8.3] 7.0|[#7 Philips Hue Lamp4 4.1] 4.1
#6 Philips Hue Lamp3 8.4 7.0|#16 Mi Smart Band 5 11.0] 104
#7 Philips Hue Lamp4 8.4 7.1][#17 AMIR Thermometer 19.5] 18.6
#8 Quirky PLINK-HUB 8.5| 4.7|[#18 Tile tracker 25.7] 25.2
#9 Osram Lightify 73674 | 10.2] 7.8 #19 Tile tracker 47.3[42.0
#10 IKEA Gateway 14.0{ 14.6(#20 Tile tracker 23.1] 22.7
#11 CREE Lightbulb A19 [14.8] 1.2|[#21 Tile tracker 20.7| 18.5
#12 GELAMPI1 4VES 14.9| 1.4(#22 WIT Motion sensor 119.5] 96.1

#13 GE LAMP2 4VES8 149 14 (d) Z-Wave (Ring)
#14 IKEA LED1732G11 [159] 1.2 #3 Base Station
(¢) LoRa (Yolink) #23 Keypad

#26 Water Leak Sensor
#27 Door Sensor
#38 Smart Plug

#24 Contact Sensor
#25 Motion Detector

out. In order to only account for our devices, we initially
enumerated them with a passive scan inside an RF shielded
box (Ramsey box STE3500) to determine their addresses.
Traffic of the BLE and Zigbee devices were statistically
analyzed to derive the parameters of the theoretical traffic
model introduced in Section IV-B. Note that we did not
analyze transmission statistics of low-power Z-Wave and LoRa
devices due to their periodic transmission patterns (devices
transmit once every hour or so).

We conducted all scanning experiments using the default
network configuration of the respective devices and protocols.
In all experiments, the tested devices were in an idle state,
i.e., not actively used by an operator. Manually operating
devices in a way that generates network communication, e.g.,
actuating Zigbee lights via the Amazon Alexa smartphone app,
would impact scanning performance. We expect the results
presented in this section to be conservative estimates of the
scanning time, since generating additional traffic from the
devices should speed up the discovery of the devices.

Regarding the parameters of the algorithms, the channel
dwell time (i.e., the scanning time of each channel in each
round) was set to 1 second. We also tried channel dwell times
of 0.1 second and 3 seconds, and found that the scanning times
did not differ significantly. The channel dwell time during
active scan of Zigbee was set to 0.2 second. When scanning
each individual protocol, we set the instantaneous bandwidth
parameter according to the protocol’s bitrate. Specifically,
BLE’s channel bandwidth was set to 1 MHz, Zigbee to 2 MHz,
LoRa to 125KHz, and Z-Wave to 40/100 KHz. When im-
plementing multiprotocol scanning algorithms, we used wider
bandwidth to fit the bandwidth of each protocol and channel
spacing in between. Both the Zigbee/BLE and Z-Wave/LoRa
and multi-protocols experiment used 8 MHz of bandwidth.

C. Results

In this section, we discuss experimental results of the scanning
algorithms. The figures show the sample means and 95%
confidence intervals of the order statistics of the discovery time
of the n-th device (see Egs. (4) and (5)). Each point represents
an average over 10 experiments with identical parameters.

1) Passive Zigbee and BLE Scans and Comparison with
Theoretical Model: We first evaluate the performance of the
passive scanning algorithms (Algorithm 1) for Zigbee and BLE
devices, and compare those with the expected discovery times
based on the theoretical model described in Section I'V-B.

To build the theoretical traffic model (see Section IV-B),
we measured device characteristics of our tested devices by
running one long continuous scan of 100 minutes on every
Zigbee channel and on every BLE advertising channel, in
order to collect a baseline of traffic for each device. The traffic
statistics are shown in Table I. We set At = 0.1s in Eq. (10)
to compute p; for each device. We then use Eq. (8) to compute
the expectation of the order statistics of the discovery time of
devices. Note that for Zigbee, we replace p; by p;/16, since
with Algorithm 1, the SDR listens to only one out of the 16
Zigbee channels at a time.

121

101

] ---- Theoretical Model
—e— Zigbee Passive Scan

Number of discovered Zigbee devices

200 300 400 500

Time [seconds]

0 100

Figure 2: Zigbee theoretical model and experimental passive
scan results. The 95% confidence intervals indicate a good fit.

=
N
L

[y
o
L

,] ---- Theoretical Model
—e— BLE Passive Scan

Number of discovered BLE devices

0 25 50 75 100 125 150

Time [seconds]

Figure 3: BLE passive scan results align closely with the
theoretical model.

Fig. 2 shows curves for the experimental results of Zigbee
passive scanning and the theoretical model. The model fits
inside most of the 95% confidence intervals. This shows
that our passive scan implementation is close to the best
performance possible, and our testbed has minimal packet
losses. The deviation from the model could be attributed to
interference (e.g., from Wi-Fi) and the fact that transmissions
of some Zigbee devices are not memoryless.

Fig. 3 shows experimental results for BLE passive scanning
and the theoretical benchmark. The measured discovery times
again fit the model well. Since all BLE advertising channels
are equivalent, scanning is performed on channel 37 only.
Note that BLE device discovery can only be performed as a
passive scan, since BLE does not allow for broadcast-type scan
requests as performed in Zigbee. While BLE scan requests
could be a useful active scanning technique for gathering
additional device data, they are always directed scans, i.e.,
they require knowledge of the target device’s address.

2) Active Zigbee Scan: We next evaluate the performance
of active scanning (Algorithm 2) and compare it to passive
scanning in the context of Zigbee. Fig. 4 shows that the passive
discovery of 12 Zigbee devices takes 365 seconds on average
while active Zigbee discovery takes only 46 seconds, i.e., a
reduction of 87% in the scan time. While active scanning

n
R
é Irfi I —— e ES—
o 101 4 —_—y
(7} 1
_g f P
N 8{ —
8 * ——
— 1
¢ 614 ——
o 1
8 |t
2 4 ‘0 ——
o I
= ¢
AN A ---- Zigbee Active Scan
:E, ‘ Zigbee Passive Scan
> o
0 100 200 300 400 500

Time [seconds]

Figure 4: Zigbee active versus passive scan.

N
w

N
o

=
v

fary
o

w

Active Multiprotocol Scan
—¥— Sequential Passive Scan

Number of discovered Zigbee/BLE devices

o

200 300 400 500

Time [seconds]

0 100

Figure 5: Zigbee/BLE multiprotocol active scan vs. sequential
passive scan.

discovers the 12 devices within one minute, passive scanning
discovers only 4 devices within one minute. Note that Zigbee
supports up to 64,000 nodes per network. It is conceivable
that the improvement of active scan over passive scan would
be even more significant with a larger number of nodes.

3) Zigbee and BLE Multiprotocol Scan: We next evaluate
the performance of active multiprotocol Zigbee and BLE scan
and compare it to sequential passive scan. Sequential passive
scan consists of passive BLE scan followed by passive Zigbee
scan. Sequential passive scan enumerates the 24 considered
devices in 395 seconds on average, while active multiprotocol
Zigbee and BLE scan takes 118 seconds on average, which
corresponds to a 70% improvement (Fig. 5). Within 1 minute
active multiprotocol scan discovers 22 devices while sequential
scan discovers only 10. Breaking down sequential passive
scan into two: the first 106 seconds corresponds to a BLE
passive scan, followed by 289 seconds of Zigbee scan, which
is consistent with the results shown in Figs. 2 and 3. The
speed-up is achieved because of two aspects: active scan and
multiprotocol scan. Zigbee active scan narrows the search
down from 16 to only 3 channels. Multiprotocol scan supports
reception of one Zigbee and one BLE channel in parallel. Note
that parallel reception is possible only if the two channels
fit within the instantaneous bandwidth. As mentioned earlier,
the instantaneous bandwidth for multiprotocol scan was set to

N

» w
® .

w
.

N
.

Multiprotocol Passive Scan
—¥— Sequential Passive Scan

=
L

Number of discovered ZWave/LoRa devices

0 2 4 6 8 10 12
Time [hours]

Figure 6: Multiprotocol passive scan (Z-Wave, LoRa)

8 MHz. Three Zigbee active channels were identified, namely
channel 11, 15, and 20. BLE has three well-known advertising
channels, namely 37, 38, and 39. BLE channel 37 and Zigbee
channel 11 can be received in parallel as well as BLE channel
38 and Zigbee channel 15. However, Zigbee channel 20 and
BLE channel 39 are scanned separately since they do not fit
within the same instantaneous bandwidth.

4) Z-Wave and LoRa Multiprotocol Scan: We next eval-
uate the performance of passive multiprotocol LoRa and Z-
Wave scan on 900 MHz band (Algorithm 3) and compare it to
sequential passive scan (Algorithm 1). Passive multiprotocol
scan consists of scanning each of 3 frequency channels (2
Z-Wave and 1 LoRa) in a round robin fashion. The passive
scanning operation visits the LoRa and Z-Wave channel in
a round-robin fashion, one at a time. Due to having 2 Z-
Wave channels (908.4 and 916 MHz) and only 1 LoRa channel
(910.29 MHz), Z-Wave has an advantage in passive scanning.

Fig. 6 shows that sequential LoRa and Z-Wave scan takes
about 8.1 hours on average while multiprotocol Z-Wave and
LoRa scan takes 2.5 hours, which represents a reduction
of about 70% in the discovery time. Within a single hour
passive scan discovers less than 1 device on average while
multiprotocol scan discovers 5 out of the 7 devices. This
significant speed-up is achieved because multiprotocol scan
receives all three channels (from the two protocols) in parallel,
namely 908.4 MHz (Z-Wave R2 PHY), 910.23 MHz (LoRa
uplink), and 916 MHz (Z-Wave R3 PHY).

VII. CONCLUSION

We presented ToT-Scan, an extensible multi-protocol net-
work reconnaissance tool for the Internet of Things that can
be employed for security auditing and network monitoring.
IoT-Scan leverages the capabilities of SDRs to process
multiple streams in parallel. Accordingly, we introduced sev-
eral scanning algorithms and evaluated them both theoretically
and experimentally. Using the theoretical model, we showed
that our implementation is efficient and achieves minimal
packet loss in reception. We implemented multi-protocol,
multi-channel scanning both on the 2.4GHz band for Zigbee
and BLE, and on the 900 MHz band for LoRa and Z-Wave, and

demonstrated significant improvement over sequential passive
scanning.

Our SDR implementations should prove especially useful in
overcoming the incompatibility of different protocols based on
the same PHY layer. For instance, besides Zigbee, there exist
several IoT protocols based on the IEEE 802.15.4 standard,
such as Thread [31] and WirelessHART [32]. We expect that
these protocols could readily be integrated into ToT—Scan.

The design of ToT-Scan does not raise ethical issues in
itself. However, like other penetration testing tools, usage of
this tool does require explicit consent from the owners of the
devices under test. Specifically, active scanning, while brief,
may interfere with existing network traffic and delay time-
sensitive communication. A major advantage of ToT-Scan
versus a tool like Nmap is that it also supports a passive
scanning mode, which does not generate traffic.

This paper opens several avenues for future work. First,
one could explore FPGA implementations of ToT-Scan to
increase the number of channels and protocols that can be
decoded in parallel and further speed up the discovery of IoT
devices. While this should yield useful performance improve-
ments, we expect that such implementations would still rely on
the algorithms introduced in Section III. Another interesting
research avenue lies in the design of active scanning methods
for LoRa and Z-Wave, as devices in these protocols transmit
sparingly. We have publicly released data traces obtained with
IoT-Scan in [33]. We envision that these traces should be
useful for the design and evaluation of scanning algorithms
and other IoT-related research.

ACKNOWLEDGEMENTS

This research was supported in part by the US National Sci-
ence Foundation under grants CNS-1717858, CNS-1908087,
CCF-2006628, EECS-2128517, and by an Ignition Award
from Boston University.

REFERENCES

[1] Ericsson. (2020) Internet of Things Forecast. [Online]. Available:
https://www.ericsson.com/en/mobility-report/internet-of- things-forecast

[2] Bluetooth Special Interest Group (SIG). (2016) Blue-
tooth Core Specification. v5.0. [Online]. Available:
https://www.bluetooth.com/specifications/specs/core-specification/

[3] IEEE Standards Association, 802.15.4-2015 - IEEE Standard for Low-
Rate Wireless Networks, IEEE, Ed., New York, New York, USA, 2015.

[4] International Telecommunication Union. (2015) G.9959: Short
range narrow-band digital radiocommunication transceivers - PHY,
MAC, SAR and LLC layer specifications. [Online]. Available:
https://www.itu.int/rec/T-REC-G.9959

[5] J. Tapparel, O. Afisiadis, P. Mayoraz, A. Balatsoukas-Stimming, and
A. Burg, “An Open-Source LoRa Physical Layer Prototype on GNU
Radio,” in SPAWC 2020, 2020, pp. 1-5.

[6] J. Ortiz, C. Crawford, and F. Le, “DeviceMien: network device behavior
modeling for identifying unknown IoT devices,” in Proceedings of the
International Conference on Internet of Things Design and Implemen-
tation. New York, NY, USA: ACM, Apr, pp. 106-117.

[71 D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “IoT
Inspector,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 4, no. 2, pp. 1-21, Jun 2020.
[Online]. Available: https://dl.acm.org/doi/10.1145/3397333

[8] US Congress, “H.R.1668 - IoT Cybersecurity Im-
provement Act of 2020, 2020. [Online]. Available:
https://www.congress.gov/bill/116th-congress/house-bill/1668

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

European Commission. (2022) Secure solutions for
the Internet of Things. [Online]. Available:
https://digital-strategy.ec.europa.eu/en/policies/secure-internet-things

G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning, 2nd ed. Sunnyvale, CA,
USA: Insecure.Com LLC, 2008.

CSA. (2021, Dec) Matter: Smart Home Device Solution. [Online].
Available: https://csa-iot.org/all-solutions/matter/

T. Ulversoy, “Software Defined Radio: Challenges and opportunities,”
IEEE Communications Surveys & Tutorials, vol. 12, no. 4, pp. 531-550,
2010.

GNU Radio Project. (2022) GNU Radio. [Online]. Available:
https://www.gnuradio.org
Bastille Research. (2015) scapy-radio. [Online]. Available:

https://github.com/BastilleResearch/scapy-radio

Y. He, J. Fang, J. Zhang, H. Shen, K. Tan, and Y. Zhang, “MPAP:
Virtualization Architecture for Heterogenous Wireless APs,” ACM SIG-
COMM Computer Communication Review, no. 4, pp. 475-476, Aug.
Ettus Research. (2022) USRP B200. [Online]. Available:
https://www.ettus.com/all-products/ub200-kit/

P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, vol. 39, no. 3, pp. 207-229, Nov 1992.

E. Anceaume, Y. Busnel, and B. Sericola, “New Results on a Generalized
Coupon Collector Problem Using Markov Chains,” Journal of Applied
Probability, vol. 52, no. 2, p. 405-418, 2015.

A. Heinrich, M. Stute, and M. Hollick, “BTLEmap: Nmap for
Bluetooth Low Energy,” in Proceedings of the 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, ser.
WiSec *20. Association for Computing Machinery, 2020, p. 331-333.
[Online]. Available: https://doi.org/10.1145/3395351.3401796

J. Tournier, F. Lesueur, F. Le Mouél, L. Guyon, and H. Ben-Hassine,
“IoTMap: A protocol-agnostic multi-layer system to detect application
patterns in IoT networks,” in 10th International Conference on the
Internet of Things (IoT 2020), Malmo, Sweden, Oct. 2020.

J. Mikulskis, J. K. Becker, S. Gvozdenovic, and D. Starobinski, “Poster:
Snout - An Extensible IoT Pen-Testing Tool,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 2529-2531.

S. Bak and Y.-J. Suh, “Designing and Implementing an Enhanced
Bluetooth Low Energy Scanner with User-Level Channel Awareness
and Simultaneous Channel Scanning,” vol. 102, no. 3. The Institute
of Electronics, Information and Communication Engineers, 2019, pp.
640-644.

C. D. Kilgour, “A Bluetooth low-energy capture and analysis tool using
software-defined radio,” Master’s Thesis, Simon Fraser University,
2013. [Online]. Available: http://summit.sfu.ca/item/12931

W. Park, D. Ryoo, C. Joo, and S. Bahk, “BLESS: BLE-aided Swift
Wi-Fi Scanning in Multi-protocol IoT Networks,” in IEEE INFOCOM
2021-IEEE Conference on Computer Communications, 2021, pp. 1-10.
J. Hall, B. Ramsey, M. Rice, and T. Lacey, ‘“Z-wave Network Reconnais-
sance and Transceiver Fingerprinting Using Software-Defined Radios,”
in ICCWS 2016.

L. Choong, “Multi-Channel IEEE 802.15.4 Packet Capture Using Soft-
ware Defined Radio,” UCLA Networked & Embedded Sensing Lab,
vol. 3, pp. 1-20, 2009.

P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A Multi-Channel
Software Decoder for the LoRa Modulation Scheme,” in IoTBDS 2018,
2018, pp. 41-51.

B. Schmeiser, “Batch Size Effects in the Analysis of Simulation Output,”
Operations Research, vol. 30, no. 3, pp. 556-568, 1982.

C. W. Badenhop, S. R. Graham, B. W. Ramsey, B. E. Mullins, and L. O.
Mailloux, “The Z-Wave routing protocol and its security implications,”
Computers & Security, vol. 68, pp. 112-129, 2017.

Marija Dimitrijevic. (2018) Replacing many RF receivers
with only ONE wusing Channelization. [Online]. Available:
ettus.com/wp-content/uploads/2018/12/Channelization_-_Article_.pdf

Thread Group. (2022) What is Thread? [Online]. Available:
https://www.threadgroup.org/What-is- Thread/Overview

FieldComm Group, “WirelessHART: HART With-
out The Wires,” 2021. [Online]. Available:

https://www.fieldcommgroup.org/technologies/wirelesshart
S. Gvozdenovic, J. K. Becker, J. Mikulskis, and D. Starobinski. (2022)
IoT-Scan Traces. [Online]. Available: https://github.com/nislab/iot-scan

https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.bluetooth.com/specifications/specs/core-specification/
https://www.itu.int/rec/T-REC-G.9959
https://dl.acm.org/doi/10.1145/3397333
https://www.congress.gov/bill/116th-congress/house-bill/1668
https://digital-strategy.ec.europa.eu/en/policies/secure-internet-things
https://csa-iot.org/all-solutions/matter/
https://www.gnuradio.org
https://github.com/BastilleResearch/scapy-radio
https://www.ettus.com/all-products/ub200-kit/
https://doi.org/10.1145/3395351.3401796
http://summit.sfu.ca/item/12931
ettus.com/wp-content/uploads/2018/12/Channelization_-_Article_.pdf
https://www.threadgroup.org/What-is-Thread/Overview
https://www.fieldcommgroup.org/technologies/wirelesshart
https://github.com/nislab/iot-scan

	I Introduction
	II Related Work
	III Scanning Algorithms
	III-A Single-channel methods
	III-B Multi-channel methods

	IV Performance Metrics and Analysis
	IV-A Metrics
	IV-B Theoretical Model
	1 Statistical assumptions
	2 Analysis of order statistics

	V Protocol Device Enumeration
	V-A Zigbee
	V-B Bluetooth Low Energy (BLE)
	V-C LoRa
	V-D Z-Wave

	VI Experimental Evaluation
	VI-A Algorithm Implementation
	1 Flowgraph control
	2 Signal processing

	VI-B Experimental Setup
	VI-C Results
	1 Passive Zigbee and BLE Scans and Comparison with Theoretical Model
	2 Active Zigbee Scan
	3 Zigbee and BLE Multiprotocol Scan
	4 Z-Wave and LoRa Multiprotocol Scan

	VII Conclusion
	References

