

# Continuous Biomanufacturing with Microbes - Upstream Progresses and Challenges

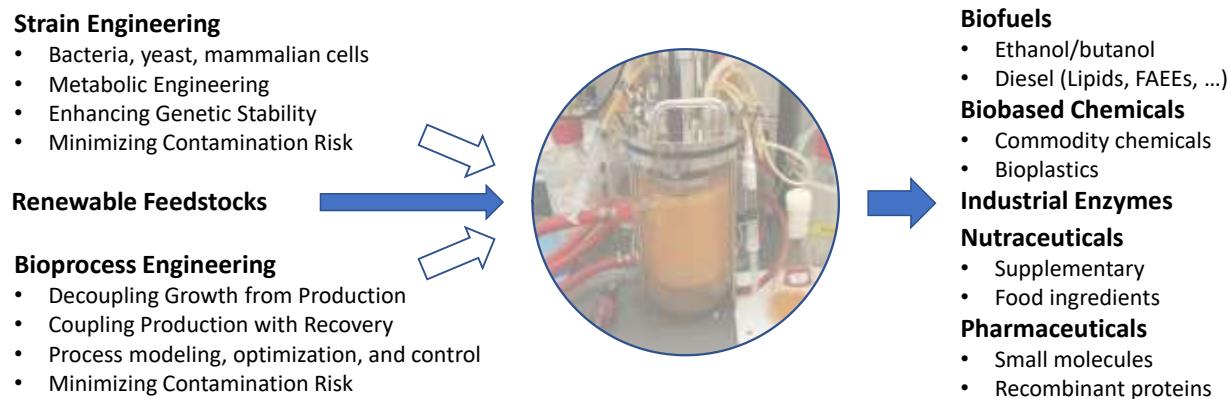
Dongming Xie \*

Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854.

\* Corresponding author: Phone +1-978-934-3159; Email [Dongming\\_Xie@uml.edu](mailto:Dongming_Xie@uml.edu)

## Abstract:

Current biomanufacturing facilities are mainly built for batch or fed-batch operations, which are subject to low productivities and do not achieve the great bioconversion potential of the rewired cells generated via modern biotechnology. Continuous biomanufacturing should be the future directions for high-yield and low-cost manufacturing of various fermentation products. This review discusses the major challenges and the strategies for continuous biomanufacturing **with microbes**, which include minimizing contamination risk, enhancing genetic stability over a long-term continuous operation, achieving high product titer, rate, and yield (**TRY**) simultaneously by decoupling cell growth from product formation, and using modeling approach to accelerate research and development of continuous biomanufacturing. New strain designs and process engineering strategies including integration with artificial intelligence are also discussed for intelligent and **the** next generation of continuous biomanufacturing.


## Introduction

Biomanufacturing is to use a biological system that consists of enzyme(s), microorganisms, or more advanced biological cells to make fuels, chemicals, nutraceuticals, pharmaceuticals, or other value-added products from renewable resources [1]. Since 1910s, biomanufacturing has evolved through four generations, and today, biomanufacturing 4.0 focuses on new products that address the most critical challenges in energy crisis, health issues, food security, climate changes and sustainability [2]. For most biomanufacturing processes, fermentation in a bioreactor is the core unit, where the raw materials are converted into a target product with the catalysis by enzyme(s) or biological cells. Since 1950s batch or fed-batch fermentation process has been the standard design and practice for biomanufacturing of fuels, chemicals, and high-value products due to its advantages in simple bioreactor structure and design, easy scale-up, and flexibility for different products. However, too much down time between different batches and inability of keeping at optimum production rate in the entire batch or fed-batch process significantly limit the overall productivity, which leads to increases in both capital and operating costs [3]. At the same time, significant progresses have been made in synthetic biology, metabolic engineering, and protein biochemistry. Thus, conventional batch and fed-batch technologies from 70 years ago are far behind the fast pace of modern biotechnology, and more importantly, do not achieve the true conversion potential of these rewired cells. There is an urgent need for fully controlled continuous biomanufacturing processes to make biofuels, commodity chemicals, and high-value products at significantly lower manufacturing cost.

In the past a few decades, continuous fermentation has been widely studied to significantly increase the productivities and reduce the capital investment and biomanufacturing cost. A wide range of fermentation products have been studied by using continuous processes, which include (1) biofuels such as ethanol [4–6] for gasoline and lipids for biodiesel [20], (2) commodity chemicals such as acetone-butanol-ethanol (A-B-E) solvents [8, 9], lactic acid (LA) [10, 11], succinic acid [12, 13], and 1,3-propanediol (PDO) [14,15], and (3) high-value molecules such as omega-3 fatty acids [16] and recombinant proteins [17, 18]. Recently, the prospect and potential of continuous manufacturing is beginning to be embraced in the biopharmaceuticals sector, especially for production of monoclonal antibodies (mAbs) by using mammalian cells [19, 20]. However, most current fermentation products are still manufactured via batch or fed-batch processes at commercial scale. To make continuous biomanufacturing a new standard practice in near future, a series of technology breakthroughs and innovations in both strain design and process engineering are needed to address the major technical challenges (**Figure 1**).

This review focuses on upstream progresses and major challenges in continuous biomanufacturing for products derived from bacteria, yeast, and microalgae. First, an overview is given for current status of continuous biomanufacturing of several representative fermentation products from different organisms.

After that, the major challenges that limit the successful application of continuous biomanufacturing at commercial scale is analyzed, followed by a further discussion on strategies to address or overcome these challenges. Future perspectives toward high-yield and low-cost continuous biomanufacturing at large scale are also discussed.



**Figure 1.** General strategies for designing a continuous biomanufacturing process

## Current status and major challenges

Upstream continuous biomanufacturing has been studied for most categories of fermentation products such as ethanol, A-B-E solvent, lactic acid, succinic acid, 1,3-propanediol, recombinant proteins, and monoclonal antibodies (mAbs) that cover the applications in fuels, commodity chemicals, materials, specialties, and pharmaceuticals. However, continuous biomanufacturing is still not a preferred choice for current commercial production. A comparison of typical production parameters (titer, rate/productivity, and yield) for major fermentation products between batch/fed-batch and continuous fermentation processes for bacteria, yeast, and microalgae is summarized in **Table 1**.

**Table 1.** A comparison between the batch/fed-batch and continuous processes for biomanufacturing of several major fermentation products.

| Product                           | Strain                                      | Typical Outcomes (Titer, Rate, Yield) * |                    |                        |                 |                     |                        | Reference      |  |
|-----------------------------------|---------------------------------------------|-----------------------------------------|--------------------|------------------------|-----------------|---------------------|------------------------|----------------|--|
|                                   |                                             | Batch/Fed-Batch                         |                    |                        | Continuous      |                     |                        |                |  |
|                                   |                                             | Titer                                   | Rate               | Yield                  | Titer           | Rate                | Yield                  |                |  |
| Ethanol                           | <i>S. cerevisiae</i> and <i>T. italicus</i> | 116 g/L                                 | 2.4 g/L/h          | 0.41 g/g               | 60-106 g/L      | 1.3-13 g/L/h        | 0.36-0.44 g/g          | [4,21]         |  |
| A-B-E: Acetone, Butanol, Ethanol  | <i>Clostridium acetobutylicum</i>           | 18 g/L (A+B+E)                          | 0.40 g/L/h (A+B+E) | 0.27 g/g (A+B+E)       | ~10 g/L (A+B+E) | ~0.90 g/L/h (A+B+E) | ~0.23 g/g (A+B+E)      | [9,22]         |  |
| Lactic acid                       | <i>Bacillus coagulans</i> A534              | 88-94 g/L                               | 1.8-2.8 g/L/h      | 0.85-0.90 g/g          | ~50 g/L         | 7.4-9.9 g/L/h       | 0.7-0.8 g/g            | [10, 11]       |  |
| Succinic acid                     | <i>Actinobacillus succinogenes</i>          | 64 g/L                                  | 1.1 g/L/h          | 0.76 g/g               | 33 g/L          | 11 g/L/h            | 0.90 g/g               | [12]           |  |
|                                   | <i>Escherichia coli</i> KJ 134              | 50-61 g/L                               | 0.35-0.45 g/L/h    | 0.94 g/g               | ~18 g/L         | ~0.87 g/L/h         | 0.62-0.77 g/g          | [13]           |  |
| 1,3-Propanediol                   | <i>Klebsiella pneumoniae</i>                | 56 g/L                                  | 2.3 g/L/h          | 0.56 g/g               | 35-49 g/L       | 4.9-8.8 g/L/h       | N/A                    | [14,15,23, 24] |  |
| Lipids – triacylglycerides (TAGs) | <i>Acutodesmus obliquus</i> (microalgae)    | 4.4-5.1 g/L                             | 0.15-0.17 g/L/d    | 0.16-0.20 g/mol photon | 0.56-0.68 g/L   | 0.54-0.64 g/L/d **  | 0.14-0.16 g/mol photon | [7]            |  |
| Recombinant protein - PAmCherry   | <i>E. coli</i> BL21(DE3)                    | 8.4 g/L                                 | 0.12 g/L/h         | 0.075 g/g              | 1.2 g/L         | 0.15 g/L/h          | 0.022 g/g              | [25]           |  |
| Recombinant Inclusion Body        | <i>E. coli</i> BL21(DE3)                    | 1.5-4.0 g/L                             | <0.20 g/L/h **     | 0.06-0.16 g/g          | 6.1 g/L         | ~0.24 g/L/h **      | 0.013 g/g              | [26]           |  |

\* “Titer” and “Rate” also refer to “concentration” and “productivity”, respectively, for fermentation product in other literatures.

\*\* Data are estimated based on the titers and actual fermentation time in the reference (for fed-batch, including the time before induction; for continuous, the total residence time in all reactors).

In general, continuous processes significantly improve the productivity or production rate, but the gain in productivity or rate is often accompanied by loss(es) in product titer, specific titer (product titer/cell density), conversion yield, or other related fermentation parameters. Specific features for the selected continuous fermentation product examples are summarized below:

**Biofuel – Ethanol:** Continuous fermentation improved ethanol productivity by > 50%, but decreased ethanol titer by nearly half [4,21]. A recent study conducted with 62 Brazilian distilleries (51 batch and 11 continuous) in the past nine years showed that the continuous processes failed to improve the overall ethanol productivity due to frequent contaminations [5]. Lignocellulosic biomass, corn or corn stovers, and sugar canes, syngas can all be used as the feedstock for continuous production of ethanol and other fuels [6]. Antibiotics usage could reduce or minimize the contamination frequency, but it would increase cost and cause concerns about leaking antibiotics to the environment during the application. Further, antibiotic in ethanol beverage would be a health concern.

**A-B-E (acetone-butanol-ethanol) Solvent:** Continuous fermentations integrated with other novel technologies are being developed for ABE production [8]. Most integrated continuous fermentation processes achieved a production of total ABE with titers between 10~20 g/L, yields of 0.2~0.4 g/g, and productivities less than 1 g/L/h. Since butanol is extremely toxic to the *Clostridia* cells, solvent extraction has been used for in-situ product removal (ISPR) to significantly relieve the toxicity of the produced butanol and enhance the total butanol and ABE production. A two-stage continuous fermentation process with cells immobilized in both stages and an ISBR unit for each stage improved the total ABE titer to 25 g/L [9]. However, the complexity of the process and the relatively low productivity still do not allow for a successful application at large scale.

**Lactic acid – Monomer for biodegradable polymer polylactide (PLA):** Continuous fermentation improved LA productivity by 3 folds, but with > 40% decrease in LA titer and > 10% decrease in conversion yield [10]. By increasing cell retention time using a cell recycling unit, cell density and LA productivity were further improved [11]. This increased LA productivity by > 4 folds over the batch fermentation, however, was also accompanied by decreases in LA titer by 24% and yield by 17%, respectively [12].

**Succinic acid – Precursor for polyesters:** Succinic acid (SA) is listed by the US DOE as one of the 12 top platform chemicals that can be produced from microbes, especially the engineered *Escherichia coli* [13]. Continuous fermentation basically doubled the SA productivity over the batch fermentation, but it also decreased the SA titer by nearly 70% and the yield by 20-30% [13].

**1,3-Propanediol – Precursor for polytrimethylene terephthalate (PTT):** PDO can be produced from glycerol by the bacteria *Klebsiella sp.*, *Citrobacter sp.*, or *Clostridium sp.* [14]. Continuous fermentation of *K. pneumoniae* has improved PDO productivity by 3 folds over the fed-batch fermentation, but it decreased PDO titer by 20-30% and the yield by up to 15%. DuPont and Genocor have successfully engineered *E. coli* to produce PDO from glucose at significantly higher titers ( $> 135$  g/L), productivities/rates ( $> 3.5$  g/L/h), and yields (up to 0.51 g/g) in fed-batch fermentation experiments [15]. As of yet, there is no report of using this engineered *E. coli* for continuous PDO production.

**Recombinant proteins:** Recombinant proteins, such as  $\alpha$ -amylase,  $\beta$ -galactosidase, cutinase, and many therapeutic proteins, have a broad range of applications from biocatalysis to pharmaceutical development. Recombinant proteins are produced by genetically modified microorganisms. Often, the recombinant DNA encoding the target protein is contained in a plasmid and expressed under a consecutive or inducible promoter [17]. In general, plasmid stability, contamination risk control, premotor selection and optimization, culture environment and physiology change are the major challenges hindering adoption of continuous fermentation processes for recombinant proteins. The use of inducible promoters such as the T7 promoter in *E. coli* allows for the unique design using a two-stage or multi-stage continuous reactor system, which enables the spatially decoupling cell growth from protein production [26]. The use of the two-stage continuous fermentation has improved the recombinant protein production by 100 folds [26].

In addition to the fermentation products from microbes, pharmaceuticals such as monoclonal antibody (mAb) from continuous biomanufacturing with mammalian cells has also been well studied [19]. Though continuous cultivation of mammalian cells is not a focus in this review, similar results were observed, i.e., continuous cultivations give higher mAb rates but lower titers as compared to typical fed-batch processes [19, 20]. Furthermore, the downstream recovery and purification processes for mAb are also similar to those for recombinant proteins from microbes [20].

Based on the progress made so far, the following major challenges still remain for developing the next generation of upstream continuous biomanufacturing for products derived from microbes:

- (1) Contamination risks: It is always a challenge to keep contamination-free for a long-term continuous fermentation process (up to several weeks or months).
- (2) Genetic instability: In a long-term continuous fermentation, cells may evolve to grow faster but produce less product, which can be caused by plasmid loss or mutations.
- (3) Decoupling product formation from cell growth: Most of the current or past continuous fermentation processes have difficulties in simultaneously maintaining high product titer, rate (i.e., productivity), and yield (TRY), as shown in Table 1. One major reason is that cell growth and product formation in a

single-stage continuous fermentation are coupled, while they actually prefer different optimal medium and process conditions.

- (4) Lack of efficient research tools for continuous biomanufacturing: Continuous fermentation experiments are time-consuming and labor-intensive. It can take a long period to reach a steady state, and the culture should be still monitored daily. Efficient research methods or tools are missing to accelerate the continuous process development.
- (5) Disconnection between product formation and recovery: The importance of downstream recovery has not been well addressed for continuous fermentation processes. It is desired that product recovery coupled to the continuous fermentation be designed with the capability to handle flow and concentration variations.

## Strategies to overcome major challenges in upstream continuous biomanufacturing

### *Contamination risk control*

From the very beginning, contamination risk has been one of the major factors that restricts the application of continuous biomanufacturing at large scale. Junker et al [27] have summarized their pilot-facility experience during 1989 to 2004 for various industrial fermentation products. In general, the fermentations with yeast have relatively lower contamination rates (0.93~2.2%), as compared to those with *E. coli* (7.6%), filamentous bacteria (10.2~16.9%), fungal (11~22.9%), and animal cells (16.1%) [27]. The continuous feeding of substrates and the long-term operations significantly increase the chance of contamination by other bacteria from the feeding sources, gas supplement lines, or the environment.

Alcohols such as ethanol were one class of fermentation products that have demonstrated early the feasibility of continuous production at large scale. This could be attributed to the addition of antibiotics in the fermentation culture and the lower culture pH values, which are not suitable for most bacterial growth [27]. Since the yeast strains are resistant to many antibiotics, adding antibiotics such as penicillin and tetracycline to the fermentation medium or the feed solution has become a standard practice for enhanced productivities of many alcoholic fermentation processes for non-beverage applications [28,29].

Lactic acid bacteria are the major contaminant in bioethanol fermentation, which compete with the yeast strains for sugar substrates and micronutrients and produces LA [30]. Adding antibiotics may not be able to completely stop the contamination [31]. Though LA bacteria can also tolerate certain lower pH values, developing more acid-tolerant yeast strains could be considered to control the bacterial contamination for fermentation without pH control [32]. Compared with the LA bacteria, acetic acid bacteria are less commonly seen, but the contamination of acetic acid bacteria is a much more problematic obstacle to

overcome [33]. Adding NaCl and ethanol may help control both types of bacterial contamination levels. In addition to the methods of using antibiotics or chemical reagents, new bioreactor design, such as the immersed membrane bioreactor (iMBR) to separate yeast from bacterial cells, can also be used to control or minimize the contamination risk [34].

### ***Enhancing genetic stability of production strain***

Genetic instability, indicated by gradually decreased production capability and sometimes increased cell growth rate, is another major challenge that restricts the application of a continuous fermentation at large scale. In general, the fermentation conditions during the production phase are less favorable for cell growth due to product/byproduct toxicity, which reduces growth rates. Therefore, genetic mutations may be induced to a shift of the metabolic pathways from what are designed for product formation to those in favor of cell growth under more stressful/harsh conditions. The risk factors for genotype changes include the genetic mutations in chromosomes and/or plasmid loss. A recent review summarized the genotype-directed strategies for leveraging DNA-sequencing data to guide the new strain design, which include deleting insertion sequence (IS) repeats and coupling or overlapping the product formation genes with the essential genes required for cell growth or primary metabolism [35]. In addition, a new platform with a two-vessel continuous flow system and reduced genome bacterial strains was also developed to significantly extend the continuous fermentation period with stable performance [US Patent 10,604,736B2].

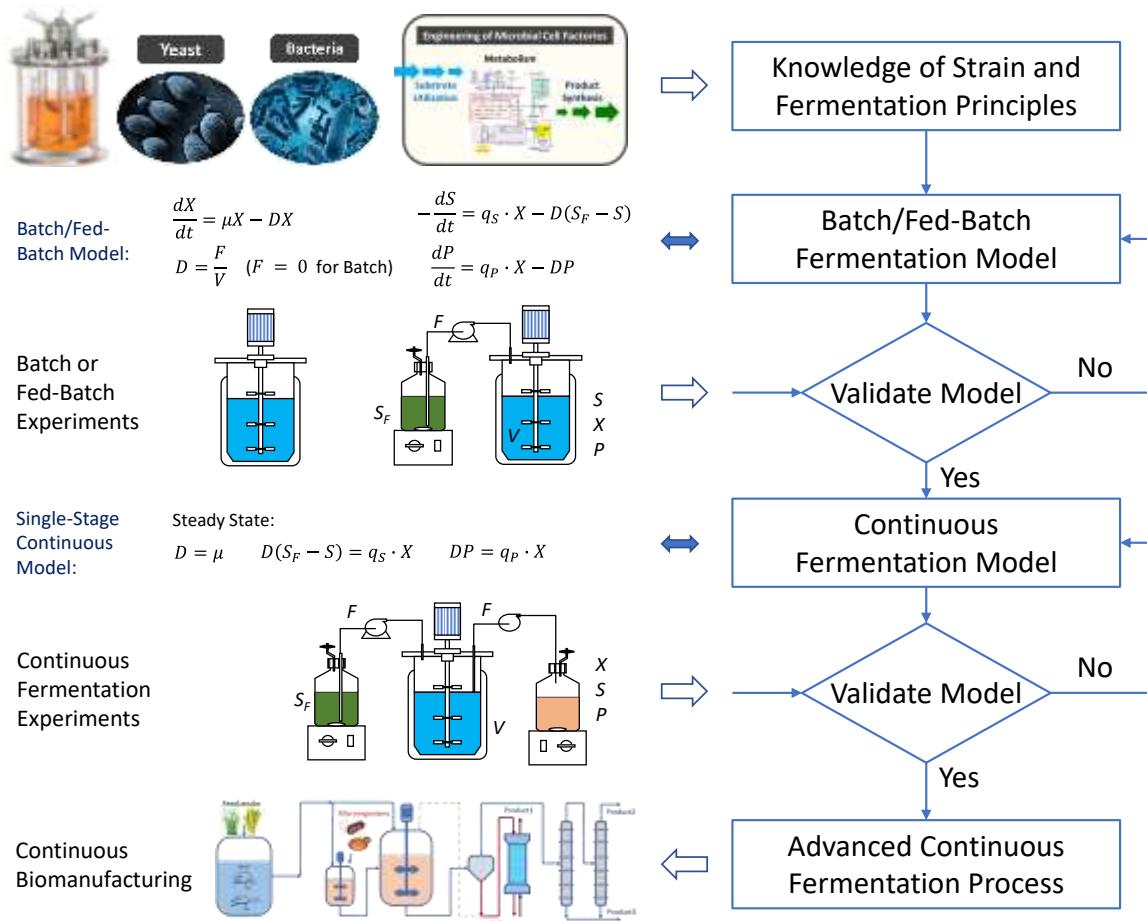
*Escherichia coli* is one of the most commonly used microorganisms that can be engineered for various biomanufacturing products due to its fast growth rate, well-established knowledge and tools for metabolic engineering, and relatively low contamination risk. Genetic instability is the major barrier that limits the application of continuous fermentation with an *E. coli* strain [36]. Strategies such as parallelization, cascade processing, reducing the genome size [37], and population controls have been tried to address the challenge, but it is still tricky to maintain a stable productivity in a long-term continuous bioreactor [36]. Most *E. coli* strains express the target gene in transformed plasmids with antibiotic or auxotrophic selection markers, but partial or complete loss of plasmid copy numbers are seen during the propagation process, which leads to decreased productivities. If ColE1-like plasmids containing a synthetic human interferon-gamma (hIFN $\gamma$ ) gene under controllable promoters are used, turning-off transcription of the hIFN $\gamma$  gene helped stabilize the ColE1-like plasmids [38]. Constitutive gene expression and larger plasmid size may also cause the segregational plasmid instability [39]. For the yeast *S. cerevisiae* harboring plasmid DNA for gene expression, using low-copy-number plasmids such as pGAC9 may minimize the plasmid loss issue [40].

Our recent experience showed that manipulation all gene edits in chromosome significantly improved the strain stability. For example, the oleaginous yeast *Yarrowia lipolytica* was introduced 30 copies of 9

different genes for biosynthesis of omega-3 EPA from glucose [3]. The strain was then used for steady-state production of omega-3 EPA in a 6-week continuous fermentation process [16].

#### ***Decoupling cell growth from production by multi-stage continuous fermentation***

Similar to chemical manufacturing that uses catalysts to convert petrochemical feedstocks into chemical products, biomanufacturing uses microorganisms as biocatalysts via the fermentation process to convert substrates such as sugars derived from renewable feedstocks into desired products. A typical fermentation process starts with a growth stage to accumulate enough cell mass as biocatalyst, followed by a production stage to convert substrate(s) into product(s). This two-stage concept makes it necessary to develop a dynamic metabolic control (DMC) strategy, which enables the decoupling of microbial growth from product formation [41]. Cell growth and product formation are each controlled under their own optimal conditions so that competition for limiting substrates can be avoided and/or accumulation of growth-inhibiting products or intermediates is unnecessarily a concern [36]. Therefore, a maximum product titer, rate, and/or yield can be achieved. This two-stage concept has well been adopted in fed-batch fermentation processes. For example, using an aerobic growth of *Lactobacillus* and anaerobic production led to 156 g/L lactate [42]. A two-stage pH control profiles for separate growth of *Klebsiella pneumoniae* and production of 2-ketogluconic acid led to a final product titer of 186 g/L [43].


Most current continuous fermentation designs use a single-stage chemostat due to its simpler design and operation. In a single chemostat, the growth and production occur together, which results in significantly lower product titer, rate and/or yield. In our recent study on production of omega-3 eicosapentaenoic acid (C20:5, EPA) with the metabolically engineered *Y. lipolytica* [16], a two-stage continuous fermentation was developed, which was equipped with a smaller growth bioreactor (Stage 1) and a larger production bioreactor (Stage 2) to decouple cell growth and omega-3 EPA production. Compared with the fed-batch process, the continuous fermentation improved the overall productivity by 80% and the titer by 40%, while maintaining a similar conversion yield. A similar two-stage continuous fermentation system was also developed for production of ethanol from syngas, which consisted of a 1-L stirred tank reactor for cell growth and a 4-L bubble column equipped with a cell recycle module for ethanol production [44]. The cell recycle unit allowed maintain cell densities to be maintained up to 10 g DCW/L. The maximum ethanol titer of 21 g/L was achieved at a rate of 0.37 g/(L·h).

Higher productivities achieved in multistage continuous fermentation (MCF) processes can be attributed not only to the decoupling cell growth and production, but also to the privileged reaction engineering principle from MCF itself. In chemical reaction engineering, a plug flow reactor (PFR) can be approximated by multiple continuous stirred-tank reactors (CSTRs) connected in series. For any reactions where production rates are positively impacted by the concentration of reactant(s), a PFR is preferred to a CSTR.

Many fermentation processes belong to this reaction category, *i.e.*, the bioethanol production rates benefit from relatively higher substrate concentrations. Therefore, the MCF system, which approximates PFR, achieves higher product titers and yields than a single-stage CSTR (or called a chemostat). For example, the yeast *S. cerevisiae* in a five-stage continuous fermentation system was able to produce ethanol > 130 g/L when the first stage reactor was supplied with 320 g/L glucose [45].

### ***Using modeling tools to accelerate continuous process development***

For a continuous fermentation process, it takes a long period to reach a steady state (about 4 or 5 residence times) after a new condition (such as the dilution rate and/or the substrate concentration in feed) applies to the continuous fermentation system. Therefore, it is time-consuming and labor-intensive to rely only on experiments to determine the optimal conditions. Mathematical modeling can be used as a powerful tool to accelerate the process development of a continuous fermentation without the need of a large number of optimization experiments. In general, the fundamental understanding of the microorganism and metabolic pathways and the first principles of the fermentation process can be obtained from batch or fed-batch experiments. The specific kinetic parameters determined from batch/fed-batch data can then be used to model continuous fermentations. After that, only a limited number of continuous fermentation experiments are needed to validate and recalibrate the continuous fermentation model. The model can be eventually used to guide process optimization, control, and scale-up for an advanced continuous fermentation (Figure 2).



**Figure 2.** General strategy to use models to assist or guide continuous fermentation process development.

Abbreviations: D – dilution rate, F – feed rate, S – substrate, P – product, V – reactor volume, X – cell density,  $\mu$  - specific growth rate,  $q_S$  - specific substrate consumption rate,  $q_P$  - specific product formation rate.

Modeling is extremely helpful in optimizing the continuous fermentation with complexities in media and process design. Wang et al. [11] developed models for lactic acid production by continuous fermentation under conditions of different media, strain of *Enterococcus mundtii* QU 25, process with a cell recycle unit, and various cell retention time. The model successfully guided the continuous fermentation to achieve production of lactic acid at 65 g/L with a productivity of 13 g/L·h. Modeling approach has been widely adopted to develop continuous fermentations for ethanol production. For example, Esfahanian et al. [46] used a genetic algorithm to model ethanol fermentation in both a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR), which was used to determine the range of dilution rate to have the CMBR outperform a CCBR. Herrera et al. [47] developed a mathematical model to simulate and analyze a four-stage continuous ethanol fermentation system with cell recycle unit at industrial scale. The model simulation results successfully helped develop an Infinite-Horizon Model Predictive Control (IH-MPC) strategy, which was capable of maintaining the outlet sugar concentration of the fourth reactor at a desired value by manipulating the feed flow rate, where there were fluctuations in sugar concentration in the feed stream. Ariyajaroenwong et al. [48] developed a kinetic model for ethanol production from *S. cerevisiae* immobilized on sweet sorghum stalks in a continuous fermentation system. Taking together, these model examples have demonstrated a promise of using similar models to assist and/or guide the design and optimization of continuous fermentation system for other microbial systems.

## Future Perspectives

As more advanced scientific research tools and methods become available in the field of industrial biotechnology and many other science and engineering areas, continuous biomanufacturing will eventually replace the current batch or fed-batch biomanufacturing as the major method for producing fuels, specialty and commodity chemicals, novel materials, nutraceuticals, and pharmaceuticals in future. The following continuing efforts should be undertaken to realize the ambition:

***Unique strain design and engineering for continuous biomanufacturing:*** The success of continuous biomanufacturing will depend not only on innovations in bioprocesses, but also on unique design and engineering of strains that have the following features:

- **Switchable growth and production:** Decoupling cell growth and product formation might be beneficial in continuous fermentation by methods such as inducible promoters that can be switched on and off for a controllable transition between cell growth and production phases [49,50].
- **Increased genetic stability:** This can be achieved by strategies that (1) use low-copy, more stable plasmid [40], (2) manipulate gene editing in the chromosome [16], (3) delete insertion sequence (IS)

repeats [35], and/or (4) couple the product formation genes and the essential genes required for cell growth or primary metabolism [35].

- **Reduced contamination risk:** Developing strains with tolerance for organic acids [51], osmotic stress [52], and/or higher temperature could enhance the anti-contamination capability [53]. For bacterial strains, developing an anti-phage defense system would be helpful [54].

**Using economical feedstocks for continuous biomanufacturing:** The raw material expense may contribute to more than half of the total biomanufacturing cost for products such as biofuels and commodity chemicals. New strains and processes should be developed to use more economical and/or unconventional feedstocks:

- **Efficient utilization of sugars derived from lignocellulosic biomass:** Strains capable of using C5 and C6 sugars are desired. There has been much progress in engineering strains for utilizing C5 sugars, such as xylose [55]. However, more research efforts are still needed to have these sugars metabolized at similar efficiencies and conversion yields. Also, a significant portion of sugars (7-10% of glucose and 12-20% of xylose) may be in oligomeric forms and cannot be efficiently fermented [56]. New strategies for co-expressing of gluco- and xylo-oligomers degrading enzymes should be considered in the production strain such that all sugar monomers and most oligomers can be consumed.
- **Alternative feedstocks for continuous biomanufacturing:** Many other alternative feedstocks are available for fermentation, which include waste agricultural residues, degraded waste plastics [57], waste food ingredients [58,59], or waste gases [60]. Furthermore, about half or more carbon is wasted as CO<sub>2</sub> during a fermentation process, it would be desired to fix the waste CO<sub>2</sub> into C1 or C2 chemicals such as formic acid, acetic acid and ethanol via electrochemical conversion process [61]. The strain should be engineered to use C1 and C2 chemicals so that they can be brought back to the continuous fermentation as co-substrate to minimize the carbon loss [62,63].

**Coupling production and product recovery in continuous fermentation:** In addition to the efforts in decoupling cell growth from product formation through the design of two-stage or multi-stage continuous fermentation, an ideal continuous fermentation process should also couple product formation and product recovery. As shown in **Figure 3**, the cells produced in the last stage of the continuous fermentation could be recycled back to the fermentation or the harvested cell mass could be used for extraction of the intracellular product (Product 1, such as proteins and lipids). Extracellular products (Product 2, 3, ...) should be continuously removed, recovered, and/or purified through a series of separation units. This integrated process will allow downstream purification and relieve potential product inhibition/toxicity in the fermentation with an in-situ product removal (ISPR) unit.



**Figure 3.** A conceptual continuous biomanufacturing process that decouples cell growth from product formation and couples the fermentation and product recovery.

**Intelligent Continuous Biomanufacturing:** Artificial intelligence (AI) and machine learning have recently been applied to biomanufacturing [64]. Integration of AI into continuous fermentation process will allow (1) identification of critical factors impacting the fermentation performance, (2) application of real-time feedback control, and (3) maintaining process reliability with timely adjustments and controls for variations or fluctuations from strain growth characteristics, medium/feed ingredients, and process operations. AI modeling techniques and tools such as interpretable modeling [65], representation learning and Graph Attention Networks [66], reinforcement learning (RL) [67], and deep reinforcement learning (deep RL) [68] can be used to increase efficiency, robustness, reliability, and yield with significantly lower manufacturing cost. Continued research is still needed to determine the most appropriate AI tool(s) for continuous biomanufacturing.

## Conclusion

Continuous biomanufacturing has been widely investigated for various fermentation products, but has never become a major manufacturing option in industrial biotechnology. Most of current biomanufacturing facilities are built as batch or fed-batch mode, which is not able to achieve the true bioconversion potential of the rewired biological cells via modern biotechnology. Often, continuous biomanufacturing is able to significantly enhance a fermentation product's volumetric productivity, but fails to maintain cell's specific productivity and yield. The major upstream barriers or technical challenges for applying continuous biomanufacturing include (1) contamination risk in long-term continuous operation, (2) genetic instability/mutation in continuous culture, (3) incapable of simultaneously maintaining optimal conditions for both cell growth and product formation, (4) lack of efficient tools and methods for research and

development on continuous biomanufacturing. To address these challenges, unique strategies for strain design and fermentation engineering should be developed to minimize contamination risk, increase genetic stability, and maintain high titer, rate, and yield (TRY) simultaneously. Modeling approach could be a powerful tool to accelerate research and development of continuous biomanufacturing. In addition to novel strains, processes capable of using alternative economical feedstocks should be explored. Finally, the integration of AI and computer model have the potential to aid continuous biomanufacturing towards more sustainable, robust, reliable, and intelligent processes in future.

## Conflict of interest statement

Nothing declared.

## Acknowledgements

This project is supported by the National Science Foundation (# 2133660) and UML-WPI Seed Grant (2019/2020).

## Reference

\* reference of special interest

\*\* reference of outstanding interest

1. Michels P, Rosazza J: **The evolution of microbial transformations for industrial applications.** *SIM News* 2009 2009, 1:36–52.
2. Zhang Y-HP, Sun J, Ma Y: **Biomanufacturing: history and perspective.** *J Ind Microbiol Biotechnol* 2017, **44**:773–784.
3. Xie D, Jackson EN, Zhu Q: **Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered *Yarrowia lipolytica*: from fundamental research to commercial production.** *Appl Microbiol Biotechnol* 2015, **99**:1599.
4. Andersen RL, Jensen KM, Mikkelsen MJ: **Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium *Thermoanaerobacter italicus* Pentocrobe 411.** *PLoS One* 2015, **10**:e0136060.
5. Godoy A, Amorim HV, Lopes ML, Oliveira AJ: **Continuous and batch fermentation processes: Advantages and disadvantages of these processes in the Brazilian ethanol production.** *Int Sugar J* 2008, **110**:175–181.
6. Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL: **Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol.** *Bioresour Technol* 2014, **151**:69–77.
- 7.\* Remmers IM, Hidalgo-Ulloa A, Brandt BP, Evers WAC, Wijffels RH, Lamers PP: **Continuous versus batch production of lipids in the microalgae *Acutodesmus obliquus*.** *Bioresour Technol* 2017, **244**:1384–1392.

This paper provides a quantitative comparison between batch and continuous microalgal lipid production with wild type and engineered *Acutodesmus obliquus*.

8.\* Vees CA, Neuendorf CS, Pflügl S: **Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives.** *J Ind Microbiol Biotechnol* 2020, **47**:753–787.

This paper discusses different process operation strategies for continuous fermentations, especially for developing solvent production towards industrial implementation.

9. Bankar SB, Survase SA, Singhal RS, Granström T: **Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using *Clostridium acetobutylicum* B 5313.** *Bioresour Technol* 2012, **106**:110–116.

10.\* Olszewska-Widdrat A, Alexandri M, López-Gómez JP, Schneider R, Venus J: **Batch and Continuous Lactic Acid Fermentation Based on A Multi-Substrate Approach.** *Microorg* 2020, Vol 8, Page 1084 2020, **8**:1084.

This paper evaluates the feasibility for continuous production of L-lactic acid from different renewable substrates such as acid whey, sugar beet molasses, sugar bread, alfalfa press green juice and tapioca starch.

11.\* Wang Y, Chan K-L, Ali M, Rahman A-, Sonomoto K, Leu S-Y: **Dynamic simulation of continuous mixed sugar fermentation with increasing cell retention time for lactic acid production using *Enterococcus mundtii* QU 25.** *Biotechnol Biofuels* 2020 **13** 2020, **13**:1–16.

This paper investigates the feasibility of an innovative co-fermentation process featuring with a cell recycling unit (CF/CR) for lactic acid production with mixed sugar utilization. A mathematical model was established to design, optimize and analyze the biological process.

12. Maharaj K, Bradfield MFA, Nicol W: **Succinic acid-producing biofilms of *Actinobacillus succinogenes*: reproducibility, stability and productivity.** *Appl Microbiol Biotechnol* 2014, **98**: 7379–7386.

13. van Heerden CD, Nicol W: **Continuous and batch cultures of *Escherichia coli* KJ134 for succinic acid fermentation: Metabolic flux distributions and production characteristics.** *Microb Cell Fact* 2013, **12**:1–10.

14. Menzel K, Zeng AP, Deckwer WD: **High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by *Klebsiella pneumoniae*.** *Enzyme Microb Technol* 1997, **20**:82–86.

15. Nakamura CE, Whited GM: **Metabolic engineering for the microbial production of 1,3-propanediol.** *Curr Opin Biotechnol* 2003, **14**:454–459.

16.\*\* Xie D, Miller E, Sharpe P, Jackson E, Zhu Q: **Omega-3 production by fermentation of *Yarrowia lipolytica*: From fed-batch to continuous.** *Biotechnol Bioeng* 2016, **114**:798–812.

This paper presents a novel two-stage continuous fermentation process that decuples omega-3 production from the yeast growth to achieve significantly higher product rate and titer without sacrificing the conversion yield.

17.\* Peebo K, Neubauer P: **Application of Continuous Culture Methods to Recombinant Protein Production in Microorganisms.** *Microorganisms* 2018, **6**: 56.

This review summarizes the uses of continuous cultures in cell physiology studies and process development for production of recombinant proteins with different microorganisms.

18. Walsh G: **Biopharmaceutical benchmarks 2018.** *Nat Biotechnol* 2018, **36**: 1136–1145.

19. Bunnak P, Allmendinger R, Ramasamy S V., Lettieri P, Titchener-Hooker NJ: **Life-cycle and cost**

**of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs.** *Biotechnol Prog* 2016, **32**:1324–1335.

20.\* Khanal O, Lenhoff AM: **Developments and opportunities in continuous biopharmaceutical manufacturing.** *MAbs* 2021, **13**: 1903664.

This review summarizes recent efforts in continuous unit operations, integrated processes, and process analytical technologies (PATs) that facilitate the implementation of continuous biomanufacturing, particularly for production of monoclonal antibodies (mAbs).

21. Bayrock DP, Ingledew WM: **Ethanol production in multistage continuous, single stage continuous, *Lactobacillus*-contaminated continuous, and batch fermentations.** *World J Microbiol Biotechnol* 2005 **21** 2005, **21**:83–88.

22. Li SY, Srivastava R, Subi SL, Li Y, Parnas RS: **Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control.** *Bioresour Technol* 2011, **102**:4241–4250.

23. Deckwer W-D: **Microbial conversion of glycerol to 1,3-propanediol.** *FEMS Microbiol Rev* 1995, **16**:143–149.

24.\* Varrone C, Floriotis G, Heggeset TMB, Le SB, Markussen S, Skiadas I V., Gavala HN: **Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3 propanediol and butyric acid.** *Biochem Eng J* 2017, **128**:149–161.

This paper investigated the use of eight different continuous flow stirred-tank reactors (CSTR) for production of 1,3 propanediol from crude glycerol generated from animal fat-based biodiesel under non-sterile conditions.

25. Schmideder A, Weuster-Botz D: **High-performance recombinant protein production with *Escherichia coli* in continuously operated cascades of stirred-tank reactors.** *J. Ind. Microbiol. Biotechnol.* 2017, **44**: 1021–1029.

26.\* Kopp J, Kolkmann AM, Veleenturf PG, Spadiut O, Herwig C, Slouka C: **Boosting recombinant inclusion body production—from classical fed-batch approach to continuous cultivation.** *Front Bioeng Biotechnol* 2019, **7**:297.

This paper shows how a two-stage continuous fermentation process was developed and used as a promising alternative to fed-batch processes for constant inclusion body production at a time-independent level.

27.\*\* Seo SO, Park SK, Jung SC, Ryu CM, Kim JS: **Anti-Contamination Strategies for Yeast Fermentations.** *Microorg* 2020, *Vol 8, Page 274* 2020, **8**:274.

This paper reviews the general information for industrial yeast fermentation, microbial contamination in yeast fermentation, and suggested approaches/strategies for controlling microbial contamination.

28. Junker B, Lester M, Leporati J, Schmitt J, Kovatch M, Borysewicz S, Maciejak W, Seeley A, Hesse M, Connors N, et al.: **Sustainable reduction of bioreactor contamination in an industrial fermentation pilot plant.** *J Biosci Bioeng* 2006, **102**:251–268.

29. Aquarone2 E: **Penicillin and Tetracycline as Contamination Control Agents in Alcoholic Fermentation of Sugar Cane Molasses.** *Appl Microbiol* 1960, **8**:263–268.

30. Brexó RP, Sant'Ana AS: **Impact and significance of microbial contamination during fermentation for bioethanol production.** *Renew Sustain Energy Rev* 2017, **73**:423–434.

31. Skinner KA, Leathers TD: **Bacterial contaminants of fuel ethanol production.** *J Ind Microbiol Biotechnol* 2004, **31**:401–408.

32. Bayrock D, Ingledew WM: **Changes in steady state on introduction of a *Lactobacillus***

**contaminant to a continuous culture ethanol fermentation.** *J Ind Microbiol Biotechnol* 2001, **27**:39–45.

33. Albers E, Johansson E, Franzén CJ, Larsson C: **Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations.** *Biotechnol Biofuels* 2011, **4**:1–8.

34.\* Mahboubi A, Cayli B, Bulkan G, Doyen W, De Wever H, Taherzadeh MJ: **Removal of Bacterial Contamination from Bioethanol Fermentation System Using Membrane Bioreactor.** *Ferment 2018, Vol 4, Page 88* 2018, **4**:88.

This paper describes a physical selective separation method that use an immersed membrane bioreactor (iMBR) to remove the bacterial cells *Enterobacter cloacae* from the continuous *Saccharomyces cerevisiae* fermentation system.

35.\*\* Røgås P, Olsson L: **The future of self-selecting and stable fermentations.** *J Ind Microbiol Biotechnol* 2020, **47**:993–1004.

This paper discusses synthetic biology stabilization strategies towards the desired mutation genotype or production phenotype.

36.\* Kopp J, Slouka C, Spadiut O, Herwig C: **The Rocky Road From Fed-Batch to Continuous Processing With *E. coli*.** *Front Bioeng Biotechnol* 2019, **7**:328.

This review discusses the current state of *E. coli* fed-batch processes the potential of using continuous processing. The major achievements in the continuous upstream applications of *E. coli* and the continuous downstream processing of intracellular proteins are also discussed.

37. Pósfai G, Plunkett G 3rd, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR: **Emergent properties of reduced-genome *Escherichia coli*.** *Science* 2006, **312**: 1044–1046.

38. Popov M, Petrov S, Nacheva G, Ivanov I, Reichl U: **Effects of a recombinant gene expression on ColE1-like plasmid segregation in *Escherichia coli*.** *BMC Biotechnol* 2011, **11**:18.

39. González Vara A, Rossi M, Altomare L, Eikmanns B, Matteuzzi D: **Stability of recombinant plasmids on the continuous culture of *Bifidobacterium animalis* ATCC 27536.** *Biotechnol Bioeng* 2003, **84**:145–150.

40. Kilonzo PM, Margaritis A, Bergougnou MA: **Plasmid stability and kinetics of continuous production of glucoamylase by recombinant *Saccharomyces cerevisiae* in an airlift bioreactor.** *J Ind Microbiol Biotechnol* 2009, **36**:1157–1169.

41. Burg JM, Cooper CB, Ye Z, Reed BR, Moreb EA, Lynch MD: **Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations.** *Curr Opin Chem Eng* 2016, **14**:121–136.

42. Ge XY, Xu Y, Chen X, Zhang LY: **Regulation of Metabolic Flux in *Lactobacillus casei* for Lactic Acid Production by Overexpressed *ldhL* Gene with Two-Stage Oxygen Supply Strategy.** *J Microbiol Biotechnol* 2015, **25**:81–88.

43. Sun Y, Wei D, Shi J, Mojovi L, Han Z, Hao J: **Two-Stage Fermentation for 2-Ketogluconic Acid Production by *Klebsiella pneumoniae*.** *J Microbiol Biotechnol* 2014, **24**:781–787.

44. Richter H, Martin ME, Angenent LT: **A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol.** *Energies* 2013, *Vol 6, Pages 3987–4000* 2013, **6**:3987–4000.

45. Bayrock DP, Michael Ingledew W: **Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology.** *J Ind Microbiol*

*Biotechnol* 2001, **27**:87–93.

46. Esfahanian M, Shokuh Rad A, Khoshhal S, Najafpour G, Asghari B: **Mathematical modeling of continuous ethanol fermentation in a membrane bioreactor by pervaporation compared to conventional system: Genetic algorithm.** *Bioresour Technol* 2016, **212**:62–71.

47. Herrera WE, Rivera EC, Alvarez LA, Tovar LP, Rojas ST, Yamakawa CK, Bonomi A, Filho RM: **Modeling And Control of a Continuous Ethanol Fermentation Using a Mixture of Enzymatic Hydrolysate and Molasses from Sugarcane.** *Chem Eng Trans* 2016, **50**: 169–174.

48. Ariyajaroenwong P, Laopaiboon P, Salakkam A, Srinophakun P, Laopaiboon L: **Kinetic models for batch and continuous ethanol fermentation from sweet sorghum juice by yeast immobilized on sweet sorghum stalks.** *J Taiwan Inst Chem Eng* 2016, **66**:210–216.

49.\* Yu TC, Liu WL, Brinck MS, Davis JE, Shek J, Bower G, Einav T, Insigne KD, Phillips R, Kosuri S, et al.: **Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems.** *Nat Commun* 2021 **12**: 2021, **12**:1–14.

This paper describes an approach that enables to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics.

50. Peng B, Williams TC, Henry M, Nielsen LK, Vickers CE: **Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: A comparison of yeast promoter activities.** *Microb Cell Fact* 2015, **14**:1–11.

51.\*\* Sun W, Vila-Santa A, Liu N, Prozorov T, Xie D, Faria NT, Ferreira FC, Mira NP, Shao Z: **Metabolic engineering of an acid-tolerant yeast strain *Pichia kudriavzevii* for itaconic acid production.** *Metab Eng Commun* 2020, **10**: e00124.

This paper presents a research that uses an acid-tolerant yeast *P. kudriavzevii* as an engineering host for production of itaconic acid, which doesn't require pH adjustment during the fermentation.

52. Stratford M, Steels H, Novodvorska M, Archer DB, Avery S V.: **Extreme osmotolerance and halotolerance in food-relevant yeasts and the role of glycerol-dependent cell individuality.** *Front Microbiol* 2019, **10**:3238.

53.\* Li C, Liu Q, Wang Y, Yang X, Chen S, Zhao Y, Wu Y, Li L: **Salt stress improves thermotolerance and high-temperature bioethanol production of multi-stress-tolerant *Pichia kudriavzevii* by stimulating intracellular metabolism and inhibiting oxidative damage.** *Biotechnol Biofuels* 2021, **14**:1–17.

This paper reveals the mechanisms of the improved thermotolerance and high-temperature bioethanol production of *P. kudriavzevii* by salt stress, which will further guide to construct genetic engineering yeasts for high-temperature bioethanol production.

54.\*\* Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R: **Systematic discovery of antiphage defense systems in the microbial pangenome.** *Science (80-)* 2018, **359**: eaar4120.

This paper shows the discovery of nine new families of antiphage defense systems and one additional family of antiplasmid systems that are widespread in microbes and shown to strongly protect against foreign DNA invasion. The study expands the known arsenal of defense systems used by prokaryotes for protection against phages.

55. Cunha JT, Soares PO, Romaní A, Thevelein JM, Domingues L: **Xylose fermentation efficiency of industrial *Saccharomyces cerevisiae* yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways.** *Biotechnol Biofuels* 2019,

12:1–14.

56. Chen X, Kuhn E, Jennings EW, Nelson R, Tao L, Zhang M, Tucker MP: **DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L<sup>-1</sup>) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration.** *Energy Environ Sci* 2016, **9**:1237–1245.

57. Soong YHV, Sobkowicz MJ, Xie D: **Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes.** *Bioeng* 2022, *Vol 9, Page 98* 2022, **9**:98.

58. Soong YHV, Liu N, Yoon S, Lawton C, Xie D: **Cellular and metabolic engineering of oleaginous yeast *Yarrowia lipolytica* for bioconversion of hydrophobic substrates into high-value products.** *Eng Life Sci* 2019, **19**:423–443.

59.\* Soong YHV, Zhao L, Liu N, Yu P, Lopez C, Olson A, Wong HW, Shao Z, Xie D: **Microbial synthesis of wax esters.** *Metab Eng* 2021, **67**:428–442.

This paper presents a novel feedstock, waste plant oils, to replace glucose for biomanufacturing high-value products such as wax esters.

60. Liew FM, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M: **Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.** *Front Microbiol* 2016, **7**: 694.

61. Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh CT, De Luna P, Yu Z, Rasouli AS, Brodersen P, et al.: **Accelerated discovery of CO<sub>2</sub> electrocatalysts using active machine learning.** *Nature* 2020, **581**:178–183.

62. Yishai O, Goldbach L, Tenenboim H, Lindner SN, Bar-Even A: **Engineered Assimilation of Exogenous and Endogenous Formate in *Escherichia coli*.** *ACS Synth Biol* 2017, **6**:1722–1731.

63. Xu J, Liu N, Qiao K, Vogg S, Stephanopoulos G: **Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation.** *Proc Natl Acad Sci U S A* 2017, **114**:E5308–E5316.

64.\*\* Gargalo CL, Udugama I, Pontius K, Lopez PC, Nielsen RF, Hasanzadeh A, Mansouri SS, Bayer C, Junicke H, Gernaey K V.: **Towards smart biomanufacturing: a perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes.** *J Ind Microbiol Biotechnol* 2020, **47**:947–964.

This paper summarizes the advances in monitoring and controlling of bioprocesses and key technologies for gathering the big data for biomanufacturing, which will enable the current biomanufacturing industry to transition to Industry 4.0 operations.

65. Xie W, Wang B, Li C, Xie D, Auclair J: **Interpretable biomanufacturing process risk and sensitivity analyses for quality-by-design and stability control.** *Nav Res Logist* 2022, **69**:461–483.

66. Veličković P, Cucurull G, Casanova A, Romero A, Liò P B: **Graph Attention Networks.** In *Proceedings of the International Conference on Learning Representations (ICLR)*. . 2018.

67. Zheng H, Xie W, Ryzhov IO, Smith RH, Xie D: **Policy Optimization in Dynamic Bayesian Network Hybrid Models of Biomanufacturing Processes.** 2021, doi:10.48550/arxiv.2105.06543.

68. François-Lavet V, Henderson P, Islam R, Bellemare MG, Pineau J: **An Introduction to Deep Reinforcement Learning.** *Found Trends® Mach Learn* 2018, **11**:219–354.