
A Lattice Linear Predicate Parallel Algorithm for the Dynamic
Programming Problems

Vijay K. Garg
The University of Texas at Austin

Austin, Texas, USA

garg@ece.utexas.edu

ABSTRACT

It has been shown that the parallel Lattice Linear Predicate (LLP) al-

gorithm solves many combinatorial optimization problems such as

the shortest path problem, the stable marriage problem and the mar-

ket clearing price problem. In this paper, we give the parallel LLP

algorithm for many dynamic programming problems. In particular,

we show that the LLP algorithm solves the longest subsequence

problem, the optimal binary search tree problem, and the knap-

sack problem. Furthermore, the algorithm can be used to solve the

constrained versions of these problems so long as the constraints

are lattice linear. The parallel LLP algorithm works correctly in

a distributed system setting where a processor may use an older

value of a variable stored at a different processor.

CCS CONCEPTS

• Theory of computation→ Parallel algorithms;

KEYWORDS

distributive lattices; predicate detection; optimization problems

ACM Reference Format:

Vijay K. Garg. 2022. A Lattice Linear Predicate Parallel Algorithm for the

Dynamic Programming Problems. In 23rd International Conference on Dis-

tributed Computing and Networking (ICDCN 2022), January 4ś7, 2022, Delhi,

AA, India. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/

3491003.3491019

1 INTRODUCTION

It has been shown that the Lattice Linear Predicate (LLP) algo-

rithm solves many combinatorial optimization problems such as

the shortest path problem, the stable marriage problem and the

market clearing price problem [8]. In this paper, we build on the

work in [8] to show that many problems that can be solved using

dynamic programming [2] can also be solved in parallel and dis-

tributed fashion using the LLP algorithm. Dynamic programming is

applicable to problems where it is easy to set up a recurrence rela-

tion such that the solution of the problem can be derived from the

solutions of problems with smaller sizes. One can solve the problem

using recursion; however, recursion may result in many duplicate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDCN 2022, January 4ś7, 2022, Delhi, AA, India

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9560-1/22/01. . . $15.00
https://doi.org/10.1145/3491003.3491019

computations. By using memoization, we can avoid recomputing

previously computed values. We assume that the problem is solved

using dynamic programming with such bottom-up approach in this

paper.

The LLP algorithm views solving a problem as searching for

an element in a finite distributive lattice [3, 4, 7] that satisfies a

given predicate 𝐵. The predicate is required to be closed under

the operation of meet (or, equivalently lattice-linear). For all the

problems considered in the paper, the longest subsequence problem,

the optimal binary search tree problem and the Knapsack problem,

the predicate is indeed closed under meets. Any finite distributive

lattice can be equivalently characterized by a finite poset of its

join-irreducibles from Birkhoff’s theorem [3, 4]. The LLP algorithm

works on the finite poset in parallel to find the least element in

the distributive lattice that satisfies the given predicate. It starts

with the bottom element of the lattice and marches towards the

top element of the lattice in a parallel fashion by advancing on

any chain of the poset for which the current element is forbidden.

An advantage of the LLP algorithm is that the algorithm stays

correct even when a processor ends up using an older value of the

variable stored at another processor. The only requirement is that

the value updated at any processor is eventually communicated at

other processors.

There are also some key differences between dynamic program-

ming (the bottom-up approach) and the LLP algorithm. The usual

dynamic programming problem seeks a structure that minimizes

(or maximizes) some scalar. For example, the longest subsequence

problem asks for the subsequence in an array 𝐴[1..𝑛] that maxi-

mizes the sum. In contrast, the LLP algorithm seeks to minimize

or maximize a vector. In the longest subsequence problem with

the LLP approach, we are interested in the longest subsequence in

the array 𝐴[1..𝑖] for each 𝑖 ≤ 𝑛 that ends at index 𝑖 . Thus, instead

of asking for a scalar, we ask for the vector of size 𝑛. We get an

array 𝐺 [1..𝑛] and the solution to the original problem is just the

maximum value in the array𝐺 . Similarly, the optimal binary search

tree problem [13] asks for the construction of an optimal binary

search tree on 𝑛 symbols such that each symbol 𝑖 has probability

𝑝𝑖 of being searched. Our goal is to find the binary search tree that

minimizes the expected cost of search in the tree. The LLP problem

seeks the optimal binary search tree for all ranges 𝑖 . . . 𝑗 instead

of just one range 1..𝑛. Finally, the knapsack problem [9, 11] asks

for the maximum valued subset of items that can be fit in a knap-

sack such that the profit is maximized and the total weight of the

knapsack is at most𝑊 . The LLP problem seeks the maximum profit

obtained by choosing items from 1..𝑖 and the total weight from

1..𝑊 . In all these problems, traditionally we are seeking a single

structure that optimizes a single scalar; whereas the LLP algorithm

ICDCN 2022, January 4ś7, 2022, Delhi, AA, India Vijay K. Garg

asks for a vector. It turns out that that in asking for an optimal

vector instead of an optimal scalar, we do not lose much since the

existing solutions also end up finding the optimal solutions for the

subproblems. The LLP algorithm returns a vector 𝐺 such that𝐺 [𝑖]
is optimal for 𝑖 .

The second difference between dynamic programming and the

LLP algorithm is in terms of parallelism. The dynamic programming

solution does not explicitly refers to parallelism in the problem. The

LLP algorithm has an explicit notion of parallelism. The solution

uses an array 𝐺 for all problems and the algorithm requires the

components of 𝐺 to be advanced whenever they are found to be

forbidden. If 𝐺 [𝑖] is forbidden for multiple values of 𝑖 , then 𝐺 [𝑖]
can be advanced for all those values in parallel.

The third difference between dynamic programming and the LLP

algorithm is in terms of synchronization required during parallel

and distributed execution of the algorithm. In case of dynamic

programming, if the recursive formulas are evaluated in parallel it

is assumed that the values used are correct. In contrast, suppose

that we check for𝐺 [𝑖] and𝐺 [𝑗] to be forbidden concurrently such

that 𝐺 [𝑖] ends up using an old value of 𝐺 [𝑗], the LLP algorithm is

still correct. The only requirement we have for parallelism is that

when𝐺 [𝑖] uses a value of𝐺 [𝑗], it should either be the most recent

value of 𝐺 [𝑗] or some prior value. A processor that is responsible

for keeping𝐺 [𝑖] may get an old value from𝐺 [𝑗] in a parallel setting
when it gets this value from a cache. In a message passing system,

it may get the old value of 𝐺 [𝑗] if the message to update 𝐺 [𝑗] has
not yet arrived at the processor with 𝐺 [𝑖]. Thus, LLP algorithms

are naturally distributed with little synchronization overhead.

The fourth difference between dynamic programming and the

LLP algorithm is that we can use the LLP algorithm to solve a con-

strained version of the problem, so long as the constraint itself is

lattice-linear. Suppose that we are interested in the longest subse-

quence such that successive elements differ by at least 2. It can be

(easily) shown that this constraint is lattice-linear. Hence, the LLP

algorithm is applicable because we are searching for an element

that satisfies a conjunction of two lattice-linear predicates. Since

the set of lattice-linear predicates is closed under conjunction, the

resulting predicate is also lattice-linear and the LLP algorithm is

applicable. Similarly, the predicate that the symbol 𝑖 is not a parent

of symbol 𝑗 is lattice-linear and the constrained optimal binary

search tree algorithm returns the optimal tree that satisfies the

given constraint. In the Knapsack problem, it is easy to solve the

problem with the additional constraint that if the item 𝑥 is included

in the Knapsack, then the item 𝑦 is also included. The constrained

versions of these problems are not discussed in the literature and

are of independent interest.

We note here that our goal is not to improve the time or work

complexity of the algorithms, but to provide a single parallel (and

distributed) algorithm that solve all of these problems and their

constrained versions. For the increasing subsequence problem, the

standard dynamic programming approach takes 𝑂 (𝑛2) time where

𝑛 is the size of the array. The parallel LLP algorithm takes𝑂 (Δ log𝑛)
time where Δ is the longest increasing subsequence in the array.

The parallel algorithms specific to the longest increasing subse-

quence problem are discussed in [6, 14, 16]. The optimal binary

search tree problem takes 𝑂 (𝑛3) time using the dynamic program-

ming approach where 𝑛 is the number of symbols. The parallel

LLP algorithm takes 𝑂 (𝑛 log𝑛) with 𝑂 (𝑛2) processors. The paral-
lel algorithms for the optimal binary search tree are described in

[1, 10]. The knapsack problem takes𝑂 (𝑛𝑊) time using the dynamic

programming approach where 𝑛 is the number of items and𝑊 is

the maximum weight of any item. The parallel LLP algorithm takes

𝑂 (𝑛) time with 𝑂 (𝑊) processors. Parallel algorithms specific to

the knapsack problem are described in [12, 15, 18]. We note here

that each of the problems has multiple parallel algorithms. Our goal

is to give a single algorithm for all these problems. This is the first

parallel and distributed algorithm that solves all these problems.

Furthermore, the parallel algorithm we propose has no synchro-

nization overhead. The algorithm works correctly in a distributed

setting where a processor may use an older value of a variable

stored at other nodes. We are unaware of such algorithms for these

problems.

The reader is referred to [8] for the background information on

the LLP Algorithm.

2 LONGEST INCREASING SUBSEQUENCES

We are given an integer array as input. For simplicity, we assume

that all entries are distinct. Our goal is find for each index 𝑖 the

length of the longest increasing sequence that ends at 𝑖 . For example,

suppose the array𝐴 is {35 38 27 45 32}. Then, the desired output

is {1 2 1 3 2}. The corresponding longest increasing subsequences

are: (35), (35, 38), (27), (35, 38, 45), (27, 32).

We can define a graph 𝐻 with indices as vertices. For this ex-

ample, we have five vertices numbered 𝑣1 to 𝑣5. We draw an edge

from 𝑣𝑖 to 𝑣 𝑗 if 𝑖 is less than 𝑗 and 𝐴[𝑖] is also less than 𝐴[𝑗]. This
graph is clearly acyclic as an edge can only go from a lower index

to a higher index. We use 𝑝𝑟𝑒 (𝑗) to be the set of indices which have

an incoming edge to 𝑗 . The length of the longest increasing subse-

quence ending at index 𝑗 is identical to the length of the longest

path ending at 𝑗 .

To solve the problem using LLP, we model it as a search for the

smallest vector 𝐺 that satisfies the constraint 𝐵 ≡ ∀𝑗 : 𝐺 [𝑗] ≥
1 ∧ ∀𝑗 : 𝐺 [𝑗] ≥ max{𝐺 [𝑖] + 1 | 𝑖 ∈ 𝑝𝑟𝑒 (𝑗)}. To understand 𝐵, we

first consider a stronger predicate 𝐵∗ = (𝐺 [1] = 1) ∧ ∀𝑗 : 𝐺 [𝑗] =
max{1,max{𝐺 [𝑖] + 1 | 𝑖 ∈ 𝑝𝑟𝑒 (𝑗)}}. The interpretation of 𝐺 [𝑗] in
𝐵∗ is that it is the length of the longest path that ends in 𝑗 . Thus, in

the longest increasing subsequence problem we are searching for

the vector that satisfies the predicate 𝐵∗. Instead of searching for

an element in the lattice that satisfies 𝐵∗, we search for the least

element in the lattice that satisfies 𝐵. This allows us to solve for the

constrained version of the problem in which we are searching for

an element that satisfies an additional lattice-linear constraint.

The underlying lattice we consider is that of all vectors of natural

numbers less than or equal to the maximum element in the lattice.

A vector in this lattice is feasible if it satisfies 𝐵. We first show that

the constraint 𝐵 is lattice-linear.

Lemma 2.1. The constraint 𝐵 ≡ (∀𝑗 : 𝐺 [𝑗] ≥ 1) ∧ (∀𝑗 : 𝐺 [𝑗] ≥
max{𝐺 [𝑖] + 1 | 𝑖 ∈ 𝑝𝑟𝑒 (𝑗)}) is lattice-linear.

Proof. Since the predicate 𝐵 is a conjunction of two predicates,

it is sufficient to show that each of them is lattice-linear. The first

conjunct is lattice linear because the constant function 1 is mono-

tone. The second conjunct can be viewed as a conjunction over all

A Lattice Linear Predicate Parallel Algorithm for the Dynamic Programming Problems ICDCN 2022, January 4ś7, 2022, Delhi, AA, India

𝑗 . For a fixed 𝑗 , the predicate 𝐺 [𝑗] ≥ max{𝐺 [𝑖] + 1 | 𝑖 ∈ 𝑝𝑟𝑒 (𝑗) is
lattice-linear because it is a monotonic function. □

Our goal is to find the smallest vector in the lattice that satis-

fies 𝐵. Now, LLP algorithm can be formulated as LLP-Increasing-

Subsequence.

ALGORITHM LLP-Increasing-Subsequence: Finding

the Longest Increasing Subsequence.

𝑃 𝑗 : Code for thread 𝑗

input: 𝐴:array of int;

var 𝐺 : array[1 . . .𝑛] of int;

init: 𝐺 [𝑗] = 1; 𝑝𝑟𝑒 (𝑗) := {𝑖 ∈ 1.. 𝑗 − 1|𝐴[𝑖] < 𝐴[𝑗]};
ensure: 𝐺 [𝑗] ≥ max{𝐺 [𝑖] + 1 | 𝑖 ∈ 𝑝𝑟𝑒 (𝑗)};

This algorithm starts with all values as 1 and increases the 𝐺

vector till it satisfies the constraint 𝐺 [𝑗] ≥ max{𝐺 [𝑖] + 1 | 𝑖 ∈
𝑝𝑟𝑒 (𝑗)}.

The above algorithm, although correct, does not preclude 𝐺 [𝑗]
from getting updated multiple times. To ensure that no 𝐺 [𝑗] is
updated more than once, we introduce a boolean 𝑓 𝑖𝑥𝑒𝑑 for each

index such that we update𝐺 [𝑗] only when it is not fixed and all its

predecessors are fixed. With this change, our algorithm becomes

LLP2-Increasing-Subsequence.

ALGORITHM LLP2-Increasing-Subsequence: Finding

the Longest Increasing Subsequence.

𝑃 𝑗 : Code for thread 𝑗

input: 𝐴:array of int;

var 𝐺 : array[1 . . .𝑛] of int; 𝑓 𝑖𝑥𝑒𝑑 : array[1 . . .𝑛] of boolean;

init: 𝐺 [𝑗] = 1; 𝑓 𝑖𝑥𝑒𝑑 [𝑗] := 𝑓 𝑎𝑙𝑠𝑒;

𝑝𝑟𝑒 (𝑗) := {𝑖 ∈ 1.. 𝑗 − 1|𝐴[𝑖] < 𝐴[𝑗]};
forbidden: ¬𝑓 𝑖𝑥𝑒𝑑 [𝑗] ∧ (∀𝑖 ∈ 𝑝𝑟𝑒 (𝑗) : 𝑓 𝑖𝑥𝑒𝑑 [𝑖]);

advance: 𝐺 [𝑗] := max{𝐺 [𝑖] + 1 | 𝑖 ∈ 𝑝𝑟𝑒 (𝑗)};
𝑓 𝑖𝑥𝑒𝑑 [𝑗] := 𝑡𝑟𝑢𝑒;

Let us now analyze the complexity of the algorithm. The sequen-

tial complexity is simple because we can maintain the list of all

vertices that are forbidden because all its predecessors are fixed.

Once we have processed a vertex, we never process it again. This

is similar to a sequential algorithm of topological sort. In this case,

we examine a vertex exactly once only after all its predecessors are

fixed. The time complexity of this algorithm is 𝑂 (𝑛2).
For the parallel time complexity, assume that we have 𝑛2 proces-

sors available. Then, in time 𝑂 (log𝑛), one can determine whether

the vertex is forbidden and advance it to the correct value if it is

forbidden. This is because for every 𝑗 , we simply need to check

that all vertices in 𝑝𝑟𝑒 (𝑗) are fixed and 𝑗 is not fixed. By using a

parallel reduce operation, we can check in 𝑂 (log𝑛) time whether

𝑗 is forbidden. If the longest path in the graph 𝐻 is Δ, then the

algorithm takes 𝑂 (Δ log𝑛) time.

Now, let us consider the situation where each thread 𝑗 writes

the value of 𝑓 𝑖𝑥𝑒𝑑 [𝑗] and𝐺 [𝑗] without using any synchronization.

If any thread 𝑗 reads the old value of 𝑓 𝑖𝑥𝑒𝑑 [𝑖] for some 𝑖 in 𝑝𝑟𝑒 (𝑗),
it will not update 𝑓 𝑖𝑥𝑒𝑑 [𝑗] at that point. Eventually, it will read the

correct value of 𝑓 𝑖𝑥𝑒𝑑 [𝑖], and perform 𝑎𝑑𝑣𝑎𝑛𝑐𝑒 . We do assume in

this version that if a process reads 𝑓 𝑖𝑥𝑒𝑑 [𝑖] as true, then it reads

the correct value of 𝐺 [𝑖], because 𝑓 𝑖𝑥𝑒𝑑 [𝑖] is updated after 𝐺 [𝑖].
Consequently, we get the following result.

Lemma 2.2. There exists a parallel algorithm for the longest in-

creasing subsequence problem which uses just read-write atomicity

and solves the problem in 𝑂 (Δ log𝑛) time.

We note here that the longest increasing subsequence problem

is not known to be in class NC or P-complete. The best sequential

complexity of the problem is 𝑂 (𝑛 log𝑛). The parallel complexity is

shown to be 𝑂 (𝑛 log𝑛/𝑝) with 𝑝 processors when 1 < 𝑝 < 𝑛/𝑚2

where𝑚 is the number of decreasing sequences in the array[16].

We now add lattice-linear constraints to the problem. Instead of

the longest increasing subsequence, we may be interested in the

longest increasing subsequence that satisfies an additional predi-

cate.

Lemma 2.3. All the following predicates are lattice linear.

(1) For any 𝑗 ,𝐺 [𝑗] is greater than or equal to the longest increasing
subsequence of odd integers ending at 𝑗 .

(2) 𝐺 [𝑗] is greater than or equal to the longest increasing sub-

sequence such that 𝑗𝑡ℎ element in the subsequence exceeds

(𝑗 − 1)𝑡ℎ element by at least 𝑘 .

Proof. (1) Since lattice-linear predicates are closed under

conjunction, it is sufficient to focus on a fixed 𝑗 . If 𝐺 [𝑗] is
less than the length of the longest increasing subsequence

of odd integers ending at 𝑗 , then the index 𝑗 is forbidden.

Unless 𝑗 is increased the predicate can never become true.

(2) We view this predicate as redrawing the directed graph 𝐻

such that we draw an edge from 𝑣𝑖 to 𝑣 𝑗 if 𝑖 is less than 𝑗

and 𝐴[𝑖] + 𝑘 is less than or equal to 𝐴[𝑗].
□

3 OPTIMAL BINARY SEARCH TREE

Suppose that we have a fixed set of 𝑛 symbols called keys with

some associated information called values. Our goal is to build a

dictionary based on binary search tree out of these symbols. The

dictionary supports a single operation search which returns the

value associated with the the given key. We are also given the

frequency of each symbol as the argument for the search query.

The cost of any search for a given key is given by the length of the

path from the root of the binary search tree to the node containing

that key. Given any binary search tree, we can compute the total

cost of the tree for all searches. We would like to build the binary

search tree with the least cost.

Let the frequency of key 𝑖 being searched is 𝑝𝑖 . We assume that

the keys are sorted in increasing order of 𝑝𝑖 . Our algorithm is based

on building progressively bigger binary search trees. The main idea

is as follows. Suppose symbol 𝑘 is the root of an optimal binary

search tree for symbols in the range [𝑖 .. 𝑗]. The root 𝑘 divides the

range into three parts ś the range of indices strictly less than 𝑘 , the

index 𝑘 , and the range of indices strictly greater than 𝑘 . The left or

the right range may be empty. Then, the left subtree and the right

subtree must themselves be optimal for their respective ranges. Let

𝐺 [𝑖, 𝑗] denote the least cost of any binary search tree built from

ICDCN 2022, January 4ś7, 2022, Delhi, AA, India Vijay K. Garg

symbols in the range 𝑖 .. 𝑗 . We use the symbol 𝑠 (𝑖, 𝑗) as the sum of

all frequencies from the symbol 𝑖 to 𝑗 , i.e., 𝑠 (𝑖, 𝑗) =
∑𝑗

𝑘=𝑖
𝑝𝑘 . For

convenience, we let 𝑠 (𝑖, 𝑗) equal to 0 whenever 𝑖 > 𝑗 , i.e., the range

is empty.

We now define a lattice linear constraint on𝐺 [𝑖, 𝑗]. Let 𝑖 ≤ 𝑘 ≤ 𝑗 .

Consider the cost of the optimal tree such that symbol𝑘 is at the root.

The cost has three components: the cost of the left subtree if any, the

cost of the search ending at this node itself and the cost of search in

the right subtree. The cost of the left subtree is𝐺 [𝑖, 𝑘−1] +𝑠 (𝑖, 𝑘−1)
whenever 𝑖 < 𝑘 . The cost of the node itself is 𝑠 (𝑘, 𝑘). The cost of the
right subtree is𝐺 [𝑘+1, 𝑗] +𝑠 (𝑘+1, 𝑗) . Combining these expressions,

we get 𝐺 [𝑖, 𝑗] = min𝑖≤𝑘≤ 𝑗 (𝐺 [𝑖, 𝑘 − 1] + 𝑠 (𝑖, 𝑗) +𝐺 [𝑘 + 1, 𝑗]) .
This is also the least value of 𝐺 [𝑖, 𝑗] such that

𝐺 [𝑖, 𝑗] ≥ min𝑖≤𝑘≤ 𝑗 (𝐺 [𝑖, 𝑘 − 1] + 𝑠 (𝑖, 𝑗) +𝐺 [𝑘 + 1, 𝑗]).
We now show that the above predicate is lattice-linear.

Lemma 3.1. The constraint𝐵 ≡ ∀𝑖, 𝑗 : 𝐺 [𝑖, 𝑗] ≥ min𝑖≤𝑘≤ 𝑗 (𝐺 [𝑖, 𝑘−
1] + 𝑠 (𝑖, 𝑗) +𝐺 [𝑘 + 1, 𝑗]) is lattice-linear.

Proof. Suppose that 𝐵 is false, i.e.,

∃𝑖, 𝑗 : 𝐺 [𝑖, 𝑗] < min𝑖≤𝑘≤ 𝑗 (𝐺 [𝑖, 𝑘 − 1] + 𝑠 (𝑖, 𝑗) +𝐺 [𝑘 + 1, 𝑗]). This
means that there exists 𝑖, 𝑗, 𝑘 with 𝑖 ≤ 𝑘 ≤ 𝑗 such that 𝐺 [𝑖, 𝑗] <

(𝐺 [𝑖, 𝑘 − 1] + 𝑠 (𝑖, 𝑗) +𝐺 [𝑘 + 1, 𝑗]). This means the the index (𝑖, 𝑗)
is forbidden and unless 𝐺 [𝑖, 𝑗] is increased, the predicate 𝐵 can

never become true irrespective of how other components of𝐺 are

increased. □

Wenowhave our LLP-based algorithm for Optimal Binary Search

Tree as Algorithm LLP-OptimalBinarySearchTree. The program

has a single variable 𝐺 . It is initialized so that 𝐺 [𝑖, 𝑖] equals 𝑝 [𝑖]
and 𝐺 [𝑖, 𝑗] equals zero whenever 𝑖 is not equal to 𝑗 . The algorithm

advances𝐺 [𝑖, 𝑗] whenever it is smaller thanmin𝑖≤𝑘≤ 𝑗 𝐺 [𝑖, 𝑘 − 1] +
𝑠 (𝑖, 𝑗) +𝐺 [𝑘 + 1, 𝑗]. In Algorithm LLP-OptimalBinarySearchTree,

we have used the always clause as a macro that uses 𝑠 (𝑖, 𝑗) as a
short form for

∑𝑗

𝑘=𝑖
𝑝 [𝑘].

ALGORITHM LLP-OptimalBinarySearchTree: Find-

ing An Optimal Binary Search Tree

𝑃𝑖, 𝑗 : Code for thread (𝑖, 𝑗)
input: 𝑝:array of real;// frequency of each symbol

init: 𝐺 [𝑖, 𝑗] = 0 ∀𝑖 ≠ 𝑗 ; 𝐺 [𝑖, 𝑖] = 𝑝 [𝑖];
always: 𝑠 (𝑖, 𝑗) = ∑𝑗

𝑘=𝑖
𝑝 [𝑘]

ensure:𝐺 [𝑖, 𝑗] ≥ min𝑖≤𝑘< 𝑗 𝐺 [𝑖, 𝑘 − 1] + 𝑠 (𝑖, 𝑗) +𝐺 [𝑘 + 1, 𝑗]
priority: (𝑗 − 𝑖)

Although, the above algorithm will give us correct answers, it

is not efficient as it may update 𝐺 [𝑖, 𝑗] before 𝐺 [𝑖, 𝑘] and 𝐺 [𝑘, 𝑗]
for 𝑖 ≤ 𝑘 ≤ 𝑗 have stabilized. However, the following scheduling

strategy ensures that we update 𝐺 [𝑖, 𝑗] at most once. We check for

whether 𝐺 [𝑖, 𝑗] is forbidden in the order of 𝑗 − 𝑖 . Hence, initially

all 𝐺 [𝑖, 𝑗] such that 𝑗 = 𝑖 + 1 are updated. This is followed by all

𝐺 [𝑖, 𝑗] such that 𝑗 = 𝑖 + 2, and so on. We capture this scheduling

strategy with the priority statement. We pick𝐺 [𝑖, 𝑗] to update such
that (𝑗 − 𝑖) have minimal values. Of course, our goal is to compute

𝐺 [1, 𝑛]. With the above strategy of updating 𝐺 [𝑖, 𝑗], we get that
𝐺 [𝑖, 𝑗] is updated at most once. Since there are 𝑂 (𝑛2) possible
values of 𝐺 [𝑖, 𝑗] and each takes 𝑂 (𝑛) work to update, we get the

work complexity of 𝑂 (𝑛3). On a CREW PRAM, we can compute

all 𝑖, 𝑗 with the fixed difference in parallel. By using 𝑂 (log𝑛) span
algorithm to compute min, we get the parallel time complexity as

𝑂 (𝑛 log𝑛). Thus, we have the following result.

Lemma 3.2. There exists a parallel algorithm for the optimal binary

search tree problem which uses just read-write atomicity and solves it

in 𝑂 (𝑛 log𝑛) parallel time using 𝑂 (𝑛2) processors.

We note here that [10] gives an algorithm that takes𝑂 (
√
𝑛 log𝑛)

time; however, it uses 𝑂 (𝑛3.5/log𝑛) processors on a CREW PRAM.

We now consider the constrained versions of the problem.

Lemma 3.3. All the following predicates are lattice linear.

(1) Key 𝑥 is not a parent for any key.

(2) The difference in the sizes of the left subtree and the right

subtree is at most 1.

Proof. (1) This requirement changes the ensure predicate to

𝐺 [𝑖, 𝑗] ≥ min𝑖≤𝑘≤ 𝑗,𝑘≠𝑥 𝐺 [𝑖, 𝑘 − 1] + 𝑠 (𝑖, 𝑗) +𝐺 [𝑘 + 1, 𝑗]. The
right hand side of the constraint continues to be monotonic

and therefore it is lattice linear.

(2) This requirement changes the ensure predicate to 𝐺 [𝑖, 𝑗] ≥
min𝑖≤𝑘≤ 𝑗, |𝑘−1−𝑖, 𝑗−𝑘−1 | ≤1𝐺 [𝑖, 𝑘−1]+𝑠 (𝑖, 𝑗)+𝐺 [𝑘+1, 𝑗]. This
change simply restricts the values of 𝑘 , and the right hand

side continues to be monotonic.

□

Remark: A problem very similar to the optimal Binary Search

tree problem is that of constructing an optimal way of multiplying

a chain of matrices. Since matrix multiplication is associative, the

product of matrices (𝑀1 ∗ 𝑀2) ∗ 𝑀3 is equal to 𝑀1 ∗ (𝑀2 ∗ 𝑀3).
However, depending upon the dimensions of the matrices, the

computational effort may be different. We can view any evaluation

of a chain as a binary tree where the intermediate notes are the

multiplication operation and the leaves are thematrices themselves.

4 KNAPSACK PROBLEM

Weare given𝑛 itemswithweights𝑤1,𝑤2, . . . ,𝑤𝑛 and values 𝑣1, 𝑣2, . . . , 𝑣𝑛 .

We are also given a knapsack that has a capacity of𝑊 . Our goal

is to determine the subset of items that can be carried in the knap-

sack and that maximizes the total value. The standard dynamic

programming solution is based on memoization of the following

dynamic programming formulation [5, 17]. Let𝐺 [𝑖,𝑤] be the maxi-

mum value that can be obtained by picking items from 1..𝑖 with the

capacity constraint of𝑤 . Then, 𝐺 [𝑖,𝑤] =𝑚𝑎𝑥 (𝐺 [𝑖 − 1,𝑤 −𝑤𝑖] +
𝑣𝑖 ,𝐺 [𝑖 −1,𝑤]). The first argument of the max function corresponds

to the case when the item 𝑖 is included in the optimal set from 1..𝑖 ,

and the second argument corresponds to the case when the item 𝑖

is not included and hence the entire capacity can be used for the

items from 1..𝑖 − 1. If𝑤𝑖 > 𝑤 , then the item 𝑖 can never be in the

knapsack and can be skipped. The base cases are simple. The value

of 𝐺 [0,𝑤] and 𝐺 [𝑖, 0] is zero for all 𝑤 and 𝑖 . Our goal is to find

𝐺 [𝑛,𝑊]. By filling up the two dimensional array 𝐺 for all values

of 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑤 ≤ 𝑊 , we get an algorithm with time

complexity 𝑂 (𝑛𝑊).
We can model this problem using lattice-linear predicates as

follows. We model the feasibility as 𝐺 [𝑖,𝑤] ≥ max(𝐺 [𝑖 − 1,𝑤 −
𝑤𝑖] + 𝑣𝑖 ,𝐺 [𝑖 − 1,𝑤]) for all 𝑖,𝑤 > 0 and𝑤𝑖 ≤ 𝑤 . Also, 𝐺 [𝑖,𝑤] = 0

A Lattice Linear Predicate Parallel Algorithm for the Dynamic Programming Problems ICDCN 2022, January 4ś7, 2022, Delhi, AA, India

if 𝑖 = 0 or 𝑤 = 0. Our goal is to find the minimum vector 𝐺 that

satisfies feasibility.

Lemma 4.1. The constraint 𝐵 ≡ ∀𝑖,𝑤 : 𝐺 [𝑖,𝑤] ≥ max(𝐺 [𝑖 −
1,𝑤 −𝑤𝑖] + 𝑣𝑖 ,𝐺 [𝑖 − 1,𝑤]) for𝑤𝑖 ≤ 𝑤 is lattice-linear.

Proof. If the predicate 𝐵 is false, there exists 𝑖 and𝑤 such that

𝐺 [𝑖,𝑤] < max(𝐺 [𝑖 − 1,𝑤 −𝑤𝑖] + 𝑣𝑖 ,𝐺 [𝑖 − 1,𝑤]). The value𝐺 [𝑖,𝑤]
is forbidden; unless 𝐺 [𝑖,𝑤] is increased the predicate can never

become true. □

ALGORITHM LLP-Knapsack: Finding An Optimal Solu-

tion to the Knapsack Problem

𝑃𝑖, 𝑗 : Code for thread (𝑖, 𝑗)
input:𝑤, 𝑣 :array[1..𝑛] of int;// weight and value of items

var: 𝐺 :array[0 . . . 𝑛, 0 . . .𝑊] of int;

init: 𝐺 [𝑖, 𝑗] = 0 𝑖 𝑓 (𝑖 = 0) ∨ (𝑗 = 0);
ensure:

𝐺 [𝑖, 𝑗] ≥ max{𝐺 [𝑖 − 1, 𝑗 −𝑤𝑖] + 𝑣𝑖 ,𝐺 [𝑖 − 1, 𝑗]} if 𝑗 ≥ 𝑤𝑖

≥ 𝐺 [𝑖 − 1, 𝑗], otherwise.

Algorithm LLP-Knapsack updates the value of𝐺 [𝑖, 𝑗] based only
on the values of 𝐺 [𝑖 − 1, .]. Furthermore, 𝐺 [𝑖, 𝑗] is always at least
𝐺 [𝑖−1, 𝑗]. Based on this observation, we can simplify the algorithm

as follows. We consider the problem of adding just one item to the

knapsack given the constraint that the total weight does not exceed

𝑊 . Wemaintain the list of all optimal configurations for eachweight

less than𝑊 .

ALGORITHMLLP-IncrKnapsack2: FindingAnOptimal

Solution to the Incremental Knapsack Problem

𝑃 𝑗 : Code for thread 𝑗

input:𝑤, 𝑣 : int;// weight and value of the next item

𝐶: array[0 . . .𝑊] of int;

var: 𝐺 :array[0 . . .𝑊] of int;

init: ∀𝑗 : 𝐺 [𝑗] = 𝐶 [𝑗];
ensure: 𝐺 [𝑗] ≥ 𝐶 [𝑗 −𝑤] + 𝑣 if 𝑗 ≥ 𝑤

The incremental algorithm can be implemented in 𝑂 (1) parallel
time using 𝑂 (𝑊) processors as shown in Fig. LLP-IncrKnapsack2.

Each processor 𝑗 can check whether 𝐺 [𝑗] needs to be advanced.

We can now invoke the incremental Knapsack algorithm by

simply looping over all items. If we had𝑊 cores, then computing

𝐺 [𝑖, .] from 𝐺 [𝑖 − 1, .] can be done in 𝑂 (1) giving us the span of

𝑂 (𝑛).
We now add some lattice-linear constraints to the Knapsack

problem. In many applications, some items may be related and the

constraint 𝑥𝑎 ⇒ 𝑥𝑏 means that if the item 𝑥𝑎 is included in the

Knapsack then the item 𝑥𝑏 must also be included. Thus, the item

𝑥𝑎 has profit of zero if 𝑥𝑏 is not included. The item 𝑥𝑏 has utility

even without 𝑥𝑎 but not vice-versa. Without loss of generality, we

assume that all weights are strictly positive, and that index 𝑏 < 𝑎.

In the following Lemma, we use an auxiliary variable 𝑆 [𝑖, 𝑗] that
keeps the set of items included in 𝐺 [𝑖, 𝑗] and not just the profit

from those items.

Lemma 4.2. First assume that (𝑖 ≠ 𝑎). Let 𝐵(𝑖,𝑤) ≡ 𝐺 [𝑖,𝑤] ≥
max(𝐺 [𝑖 − 1,𝑤 −𝑤𝑖] + 𝑣𝑖 ,𝐺 [𝑖 − 1,𝑤]) for (𝑤𝑎 ≤ 𝑤) and𝐺 [𝑖,𝑤] ≥
𝐺 [𝑖 − 1,𝑤], otherwise. This predicate corresponds to any item 𝑖 differ-

ent from 𝑎. The value with a bag of capacity𝑤 is always greater than

or equal to the choice of picking the item or not picking the item.

Let 𝐵(𝑎,𝑤) ≡ 𝐺 [𝑎,𝑤] ≥ max(𝐺 [𝑎−1,𝑤−𝑤𝑎]+𝑣𝑎,𝐺 [𝑎−1,𝑤]) if
𝑏 ∈ 𝑆 [𝑎−1,𝑤−𝑤𝑎]∧(𝑤𝑎 ≤ 𝑤) and𝐵(𝑎,𝑤) ≡ 𝐺 [𝑎,𝑤] ≥ 𝐺 [𝑎−1,𝑤],
otherwise. Then, 𝐵(𝑖,𝑤) is lattice-linear for all 𝑖 and𝑤 .

Proof. Suppose that 𝐵(𝑖,𝑤) is false for some 𝑖 and 𝑤 . Unless

𝐺 [𝑖,𝑤] is increased, it can never become true. □

5 CONCLUSIONS

In this paper, we have shown that many dynamic programming

problems can be solved using a single parallel Lattice-Linear Predi-

cate algorithm. The parallel algorithms described in the paper work

correctly with read-write atomicity of variables without any use of

locks.

REFERENCES
[1] Mikhail J Atallah, S Rao Kosaraju, Lawrence L Larmore, Gary L Miller, and S-H

Teng. 1989. Constructing trees in parallel. In Proceedings of the first annual ACM
symposium on Parallel algorithms and architectures. 421ś431.

[2] Richard Bellman. 1952. On the theory of dynamic programming. Proceedings of
the National Academy of Sciences of the United States of America 38, 8 (1952), 716.

[3] G. Birkhoff. 1967. Lattice Theory. Providence, R.I. third edition.
[4] B. A. Davey andH. A. Priestley. 1990. Introduction to Lattices andOrder. Cambridge

University Press, Cambridge, UK.
[5] David B Shmoys David P Williamson. 2010. The Design of Approximation Algo-

rithms. Cambridge University Press.
[6] Thierry Garcia, Jean-Fréedéeric Myoupo, and David Semé. 2001. A work-optimal

cgm algorithm for the longest increasing subsequence problem. In International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’01), Vol. 2. 563ś569.

[7] Vijay K Garg. 2015. Lattice Theory with Computer Science Applications. Wiley,
New York, NY.

[8] Vijay K. Garg. 2020. Predicate Detection to Solve Combinatorial Optimization
Problems. In SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, Virtual Event, USA, July 15-17, 2020, Christian Scheideler and Michael
Spear (Eds.). ACM, 235ś245. https://doi.org/10.1145/3350755.3400235

[9] Ellis Horowitz and Sartaj Sahni. 1974. Computing partitions with applications to
the knapsack problem. Journal of the ACM (JACM) 21, 2 (1974), 277ś292.

[10] Shou-Hsuan Stephen Huang, Hongfei Liu, and Venkatraman Viswanathan. 1992.
A sublinear parallel algorithm for some dynamic programming problems. Theo-
retical Computer Science 106, 2 (1992), 361ś371.

[11] Oscar H Ibarra and Chul E Kim. 1975. Fast approximation algorithms for the
knapsack and sum of subset problems. Journal of the ACM (JACM) 22, 4 (1975),
463ś468.

[12] Ehud D. Karnin. 1984. A parallel algorithm for the knapsack problem. IEEE Trans.
Comput. 33, 05 (1984), 404ś408.

[13] Donald E. Knuth. 1971. Optimum binary search trees. Acta informatica 1, 1 (1971),
14ś25.

[14] Peter Krusche and Alexander Tiskin. 2010. Parallel Longest Increasing Subse-
quences in Scalable Time and Memory. In Parallel Processing and Applied Math-
ematics, Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy
Wasniewski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 176ś185.

[15] KL Li, QH Li, Sheng-Yi Jiang, and Wei ZHANG. 2003. An optimal parallel
algorithm for the knapsack problem. Journal of software 14, 5 (2003), 891ś896.

[16] Takaaki Nakashima and Akihiro Fujiwara. 2002. Parallel algorithms for pa-
tience sorting and longest increasing subsequence. In International Conference in
Networks, Parallel and Distributed Processing and Applications. 7ś12.

[17] Vijay V. Vazirani. 2001. Approximation Algorithms. Springer-Verlag, Berlin,
Germany.

[18] Andrew Chi-Chih Yao. 1981. On the parallel computation for the knapsack
problem. In Proceedings of the thirteenth annual ACM symposium on Theory of
computing. 123ś127.

	Abstract
	1 Introduction
	2 Longest Increasing Subsequences
	3 Optimal Binary Search Tree
	4 Knapsack Problem
	5 Conclusions
	References

