A Lattice Linear Predicate Parallel Algorithm for the Dynamic
Programming Problems

Vijay K. Garg
The University of Texas at Austin
Austin, Texas, USA
garg@ece.utexas.edu

ABSTRACT

It has been shown that the parallel Lattice Linear Predicate (LLP) al-
gorithm solves many combinatorial optimization problems such as
the shortest path problem, the stable marriage problem and the mar-
ket clearing price problem. In this paper, we give the parallel LLP
algorithm for many dynamic programming problems. In particular,
we show that the LLP algorithm solves the longest subsequence
problem, the optimal binary search tree problem, and the knap-
sack problem. Furthermore, the algorithm can be used to solve the
constrained versions of these problems so long as the constraints
are lattice linear. The parallel LLP algorithm works correctly in
a distributed system setting where a processor may use an older
value of a variable stored at a different processor.

CCS CONCEPTS

« Theory of computation — Parallel algorithms;

KEYWORDS

distributive lattices; predicate detection; optimization problems

ACM Reference Format:

Vijay K. Garg. 2022. A Lattice Linear Predicate Parallel Algorithm for the
Dynamic Programming Problems. In 23rd International Conference on Dis-
tributed Computing and Networking (ICDCN 2022), January 4-7, 2022, Delhi,
AA, India. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3491003.3491019

1 INTRODUCTION

It has been shown that the Lattice Linear Predicate (LLP) algo-
rithm solves many combinatorial optimization problems such as
the shortest path problem, the stable marriage problem and the
market clearing price problem [8]. In this paper, we build on the
work in [8] to show that many problems that can be solved using
dynamic programming [2] can also be solved in parallel and dis-
tributed fashion using the LLP algorithm. Dynamic programming is
applicable to problems where it is easy to set up a recurrence rela-
tion such that the solution of the problem can be derived from the
solutions of problems with smaller sizes. One can solve the problem
using recursion; however, recursion may result in many duplicate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDCN 2022, January 4-7, 2022, Delhi, AA, India

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9560-1/22/01...$15.00
https://doi.org/10.1145/3491003.3491019

computations. By using memoization, we can avoid recomputing
previously computed values. We assume that the problem is solved
using dynamic programming with such bottom-up approach in this
paper.

The LLP algorithm views solving a problem as searching for
an element in a finite distributive lattice [3, 4, 7] that satisfies a
given predicate B. The predicate is required to be closed under
the operation of meet (or, equivalently lattice-linear). For all the
problems considered in the paper, the longest subsequence problem,
the optimal binary search tree problem and the Knapsack problem,
the predicate is indeed closed under meets. Any finite distributive
lattice can be equivalently characterized by a finite poset of its
join-irreducibles from Birkhoff’s theorem [3, 4]. The LLP algorithm
works on the finite poset in parallel to find the least element in
the distributive lattice that satisfies the given predicate. It starts
with the bottom element of the lattice and marches towards the
top element of the lattice in a parallel fashion by advancing on
any chain of the poset for which the current element is forbidden.
An advantage of the LLP algorithm is that the algorithm stays
correct even when a processor ends up using an older value of the
variable stored at another processor. The only requirement is that
the value updated at any processor is eventually communicated at
other processors.

There are also some key differences between dynamic program-
ming (the bottom-up approach) and the LLP algorithm. The usual
dynamic programming problem seeks a structure that minimizes
(or maximizes) some scalar. For example, the longest subsequence
problem asks for the subsequence in an array A[1..n] that maxi-
mizes the sum. In contrast, the LLP algorithm seeks to minimize
or maximize a vector. In the longest subsequence problem with
the LLP approach, we are interested in the longest subsequence in
the array A[1..i] for each i < n that ends at index i. Thus, instead
of asking for a scalar, we ask for the vector of size n. We get an
array G[1..n] and the solution to the original problem is just the
maximum value in the array G. Similarly, the optimal binary search
tree problem [13] asks for the construction of an optimal binary
search tree on n symbols such that each symbol i has probability
pi of being searched. Our goal is to find the binary search tree that
minimizes the expected cost of search in the tree. The LLP problem
seeks the optimal binary search tree for all ranges i. .. j instead
of just one range 1..n. Finally, the knapsack problem [9, 11] asks
for the maximum valued subset of items that can be fit in a knap-
sack such that the profit is maximized and the total weight of the
knapsack is at most W. The LLP problem seeks the maximum profit
obtained by choosing items from 1..i and the total weight from
1..W. In all these problems, traditionally we are seeking a single
structure that optimizes a single scalar; whereas the LLP algorithm

ICDCN 2022, January 4-7, 2022, Delhi, AA, India

asks for a vector. It turns out that that in asking for an optimal
vector instead of an optimal scalar, we do not lose much since the
existing solutions also end up finding the optimal solutions for the
subproblems. The LLP algorithm returns a vector G such that G[i]
is optimal for i.

The second difference between dynamic programming and the
LLP algorithm is in terms of parallelism. The dynamic programming
solution does not explicitly refers to parallelism in the problem. The
LLP algorithm has an explicit notion of parallelism. The solution
uses an array G for all problems and the algorithm requires the
components of G to be advanced whenever they are found to be
forbidden. If G[i] is forbidden for multiple values of i, then G[i]
can be advanced for all those values in parallel.

The third difference between dynamic programming and the LLP
algorithm is in terms of synchronization required during parallel
and distributed execution of the algorithm. In case of dynamic
programming, if the recursive formulas are evaluated in parallel it
is assumed that the values used are correct. In contrast, suppose
that we check for G[i] and G[j] to be forbidden concurrently such
that G[i] ends up using an old value of G[], the LLP algorithm is
still correct. The only requirement we have for parallelism is that
when G[i] uses a value of G[j], it should either be the most recent
value of G[j] or some prior value. A processor that is responsible
for keeping G[i] may get an old value from G| j] in a parallel setting
when it gets this value from a cache. In a message passing system,
it may get the old value of G[j] if the message to update G[] has
not yet arrived at the processor with G[i]. Thus, LLP algorithms
are naturally distributed with little synchronization overhead.

The fourth difference between dynamic programming and the
LLP algorithm is that we can use the LLP algorithm to solve a con-
strained version of the problem, so long as the constraint itself is
lattice-linear. Suppose that we are interested in the longest subse-
quence such that successive elements differ by at least 2. It can be
(easily) shown that this constraint is lattice-linear. Hence, the LLP
algorithm is applicable because we are searching for an element
that satisfies a conjunction of two lattice-linear predicates. Since
the set of lattice-linear predicates is closed under conjunction, the
resulting predicate is also lattice-linear and the LLP algorithm is
applicable. Similarly, the predicate that the symbol i is not a parent
of symbol j is lattice-linear and the constrained optimal binary
search tree algorithm returns the optimal tree that satisfies the
given constraint. In the Knapsack problem, it is easy to solve the
problem with the additional constraint that if the item x is included
in the Knapsack, then the item y is also included. The constrained
versions of these problems are not discussed in the literature and
are of independent interest.

We note here that our goal is not to improve the time or work
complexity of the algorithms, but to provide a single parallel (and
distributed) algorithm that solve all of these problems and their
constrained versions. For the increasing subsequence problem, the
standard dynamic programming approach takes O(n?) time where
nis the size of the array. The parallel LLP algorithm takes O(A log n)
time where A is the longest increasing subsequence in the array.
The parallel algorithms specific to the longest increasing subse-
quence problem are discussed in [6, 14, 16]. The optimal binary
search tree problem takes O(n3) time using the dynamic program-
ming approach where n is the number of symbols. The parallel

Vijay K. Garg

LLP algorithm takes O(nlog n) with O(n?) processors. The paral-
lel algorithms for the optimal binary search tree are described in
[1, 10]. The knapsack problem takes O(nW) time using the dynamic
programming approach where n is the number of items and W is
the maximum weight of any item. The parallel LLP algorithm takes
O(n) time with O(W) processors. Parallel algorithms specific to
the knapsack problem are described in [12, 15, 18]. We note here
that each of the problems has multiple parallel algorithms. Our goal
is to give a single algorithm for all these problems. This is the first
parallel and distributed algorithm that solves all these problems.
Furthermore, the parallel algorithm we propose has no synchro-
nization overhead. The algorithm works correctly in a distributed
setting where a processor may use an older value of a variable
stored at other nodes. We are unaware of such algorithms for these
problems.

The reader is referred to [8] for the background information on
the LLP Algorithm.

2 LONGEST INCREASING SUBSEQUENCES

We are given an integer array as input. For simplicity, we assume
that all entries are distinct. Our goal is find for each index i the
length of the longest increasing sequence that ends at i. For example,
suppose the array Ais {35 38 27 45 32}. Then, the desired output
is{1 2 1 3 2}. The corresponding longest increasing subsequences
are: (35), (35, 38), (27), (35, 38, 45), (27, 32).

We can define a graph H with indices as vertices. For this ex-
ample, we have five vertices numbered v; to v5. We draw an edge
from v; to v if i is less than j and A[i] is also less than A[j]. This
graph is clearly acyclic as an edge can only go from a lower index
to a higher index. We use pre(}j) to be the set of indices which have
an incoming edge to j. The length of the longest increasing subse-
quence ending at index j is identical to the length of the longest
path ending at j.

To solve the problem using LLP, we model it as a search for the
smallest vector G that satisfies the constraint B = Vj : G[j] >
1 AVj: G[j] = max{G[i] +1 | i € pre(j)}. To understand B, we
first consider a stronger predicate B, = (G[1] =1) AVj : G[j] =
max{1, max{G[i] + 1| i € pre(j)}}. The interpretation of G[j] in
B, is that it is the length of the longest path that ends in j. Thus, in
the longest increasing subsequence problem we are searching for
the vector that satisfies the predicate B.. Instead of searching for
an element in the lattice that satisfies B, we search for the least
element in the lattice that satisfies B. This allows us to solve for the
constrained version of the problem in which we are searching for
an element that satisfies an additional lattice-linear constraint.

The underlying lattice we consider is that of all vectors of natural
numbers less than or equal to the maximum element in the lattice.
A vector in this lattice is feasible if it satisfies B. We first show that
the constraint B is lattice-linear.

LeEMMA 2.1. The constraint B = (Vj : G[j] = 1) A (Vj : G[j] =
max{G[i] +1|i € pre(j)}) is lattice-linear.

PRroOF. Since the predicate B is a conjunction of two predicates,
it is sufficient to show that each of them is lattice-linear. The first
conjunct is lattice linear because the constant function 1 is mono-
tone. The second conjunct can be viewed as a conjunction over all

A Lattice Linear Predicate Parallel Algorithm for the Dynamic Programming Problems

j. For a fixed j, the predicate G[j] > max{G[i] +1|i € pre(j) is
lattice-linear because it is a monotonic function. |

Our goal is to find the smallest vector in the lattice that satis-
fies B. Now, LLP algorithm can be formulated as LLP-Increasing-
Subsequence.

ALGORITHM LLP-Increasing-Subsequence: Finding
the Longest Increasing Subsequence.

Pj: Code for thread j

input: A:array of int;

var G: array[1 ...n] of int;

init: G[j] = 1; pre(j) == {i € 1..j — 1]A[i] < A[j]};
ensure: G[j] > max{G[i] +1|i € pre(j)};

This algorithm starts with all values as 1 and increases the G
vector till it satisfies the constraint G[j] > max{G[i] +1|i €
pre()}.

The above algorithm, although correct, does not preclude G|]
from getting updated multiple times. To ensure that no G[j] is
updated more than once, we introduce a boolean fixed for each
index such that we update G[j] only when it is not fixed and all its
predecessors are fixed. With this change, our algorithm becomes
LLP2-Increasing-Subsequence.

ALGORITHM LLP2-Increasing-Subsequence: Finding
the Longest Increasing Subsequence.

Pj: Code for thread j
input: A:array of int;
var G: array[1 ...n] of int; fixed: array[1 ...n] of boolean;
init: G[j] = 1; fixed[j] := false;
pre(j) ={i € 1.j-1A[i] <A[j]}
forbidden: —fixed[j] A (Vi € pre(j) : fixed[i]);
advance: G[j] := max{G[i] +1|i € pre(j)};
fixed[j] = true;

Let us now analyze the complexity of the algorithm. The sequen-
tial complexity is simple because we can maintain the list of all
vertices that are forbidden because all its predecessors are fixed.
Once we have processed a vertex, we never process it again. This
is similar to a sequential algorithm of topological sort. In this case,
we examine a vertex exactly once only after all its predecessors are
fixed. The time complexity of this algorithm is O(n?).

For the parallel time complexity, assume that we have n? proces-
sors available. Then, in time O(log n), one can determine whether
the vertex is forbidden and advance it to the correct value if it is
forbidden. This is because for every j, we simply need to check
that all vertices in pre(j) are fixed and j is not fixed. By using a
parallel reduce operation, we can check in O(log n) time whether
Jj is forbidden. If the longest path in the graph H is A, then the
algorithm takes O(Alog n) time.

Now, let us consider the situation where each thread j writes
the value of fixed[j] and G[j] without using any synchronization.
If any thread j reads the old value of fixed[i] for some i in pre(j),
it will not update fixed[j] at that point. Eventually, it will read the

ICDCN 2022, January 4-7, 2022, Delhi, AA, India

correct value of fixed[i], and perform advance. We do assume in
this version that if a process reads fixed|[i] as true, then it reads
the correct value of G[i], because fixed|i] is updated after G[i].
Consequently, we get the following result.

LEMMA 2.2. There exists a parallel algorithm for the longest in-
creasing subsequence problem which uses just read-write atomicity
and solves the problem in O(Alogn) time.

We note here that the longest increasing subsequence problem
is not known to be in class NC or P-complete. The best sequential
complexity of the problem is O(n log n). The parallel complexity is
shown to be O(nlog n/p) with p processors when 1 < p < n/m?
where m is the number of decreasing sequences in the array[16].

We now add lattice-linear constraints to the problem. Instead of
the longest increasing subsequence, we may be interested in the
longest increasing subsequence that satisfies an additional predi-
cate.

LEmMmA 2.3. All the following predicates are lattice linear.

(1) Forany j,G|j] is greater than or equal to the longest increasing
subsequence of odd integers ending at j.

(2) G[j] is greater than or equal to the longest increasing sub-
sequence such that jth element in the subsequence exceeds
(j - 1) element by at least k.

Proor. (1) Since lattice-linear predicates are closed under
conjunction, it is sufficient to focus on a fixed j. If G[j] is
less than the length of the longest increasing subsequence
of odd integers ending at j, then the index j is forbidden.
Unless j is increased the predicate can never become true.

(2) We view this predicate as redrawing the directed graph H
such that we draw an edge from v; to v; if i is less than j
and A[i] + k is less than or equal to A[j].

O

3 OPTIMAL BINARY SEARCH TREE

Suppose that we have a fixed set of n symbols called keys with
some associated information called values. Our goal is to build a
dictionary based on binary search tree out of these symbols. The
dictionary supports a single operation search which returns the
value associated with the the given key. We are also given the
frequency of each symbol as the argument for the search query.
The cost of any search for a given key is given by the length of the
path from the root of the binary search tree to the node containing
that key. Given any binary search tree, we can compute the total
cost of the tree for all searches. We would like to build the binary
search tree with the least cost.

Let the frequency of key i being searched is p;. We assume that
the keys are sorted in increasing order of p;. Our algorithm is based
on building progressively bigger binary search trees. The main idea
is as follows. Suppose symbol k is the root of an optimal binary
search tree for symbols in the range [i..j]. The root k divides the
range into three parts — the range of indices strictly less than k, the
index k, and the range of indices strictly greater than k. The left or
the right range may be empty. Then, the left subtree and the right
subtree must themselves be optimal for their respective ranges. Let
Gli, j] denote the least cost of any binary search tree built from

ICDCN 2022, January 4-7, 2022, Delhi, AA, India

symbols in the range i..j. We use the symbol s(i, j) as the sum of
all frequencies from the symbol i to j, i.e., s(i, j) = Zi:i P For
convenience, we let s(i, j) equal to 0 whenever i > j, i.e., the range
is empty.

We now define a lattice linear constraint on G[i, j]. Leti < k < j.
Consider the cost of the optimal tree such that symbol k is at the root.
The cost has three components: the cost of the left subtree if any, the
cost of the search ending at this node itself and the cost of search in
the right subtree. The cost of the left subtree is G[i, k—1]+s(i,k—1)
whenever i < k. The cost of the node itself is s(k, k). The cost of the
right subtree is G[k+1, j]+s(k+1, j). Combining these expressions,
we get G[i, j] = min; < <;(G[i, k — 1] +s(i, j) + G[k + 1, j]).

This is also the least value of G[i, j] such that
Gli, j] = min; < <;(G[i, k — 1] +s(i, j) + G[k + 1, j]).

We now show that the above predicate is lattice-linear.

LEMMA 3.1. The constraint B = Vi, j : G[i, j] 2 min; <k <;(G[i, k-

1] +s(i, j) + G|k + 1, j]) is lattice-linear.

PROOF. Suppose that B is false, i.e.,
3i,j : Gli, j] < minj<g<;(G[i,k — 1] + (i, j) + G[k + 1, j]). This
means that there exists i, j, k with i < k < j such that G[i, j] <
(Gli,k — 1] +5(i, j) + G[k + 1, j]). This means the the index (i, j)
is forbidden and unless G[i, j] is increased, the predicate B can
never become true irrespective of how other components of G are
increased. o

We now have our LLP-based algorithm for Optimal Binary Search
Tree as Algorithm LLP-OptimalBinarySearchTree. The program
has a single variable G. It is initialized so that G[i, i] equals p[i]
and G|, j] equals zero whenever i is not equal to j. The algorithm
advances G[i, j] whenever it is smaller than min; <; <; G[i, k —1] +
s(i, j) + Glk + 1, j]. In Algorithm LLP-OptimalBinarySearchTree,
we have used the always clause as a macro that uses s(i, j) as a

short form for Zi:i plk].

ALGORITHM LLP-OptimalBinarySearchTree: Find-
ing An Optimal Binary Search Tree

P; j: Code for thread (i, j)

input: p:array of real;// frequency of each symbol

init: G[i, j] = 0 Vi # j; G[i,i] = p[i];

always: s(i, j) = Z{c:ip[k]

ensure: G[i, j] > min;¢.; G[i,k — 1] +s(i, j) + G[k +1, j]

priority: (j — i)

Although, the above algorithm will give us correct answers, it
is not efficient as it may update G[i, j] before G[i, k] and G|k, j]
for i < k < j have stabilized. However, the following scheduling
strategy ensures that we update G[i, j] at most once. We check for
whether G[i, j] is forbidden in the order of j — i. Hence, initially
all G[i, j] such that j = i + 1 are updated. This is followed by all
Gli, j] such that j = i + 2, and so on. We capture this scheduling
strategy with the priority statement. We pick G[i, j] to update such
that (j — i) have minimal values. Of course, our goal is to compute
G[1,n]. With the above strategy of updating G[i, j], we get that
Gli, j] is updated at most once. Since there are O(n?) possible
values of G[i, j] and each takes O(n) work to update, we get the

Vijay K. Garg

work complexity of O(n®). On a CREW PRAM, we can compute
all i, j with the fixed difference in parallel. By using O(log n) span
algorithm to compute min, we get the parallel time complexity as
O(nlogn). Thus, we have the following result.

LEMMA 3.2. There exists a parallel algorithm for the optimal binary
search tree problem which uses just read-write atomicity and solves it
in O(nlogn) parallel time using O(n?) processors.

We note here that [10] gives an algorithm that takes O(~/n log n)
time; however, it uses O(n3 /log n) processors on a CREW PRAM.
We now consider the constrained versions of the problem.

LemMma 3.3. All the following predicates are lattice linear.

(1) Key x is not a parent for any key.

(2) The difference in the sizes of the left subtree and the right
subtree is at most 1.

Proor. (1) Thisrequirement changes the ensure predicate to
Gli, j] =2 min; < < gzx Gli k = 1] +5(i, j) + G[k + 1, j]. The
right hand side of the constraint continues to be monotonic
and therefore it is lattice linear.

(2) This requirement changes the ensure predicate to G[i, j] >
minisksj’lk_l_i,j_k_l |<1 G [l, k— 1] +S(i,])+G[k+1, _]] This
change simply restricts the values of k, and the right hand
side continues to be monotonic.

[m}

Remark: A problem very similar to the optimal Binary Search
tree problem is that of constructing an optimal way of multiplying
a chain of matrices. Since matrix multiplication is associative, the
product of matrices (M * My) % Ms is equal to My = (M * Ms).
However, depending upon the dimensions of the matrices, the
computational effort may be different. We can view any evaluation
of a chain as a binary tree where the intermediate notes are the
multiplication operation and the leaves are the matrices themselves.

4 KNAPSACK PROBLEM

We are given n items with weights wi, wa, . .., w, and values vy, vg, . .
We are also given a knapsack that has a capacity of W. Our goal
is to determine the subset of items that can be carried in the knap-
sack and that maximizes the total value. The standard dynamic
programming solution is based on memoization of the following
dynamic programming formulation [5, 17]. Let G[i, w] be the maxi-
mum value that can be obtained by picking items from 1..i with the
capacity constraint of w. Then, G[i,w] = max(G[i — 1, w — w;] +
v;, G[i—1,w]). The first argument of the max function corresponds
to the case when the item i is included in the optimal set from 1..i,
and the second argument corresponds to the case when the item i
is not included and hence the entire capacity can be used for the
items from 1..i — 1. If w; > w, then the item i can never be in the
knapsack and can be skipped. The base cases are simple. The value
of G[0,w] and G[i, 0] is zero for all w and i. Our goal is to find
G[n, W]. By filling up the two dimensional array G for all values
of 0 < i <nand 0 < w < W, we get an algorithm with time
complexity O(nW).

We can model this problem using lattice-linear predicates as
follows. We model the feasibility as G[i, w] > max(G[i — 1,w —
wi| +0;,G[i — 1,w]) forall i, w > 0 and w; < w. Also, G[i,w] =0

., Up.

A Lattice Linear Predicate Parallel Algorithm for the Dynamic Programming Problems

if i = 0 or w = 0. Our goal is to find the minimum vector G that
satisfies feasibility.

LEMMA 4.1. The constraint B = Vi,w : G[i,w] > max(G[i —
1, w—wi] +0;,G[i — 1,w]) forw; < w is lattice-linear.

Proor. If the predicate B is false, there exists i and w such that
Gli,w] < max(G[i—1,w—w;] +0v;,G[i—1,w]). The value G[i, w]
is forbidden; unless G[i, w] is increased the predicate can never
become true. o

ALGORITHM LLP-Knapsack: Finding An Optimal Solu-
tion to the Knapsack Problem

P; j: Code for thread (i, j)

input: w, v:array[1..n] of int;// weight and value of items

var: G:array[0...n,0... W] of int;

init: G[i, j] =0if (i=0) Vv (j =0);

ensure:

Gli, j] 2 max{G[i—1,j —w;] +0;,G[i — 1, j]}if j > w;

> Gli -1, j], otherwise.

Algorithm LLP-Knapsack updates the value of G[i, j] based only
on the values of G[i — 1, .]. Furthermore, G[i, j] is always at least
G[i—1, j]. Based on this observation, we can simplify the algorithm
as follows. We consider the problem of adding just one item to the
knapsack given the constraint that the total weight does not exceed
W. We maintain the list of all optimal configurations for each weight
less than W.

ALGORITHM LLP-IncrKnapsack2: Finding An Optimal
Solution to the Incremental Knapsack Problem

Pj: Code for thread j

input: w, v: int;// weight and value of the next item

C: array[0... W] of int;

var: G:array[0... W] of int;

init: Vj : G[j] = C[j];

ensure: G[j] > C[j—w]+vifj >w

The incremental algorithm can be implemented in O(1) parallel
time using O(W) processors as shown in Fig. LLP-IncrKnapsack2.
Each processor j can check whether G[j] needs to be advanced.

We can now invoke the incremental Knapsack algorithm by
simply looping over all items. If we had W cores, then computing
Gli,.] from G[i — 1,.] can be done in O(1) giving us the span of
O(n).

We now add some lattice-linear constraints to the Knapsack
problem. In many applications, some items may be related and the
constraint x; = x3, means that if the item x, is included in the
Knapsack then the item x; must also be included. Thus, the item
X4 has profit of zero if x;, is not included. The item x;, has utility
even without x, but not vice-versa. Without loss of generality, we
assume that all weights are strictly positive, and that index b < a.
In the following Lemma, we use an auxiliary variable S[i, j] that
keeps the set of items included in G[i, j] and not just the profit
from those items.

ICDCN 2022, January 4-7, 2022, Delhi, AA, India

LEMMA 4.2. First assume that (i # a). Let B(i,w) = G[i, w]
max(G[i—1,w — w;] +v;, G[i — L, w]) for (wg < w) and G[i, w]
Gli— 1, w], otherwise. This predicate corresponds to any item i differ-
ent from a. The value with a bag of capacity w is always greater than
or equal to the choice of picking the item or not picking the item.

LetB(a,w) = Gla,w] > max(G[a—1, w—wg]+0vg, Gla—1,w]) if
b e Sla—1,w—wg|A(wg < w) andB(a,w) = G[a,w] > G[a—1,w],
otherwise. Then, B(i, w) is lattice-linear for all i and w.

>
>

ProOF. Suppose that B(i, w) is false for some i and w. Unless
G|i, w] is increased, it can never become true.]

5 CONCLUSIONS

In this paper, we have shown that many dynamic programming
problems can be solved using a single parallel Lattice-Linear Predi-
cate algorithm. The parallel algorithms described in the paper work
correctly with read-write atomicity of variables without any use of
locks.

REFERENCES

[1] Mikhail J Atallah, S Rao Kosaraju, Lawrence L Larmore, Gary L Miller, and S-H
Teng. 1989. Constructing trees in parallel. In Proceedings of the first annual ACM
symposium on Parallel algorithms and architectures. 421-431.

[2] Richard Bellman. 1952. On the theory of dynamic programming. Proceedings of
the National Academy of Sciences of the United States of America 38, 8 (1952), 716.

[3] G.Birkhoff. 1967. Lattice Theory. Providence, R.L third edition.

[4] B.A.Daveyand H. A. Priestley. 1990. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK.

[5] David B Shmoys David P Williamson. 2010. The Design of Approximation Algo-
rithms. Cambridge University Press.

[6] Thierry Garcia, Jean-Fréedéeric Myoupo, and David Semé. 2001. A work-optimal
cgm algorithm for the longest increasing subsequence problem. In International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’01), Vol. 2. 563-569.

[7] Vijay K Garg. 2015. Lattice Theory with Computer Science Applications. Wiley,
New York, NY.

[8] Vijay K. Garg. 2020. Predicate Detection to Solve Combinatorial Optimization
Problems. In SPAA °20: 32nd ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, Virtual Event, USA, July 15-17, 2020, Christian Scheideler and Michael
Spear (Eds.). ACM, 235-245. https://doi.org/10.1145/3350755.3400235

[9] Ellis Horowitz and Sartaj Sahni. 1974. Computing partitions with applications to
the knapsack problem. Journal of the ACM (JACM) 21, 2 (1974), 277-292.

[10] Shou-Hsuan Stephen Huang, Hongfei Liu, and Venkatraman Viswanathan. 1992.

A sublinear parallel algorithm for some dynamic programming problems. Theo-

retical Computer Science 106, 2 (1992), 361-371.

Oscar H Ibarra and Chul E Kim. 1975. Fast approximation algorithms for the

knapsack and sum of subset problems. Journal of the ACM (JACM) 22, 4 (1975),

463-468.

[12] Ehud D. Karnin. 1984. A parallel algorithm for the knapsack problem. IEEE Trans.

Comput. 33, 05 (1984), 404-408.

Donald E. Knuth. 1971. Optimum binary search trees. Acta informatica 1,1 (1971),

14-25.

Peter Krusche and Alexander Tiskin. 2010. Parallel Longest Increasing Subse-

quences in Scalable Time and Memory. In Parallel Processing and Applied Math-

ematics, Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy

Wasniewski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 176-185.

KL Li, QH Li, Sheng-Yi Jiang, and Wei ZHANG. 2003. An optimal parallel

algorithm for the knapsack problem. Journal of software 14, 5 (2003), 891-896.

Takaaki Nakashima and Akihiro Fujiwara. 2002. Parallel algorithms for pa-

tience sorting and longest increasing subsequence. In International Conference in

Networks, Parallel and Distributed Processing and Applications. 7-12.

Vijay V. Vazirani. 2001. Approximation Algorithms. Springer-Verlag, Berlin,

Germany.

[18] Andrew Chi-Chih Yao. 1981. On the parallel computation for the knapsack
problem. In Proceedings of the thirteenth annual ACM symposium on Theory of
computing. 123-127.

[11

(13

[14

[15

[16

[17

	Abstract
	1 Introduction
	2 Longest Increasing Subsequences
	3 Optimal Binary Search Tree
	4 Knapsack Problem
	5 Conclusions
	References

