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ABSTRACT

We study the problem of answering queries when (part of) the data
may be sensitive and should not be leaked to the querier. Simply re-
stricting the computation to non-sensitive part of the data may leak
sensitive data through inference based on data dependencies. While
inference control from data dependencies during query processing
has been studied in the literature, existing solution either detect
and deny queries causing leakage, or use a weak security model
that only protects against exact reconstruction of the sensitive data.
In this paper, we adopt a stronger security model based on full
deniability that prevents any information about sensitive data to be
inferred from query answers. We identify conditions under which
full deniability can be achieved and develop an efficient algorithm
that minimally hides non-sensitive cells during query processing to
achieve full deniability. We experimentally show that our approach
is practical and scales to increasing proportion of sensitive data, as
well as, to increasing database size.
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1 INTRODUCTION

Organizations today collect data about individuals that could be
used to infer their habits, religious affiliations, and health status
— properties that we typically consider as sensitive. New regu-
lations, such as the European General Data Protection Regula-
tion (GDPR) [33], the California Online Privacy Protection Act
(CalOPPA) [34], and the Consumer Privacy Act (CCPA) [22], have
made it mandatory for organizations to provide appropriate mech-
anisms to enable users control over their data, i.e., (how| why| for
how long) their data is collected, stored, shared, or analyzed. Fine
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Grained Access Control Policies (FGAC) supported by databases is
an integral technology component to implement such user control.
FGAC policies enable data owners/administrators to specify which
data (i.e., tables, columns, rows, and cells ) can/cannot be accessed
by which querier (individuals posing queries on the database) and
is, hence, sensitive [15] for that querier. Traditionally, Database
Management Systems (DBMS) implement FGAC by filtering away
data that is sensitive for a querier and computing the query on only
the non-sensitive part of the data. Such a strategy is implemented
using either query rewriting [1, 26] or view-based mechanisms [30].
It is well recognized that restricting query computation to only non-
sensitive data may not prevent the querier from inferring sensitive
data based on semantics inherent in the data [4, 14]. For instance,
the querier may exploit knowledge of data dependencies to infer
values of sensitive data as illustrated in the example below.

Example 1. Consider an Employees table (Figure 1) and a FGAC
policy by a user Bobby to hide his salary per hour (SalPerHr) from all
the queries by other users. If the semantics of the data dictate that
any two employees who are faculty should have the same SalPerHr,
then hiding SalPerHr of Bobby would not prevent its leakage from
a querier who has access to Carrie’s SalPerHr. O

In general, leakage may occur from direct/indirect inferences
due to different type of data dependencies, such as conditional func-
tional dependencies (CFD) [13], denial constraints [5], aggregation
constraints [31], and/or functional constraints that exist when a de-
pendent data values are derived/computed using other data values
as shown below.

Example 2. Consider the Employee and Wage tables shown in
Table 1. Let Danny specify FGAC policies to hide his SalPerHour
in Employee Table and Salary in Wage Table. Suppose there exists
a constraint that employees with role Staff cannot have a higher
salary per hour than a faculty in the state of California. Using
Bobby’s salary per hour that is leaked in Example 1, the new con-
straint about the staff salary, and the functional constraint between
that Salary and the fields function of WorkHrs and SalPerHr, infor-
mation about the salary and the salary per hour of Danny will be
leaked even though they are sensitive. O

To gain insight into the extent to which leakage could occur
due to data semantics, we conducted a simple experiment on a
synthetic dataset [2, 5] that contains the address and tax information
of individuals. The tax data set consists of 14 attributes and has
associated with it 10 data dependencies, an example of which is
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Eid EName Zip State Role WorkHrs | SalPerHr Eid | DeptName | Salary
€134 | Alice Land |* 45678 |“¢ AZ |5 Student | % 20 740 2934 [0 CS €31 800
¢ 56 |¢9 Bobby Hill |c10 54231 |€11 CA |12 Faculty | €1z 40 €14 200 256 |3 EE €34 8000
€1578 | €16 Carrie Sea |17 53567 |€18 CA |19 Faculty | €20 40 €21 200 €578 |6 CS 378000
€212 |23 Danny Des |¢2¢ 54231 |c25s CA |€26 Staff €27 30 €28 70 €812 |9 BIO €202100

Figure 1: Employee and Wages Table

a denial constraint “if two persons live in the same state, the one
earning a lower salary has a lower tax rate”. An adversary can
use the above dependency to infer knowledge about the sensitive
cells. Suppose the salary attribute of an individual is sensitive and
therefore hidden. If the disclosed data contains information about
another individual who lives in the same state and has a lower tax
rate, an adversary can infer the upper bound of this individual’s
salary using the dependency. To demonstrate this leakage, we
considered an attribute with large number of data dependencies
defined on them (e.g., state) to be sensitive, and thus, replaced its
values by NULL. We then used the state-of-the-art data cleaning
software, Holoclean [29], as a real-world attacker to reconstruct
the NULL values associated with the sensitive cells. Holoclean was
able to reconstruct the actual values of the state 100% of the time
highlighting the importance of preventing leakage through data
dependencies on access control protected data.

Prior literature has studied the challenge of controlling infer-
ences about sensitive data using data dependencies and called it
the “inference control problem”. [14]. Existing techniques used
to protect against inferences can be categorized based on when
the leakage prevention is applied [3]. In the first category, infer-
ence channels between sensitive and non-sensitive attributes are
detected and controlled at the time of database design [8, 16]. A
database designer uses methods in this category to detect and pre-
vent inferences by upgrading classification of inferred attributes.
However, they result in poor data availability if a significant num-
ber of attributes are marked as sensitive to prevent leakages. The
second category of works include detection and control at the time
of query answering. Works such as [3, 32] determine if answers
to the query could result in inferences about sensitive data using
data dependencies, and reject the query if such an inference is de-
tected. Such query control approaches can lead to rejection of many
queries when there are non-trivial number of sensitive cells and
background knowledge. Another limitation of the prior work is the
weak security model used in determining how to process queries.
All prior work on inference control considers a query answer to
leak sensitive data if the answer can be used to reconstruct the exact
value of a sensitive object. Leakages that do not reveal the exact
value but, perhaps, limit the values a sensitive object may take are
not considered as leakage. For instance, in Example 2 above, since
the constraints do not reveal Danny’s exact salary but only that it is
below $200 per hour, prior works will not consider it to be a leakage
even though querier/adversary could eliminate a significant num-
ber of possible domain values based on the data constraints. As we
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explain in detail in Section 8, the existing solutions to the inference
control cannot be easily generalized to prevent such leakages.

In this paper, we study the problem of answering user queries
under a new, much stronger model of security — viz., full deniabil-
ity. Under full deniability, any new knowledge learned about the
sensitive cell through data dependencies is considered as leakage.
Thus, eliminating a domain value as a possible value a attribute /
cell can take violates full-deniability. One can, of course, naively,
achieve full deniability by hiding the entire database. Instead, our
goal is to identify the minimal additional non-sensitive cells that
must be hidden so as to acheive full deniability. In addition, we
require the algorithm that identifies data to hide in order to achieve
full deniability to be efficient and scalable to both large data sets
and to large number of constraints.

We study our approach to ensuring full deniability during query
processing under two classes of data dependencies !:

o Denial Constraints (DCs): that are general forms of data depen-
dencies expressed using universally quantified first order logic.
They can express commonly used types of constraints such as
functional dependencies (FD) and conditional functional depen-
dencies (CFD) and are more expressive than both

e Function-based Constraints (FCs): that establish relationships
between input data and the output data it is derived from, us-
ing functions. Such constraints arise naturally when databases
stored materialized aggregates or when data sensor data, col-
lected over time (e.g., from sensors), is enriched (using appro-
priate machine learning tools) to higher level observations.

To achieve full deniability, we first develop a method for Inference
Detection, that detects, for each sensitive cell, the non-sensitive cells
that could result in violation of full deniability. The candidate cells
identified by Inference Detection are passed to the second function,
Inference Protection that minimally selects the non-sensitive data to
hide to prevent leakages. Our technique is geared towards maximiz-
ing utility when preventing inferences for large number of sensitive
cells and their dependencies. After hiding additional cells, Inference
Detection is invoked repeatedly to detect any indirect leakages on
the sensitive cells through the new set of hidden cells and their as-
sociated dependencies. These methods are invoked cyclically until
no further leakages are detected either on the sensitive cells or any
additional cells hidden by Inference Protection. Using these two

!Other data dependencies such as Join dependencies (JD) and Multivalued dependen-
cies are not common in a clean, normalized database and therefore not interesting to
our problem setting.



different methods, we are able to achieve the security, utility, and
performance objectives of our solution.
The main contributions in our paper are:

e A security model, entitled Full deniability to protect against
leakage of sensitive data due to data semantics in the form
Denial Constraints and Function-based Constraints.

o Identification of conditions under which full deniability can
be achieved and efficient algorithms for inference detection
and protection to achieve full deniability while only minimally
hiding additional non-sensitive data.

e A prototype middleware that works alongside DBMS to ensure
full deniability given set of dependencies and policies.

o Experimental results on two different data sets show that our
approach is efficient and only minimally hides non-sensitive
cells while achieving full deniability.

Paper Organization. We introduce the notations used in the paper
and describe access control policies and data dependencies in Sec-
tion 2. In Section 3, we present the security model — full deniability
— proposed in this work. In Section 4, we describe how the leak-
age of sensitive data occurs through dependencies and introduce
function-based constraints. We present in Section 5, the algorithms
for inference detection and protection along with optimizations
to improve utility. In Section 7, we present results from an end-to-
end evaluation of our approach with two different data sets and
different baselines. In Section 8 we go over the related work and we
conclude the work by summarizing our contributions, and possible
future extensions in Section 9.

Extended version. Due to space limitations, we could not describe
several details, which can be found in the extended version [27],
including: proofs of theorems, details of extensions for improving
utility, and scalability experiments on a much larger dataset.

2 PRELIMINARIES

Table 1 summarizes the common notations we use. Consider a
database instance D consisting of a set of relations R. Each relation
R e R ={A1,Ay,..., Ay} where AJ. is an attribute in the relation.
Given an attribute A in a relation R we use Dom(A ;) to denote
the domain of the attribute and |Dom(A j)l to denote the number

of unique values in the domain (i.e. the domain size)?. A relation
contains a number of indexed tuples, t; represents the ith tuple in
the relation R, and ¢,[A j] refers to the ji# attribute of this tuple.

We will use the cell-based representation of a relation to simplify
notation when discussing the fine-grained access control policies
and data dependencies. Figure 1 shows two tables, the Employee
table with cells ¢, to c,, and the Wages table with cells ¢, to cy.
Note that in the cell-based notation each table, row, column corre-
sponds to a set of cells. For instance, the second tuple/row of Wages
table is the set of cells {c;,, ¢;4, ¢;,} and the column for attribute
Zip in the Employee table is the set {c3, €100 €170 024}. Each cell has
an associated value. For instance, the value of cell ¢y is “CA".

2We say the domain size in the context of an attribute with discrete domain values
and for continuous attributes we discretize their domain values into a number of
non-overlapping bins.
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Table 1: Notation Cheatsheet

Notation Definition

D A database instance

c A cell in a database relation

c,cH Set of cells, hidden cells

§,A A schema level data dependency / set

5.5 An instantiated data dependency / set
Cells(g ) Cells involved in &

Preds(g) The set of predicates associated with a DC
Preds(g, c) The set of predicates in 5 that involves the cell ¢
Preds(g \¢) The set of predicates in 5 without the cell ¢
V(C) Set of value assignments for cells in C
I(c|V,é) Inference function for the cell ¢

2.1 Access Control Policies

Data sharing is controlled using access control policies, or simply
policies. We classify users U as data owners, who set the access
control policies, and as queriers, who pose queries on the data.
Ownership of data is specified at tuple level and a data owner of
a tuple may specify policies marking one or more cells (c;) in the
tuple t as sensitive against queries by other users. When another
user queries the database, the returned data has to be policy com-
pliant (i.e., policies relevant to the user are applied to the query
results). In this section, we present a simplified model of policy
that is sufficient to describe the approach and refer the reader to
the extended version [27] for the complete policy model.

A policy P is represented using the 3-tuple {R, o, ®} where R is
the relation to which P applies, o is the set of selection conditions
that select the set of tuples in R to which P applies, and finally ®
is the projection conditions that identifies the set of columns to
which the policy is applied. The application of an policy is done
by a function over the database that returns NULL for a cell if it is
disallowed by the policy or the original cell value if it is allowed.

Definition 2.1 (Sensitive Cell). Given a policy P, we say that a cell
c is sensitive to a user U if after applying P c is replaced with NULL.
The set of cells sensitive to the user U is denoted by C‘E, or simply

CS when the user is clear from the context.

2.2 Data Dependencies

Semantics of data is expressed in the form of data dependencies, that
restrict the set of possible values a cell can take based on the values
of other cells in database. Several types of data dependencies have
been studied in the literature such as foreign keys, functional de-
pendencies (FDs), and conditional functional dependencies (CFDs),
etc. We consider two types of dependencies as follows:

Denial Constriants (DC), is a first-order formula of the form
Vi, tj, ...eD,é: —|(Pred1 APred, A.. ./\PredN) where Pred; is the
ith predicate in the form of t, [Aj]th [Ak] ort, [Aj]9const with
xye{ij...}, Aj,Ak € R, const is a constant, and 0 € {=,>, <, #
, >, <}. DCs are quite general — they can model dependencies such
as FDs & CFDs and are flexible enough to model much more complex
relationships among cells. Data dependencies in the form of DCs has
been used in recent prior literature for data cleaning [6, 17], query



optimization [19], and secure databases [3, 10]. Moreover, systems,
such as [5], have been designed to automatically discover DCs in a
given database. This is the type of DCs considered throughout the
paper.

Function-based Constraints (FCs) capture the relationships
between derived data and its inputs. As described in Example 2, the
Salary in the Wages table (see Table 1) is a attribute derived using
WorkHrs and SalPerHr i.e., Salary = fn(WorkHrs, SalPerHr). In
general, given a function fn with r1,ry, ..., ry as the input values
and s; as the derived or output value, the FC can be represented

by fn(ri,rz, ..., rn) = si.

3 FULL DENIABILITY

In this section, we discuss the assumptions in our setting and
present the concept of view of a database for the querier and for-
malize an inference function with respect to the view and data
dependencies. We formally define our security model — Full Deni-
ability — based on the inference function and use it to determine
the leakage on sensitive cells.

3.1 Assumptions

We will assume that tuples (and cells in tuples) are independently
distributed except for explicitly specified dependencies that are
either learnt automatically or specified by the expert. The database
instance is assumed to satisfy the data dependencies. The querier,
who is the adversary in our setting, is assumed to know the de-
pendencies and can use them to infer the sensitive data values.
This assumption leads to a stronger adversary than the standard
adversary considered by many algorithms for differential privacy
or traditional privacy notions like k-anonymity or access controls,
which assumes the adversary knows no tuple correlations (or tuples
are independent). A querier is free to run multiple queries and can
attempt to make inferences about sensitive data based on the results
of those queries. Two queriers, however, do not collude (i.e., share
answers to the queries). We note that if such collusions were to
be allowed, it would void the purpose of having different access
control policies for different users.

As queriers are service providers or third parties who are in-
terested in obtaining user data to provide a service and therefore
we assume that queriers and data owners do not overlap. We also
assume that a querier cannot apriori determine if a cell is sensitive
or not (i.e., they do not know the access control policies) 3. To see
why this is important, consider a FD defined on the Employee table
(Table 1) Zip— State. Suppose c,, (State = “CA”) is sensitive based
on the policy and in order to prevent inferences using the FD, let
¢y, be hidden. If the querier has knowledge that c,, is hidden due
to our approach (and hence know that c,; was sensitive), they can
deduce that c,; and ¢;; have the same value.

3.2

For each querier, given the set of policies applicable to the querier,
the algoritm first determines which cell is sensitive to them. Such
cells are set to NULL in the view of the database shared with the
querier. As noted in the introduction, if only the sensitive cells are

Querier View

3In the extended version of our paper, we have included a discussion on relaxing both
these assumptions.
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set to NULL and all the non-sensitive cells retain their true values,
the querier may infer information about the sensitive cells through
the various dependencies defined on the database. It is necessary,
therefore, to set some of the non-sensitive cells to NULL in order
to prevent leakages due to dependencies. Henceforth, we will refer
to the cells, both sensitive and non-sensitive, whose values will be
replaced by NULL as hidden cells, denoted by CH. We now present
the concept of a querier view on top of which queries are answered.

Definition 3.1 (Querier View). The set of value assignments for
a set of cells C in a database instance D with respect to a querier
is denoted by V(C) or simply V when the set of cells is clear from
the context. The value assignment for a cell could be either the true
value of this cell in D or NULL value (if it is hidden).

We also define a concept of the base view of database for a querier,
denoted by V. In Vo, all the cells in D are set to be NULL. We
consider the information leaked to the querier based on computing
the query results over the base view Vj as the least amount of
information revealed to the querier. For instance, the base view
may provide querier with information about number of tuples in
the relation, but, by itself it will not reveal any further information
about the sensitive cells, despite what dependencies hold over the
database. Our goal in developing the algorithm to prevent leakage
would be to determine a view V for a querier that hides the minimal
number of cells, and yet, leaks no further information than the base
view. Next, we define an inference function that captures what the
querier can infer about a sensitive cell in a view using dependencies.

3.3 Inference Function

Dependencies such as denial constraints are defined at schema level,
such as the dependency 8 on Table 1:

6 : Vi, tj € Emp —(t;[State] = tj[State] A t;[Role] = t;j[Role]
A ti[SalPerHr] > tj[SalPerHr]).

Given a database instance D, the schema level dependencies can
be instantiated using the tuples. If the Employee Table has 4 tuples,
then there are (3) = 6 number of instantiated dependencies at cell
level. For example, one of the instantiated dependencies for § is

0 :=((eg = c1g) A (g = €19) A (€14 > €51)) (1)
where {cn, €180 €120 €190 Crao 021} correspond to ty[State], t3[State],
ta[Role], t3[Role], tz[SalPerHr], and t3[SalPer Hr| in the Employee
Table respectively. From now on, we use Sp to denote the full set of
instantiated dependencies for the database instance D at cell level.
We use Preds(g), Preds(cg, ¢), and Preds(g\c) to represent the set of
predicates in the instantiated dependency 5, the set of predicates in
5 that involves the cell ¢, and the set of predicates in 5 that do not
involve the cell ¢ respectively. We also use Cells((g) and Cells(Pred)
to represent the set of cells in an instantiated dependency and
a predicate respectively. For each instantiated dependency 5e
Sa, when every cell ¢; € Cells(g) is assigned with a value x; €
Dom(c;), denoted by 5( .+, € = Xi,...), the expression associated
with an instantiated dependency can be evaluated to either True
or False. Note that since the database is assumed to satisfy all the
dependencies, all of the instantiated dependencies must evaluate to
True for any instance of the database.



We use the notation (¢ | V) to denote the set of values (inferred
by the querier) that the cell ¢ can take given the view V but without
any knowledge of the set of dependencies. Likewise, I(C | V)
denote the cross product of the inferred value sets for cells in the
cell set C, i.e., I(C | V) = X ecl(c | V). Clearly, if in a view, a cell
is assigned its original/true value (and not NULL) then I(c | V)
consists of only its true value. We will further assume that:

AssUMPTION 1. Let'V be a view and c be a cell with value NULL
assigned to it in V. I(c | V) = Dom(c). That is, a querier without
knowledge of dependencies, cannot infer any further information
about the value of the cell beyond its domain.

Knowledge of the dependencies can, however, lead the querier to
make inferences about the value of the cell. The following example
illustrates that the querier may be able to eliminate some domain
values as possible assignments of Dom(c).

Example 3. Let c;, in Table 1 be sensitive for a querier and let
the view V be the same as the original table with ¢, , replaced with
NULL. Furthermore, let § (Eqn. (1)) (that refers to c;,) hold. If the
querier is not aware of this dependency 5, the inferred value set
for ¢, is the {ull domain, ie., I(c;, | V) = Dom(c,,). However,
knowledge of § leads to the inference that ¢;, < 200 since the other
two predicates (c, are True. O

1 = G C1p = C0)
Definition 3.2 (Inference Function). Given a view V and an in-
stantiated dependency J for a cell ¢; € Cells(J), the inferred set of

values for ¢; by § is defined as

I(ci|V,8):={x; | 3(..., xi—1, %is1, .. ) € L(Cells(§)\{c;} | V)

s.t.S(cl =X1,...,Ci = Xj,...,Cn = Xp) = True} (2)

where n denotes the size of the cell set |Cells(8)| and x; € Dom(c;).

Given a view V and a set of instantiated dependencies S
{..., (§ ...}, the inferred value for a cell ¢ is the intersection of the
inferred values for c; over all the dependencies, i.e.,

I(c,[V,Sp) = (']5E$AI(CASJ,S) 3)

3.4 Security Definition

We can now formally define the concept of full deniability of a
view. Note that given a view V and a set of dependencies Sp, the
following always holds: I(c|V, Sa) € I(¢| Vo, Sp). We say that a V
achieves full deniability if the two set are identical i.e., the query
results does not enable the querier to infer anything further about
the database than what the querier could infer from the V¢ (which,
as mentioned in Sec. 3.2, is the least amount of information leaked
to the querier).

Definition 3.3 (Full Deniability). Given a set of sensitive cells CS
in a database instance D and a set of instantiated dependencies
Sa, we say that a querier view V achieves full deniability if for all
¢t e CS,

I(c"|V,8p) =1(c*[Vo, Sp)- (4)
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4 FULL DENIABILITY WITH DATA
DEPENDENCIES

In this section, we first identify conditions under which denial
constraints could result in leakage of sensitive cells (i.e., violation
of full deniability) and further consider leakages due to function-
based constraints (discussed in Section 2).

4.1 Leakage due to Denial Constraints

An instantiated denial constraint consists of multiple predicates in
the form of § = —(Pred; A...APredy;) where each predicate is either
Predy; = ¢ 6 ¢’ or Predy; = ¢ 8 const. A valid value assignment
for cells in C(§) has at least one of the predicates in 5 evaluating
to False so that the entire dependency instantiation 5 evaluates to
True. Based on this observation, we identify a sufficient condition
to prevent a querier from learning about a sensitive cell ¢* € C¥ in
an instantiated DC Si with value assignments.

As shown in Example 3, for an instantiated DC § with cell value
assignments, when all the predicates except for the predicate con-
taining the sensitive cell (Pred(g \c*)) evaluates to True, a querier
can learn that the remaining predicate Pred (5 , ¢*) evaluates to False
even though ¢* is hidden. Thus, it becomes possible for the querier
to learn about the value of a sensitive cell from the other non-
sensitive cell values. We can prevent such an inference by hiding
additional non-sensitive cells.

Example 4. Suppose, in Example 3, we hide the non-sensitive cell
(e.g., C11) in addition to Cly (i.e., replace it with NULL). Now, the
querier will be uncertain of the truth value of ¢, = ¢;;, and as a
result, cannot determine the truth value of the predicate €y > €y
containing the sensitive cell. Since the predicate, ¢;, > ¢,; could
either be true or false, the querier does not learn anything about

the value of the sensitive cell ¢, ,. O

We can formalize this intuition into a sufficient condition that
identifies additional non-sensitive cells to hide which we refer to
as the Tattle-Tale Condition (TTC) 4 in order to prevent leakage of
sensitive cells, as follow:

Definition 4.1 (Tattle-Tale Condition). Given an instantiated DC
8,aview V, a cell ¢ € Cells(5), and Preds(5\c) # ¢
Y Pred; € Preds(g\c),
eval(Pred,, V) = True
otherwise

>

TTC(S,V,¢) = (5)

False,

where eval(Pred, V) refers to the truth value of the predicate Pred in
the view V using the standard 3-valued logic of SQL i.e., a predicate
evaluates to true, false, or unknown (if one or both cells are set to
NULL). The predicates only compare between the values of two
cells or the value of a cell with a constant as defined in Sec 2.2.

Note that TTC (5 V,¢) is True if and only if all the predicates ex-
cept for the predicate (s) containing ¢ (Preds((g, ¢)) evaluate to True
in which case, the querier can infer that the one of the predicates
containing ¢ must be false and, as a result, could exploit the knowl-
edge of the predicate (s) to restrict the set of possible values that
c could take. This leads us to a sufficient condition to achieve full

4Tattle-Tale refers to someone who reveals secret about others



deniability as captured in the following two theorems. In proving
the theorems, we will assume that none of the predicates in the
denial constraints are trivial That is, there always exist a domain
value for which the predicate can be true or false. This also means
that in the base view V( (where all cells are hidden), for any cell
¢ € cells(g) and for any predicate Pred € Preds((i ¢), there exists
a possible assignment for ¢; in I(c; | Vo, 5 ) such that eval(Pred, V)
returns False.

THEOREM 4.2. Given an instantiated DC c§ a viewV, and a sen-
sitive cell ¢* € Cells((g)) whose value is hidden in this view. If the
Tattle-Tale Condition TTC(S, V, ¢*) evaluates to False, then the set of
inferred values for ¢* fromV is the same as that from the base view
Vo (where all the cells are hidden), i.e., I(¢*|V, §) = I(c*|Vo, §).

CoOROLLARY 4.3. Given a set of instantiated DCs Sp, a view V, and
a sensitive cell ¢* whose value is hidden in this view. If for each of the
instantiations Si € Sp, TTC(SI., V, ¢*) evaluates to False then the set
of inferred values c* from the V is same as that from the base view
Vo ie, I(c" | V,5A) =1(c* | Vo, SA).

4.2 Selecting Cells to Hide

As shown in Theorem 4.2, the Tattle-Tale condition evaluating
to False is the sufficient condition of achieving full deniability re-
quirement. TTC (5 V, ¢) evaluates to False when one of the follow-
ing holds: (i) none of the predicates involve the sensitive cell i.e.,
Preds(g, ¢*) = ¢ (trivial case); (ii) one of the other predicates in
Preds(g\c*) evaluates to False in V; or (iii) one of the other predi-
cates in Preds(S \¢*) involve a hidden cell in V and thus evaluates
to Unknown.

We define cuesets® as the set of cells in an instantiated DC that
can be hidden to falsify the Tattle-Tale condition.

Definition 4.4 (Cueset). Given an instantiated DC 5, a cueset for
a cell ¢ € cells(6) is defined as

cueset(c, 5) = Cells(Preds(S\c)). 6)

If 6 only contains a single predicate, we consider the remaining
cell in the cueset(c, §) = ¢ given that Pred(c) = cl.ch.

Example 5. In the instantiated DC from Example 3, the cueset for
€y based on 54 is given by cueset(cl4, 54) = {04, €115 Css C12}' ]

We could falsify the Tattle-Tale condition w.r.t. a given cell ¢
and dependency 5 by hiding any one of the cells in the cueset
independent of their values in V. The cuesets for a cell ¢ is defined
for a given dependency instantiation. We can further define cueset
for c for given a set of instantiated DCs Sa by simply computing
the cueset(c, 8) for each instantiated dependency in the set 5 € Sa.
In order to prevent leakage of ¢ through 5, we will hide one of
the cells in the cueset(c, §) corresponding to each of dependency
instantiations & € SA.

This, alone, however, might not still falsify the tattle-tale condi-
tion to achieve full-deniability. Leakage can occur indirectly since
the value of the cell, say ¢ chosen from the cueset (¢, 51) to hide
(in order to protect leakage of a sensitive cell ¢*) could, in turn,

SThese cells give a cue about the sensitive cell to the querier.
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be inferred due to additional dependency instantiation, say 5 Iz If
this dependency instantiation does contain ¢* (as in that case ¢* is
already hidden and therefore it cannot be used to infer any infor-
mation about ¢ ), such a leakage can, in turn, lead to leakage of ¢*
as shown in the following example.

Example 6. Consider we hide the cell c,; in the cueset shown
in Example 5 to protect the sensitive cell c;,. Let 5 | be another
instantiated dependency, that is ~((c;y = ¢,,) A (¢g # €y5)) (ie.a
FD indicating Zip determines State). The dependency & ; itself does
not lead to the leakage to the sensitive cell ¢*. However, based on
dependency 5 It the querier can first infer the value of the hidden

cell ¢,,, which in turn, leads to leakage of the sensitive cell ¢*. O

11°

Achieving full deniability for the sensitive cells requires us to
recursively select cells to hide from the cuesets of not just sensitive
cells, but also, from the cuesets of all the hidden cells. This recursive
hiding of cells terminates when the cueset of a newly hidden cell
includes an already hidden cell. The following theorem states that
after the recursive hiding of cells in cuesets has terminated, the
querier view achieves full deniability.

THEOREM 4.5 (FULL DENIABILITY FOR A QUERIER VIEW). Let Sp
be the set of dependencies, CS be the sensitive cells for the querier and
CS ¢ CH be the set of hidden cells resulting in a'V for the querier.
V achieves full deniability if V¢, € CH, V5 € Sp, v non-empty
cueset(c;, 5) € cuesets(c;, Sp), there exists a ¢ € CH such that

¢; € cueset(c;, ).

4.3 Leakage due to Function-based Constraints

In order to study the leakages due to Function-based Constraints
(FC) we first define the property of invertibilty associated with
functions.

Definition 4.6 (Invertibility). Given afunction fn(ry,rs,...,rn) =
si, we say that fn is invertible if it is possible to infer knowledge
about the inputs (r1, 12, . .., rp) from its output s;. Conversely, if s;
does not lead to any inferences about (r1, ry, . .., ry), we say that it
is non-invertible

The Salary function, in Example 2, is invertible as given the
Salary of an employee, a querier can determine the minimum value
of SalPerHr for that employee given that the maximum number
of work hours in a week is fixed. Complex user-defined functions
(UDFs) (e.g., sentiment analysis code which outputs the sentiment of
a person in a picture), oblivious functions, secret sharing, and many
aggregation functions are, however, non-invertible. Instantiated
FCs can be represented similar to denial constraints. For example, an
instantiation of the dependency 0 : Salary := fn(WorkHrs, SalPerHr)
is: & —(cg =20 A cg = 40 Acg; # 800) where c,, cg, ¢5; corresponds
to Alice’s WorkHrs, SalPerHr and Salary respectively.

For instantiated FCs, if the sensitive cell corresponds to an input
to the function, and the function is not invertible, then leakage
cannot occur due to such an FC. Thus, the TTC(c", S, V) returns
False when the function is non-invertible. For all other cases, the
leakage can occur in the exact same way as in denial constraints.
We thus, need to to ensure the Tattle-Tale Condition for all the
instantiations of a FC evaluates False.



Algorithm 1: Full Algorithm
Input: User U, Data dependencies Sp, A view of the

database V
Output: A secure view Vg
CS = SensitivityDetermination(U, V)
cH=c5 vs=V
cuesets = InferenceDetect(CH, Sy, V)
while cuesets # ¢ do
for cs € cuesets do

if cs.overlaps(CH ) then
‘ cuesets.remove(cs)

end

toHide = InferenceProtect (cuesets)

CH .addAll(toHide)

cuesets = InferenceDetect(toHide, Sp, V)

10

11

end

forc € CcH do
‘ Replace c;.val in Vg with NULL
end

12

return Vg

Cueset for Function-based Constraints. The cueset for a FC
5 is determined depending on whether the derived value (s;) or
input value ({...,rj,...}) is sensitive and the invertibility property
of the function fn.

i {¢} Ve el orj o},
cueset(c,8) = {{s;}, fn isinvertible and if ce{...,rj,...}

¢, 3

As the instantiation for FC is in DC form and their Tattle-Tale
Conditions and cueset determination are almost identical, in the
following section we explain the algorithms for achieving full de-
niability with DCs as extending it to handle FCs requires only a
minor change (disregard cuesets when one of the input cell(s) is
sensitive and function is non-invertible).

if c=s;

fn is non-invertible and if c€ {...,rj,..

5 ALGORITHM TO ACHIEVE FULL
DENIABILITY

In this section, we present an algorithm to determine the set of
cells to hide to achieve the full-deniability based on Theorem 4.5.
Full-deniability can trivially be achieved by sharing the base view
Vo where all cells values are replaced with NULL. Our goal is to
ensure that we hide the minimal number of cells possible while
achieving full deniability.

5.1 Full-Deniability Algorithm

As shown in Figure 2, our approach (Algorithm 1) takes as input
a user U, a set of schema level dependencies Sy, and a view of the
database V (initially set to the original database). The algorithm
first determines the set of sensitive cells C5 (Sensitivity Determi-
nation function for U and V). Sensitivity determination identifies
the policies applicable to a querier using the subject conditions in
policies and marks a set of cells as sensitive thus assigning them
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Figure 2: System Architecture

with NULL in the view. The set of sensitive cells are added into a
set of hidden cells (hidecells) which will be finally hidden in the
secure view (V) that is shared with the user U. Next, the algorithm
generates the cuesets for cells in hidecells using Sp and V (Infer-
ence Detection, Step 3). Given the cuesets, the algorithm chooses a
set of cells to hide such that the selected cells covers each of the
cuesets (Inference Protection). This process of cueset identification
protection continues iteratively as new hidden cells get added. The
algorithm terminates when for all of the cuesets there exists a cell
that is already hidden. Finally, we replace the value of hidecells in
Vs (initialized to V) with NULL and returns this secure view to the
user (Steps 13-16). The following theorem (proof included in the
extended version) states that the algorithm successfully implements
the recursive hiding of cells in CH which is required for generat-
ing a querier view that achieves full deniability (as discussed in
Theorem 4.5).

THEOREM 5.1. When Algorithm 1 terminates, Vc; € CH v§ € sp,
for all cueset(c;, §) that is non-empty, there exists ¢; € cueset(c;, 6)
such that ¢; € CH (i.e, Algorithm 1 has recursively hidden at least 1
cell from all the non-empty cuesets of cells in CtT).

5.2 Inference Detection

Inference detection (Algorithm 2) takes as input the set of sensitive
cells (CS), the set of schema-level dependencies (Sp), and a view
of the database (V) in which sensitive cells are hidden by replac-
ing with and others are assigned the values corresponding to the
instance. For each sensitive cell ¢*, we consider the given set of
dependencies Sp and instantiate each of the relevant dependencies
d using the database view V (Steps 5-7). The Deplnstantiation func-
tion returns the corresponding instantiated dependency 5. For each
such dependency instantiation, if it is a dependency containing a
single predicate i.e., 5 = ~(Pred) where Pred = c*fc,, we add the
non-sensitive cell (ck) to the cueset (Steps 9, 10). If the dependency
contains more than a single predicate, we determine if there is leak-
age about the value of the sensitive cell by checking the Tattle-Tale
Condition (TTC) for the sensitive cell ¢* (Step 11)°. If TTC (8,V, ¢
evaluates to False, we can skip that dependency instantiation as

®While not shown in the algorithm for simplicity, when an input cell is sensitive in a
FC instantiation, if the FC is non-invertible we ignore its cuesets as they are empty.



Algorithm 2: Inference Detection

Algorithm 3: Inference Protection

Input: A set of sensitive cells CS, Schema-level data
dependencies S, A view of the database V
Output: A set of cuesets cuesets
1 Function InferenceDetect(Cs, Sa, V)

2 cuesets = { }

3 for ¢* € C5 do

4 Ssy =1} > Set of instantiated dependencies.
5 for 5 € A do

6 ‘ Ss, = Ss, U Deplnstantiation(d, c*, V)

7 end

8 for 5 € Sy do > For each instantiated dependency.
9 if |Preds(5)| =1 then

10 ‘ cueset = {c } > Note: Pred(c*) = c*@ck
11 else if TTC(5~, V, ¢*) = False then

12 ‘ continue

13 else

14 ‘ cueset = cells(Preds(g\c))

15 end

16 cuesets.add(cueset)

17 end
18 end
19 return cuesets

there is no leakage possible on ¢* due to it (Step 12). However,
if TTC(8,V, ¢*) evaluates to True, we get all the cells except for
Pred(c*) (Step 14) 7. After iterating through all the dependency
instantiations for all the sensitive cells, we return cuesets (Step 19).

Note that in our inference detection algorithm, we did not choose
the non-sensitive cell ¢’ in Pred(c*) = ¢*0¢’ as a candidate for
hiding. We illustrate below using a counter-example why hiding ¢’
might not be enough to prevent leakages.

Example 7. Consider a relation with 3 attributes A1, Az, A3 and 3
dependencies among them (61 : Ay — A, 82 : Ag — A3, 83 : A1 —
As). Let there be two tuples in this relation t; : 1(c,), 2(c,), 2(¢5)
and 2 : 1(¢,),2(c5), 2(¢,). Suppose c, is sensitive. As leakage of
the sensitive cell is possible through the dependency instantiation
52 :2((c, = ¢5) A (¢5 = ¢4)), ¢5 is hidden. In the next iteration of
the algorithm, to prevent leakages on the hidden cell ¢, through
dependency instantiation 51 1 2((e; = ¢4) A ey = ¢5)), ¢, is also
hidden. Note that c, is in the same predicate as c; in 51. However, the
querier can still infer the truth value of the predicate c, = c as True
based on the two non-hidden cells, ¢, and c,, and the dependency
instantiation 53 (e =¢) A (c~2 = ¢;)). The querier also learns
that ¢; = ¢, evaluates to True in §, which leads to them inferring
that ¢, = 2 (same as c,) and complete leakage. O

7 If we wish to relax the assumption that queriers and data owners do not overlap
stated in Section 3.1, we can do so here by only including the cells in the cueset that
do not belong to the querier. We prove the correctness of this modification in the
extended version [27].

Input: Set of cuesets cuesets
Output: A set of cells selected to be hidden toHide
1 Function InferenceProtect (cuesets):

2 toHide = {} > Return list initialization.
3 while cuesets # ¢ do

4 cuesetCells = Flatten(cuesets)

5 dict[c;, freqi] = CountFreq(GroupBy(cuesetCells))
6 cellMaxFreq = GetMaxFreq(dict[c;, freq;])

7 toHide.add(cellMaxFreq) > Greedy heuristic.
] for cs € cuesets do

9 if cs.overlaps(toHide) then

10 ‘ cuesets.remove(cs)

11 end
12 end
13 return toHide

To prevent any possible leakages on the sensitive cell ¢* and its
corresponding predicate Pred(c*), we only consider the solution
space where a cell from a different predicate (Preds(§\c")) is hidden.

5.3 Inference Protection

After identifying the cuesets for each sensitive cells based on their
dependency instantiations, we now have to select a cell from each
of them to hide to prevent leakages. The strategy for cell selection,
described in Algorithm 3 utilizes Minimum Vertex Cover (MVC) [7]
to minimally select the cells to hide from the list of cuesets. In
this approach, each cueset is considered as a hyper-edge and cell
selection strategy finds the minimal set of cells that covers all the
cuesets. MVC is known to be NP-hard [11] and therefore we utilize
a simple greedy heuristic based on the membership count of cells
in various cuesets. Algorithm 3 takes as input the set of cuesets
and returns the set of cells to be hidden to prevent leakages. First,
we flatten all the cuesets into a list of cells and insert this list into
a dictionary with the cell as key and their frequency count as the
value (Steps 4-5). Next, we select the cell from the dictionary with
the maximum frequency and add it to the set of cells to be hidden
and remove any cuesets that contain this cell (steps 7-10). These
steps are repeated until all the cuesets are covered i.e., at least one
cell in it is hidden, and finally we return the set of cells to be hidden.

5.4 Convergence and Complexity Analysis

Algorithm 1 starts with s number of hidden cells. At each iteration,
we consider that each hidden cell (including cells are hidden in previ-
ous iterations) is expanded to f number of cuesets on average by the
Inference Detection algorithm (Algorithm 2). Among the cuesets,
the average number of cells that are hidden, such that it satisfies full

!

deniability, is given by ;- where m is the coverage factor determined
by minimum vertex cover (MVC). Then, at the end of ith iteration,

the number of average hidden cells will be s; = s(%)", and the

average number of cuesets will be ¢s; = sf( %)i_l. As s; is bounded
by the total number of cells in the database, denoted by N, the
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number of iterations (T) to converge is bounded by log r /m(N /s),
when f > m (which was verified in our experiments).

Given |A| which is the number of schema-level dependencies,
we can estimate the time complexity with respect to I/O cost. At
ith iteration of Algorithm 1, the I/O cost of (i) the dependency
instantiation is O(|A|(N + s;)) (implemented using a “JOIN” query
given sufficient, i.e. ®(N), memory) and (ii) minimum vertex cover
(MVC) with an I/O cost of O(cs;). Hence, the overall estimated I/O
cost ZiTzl O(]A|(N +s;)) + O(cs;) in which is equivalent to O(N)
given T < Iogf/m(N/s) and thus is linear to the data size.

6 DISCUSSION

While full deniability studied in this paper offers a strong security
model to protect sensitive data from inference attacks through
data dependencies, it is not without limitations. In this section,
we discuss these limitations and explore possible extensions to
overcome them.

6.1 Weaker Security Model

The first potential limitation is from the perspective of utility as
full deniability hides a number of non-sensitive cells to prevent
leakages. It is possible to relax full deniability to a weaker security
model which we call, k-percentile deniability in order to potentially
hide fewer cells and thus improve utility.

Definition 6.1 (k-percentile Deniability). Given a set of sensitive
cells CS in a database instance I and a set of instantiated depen-
dencies Sp, we say that a querier view V achieves k-percentile
deniability if for all ¢* € C5,

L(c* [V, Sa)] > (k - [L(c"[ Vo, Sa)I) ™

1
where eS| < k<1

Note that if k = 1, then k-percentile deniability is the same as
full deniability, where the set of values inferred by the adversary
from view V is the same as the set from the base view. With k < 1,
it allows for a bounded amount of leakage. We also note that the
security models used in prior works is subsumed by the notion
of k-percentile deniability defined above. For instance, the model
used in [3] ensures that the querier cannot reconstruct the exact
value of the sensitive cell using data dependencies, which can be
viewed as a special case of k-percentile deniability with the value
of k = —l]I(clvz 6L i.e., the number of values sensitive cell can take

0,9A
is more than 1.

We discuss k-percentile deniability in detail in the extended
version of the paper. In Section 7, we show that the algorithm
that achieves k-percentile deniability only marginally improves on
full deniability even with low values of k (i.e., complete leakage).
Therefore this approach is not useful in improving the utility in
realistic settings. It is possible that in more complex domains with
large number of sensitive cells, k-percentile deniability is more
effective and this needs to be studied further.

6.2 Limitations of Security Model

The second potential limitation is from the perspective of security
as our security model is based on the assumption that no correla-
tions exist between attributes and tuples i.e., they are independently
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distributed other than what is explicitly stated through dependen-
cies (that are either learnt automatically or specified by the expert).
However, typically in databases, other correlations do exist which
can be exploited to infer the values of the hidden cells. These correla-
tions can be also learned by the database designer using dependency
discovery tools or data analysis tools. If the correlations are very
strong (e.g. hard constraints with no violations in the database), we
call them out as constraints and consider them in our algorithms.
For weak correlations, or soft constraints that only apply to a por-
tion of the data, we do not consider them. Otherwise, everything in
the database will become dependent, in which case our algorithm
would be too conservative and hide more cells than necessary based
on these soft constraints.

Hence, in our experiments (Section 7), we consider only the data
dependencies (a set of hard constraints) that were defined on the
database. To understand how this assumption plays out in inference
attacks, we deployed a data cleaning adversary who tries to exploit
all possible correlations in the data to reconstruct the values of the
sensitive cells. The results (Section 7.4) show that by considering
the major data dependencies, the adversary is only able to recover
a small portion of the sensitive cells (14 out of 90 sensitive cells).

7 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation results for
our proposed approach to implement full-deniability. First, we ex-
plain our experimental setup including details about the datasets,
dependencies, baselines used for comparison, evaluation metrics,
and system setup. Second, we present the experimental results for
each of the following evaluation goals: 1) comparing our approach
against baselines in terms of utility, performance, and number of
cuesets generated; 2) evaluating the impact of dependency connec-
tivity, and 3) studying the extensions and limitations presented
in Section 6. The dataset schemas, list of data dependencies, and
results on a larger dataset are included in the extended version[27].

7.1 Evaluation Setup

Datasets. We perform our experiments on 2 different datasets. The
first one is Tax dataset [2], a synthetic dataset with 10k tuples and
14 attributes, where 10 of them are discrete domain attributes and
the rest are continuous domain attributes. Every tuple from the tax
table specifies tax information of an individual with information
such as name, state of residence, zip, salary earned, tax rate, tax
exemptions etc. The second dataset is the Hospital dataset [5] which
is a real-world dataset where all of the 15 attributes are discrete
domain attributes.

Data Dependencies. For both datasets, we identify a large num-
ber of denial constraints by using a data profiling tool, Metanome
[25]. Many of the output DCs identified by Metanome were soft
constraints which are only valid for a small subset of the database
instance. After manually analyzing and pruning these soft DCs, we
selected 10 and 14 hard DCs for the Tax dataset and the Hospital
dataset respectively. We also added a FC based on the continuous
domain attribute named “tax" which is calculated as a function
“tax = fn(salary, rate)”.

Policies. (described in Section 2) control the sensitivity of a cell.
The number of sensitive cells is equivalent to the number of policies
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Figure 3: (a) Data utility (b) Performance. Experiments done
on Tax dataset for Our Approach, Random Hiding, and Obliv-
ious Cueset.

and it helps us in precisely controlling the number of sensitive cells
in experiments using policies. While the experiments are performed
for a single querier, the extension to multiple queriers is trivial.
Metrics. We compare our approach against the baseline methods
using the following metrics: 1) Utility: measures the number of total
cells hidden; 2) Performance: measures the run time in seconds.
System Setup. We implemented the system in Java 15 and build the
system dependencies using Apache Maven. We ran the experiments
on a machine with the following configuration: Intel(R) Xeon(R)
CPU E5-4640 2.799 Ghz, CentOS 7.6, with RAM size 64GB. We chose
as the underlying database management system MySQL 8.0.3 with
InnoDB. For each testcase, we perform 4 runs and report the mean
and standard deviation.

Baselines. In the following experiments we test our approach
which implements Algorithm 1, denoted by Our Approach against
baselines. To best of our knowledge, there exists no other systems
which solves the same problem and therefore we have developed
2 different baseline strategies for comparison. In each baseline
method, we replace one of the key modules in our system, deter-
mining cuesets and selecting cell to hide from the cueset, with a
naive strategy but without compromising full deniability of the
generated querier view.

o Baseline 1: Random selection strategy for hiding (Random Hid-
ing): which replaces the minimum vertex cover approach with
an inference protection strategy that randomly selects cells from
cuesets to hide.

® Baseline 2: Oblivious cueset detection strategy (Oblivious Cue-
set): which disregards Tattle-Tale Condition and uses an inference
detection strategy that creates as many dependency instantiations
as the number of tuples in the database for each dependency and
generates cuesets for all of them.

7.2 Experiment 1: Baseline Comparison

We compare our approach against the aforementioned baselines
and measure the utility as well as performance (see Figure 3(a)).
We increase the number of policies from 10 to 100 (step=10) where
each each sensitive cell participate in at least 5 dependencies. This
ensures that there are sufficient inference channels through which
information about sensitive cells could be leaked. The number of
cells hidden by Our Approach increases linearly w.r.t the increase
in number of policies/sensitive cells compared to Random Hiding
(5.3 Our Approach) and Oblivious Cueset (1.4XOur Approach). Ran-
dom Hiding performs the worst because it randomly hides cells
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without checking the membership count of a cell in cuesets (as with
using MVC in Algorithm 3). The performance of Oblivious Cueset
is better because it uses the same Inference protection strategy as
Our Approach. However, it generates a larger number of cuesets
as it doesn’t check the Tattle-Tale Condition for the dependency
instantiations (like in Algorithm 2)) and therefore has to hide more
cells to ensure full deniability.

We also compare the performance (run time in seconds) against
number of policies of these 3 approaches (see Figure3(b)). The
run time of Our Approach is almost linear w.r.t the increase of
the number of policies. On the other hand, Oblivious Cueset is
exponential w.r.t number of policies, because it generates O(|A| X
n?) cuesets where n denotes the number of tuples in D and it is
expensive to run inference detection on such a large number of
cuesets. In Random Hiding, we restrict the execution to the fifth
invocation of the inference detection algorithm (Algorithm 2) i.e., if
the execution doesn’t complete by then, we force stop the execution.
In order to study this further, we analyzed the total number of
cuesets generated by Random Hiding vs. Our Approach (see Figure
4) in each invocation of Inference Detection. Due to the usage of
MVC optimization in Inference Protection, Our Approach terminates
after a few rounds where as with Random Hiding the number of
cuesets generated in each invocation keeps increasing. We also note
that Our Approach is more stable in different test cases and has a
lower standard deviation on number of cuesets and hidden cells
compared to Random Hiding.

7.3 Experiment 2: Dependency Connectivity

In the next set of experiments, we study the impact of dependency
connectivity on the utility as well as performance. The relationship
between dependencies and attributes can be represented as a hyper-
graph wherein the attributes are nodes and they are connected via
data dependencies. We define the dependency connectivity of a node,
i.e., an attribute, in this graph based on the summation of the degree
(number of edges incident on the node) as well as the degrees of all
the nodes in its closure. Using dependency connectivity, we catego-
rize attributes on Tax dataset into three groups: low, medium, and
high where attributes in high, low, and medium groups have the
highest, lowest, and average dependency connectivity respectively.
In Tax dataset, the high group contains 3 attributes (e.g. State),
while the medium group has 3 attributes (e.g. Zip) and the low
group includes 4 attributes (e.g. City).
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The results (see Figure 5) show that when sensitive cells are
selected from attributes with higher dependency connectivity, Our
Approach hides more cells than when selecting sensitive cells with
lower dependency connectivity. This is because higher dependency
connectivity leads to a larger number of dependency instantiations
and therefore a larger number of cuesets from each of which at
least one cell should be hidden.

7.4 Experiment 3: Extensions

In the final set of experiments, we test the extensions and limitations
of Our Approach discussed in Section 6. First, we implemented Our
Approach with a relaxed notion of security, k-percentile deniability,
where k is a relative parameter based on the domain size of the
sensitive cell. We analyze the utility of Our Approach when varying
k and measure the utility. For the results shown in Figure 6(a), the
sensitive cell is selected from “State” which is a discrete attribute
with high dependency connectivity. Clearly, when k = 0, i.e., full
leakage, Our Approach will only hide sensitive cells and when k =1
i.e, Full deniability, Our Approach hides the maximum number of
cells. When k = 0.5, i.e., the inferred set of values is half of that
of the base view, Our Approach hides almost the same number of
cells as k = 1 i.e., full deniability. When k = 0.1, i.e, the inferred set
of values is 11—0 of that of the base view, Our Approach hides ~ 15%
less cells than the one that implements full deniability. On the
Hospital dataset (results included in extended version), the utility
improvement was marginal with k set to the smallest value possible
(besides full leakage) i.e., k = m. We note that Our Approach

that implements full deniability is able to provide high utility with
a stronger security model on both datasets compared to the one
that implements k-percentile deniability.

Second, we study the effectiveness of Our Approach against in-
ference attacks, i.e., to what extent can an adversary reconstruct the
sensitive cells in a given querier view. We consider two types of ad-
versaries. The first type of adversary uses weighted sampling where
for each sensitive cell ¢*, the adversary learns the distribution of
values in Dom(c") by looking at the values of other cells in the view.
The querier, then tries to infer the sensitive cell value by sampling
from this learned distribution. The second type of adversary uti-
lizes a state-of-the-art data cleaning system, Holoclean [29], which
compiles data dependencies, domain value frequency, and attribute
co-occurrence and uses them into training a machine learning clas-
sifier. The adversary then leverages this classifier to determine
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Figure 6: (a) Data utility on Tax dataset. Experiments done
with full deniability and k-deniability (varying values of k).
(b) Reconstruction precision of sensitive cells with two types
of adversaries.

values of sensitive cells by considering them as missing data in the
database. The sensitive cell for this experiment is selected from
“State” which is a discrete attribute with high dependency connec-
tivity. We consider the 10 dependencies and drop the FC because
Holoclean doesn’t support it. We increase the number of policies
from 10 to 90 and input the querier view (in which the values of hid-

den cells are replaced with NULL) to both adversaries. We measure

#correct repairs

the effectiveness by repair precision = (where a

#total repairs
repair is an adversary’s guess of the value of a hidden cell) and
therefore lower the repair precision of the adversary is, the more
effective Our Approach is.

The results “Holoclean (before)” in Figure 6 (b) show that when
only sensitive cells are hidden, an adversary such as Holoclean, is
able to correctly infer the sensitive cells. When additional cells are
hidden by Our Approach, indicated by “Holoclean (after)”, the maxi-
mum precision of Holoclean is 0.15. On the other hand, the weighted
sampling employed by the other type of adversary, indicated by
“Weighted Sampling (after) ”, could reconstruct between 3% and 10%
of the sensitive cells. Note that Holoclean uses the learned data
correlations (and attribute co-occurrence, domain value frequency)
in addition to the explicitly stated data dependencies. However, it is
only able to marginally improve upon weighted random sampling
given the querier view generated by Our Approach.

8 RELATED WORK

The challenge of preventing leakage of sensitive data from query
answers has been studied in prior work on inference control primar-
ily in the context mandatory access control (MAC) wherein policies
specify the security clearances for the users (subject) and the se-
curity classification/label for the data. Early work by Denning et
al. [9] designed commutative filters to ensure answers returned by
a query are equivalent to that which would be returned based on
authorized view for the user. This work, however, did not consider
data dependencies.

Preventing leakage through dependencies has been explored
along different directions. One such direction is to control infer-
ences by design time modifications by adding more MAC policies.
Qian et al. [28] developed a tool to analyze potential leakage due
to foreign keys in order to elevate the clearance level of data if
such a leakage is detected. Delugachi et al. [8] generalized the work



in [28] and developed an approach based on analyzing a concep-
tual graph to identify potential leakage from more general types
of data associations (e.g., part-of, is-a). Later works such as [35],
however, established that inference rules for detecting inferences
at database design time is incomplete and hence is not a viable
approach for preventing leakage from query answers. Design time
approaches for disclosure control, however, have successfully been
used in restricted settings such as identifying the maximal set of
non-sensitive data to outsource such that it prevents inferences
about sensitive data [10, 18, 23, 24].

Prior work has also explored query time approaches to prevent
inferences from data dependencies. Thuraisingham [32] developed
a query control approach in the context of MAC policies that uses
an inference engine to determine if query answers can lead to
leakage (in which case the query is rejected). While [32] assumed a
prior existence of an inference detection engine, Brodsky et al. [3]
developed a framework, entitled DiMon, based on chase algorithm
for constraints expressed as Horn clauses. DiMon takes in current
query results, user’s query history, and Horn clause constraints to
determine the additional data that maybe inferred by the subject.
Similar to [32], if inferred data is beyond the security clearance of
the subject then their system refuses the query. Such work (that
identify if a query leaks/does not leak data) differs from ours since it
cannot be used be used directly to identify a maximal secure answer
that does not lead to any inferences — the problem we study in
this paper. Also, the above work on query control is based on a
much weaker security model compared to the full-deniability model
we use. It only prevents adversary from reconstructing the exact
value of a sensitive cell but cannot prevent them from learning new
information about the sensitive cell.

Miklau & Suciu [21] also study the challenge of preventing infor-
mation disclosure for a secret query given a set of views. Their secu-
rity model is based on perfect secrecy as they characterize whether
there exists any possible database instance for which information
disclosure is possible through sharing of views. Our problem setting
is different as we check for a given database instance whether it is
possible to answer the query hiding as few cells as possible while
ensuring full deniability. We could, of course, apply [21] to check
if a query is unsafe and in such a case disallow the query. Such a
usage of [21] will be extremely pessimistic as most queries will be
rejected for a database with non-trivial number of dependencies.

Differential Privacy (DP) mechanisms promises to protect against
an adversary with any prior knowledge [12]. In our problem setting
of access control, the data is either hidden or shared depending upon
whether it is sensitive which differs from querier to querier. This is
called the Truman model of access control [30], in which the query
is answered based on non-sensitive data. In such a model, the expec-
tation of a querier is that the result doesn’t include any randomized
answers. However, DP based mechanisms involve randomized an-
swers. Weaker notions of DP such as One-sided differential privacy
(OSDP) [20] aim to prevent inferences on sensitive data by using a
randomized mechanism when sharing non-sensitive data. An ad-
vantage of OSDP based approaches in the context of access control
is that they offer security guarantees without the knowledge of (or
the need to) explicitly specify data dependencies. However, such
techniques offer only probabilisitic guarantees (and cannot imple-
ment security guarantees such as full deniability), and that too with
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the suppression of large amount of data. From the results on the
expected percentage of released non-sensitive data as a function
of privacy parameter € presented in [20], OSDP suppresses approx.
91% non-sensitive data at ¢ = 0.1 and approx. 37% at € = 1. In
contrast, our techniques requires only a very small percentage of
data to be suppressed by exploiting data dependencies explicity in
inference control. OSDP may allow some non-sensitive data to
be released based on a coin toss even when their values could lead
to leakage of a sensitive cell as it doesn’t take into account data
dependencies. The current model of OSDP only supports hiding at
the row level and is designed for scenarios where the whole tuple
is sensitive or not. It is non-trivial to extend to suppress cells with
fine-grained access control policies considered in our setting. Fur-
thermore, most DP-based mechanisms (including OSDP) assume
that no tuple correlations exist even through explicitly stated data
dependencies.

9 CONCLUSIONS

We studied the inference attacks on access control protected data
through data dependencies, DCs and FCs. We developed a new
stronger security model called full deniability which prevents a
querier from learning about sensitive cells through data dependen-
cies. We presented conditions for determining leakage on sensitive
cells and developed algorithms that uses these conditions to im-
plement full deniability. The experiments show that we are able to
achieve full deniability for a querier view without significant loss of
utility for two different datasets. In future, we would like to extend
the security model to not only consider hard constraints explicitly
specified in the form of data dependencies but also soft constraints
that exist as correlations between data items. The invertibility model
in FCs could also be extended to model probabilistic relationship
between input and output cells, instead of being deterministic as
in the current model. Improving utility while implementing full
deniability is also an open challenge. In k-percentile deniability, the
improvement in utility as a factor of k needs to be studied further as
factor of different properties of the dataset such as type of attributes,
dependency connectivity, dependency instantiations, and possible
number of cuesets for a given sensitive cell. Along with further
exploration of k-percentile deniability considered in our paper, one
could also consider releasing non-sensitive values (like in OSDP)
randomly instead of hiding all. However, this requires addressing
challenges of any inadvertent leakages through dependencies when
sharing such randomized data.
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