
Don’t Be a Tattle-Tale: Preventing Leakages through Data
Dependencies on Access Control Protected Data

Primal Pappachan

UC Irvine, USA

primal@uci.edu

Shufan Zhang

University of Waterloo, Canada

shufan.zhang@uwaterloo.ca

Xi He

University of Waterloo, Canada

xi.he@uwaterloo.ca

Sharad Mehrotra

UC Irvine, USA

sharad@ics.uci.edu

ABSTRACT
We study the problem of answering queries when (part of) the data

may be sensitive and should not be leaked to the querier. Simply re-

stricting the computation to non-sensitive part of the data may leak

sensitive data through inference based on data dependencies. While

inference control from data dependencies during query processing

has been studied in the literature, existing solution either detect

and deny queries causing leakage, or use a weak security model

that only protects against exact reconstruction of the sensitive data.

In this paper, we adopt a stronger security model based on full
deniability that prevents any information about sensitive data to be

inferred from query answers. We identify conditions under which

full deniability can be achieved and develop an efficient algorithm

that minimally hides non-sensitive cells during query processing to

achieve full deniability. We experimentally show that our approach

is practical and scales to increasing proportion of sensitive data, as

well as, to increasing database size.

PVLDB Reference Format:
Primal Pappachan, Shufan Zhang, Xi He, and Sharad Mehrotra. Don’t Be a

Tattle-Tale: Preventing Leakages through Data Dependencies on Access

Control Protected Data . PVLDB, 15(11): 2437 - 2449, 2022.

doi:10.14778/3551793.3551805

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/zshufan/Tattle-Tale.

1 INTRODUCTION
Organizations today collect data about individuals that could be

used to infer their habits, religious affiliations, and health status

— properties that we typically consider as sensitive. New regu-

lations, such as the European General Data Protection Regula-

tion (GDPR) [33], the California Online Privacy Protection Act

(CalOPPA) [34], and the Consumer Privacy Act (CCPA) [22], have

made it mandatory for organizations to provide appropriate mech-

anisms to enable users control over their data, i.e., (how| why| for

how long) their data is collected, stored, shared, or analyzed. Fine

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.

doi:10.14778/3551793.3551805

Grained Access Control Policies (FGAC) supported by databases is

an integral technology component to implement such user control.

FGAC policies enable data owners/administrators to specify which

data (i.e., tables, columns, rows, and cells) can/cannot be accessed

by which querier (individuals posing queries on the database) and

is, hence, sensitive [15] for that querier. Traditionally, Database

Management Systems (DBMS) implement FGAC by filtering away

data that is sensitive for a querier and computing the query on only

the non-sensitive part of the data. Such a strategy is implemented

using either query rewriting [1, 26] or view-based mechanisms [30].

It is well recognized that restricting query computation to only non-

sensitive data may not prevent the querier from inferring sensitive

data based on semantics inherent in the data [4, 14]. For instance,

the querier may exploit knowledge of data dependencies to infer

values of sensitive data as illustrated in the example below.

Example 1. Consider an Employees table (Figure 1) and a FGAC

policy by a user Bobby to hide his salary per hour (SalPerHr) from all

the queries by other users. If the semantics of the data dictate that

any two employees who are faculty should have the same SalPerHr,
then hiding SalPerHr of Bobby would not prevent its leakage from

a querier who has access to Carrie’s SalPerHr. □

In general, leakage may occur from direct/indirect inferences

due to different type of data dependencies, such as conditional func-

tional dependencies (CFD) [13], denial constraints [5], aggregation

constraints [31], and/or functional constraints that exist when a de-

pendent data values are derived/computed using other data values

as shown below.

Example 2. Consider the Employee and Wage tables shown in

Table 1. Let Danny specify FGAC policies to hide his SalPerHour
in Employee Table and Salary in Wage Table. Suppose there exists

a constraint that employees with role Staff cannot have a higher

salary per hour than a faculty in the state of California. Using

Bobby’s salary per hour that is leaked in Example 1, the new con-

straint about the staff salary, and the functional constraint between

that Salary and the fields function of WorkHrs and SalPerHr, infor-
mation about the salary and the salary per hour of Danny will be

leaked even though they are sensitive. □

To gain insight into the extent to which leakage could occur

due to data semantics, we conducted a simple experiment on a

synthetic dataset [2, 5] that contains the address and tax information

of individuals. The tax data set consists of 14 attributes and has

associated with it 10 data dependencies, an example of which is

2437

https://doi.org/10.14778/3551793.3551805
https://github.com/zshufan/Tattle-Tale
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551805
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Employee and Wages Table

a denial constraint “if two persons live in the same state, the one

earning a lower salary has a lower tax rate”. An adversary can

use the above dependency to infer knowledge about the sensitive

cells. Suppose the salary attribute of an individual is sensitive and

therefore hidden. If the disclosed data contains information about

another individual who lives in the same state and has a lower tax

rate, an adversary can infer the upper bound of this individual’s

salary using the dependency. To demonstrate this leakage, we

considered an attribute with large number of data dependencies

defined on them (e.g., state) to be sensitive, and thus, replaced its

values by NULL. We then used the state-of-the-art data cleaning

software, Holoclean [29], as a real-world attacker to reconstruct

the NULL values associated with the sensitive cells. Holoclean was

able to reconstruct the actual values of the state 100% of the time

highlighting the importance of preventing leakage through data

dependencies on access control protected data.

Prior literature has studied the challenge of controlling infer-

ences about sensitive data using data dependencies and called it

the “inference control problem”. [14]. Existing techniques used

to protect against inferences can be categorized based on when

the leakage prevention is applied [3]. In the first category, infer-

ence channels between sensitive and non-sensitive attributes are

detected and controlled at the time of database design [8, 16]. A

database designer uses methods in this category to detect and pre-

vent inferences by upgrading classification of inferred attributes.

However, they result in poor data availability if a significant num-

ber of attributes are marked as sensitive to prevent leakages. The

second category of works include detection and control at the time

of query answering. Works such as [3, 32] determine if answers

to the query could result in inferences about sensitive data using

data dependencies, and reject the query if such an inference is de-

tected. Such query control approaches can lead to rejection of many

queries when there are non-trivial number of sensitive cells and

background knowledge. Another limitation of the prior work is the

weak security model used in determining how to process queries.

All prior work on inference control considers a query answer to

leak sensitive data if the answer can be used to reconstruct the exact

value of a sensitive object. Leakages that do not reveal the exact

value but, perhaps, limit the values a sensitive object may take are

not considered as leakage. For instance, in Example 2 above, since

the constraints do not reveal Danny’s exact salary but only that it is
below $200 per hour, prior works will not consider it to be a leakage

even though querier/adversary could eliminate a significant num-

ber of possible domain values based on the data constraints. As we

explain in detail in Section 8, the existing solutions to the inference

control cannot be easily generalized to prevent such leakages.

In this paper, we study the problem of answering user queries

under a new, much stronger model of security — viz., full deniabil-
ity. Under full deniability, any new knowledge learned about the

sensitive cell through data dependencies is considered as leakage.

Thus, eliminating a domain value as a possible value a attribute /

cell can take violates full-deniability. One can, of course, naively,

achieve full deniability by hiding the entire database. Instead, our

goal is to identify the minimal additional non-sensitive cells that

must be hidden so as to acheive full deniability. In addition, we

require the algorithm that identifies data to hide in order to achieve

full deniability to be efficient and scalable to both large data sets

and to large number of constraints.

We study our approach to ensuring full deniability during query

processing under two classes of data dependencies
1
:

• Denial Constraints (DCs): that are general forms of data depen-

dencies expressed using universally quantified first order logic.

They can express commonly used types of constraints such as

functional dependencies (FD) and conditional functional depen-

dencies (CFD) and are more expressive than both

• Function-based Constraints (FCs): that establish relationships

between input data and the output data it is derived from, us-

ing functions. Such constraints arise naturally when databases

stored materialized aggregates or when data sensor data, col-

lected over time (e.g., from sensors), is enriched (using appro-

priate machine learning tools) to higher level observations.

To achieve full deniability, we first develop a method for Inference
Detection, that detects, for each sensitive cell, the non-sensitive cells
that could result in violation of full deniability. The candidate cells

identified by Inference Detection are passed to the second function,

Inference Protection that minimally selects the non-sensitive data to

hide to prevent leakages. Our technique is geared towards maximiz-

ing utility when preventing inferences for large number of sensitive

cells and their dependencies. After hiding additional cells, Inference

Detection is invoked repeatedly to detect any indirect leakages on

the sensitive cells through the new set of hidden cells and their as-

sociated dependencies. These methods are invoked cyclically until

no further leakages are detected either on the sensitive cells or any

additional cells hidden by Inference Protection. Using these two

1
Other data dependencies such as Join dependencies (JD) and Multivalued dependen-

cies are not common in a clean, normalized database and therefore not interesting to

our problem setting.

2438

different methods, we are able to achieve the security, utility, and

performance objectives of our solution.

The main contributions in our paper are:

• A security model, entitled Full deniability to protect against

leakage of sensitive data due to data semantics in the form

Denial Constraints and Function-based Constraints.

• Identification of conditions under which full deniability can

be achieved and efficient algorithms for inference detection

and protection to achieve full deniability while only minimally

hiding additional non-sensitive data.

• A prototype middleware that works alongside DBMS to ensure

full deniability given set of dependencies and policies.

• Experimental results on two different data sets show that our

approach is efficient and only minimally hides non-sensitive

cells while achieving full deniability.

Paper Organization.We introduce the notations used in the paper

and describe access control policies and data dependencies in Sec-

tion 2. In Section 3, we present the security model — full deniability

— proposed in this work. In Section 4, we describe how the leak-

age of sensitive data occurs through dependencies and introduce

function-based constraints. We present in Section 5, the algorithms

for inference detection and protection along with optimizations

to improve utility. In Section 7, we present results from an end-to-

end evaluation of our approach with two different data sets and

different baselines. In Section 8 we go over the related work and we

conclude the work by summarizing our contributions, and possible

future extensions in Section 9.

Extended version. Due to space limitations, we could not describe

several details, which can be found in the extended version [27],

including: proofs of theorems, details of extensions for improving

utility, and scalability experiments on a much larger dataset.

2 PRELIMINARIES
Table 1 summarizes the common notations we use. Consider a

database instanceD consisting of a set of relationsR . Each relation

R ∈ R = {𝐴1, 𝐴2, . . . , 𝐴𝑛} where A𝑗
is an attribute in the relation.

Given an attribute A
𝑗
in a relation R we use Dom(A

𝑗
) to denote

the domain of the attribute and |Dom(A
𝑗
) | to denote the number

of unique values in the domain (i.e. the domain size)
2
. A relation

contains a number of indexed tuples, 𝑡𝑖 represents the 𝑖𝑡ℎ tuple in

the relation R, and t
𝑖
[A

𝑗
] refers to the 𝑗𝑡ℎ attribute of this tuple.

Wewill use the cell-based representation of a relation to simplify

notation when discussing the fine-grained access control policies

and data dependencies. Figure 1 shows two tables, the Employee
table with cells c

1
to c

28
and the Wages table with cells c

29
to c

40
.

Note that in the cell-based notation each table, row, column corre-

sponds to a set of cells. For instance, the second tuple/row ofWages
table is the set of cells {c

32
, c
33
, c
34
} and the column for attribute

Zip in the Employee table is the set {c
3
, c
10
, c
17
, c
24
}. Each cell has

an associated value. For instance, the value of cell c
11

is “CA".

2
We say the domain size in the context of an attribute with discrete domain values

and for continuous attributes we discretize their domain values into a number of

non-overlapping bins.

Table 1: Notation Cheatsheet

Notation Definition
D A database instance

c A cell in a database relation

C,C𝐻 Set of cells, hidden cells

𝛿,Δ A schema level data dependency / set

˜𝛿 , 𝑆Δ An instantiated data dependency / set

Cells(˜𝛿) Cells involved in
˜𝛿

Preds(˜𝛿) The set of predicates associated with a DC

Preds(˜𝛿 , c) The set of predicates in
˜𝛿 that involves the cell 𝑐

Preds(˜𝛿\𝑐) The set of predicates in
˜𝛿 without the cell 𝑐

V(C) Set of value assignments for cells in C

I(c | V, ˜𝛿) Inference function for the cell c

2.1 Access Control Policies
Data sharing is controlled using access control policies, or simply

policies. We classify users U as data owners, who set the access

control policies, and as queriers, who pose queries on the data.

Ownership of data is specified at tuple level and a data owner of

a tuple may specify policies marking one or more cells (c
𝑖
) in the

tuple t as sensitive against queries by other users. When another

user queries the database, the returned data has to be policy com-

pliant (i.e., policies relevant to the user are applied to the query

results). In this section, we present a simplified model of policy

that is sufficient to describe the approach and refer the reader to

the extended version [27] for the complete policy model.

A policy 𝑃 is represented using the 3-tuple {R, 𝜎 , Φ} where R is

the relation to which 𝑃 applies, 𝜎 is the set of selection conditions

that select the set of tuples in R to which 𝑃 applies, and finally Φ
is the projection conditions that identifies the set of columns to

which the policy is applied. The application of an policy is done

by a function over the database that returns NULL for a cell if it is

disallowed by the policy or the original cell value if it is allowed.

Definition 2.1 (Sensitive Cell). Given a policy 𝑃 , we say that a cell

c is sensitive to a user U if after applying 𝑃 c is replaced with NULL.
The set of cells sensitive to the user U is denoted by C𝑆

𝑈
or simply

C𝑆 when the user is clear from the context.

2.2 Data Dependencies
Semantics of data is expressed in the form of data dependencies, that
restrict the set of possible values a cell can take based on the values

of other cells in database. Several types of data dependencies have

been studied in the literature such as foreign keys, functional de-

pendencies (FDs), and conditional functional dependencies (CFDs),

etc. We consider two types of dependencies as follows:

Denial Constriants (DC), is a first-order formula of the form

∀ t
𝑖
, t
𝑗
, . . . ∈ D, 𝛿 : ¬(Pred

1
∧Pred

2
∧ . . .∧Pred

𝑁
) where Pred𝑖 is the

𝑖th predicate in the form of t𝑥 [A𝑗
]𝜃 t𝑦 [A𝑘

] or t𝑥 [A𝑗
]𝜃𝑐𝑜𝑛𝑠𝑡 with

𝑥,𝑦 ∈ {𝑖, 𝑗, . . .}, A
𝑗
,A

𝑘
∈ 𝑅, 𝑐𝑜𝑛𝑠𝑡 is a constant, and 𝜃 ∈ {=, >, <,≠

, ≥, ≤}. DCs are quite general — they can model dependencies such

as FDs&CFDs and are flexible enough tomodelmuchmore complex

relationships among cells. Data dependencies in the form of DCs has

been used in recent prior literature for data cleaning [6, 17], query

2439

optimization [19], and secure databases [3, 10]. Moreover, systems,

such as [5], have been designed to automatically discover DCs in a

given database. This is the type of DCs considered throughout the

paper.

Function-based Constraints (FCs) capture the relationships
between derived data and its inputs. As described in Example 2, the

Salary in the Wages table (see Table 1) is a attribute derived using

WorkHrs and SalPerHr i.e., Salary B fn(WorkHrs, SalPerHr). In
general, given a function 𝑓 𝑛 with 𝑟1, 𝑟2, . . . , 𝑟𝑛 as the input values

and 𝑠𝑖 as the derived or output value, the FC can be represented

by 𝑓 𝑛(𝑟1, 𝑟2, . . . , 𝑟𝑛) = 𝑠𝑖 .

3 FULL DENIABILITY
In this section, we discuss the assumptions in our setting and

present the concept of view of a database for the querier and for-

malize an inference function with respect to the view and data

dependencies. We formally define our security model — Full Deni-
ability — based on the inference function and use it to determine

the leakage on sensitive cells.

3.1 Assumptions
We will assume that tuples (and cells in tuples) are independently

distributed except for explicitly specified dependencies that are

either learnt automatically or specified by the expert. The database

instance is assumed to satisfy the data dependencies. The querier,

who is the adversary in our setting, is assumed to know the de-

pendencies and can use them to infer the sensitive data values.

This assumption leads to a stronger adversary than the standard

adversary considered by many algorithms for differential privacy

or traditional privacy notions like k-anonymity or access controls,

which assumes the adversary knows no tuple correlations (or tuples

are independent). A querier is free to run multiple queries and can

attempt to make inferences about sensitive data based on the results

of those queries. Two queriers, however, do not collude (i.e., share

answers to the queries). We note that if such collusions were to

be allowed, it would void the purpose of having different access

control policies for different users.

As queriers are service providers or third parties who are in-

terested in obtaining user data to provide a service and therefore

we assume that queriers and data owners do not overlap. We also

assume that a querier cannot apriori determine if a cell is sensitive

or not (i.e., they do not know the access control policies)
3
. To see

why this is important, consider a FD defined on the Employee table
(Table 1) Zip→State. Suppose c

11
(𝑆𝑡𝑎𝑡𝑒 = “𝐶𝐴”) is sensitive based

on the policy and in order to prevent inferences using the FD, let

c
24

be hidden. If the querier has knowledge that c
24

is hidden due

to our approach (and hence know that c
11

was sensitive), they can

deduce that c
25

and c
11

have the same value.

3.2 Querier View
For each querier, given the set of policies applicable to the querier,

the algoritm first determines which cell is sensitive to them. Such

cells are set to NULL in the view of the database shared with the

querier. As noted in the introduction, if only the sensitive cells are

3
In the extended version of our paper, we have included a discussion on relaxing both

these assumptions.

set to NULL and all the non-sensitive cells retain their true values,

the querier may infer information about the sensitive cells through

the various dependencies defined on the database. It is necessary,

therefore, to set some of the non-sensitive cells to NULL in order

to prevent leakages due to dependencies. Henceforth, we will refer

to the cells, both sensitive and non-sensitive, whose values will be

replaced by NULL as hidden cells, denoted by C𝐻 . We now present

the concept of a querier view on top of which queries are answered.

Definition 3.1 (Querier View). The set of value assignments for

a set of cells C in a database instance D with respect to a querier

is denoted by V(C) or simply V when the set of cells is clear from

the context. The value assignment for a cell could be either the true

value of this cell in D or NULL value (if it is hidden).

We also define a concept of the base view of database for a querier,

denoted by V0. In V0, all the cells in D are set to be NULL. We

consider the information leaked to the querier based on computing

the query results over the base view V0 as the least amount of

information revealed to the querier. For instance, the base view

may provide querier with information about number of tuples in

the relation, but, by itself it will not reveal any further information

about the sensitive cells, despite what dependencies hold over the

database. Our goal in developing the algorithm to prevent leakage

would be to determine a viewV for a querier that hides the minimal

number of cells, and yet, leaks no further information than the base

view. Next, we define an inference function that captures what the

querier can infer about a sensitive cell in a view using dependencies.

3.3 Inference Function
Dependencies such as denial constraints are defined at schema level,

such as the dependency 𝛿 on Table 1:

𝛿 : ∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝐸𝑚𝑝 ¬(𝑡𝑖 [𝑆𝑡𝑎𝑡𝑒] = 𝑡 𝑗 [𝑆𝑡𝑎𝑡𝑒] ∧ 𝑡𝑖 [𝑅𝑜𝑙𝑒] = 𝑡 𝑗 [𝑅𝑜𝑙𝑒]
∧ 𝑡𝑖 [𝑆𝑎𝑙𝑃𝑒𝑟𝐻𝑟] > 𝑡 𝑗 [𝑆𝑎𝑙𝑃𝑒𝑟𝐻𝑟]) .

Given a database instance D, the schema level dependencies can

be instantiated using the tuples. If the Employee Table has 4 tuples,
then there are

(
4

2

)
= 6 number of instantiated dependencies at cell

level. For example, one of the instantiated dependencies for 𝛿 is

˜𝛿 : ¬((c
11

= c
18
) ∧ (c

12
= c

19
) ∧ (c

14
> c

21
)) (1)

where {c
11
, c
18
, c
12
, c
19
, c
14
, c
21
} correspond to 𝑡2 [𝑆𝑡𝑎𝑡𝑒], 𝑡3 [𝑆𝑡𝑎𝑡𝑒],

𝑡2 [𝑅𝑜𝑙𝑒], 𝑡3 [𝑅𝑜𝑙𝑒], 𝑡2 [𝑆𝑎𝑙𝑃𝑒𝑟𝐻𝑟], and 𝑡3 [𝑆𝑎𝑙𝑃𝑒𝑟𝐻𝑟] in the Employee
Table respectively. From now on, we use 𝑆Δ to denote the full set of

instantiated dependencies for the database instance D at cell level.

We use Preds(˜𝛿), Preds(˜𝛿 , 𝑐), and Preds(˜𝛿\𝑐) to represent the set of

predicates in the instantiated dependency
˜𝛿 , the set of predicates in

˜𝛿 that involves the cell 𝑐 , and the set of predicates in
˜𝛿 that do not

involve the cell 𝑐 respectively. We also use𝐶𝑒𝑙𝑙𝑠 (˜𝛿) and𝐶𝑒𝑙𝑙𝑠 (Pred)
to represent the set of cells in an instantiated dependency and

a predicate respectively. For each instantiated dependency
˜𝛿 ∈

𝑆Δ, when every cell c
𝑖
∈ 𝐶𝑒𝑙𝑙𝑠 (˜𝛿) is assigned with a value 𝑥𝑖 ∈

𝐷𝑜𝑚(c
𝑖
), denoted by

˜𝛿 (. . . , c
𝑖
= 𝑥𝑖 , . . .), the expression associated

with an instantiated dependency can be evaluated to either True
or False. Note that since the database is assumed to satisfy all the

dependencies, all of the instantiated dependencies must evaluate to

True for any instance of the database.

2440

We use the notation I(c | V) to denote the set of values (inferred
by the querier) that the cell c can take given the viewV but without

any knowledge of the set of dependencies. Likewise, I(C | V)
denote the cross product of the inferred value sets for cells in the

cell set C, i.e., I(C | V) = ×c∈C I(c | V). Clearly, if in a view, a cell

is assigned its original/true value (and not NULL) then I(c | V)
consists of only its true value. We will further assume that:

Assumption 1. Let V be a view and c be a cell with value NULL
assigned to it in V. I(c | V) = Dom(c). That is, a querier without
knowledge of dependencies, cannot infer any further information
about the value of the cell beyond its domain.

Knowledge of the dependencies can, however, lead the querier to

make inferences about the value of the cell. The following example

illustrates that the querier may be able to eliminate some domain

values as possible assignments of Dom(c).

Example 3. Let c
14

in Table 1 be sensitive for a querier and let

the view V be the same as the original table with c
14

replaced with

NULL. Furthermore, let
˜𝛿 (Eqn. (1)) (that refers to c

14
) hold. If the

querier is not aware of this dependency
˜𝛿 , the inferred value set

for c
14

is the full domain, i.e., I(c
14

| V) = 𝐷𝑜𝑚(c
14
). However,

knowledge of
˜𝛿 leads to the inference that c

14
≤ 200 since the other

two predicates (c
11

= c
18
, c
12

= c
19
) are True. □

Definition 3.2 (Inference Function). Given a view V and an in-

stantiated dependency
˜𝛿 for a cell c

𝑖
∈ 𝐶𝑒𝑙𝑙𝑠 (˜𝛿), the inferred set of

values for 𝑐𝑖 by ˜𝛿 is defined as

I(𝑐𝑖 |V, ˜𝛿)B{𝑥𝑖 | ∃(. . . , 𝑥𝑖−1, 𝑥𝑖+1, . . .) ∈ I(𝐶𝑒𝑙𝑙𝑠 (˜𝛿)\{𝑐𝑖 } | V)
𝑠 .𝑡 . ˜𝛿 (𝑐1 = 𝑥1, . . . , 𝑐𝑖 = 𝑥𝑖 , . . . , 𝑐𝑛 = 𝑥𝑛) = True} (2)

where 𝑛 denotes the size of the cell set |𝐶𝑒𝑙𝑙𝑠 (˜𝛿) | and 𝑥𝑖 ∈ Dom(c
𝑖
).

Given a view V and a set of instantiated dependencies 𝑆Δ =

{. . . , ˜𝛿 , . . .}, the inferred value for a cell c is the intersection of the

inferred values for c
𝑖
over all the dependencies, i.e.,

I(c𝑖 |V, 𝑆Δ) B
⋂

˜𝛿 ∈𝑆Δ
I(c𝑖 |V, ˜𝛿) (3)

3.4 Security Definition
We can now formally define the concept of full deniability of a

view. Note that given a view V and a set of dependencies 𝑆Δ, the

following always holds: I(c |V, 𝑆Δ) ⊆ I(c |V0, 𝑆Δ). We say that a V
achieves full deniability if the two set are identical i.e., the query

results does not enable the querier to infer anything further about

the database than what the querier could infer from the V0 (which,
as mentioned in Sec. 3.2, is the least amount of information leaked

to the querier).

Definition 3.3 (Full Deniability). Given a set of sensitive cells C𝑆

in a database instance D and a set of instantiated dependencies

𝑆Δ, we say that a querier view V achieves full deniability if for all

c∗ ∈ C𝑆 ,

I(c∗ |V, 𝑆Δ) = I(c∗ |V0, 𝑆Δ). (4)

4 FULL DENIABILITY WITH DATA
DEPENDENCIES

In this section, we first identify conditions under which denial

constraints could result in leakage of sensitive cells (i.e., violation

of full deniability) and further consider leakages due to function-

based constraints (discussed in Section 2).

4.1 Leakage due to Denial Constraints
An instantiated denial constraint consists of multiple predicates in

the form of
˜𝛿 = ¬(Pred

1
∧. . .∧Pred

𝑁
) where each predicate is either

Pred
𝑁

= c 𝜃 c′ or Pred
𝑁

= c 𝜃 const. A valid value assignment

for cells in C (˜𝛿) has at least one of the predicates in ˜𝛿 evaluating

to False so that the entire dependency instantiation
˜𝛿 evaluates to

True. Based on this observation, we identify a sufficient condition

to prevent a querier from learning about a sensitive cell c∗ ∈ C𝑆 in

an instantiated DC
˜𝛿
𝑖
with value assignments.

As shown in Example 3, for an instantiated DC
˜𝛿 with cell value

assignments, when all the predicates except for the predicate con-

taining the sensitive cell (Pred (˜𝛿\c∗)) evaluates to True, a querier
can learn that the remaining predicate Pred (˜𝛿 , c∗) evaluates to False
even though c∗ is hidden. Thus, it becomes possible for the querier

to learn about the value of a sensitive cell from the other non-

sensitive cell values. We can prevent such an inference by hiding

additional non-sensitive cells.

Example 4. Suppose, in Example 3, we hide the non-sensitive cell

(e.g., c
11
) in addition to c

14
(i.e., replace it with NULL). Now, the

querier will be uncertain of the truth value of c
4
= c

11
, and as a

result, cannot determine the truth value of the predicate c
14

> c
21

containing the sensitive cell. Since the predicate, c
14

> c
21

could

either be true or false, the querier does not learn anything about

the value of the sensitive cell c
14
. □

We can formalize this intuition into a sufficient condition that

identifies additional non-sensitive cells to hide which we refer to

as the Tattle-Tale Condition (TTC)
4
in order to prevent leakage of

sensitive cells, as follow:

Definition 4.1 (Tattle-Tale Condition). Given an instantiated DC

˜𝛿 , a view V, a cell c ∈ 𝐶𝑒𝑙𝑙𝑠 (˜𝛿), and Preds(˜𝛿\c) ≠ 𝜙

𝑇𝑇𝐶 (˜𝛿 ,V, c) =

True, ∀ Pred𝑖 ∈ Preds(˜𝛿\c),

𝑒𝑣𝑎𝑙 (Pred𝑖 ,V) = True
False, otherwise

(5)

where eval(Pred,V) refers to the truth value of the predicate Pred in

the view V using the standard 3-valued logic of SQL i.e., a predicate

evaluates to true, false, or unknown (if one or both cells are set to

NULL). The predicates only compare between the values of two

cells or the value of a cell with a constant as defined in Sec 2.2.

Note that𝑇𝑇𝐶 (˜𝛿 ,V, 𝑐) is True if and only if all the predicates ex-

cept for the predicate (s) containing c (Preds(˜𝛿 , 𝑐)) evaluate to True
in which case, the querier can infer that the one of the predicates

containing c must be false and, as a result, could exploit the knowl-

edge of the predicate (s) to restrict the set of possible values that

c could take. This leads us to a sufficient condition to achieve full

4
Tattle-Tale refers to someone who reveals secret about others

2441

deniability as captured in the following two theorems. In proving

the theorems, we will assume that none of the predicates in the

denial constraints are trivial That is, there always exist a domain

value for which the predicate can be true or false. This also means

that in the base view V0 (where all cells are hidden), for any cell

c
𝑖
∈ 𝑐𝑒𝑙𝑙𝑠 (˜𝛿) and for any predicate Pred ∈ Preds(˜𝛿 , c), there exists

a possible assignment for c
𝑖
in I(c

𝑖
| V0, ˜𝛿) such that eval(Pred,V0)

returns False.

Theorem 4.2. Given an instantiated DC ˜𝛿 , a view V, and a sen-
sitive cell c∗ ∈ Cells((˜𝛿)) whose value is hidden in this view. If the
Tattle-Tale Condition 𝑇𝑇𝐶 (˜𝛿 ,V, c∗) evaluates to False, then the set of
inferred values for c∗ from V is the same as that from the base view
V0 (where all the cells are hidden), i.e., I(c∗ |V, ˜𝛿) = I(c∗ |V0, ˜𝛿).

Corollary 4.3. Given a set of instantiated DCs 𝑆Δ, a view V, and
a sensitive cell c∗ whose value is hidden in this view. If for each of the
instantiations ˜𝛿

𝑖
∈ 𝑆Δ, TTC(˜𝛿𝑖 ,V, c

∗) evaluates to False then the set
of inferred values c∗ from the V is same as that from the base view
V0 i.e., I(c∗ | V, 𝑆Δ) = I(c∗ | V0, 𝑆Δ).

4.2 Selecting Cells to Hide
As shown in Theorem 4.2, the Tattle-Tale condition evaluating

to False is the sufficient condition of achieving full deniability re-

quirement. 𝑇𝑇𝐶 (˜𝛿 ,V, c) evaluates to False when one of the follow-

ing holds: (i) none of the predicates involve the sensitive cell i.e.,

Preds(˜𝛿 , c∗) = 𝜙 (trivial case); (ii) one of the other predicates in

Preds(˜𝛿\c∗) evaluates to False in V; or (iii) one of the other predi-
cates in Preds(˜𝛿\c∗) involve a hidden cell in V and thus evaluates

to Unknown.
We define cuesets5 as the set of cells in an instantiated DC that

can be hidden to falsify the Tattle-Tale condition.

Definition 4.4 (Cueset). Given an instantiated DC
˜𝛿 , a cueset for

a cell 𝑐 ∈ 𝑐𝑒𝑙𝑙𝑠 (˜𝛿) is defined as

𝑐𝑢𝑒𝑠𝑒𝑡 (c, ˜𝛿) = 𝐶𝑒𝑙𝑙𝑠 (Preds(˜𝛿\𝑐)) . (6)

If
˜𝛿 only contains a single predicate, we consider the remaining

cell in the 𝑐𝑢𝑒𝑠𝑒𝑡 (c, ˜𝛿) = c
𝑗
given that Pred (c) = c

𝑖
𝜃c

𝑗
.

Example 5. In the instantiated DC from Example 3, the cueset for

c
14

based on
˜𝛿
4
is given by 𝑐𝑢𝑒𝑠𝑒𝑡 (c

14
, ˜𝛿

4
) = {c

4
, c
11
, c
5
, c
12
}. □

We could falsify the Tattle-Tale condition w.r.t. a given cell c
and dependency

˜𝛿 by hiding any one of the cells in the cueset

independent of their values in V. The cuesets for a cell c is defined
for a given dependency instantiation. We can further define cueset

for c for given a set of instantiated DCs 𝑆Δ by simply computing

the 𝑐𝑢𝑒𝑠𝑒𝑡 (c, ˜𝛿) for each instantiated dependency in the set
˜𝛿 ∈ 𝑆Δ.

In order to prevent leakage of c through
˜𝛿 , we will hide one of

the cells in the 𝑐𝑢𝑒𝑠𝑒𝑡 (c, ˜𝛿) corresponding to each of dependency

instantiations
˜𝛿 ∈ 𝑆Δ.

This, alone, however, might not still falsify the tattle-tale condi-

tion to achieve full-deniability. Leakage can occur indirectly since

the value of the cell, say c
𝑗
chosen from the 𝑐𝑢𝑒𝑠𝑒𝑡 (c∗, ˜𝛿

𝑖
) to hide

(in order to protect leakage of a sensitive cell c∗) could, in turn,

5
These cells give a cue about the sensitive cell to the querier.

be inferred due to additional dependency instantiation, say
˜𝛿
𝑗
. If

this dependency instantiation does contain c∗ (as in that case c∗ is
already hidden and therefore it cannot be used to infer any infor-

mation about c
𝑗
), such a leakage can, in turn, lead to leakage of c∗

as shown in the following example.

Example 6. Consider we hide the cell c
11

in the cueset shown

in Example 5 to protect the sensitive cell c
14
. Let

˜𝛿
𝑗
be another

instantiated dependency, that is ¬((c
10

= c
24
) ∧ (c

11
≠ c

25
)) (i.e. a

FD indicating Zip determines State). The dependency
˜𝛿
𝑗
itself does

not lead to the leakage to the sensitive cell c∗. However, based on

dependency
˜𝛿
𝑗
, the querier can first infer the value of the hidden

cell c
11
, which in turn, leads to leakage of the sensitive cell c∗. □

Achieving full deniability for the sensitive cells requires us to

recursively select cells to hide from the cuesets of not just sensitive

cells, but also, from the cuesets of all the hidden cells. This recursive

hiding of cells terminates when the cueset of a newly hidden cell

includes an already hidden cell. The following theorem states that

after the recursive hiding of cells in cuesets has terminated, the

querier view achieves full deniability.

Theorem 4.5 (Full Deniability for a Querier View). Let 𝑆Δ
be the set of dependencies, C𝑆 be the sensitive cells for the querier and
C𝑆 ⊆ C𝐻 be the set of hidden cells resulting in a V for the querier.
V achieves full deniability if ∀c

𝑖
∈ C𝐻 , ∀ ˜𝛿 ∈ 𝑆Δ, ∀ non-empty

𝑐𝑢𝑒𝑠𝑒𝑡 (c
𝑖
, ˜𝛿) ∈ 𝑐𝑢𝑒𝑠𝑒𝑡𝑠 (c

𝑖
, 𝑆Δ), there exists a c

𝑗
∈ C𝐻 such that

c
𝑗
∈ 𝑐𝑢𝑒𝑠𝑒𝑡 (c

𝑖
, ˜𝛿).

4.3 Leakage due to Function-based Constraints
In order to study the leakages due to Function-based Constraints

(FC) we first define the property of invertibilty associated with

functions.

Definition 4.6 (Invertibility). Given a function 𝑓 𝑛(𝑟1, 𝑟2, . . . , 𝑟𝑛) =
𝑠𝑖 , we say that 𝑓 𝑛 is invertible if it is possible to infer knowledge

about the inputs (𝑟1, 𝑟2, . . . , 𝑟𝑛) from its output 𝑠𝑖 . Conversely, if 𝑠𝑖
does not lead to any inferences about (𝑟1, 𝑟2, . . . , 𝑟𝑛), we say that it

is non-invertible

The Salary function, in Example 2, is invertible as given the

Salary of an employee, a querier can determine the minimum value

of SalPerHr for that employee given that the maximum number

of work hours in a week is fixed. Complex user-defined functions

(UDFs) (e.g., sentiment analysis codewhich outputs the sentiment of

a person in a picture), oblivious functions, secret sharing, and many

aggregation functions are, however, non-invertible. Instantiated

FCs can be represented similar to denial constraints. For example, an

instantiation of the dependency 𝛿 : Salary B fn(WorkHrs, SalPerHr)
is:

˜𝛿 : ¬(c
6
= 20∧ c

8
= 40∧ c

31
≠ 800) where c

7
, c
8
, c
31

corresponds

to Alice’s WorkHrs, SalPerHr and Salary respectively.

For instantiated FCs, if the sensitive cell corresponds to an input

to the function, and the function is not invertible, then leakage

cannot occur due to such an FC. Thus, the 𝑇𝑇𝐶 (c∗, ˜𝛿 ,V) returns
False when the function is non-invertible. For all other cases, the

leakage can occur in the exact same way as in denial constraints.

We thus, need to to ensure the Tattle-Tale Condition for all the

instantiations of a FC evaluates False.

2442

Algorithm 1: Full Algorithm
Input: User U, Data dependencies 𝑆Δ, A view of the

database V
Output: A secure view V𝑆

1 C𝑆 = SensitivityDetermination(U, V)
2 C𝐻 = C𝑆 , V𝑆 = V

3 𝑐𝑢𝑒𝑠𝑒𝑡𝑠 = InferenceDetect(C𝐻 , 𝑆Δ,V)

4 while 𝑐𝑢𝑒𝑠𝑒𝑡𝑠 ≠ 𝜙 do
5 for cs ∈ cuesets do
6 if cs.overlaps(C𝐻) then
7 cuesets.remove(cs)
8 end
9 toHide = InferenceProtect (𝑐𝑢𝑒𝑠𝑒𝑡𝑠)

10 C𝐻 .addAll(toHide)
11 𝑐𝑢𝑒𝑠𝑒𝑡𝑠 = InferenceDetect(𝑡𝑜𝐻𝑖𝑑𝑒 , 𝑆Δ,V)
12 end
13 for c

𝑖
∈ C𝐻 do

14 Replace c
𝑖
.val in V𝑆 with NULL

15 end
16 return V𝑆

Cueset for Function-based Constraints. The cueset for a FC
˜𝛿 is determined depending on whether the derived value (𝑠𝑖) or

input value ({. . . , 𝑟 𝑗 , . . .}) is sensitive and the invertibility property

of the function 𝑓 𝑛.

𝑐𝑢𝑒𝑠𝑒𝑡 (c, ˜𝛿) =


{c
𝑖
} ∀c

𝑖
∈ {. . . , 𝑟 𝑗 , . . .}, if c = 𝑠𝑖

{𝑠𝑖 }, 𝑓 𝑛 is invertible and if c ∈ {. . . , 𝑟 𝑗 , . . .}
𝜙, 𝑓 𝑛 is non-invertible and if c ∈ {. . . , 𝑟 𝑗 , . . .}

As the instantiation for FC is in DC form and their Tattle-Tale

Conditions and cueset determination are almost identical, in the

following section we explain the algorithms for achieving full de-

niability with DCs as extending it to handle FCs requires only a

minor change (disregard cuesets when one of the input cell(s) is

sensitive and function is non-invertible).

5 ALGORITHM TO ACHIEVE FULL
DENIABILITY

In this section, we present an algorithm to determine the set of

cells to hide to achieve the full-deniability based on Theorem 4.5.

Full-deniability can trivially be achieved by sharing the base view

V0 where all cells values are replaced with NULL. Our goal is to
ensure that we hide the minimal number of cells possible while

achieving full deniability.

5.1 Full-Deniability Algorithm
As shown in Figure 2, our approach (Algorithm 1) takes as input

a user U, a set of schema level dependencies 𝑆Δ, and a view of the

database V (initially set to the original database). The algorithm

first determines the set of sensitive cells C𝑆 (Sensitivity Determi-
nation function for U and V). Sensitivity determination identifies

the policies applicable to a querier using the subject conditions in

policies and marks a set of cells as sensitive thus assigning them

Figure 2: System Architecture

with NULL in the view. The set of sensitive cells are added into a

set of hidden cells (ℎ𝑖𝑑𝑒𝑐𝑒𝑙𝑙𝑠) which will be finally hidden in the

secure view (V𝑆) that is shared with the user U. Next, the algorithm
generates the cuesets for cells in ℎ𝑖𝑑𝑒𝑐𝑒𝑙𝑙𝑠 using 𝑆Δ and V (Infer-
ence Detection, Step 3). Given the cuesets, the algorithm chooses a

set of cells to hide such that the selected cells covers each of the

cuesets (Inference Protection). This process of cueset identification
protection continues iteratively as new hidden cells get added. The

algorithm terminates when for all of the cuesets there exists a cell

that is already hidden. Finally, we replace the value of ℎ𝑖𝑑𝑒𝑐𝑒𝑙𝑙𝑠 in

V𝑆 (initialized to V) with NULL and returns this secure view to the

user (Steps 13-16). The following theorem (proof included in the

extended version) states that the algorithm successfully implements

the recursive hiding of cells in C𝐻 which is required for generat-

ing a querier view that achieves full deniability (as discussed in

Theorem 4.5).

Theorem 5.1. When Algorithm 1 terminates, ∀c
𝑖
∈ C𝐻 , ∀ ˜𝛿 ∈ 𝑆Δ,

for all 𝑐𝑢𝑒𝑠𝑒𝑡 (c
𝑖
, ˜𝛿) that is non-empty, there exists c

𝑗
∈ 𝑐𝑢𝑒𝑠𝑒𝑡 (c

𝑖
, ˜𝛿)

such that c
𝑗
∈ C𝐻 (i.e., Algorithm 1 has recursively hidden at least 1

cell from all the non-empty cuesets of cells in C𝐻).

5.2 Inference Detection
Inference detection (Algorithm 2) takes as input the set of sensitive

cells (C𝑆), the set of schema-level dependencies (𝑆Δ), and a view

of the database (V) in which sensitive cells are hidden by replac-

ing with and others are assigned the values corresponding to the

instance. For each sensitive cell c∗, we consider the given set of

dependencies 𝑆Δ and instantiate each of the relevant dependencies

𝛿 using the database view V (Steps 5-7). The DepInstantiation func-

tion returns the corresponding instantiated dependency
˜𝛿 . For each

such dependency instantiation, if it is a dependency containing a

single predicate i.e.,
˜𝛿 = ¬(Pred) where Pred = c∗𝜃c

𝑘
, we add the

non-sensitive cell (c
𝑘
) to the cueset (Steps 9, 10). If the dependency

contains more than a single predicate, we determine if there is leak-

age about the value of the sensitive cell by checking the Tattle-Tale

Condition (TTC) for the sensitive cell c∗ (Step 11)6. If𝑇𝑇𝐶 (˜𝛿 ,V, c∗)
evaluates to False, we can skip that dependency instantiation as

6
While not shown in the algorithm for simplicity, when an input cell is sensitive in a

FC instantiation, if the FC is non-invertible we ignore its cuesets as they are empty.

2443

Algorithm 2: Inference Detection

Input: A set of sensitive cells C𝑆 , Schema-level data

dependencies 𝑆Δ, A view of the database V
Output: A set of cuesets 𝑐𝑢𝑒𝑠𝑒𝑡𝑠

1 Function InferenceDetect(C𝑆 , 𝑆Δ, V):
2 cuesets = { }

3 for c∗ ∈ C𝑆 do
4 𝑆𝑆Δ = { } ⊲ Set of instantiated dependencies.

5 for 𝛿 ∈ Δ do
6 𝑆𝑆Δ = 𝑆𝑆Δ ∪ DepInstantiation(𝛿 , c∗, V)
7 end
8 for ˜𝛿 ∈ 𝑆Δ do ⊲ For each instantiated dependency.

9 if |Preds(˜𝛿) | = 1 then
10 cueset = {c

𝑘
} ⊲ Note: Pred (c∗) = c∗𝜃c

𝑘

11 else if 𝑇𝑇𝐶 (˜𝛿 ,V, c∗) = 𝐹𝑎𝑙𝑠𝑒 then
12 continue
13 else
14 cueset = 𝑐𝑒𝑙𝑙𝑠 (Preds(˜𝛿\c))
15 end
16 cuesets.add(cueset)

17 end
18 end
19 return cuesets

there is no leakage possible on c∗ due to it (Step 12). However,

if 𝑇𝑇𝐶 (˜𝛿 ,V, c∗) evaluates to True, we get all the cells except for

Pred (c∗) (Step 14)
7
. After iterating through all the dependency

instantiations for all the sensitive cells, we return cuesets (Step 19).

Note that in our inference detection algorithm, we did not choose

the non-sensitive cell c′ in Pred (c∗) = c∗𝜃c′ as a candidate for

hiding. We illustrate below using a counter-example why hiding c′

might not be enough to prevent leakages.

Example 7. Consider a relation with 3 attributes 𝐴1, 𝐴2, 𝐴3 and 3

dependencies among them (𝛿1 : 𝐴1 → 𝐴2, 𝛿2 : 𝐴2 → 𝐴3, 𝛿3 : 𝐴1 →
𝐴3). Let there be two tuples in this relation 𝑡1 : 1(c

1
), 2(c

2
), 2(c

3
)

and 𝑡2 : 1(c
4
), 2(c

5
), 2(c

6
). Suppose c

6
is sensitive. As leakage of

the sensitive cell is possible through the dependency instantiation

˜𝛿
2
: ¬((c

2
= c

5
) ∧ (c

3
= c

6
)), c

5
is hidden. In the next iteration of

the algorithm, to prevent leakages on the hidden cell c
5
through

dependency instantiation
˜𝛿
1
: ¬((c

1
= c

4
) ∧ (c

2
= c

5
)), c

2
is also

hidden. Note that c
2
is in the same predicate as c

5
in

˜𝛿
1
. However, the

querier can still infer the truth value of the predicate c
2
= c

5
as True

based on the two non-hidden cells, c
1
and c

4
, and the dependency

instantiation
˜𝛿
3
: ¬((c

1
= c

4
) ∧ (c

2
= c

5
)). The querier also learns

that c
3
= c

6
evaluates to True in ˜𝛿

2
which leads to them inferring

that c
6
= 2 (same as c

3
) and complete leakage. □

7
If we wish to relax the assumption that queriers and data owners do not overlap

stated in Section 3.1, we can do so here by only including the cells in the cueset that

do not belong to the querier. We prove the correctness of this modification in the

extended version [27].

Algorithm 3: Inference Protection
Input: Set of cuesets cuesets
Output: A set of cells selected to be hidden toHide

1 Function InferenceProtect(𝑐𝑢𝑒𝑠𝑒𝑡𝑠):
2 toHide = {} ⊲ Return list initialization.

3 while cuesets ≠ 𝜙 do
4 cuesetCells = Flatten(cuesets)
5 dict[c

𝑖
, 𝑓 𝑟𝑒𝑞𝑖] = CountFreq(GroupBy(cuesetCells))

6 cellMaxFreq = GetMaxFreq(dict[c
𝑖
, 𝑓 𝑟𝑒𝑞𝑖])

7 toHide.add(𝑐𝑒𝑙𝑙𝑀𝑎𝑥𝐹𝑟𝑒𝑞) ⊲ Greedy heuristic.

8 for cs ∈ cuesets do
9 if cs.overlaps(toHide) then
10 cuesets.remove(cs)
11 end
12 end
13 return toHide

To prevent any possible leakages on the sensitive cell c∗ and its

corresponding predicate Pred (c∗), we only consider the solution

space where a cell from a different predicate (Preds(˜𝛿\c∗)) is hidden.

5.3 Inference Protection
After identifying the cuesets for each sensitive cells based on their

dependency instantiations, we now have to select a cell from each

of them to hide to prevent leakages. The strategy for cell selection,

described in Algorithm 3 utilizes Minimum Vertex Cover (MVC) [7]

to minimally select the cells to hide from the list of cuesets. In

this approach, each cueset is considered as a hyper-edge and cell

selection strategy finds the minimal set of cells that covers all the

cuesets. MVC is known to be NP-hard [11] and therefore we utilize

a simple greedy heuristic based on the membership count of cells

in various cuesets. Algorithm 3 takes as input the set of cuesets

and returns the set of cells to be hidden to prevent leakages. First,

we flatten all the cuesets into a list of cells and insert this list into

a dictionary with the cell as key and their frequency count as the

value (Steps 4-5). Next, we select the cell from the dictionary with

the maximum frequency and add it to the set of cells to be hidden

and remove any cuesets that contain this cell (steps 7-10). These

steps are repeated until all the cuesets are covered i.e., at least one

cell in it is hidden, and finally we return the set of cells to be hidden.

5.4 Convergence and Complexity Analysis
Algorithm 1 starts with 𝑠 number of hidden cells. At each iteration,

we consider that each hidden cell (including cells are hidden in previ-

ous iterations) is expanded to 𝑓 number of cuesets on average by the

Inference Detection algorithm (Algorithm 2). Among the cuesets,

the average number of cells that are hidden, such that it satisfies full

deniability, is given by
𝑓
𝑚 where𝑚 is the coverage factor determined

by minimum vertex cover (MVC). Then, at the end of 𝑖th iteration,

the number of average hidden cells will be 𝑠𝑖 = 𝑠 (𝑓
𝑚)𝑖 , and the

average number of cuesets will be 𝑐𝑠𝑖 = 𝑠 𝑓 (𝑓
𝑚)𝑖−1. As 𝑠𝑖 is bounded

by the total number of cells in the database, denoted by 𝑁 , the

2444

number of iterations (𝑇) to converge is bounded by log𝑓 /𝑚 (𝑁 /𝑠),
when 𝑓 > 𝑚 (which was verified in our experiments).

Given |Δ| which is the number of schema-level dependencies,

we can estimate the time complexity with respect to I/O cost. At

𝑖th iteration of Algorithm 1, the I/O cost of (i) the dependency

instantiation is O(|Δ| (𝑁 + 𝑠𝑖)) (implemented using a “JOIN” query

given sufficient, i.e. Θ(𝑁), memory) and (ii) minimum vertex cover

(MVC) with an I/O cost of O(𝑐𝑠𝑖). Hence, the overall estimated I/O

cost

∑𝑇
𝑖=1 O(|Δ| (𝑁 + 𝑠𝑖)) + O(𝑐𝑠𝑖) in which is equivalent to O(𝑁)

given 𝑇 ≤ log𝑓 /𝑚 (𝑁 /𝑠) and thus is linear to the data size.

6 DISCUSSION
While full deniability studied in this paper offers a strong security

model to protect sensitive data from inference attacks through

data dependencies, it is not without limitations. In this section,

we discuss these limitations and explore possible extensions to

overcome them.

6.1 Weaker Security Model
The first potential limitation is from the perspective of utility as

full deniability hides a number of non-sensitive cells to prevent

leakages. It is possible to relax full deniability to a weaker security

model which we call, k-percentile deniability in order to potentially

hide fewer cells and thus improve utility.

Definition 6.1 (k-percentile Deniability). Given a set of sensitive

cells C𝑆 in a database instance D and a set of instantiated depen-

dencies 𝑆Δ, we say that a querier view V achieves k-percentile

deniability if for all c∗ ∈ C𝑆 ,
|I(c∗ |V, 𝑆Δ) | ≥ (𝑘 · |I(c∗ |V0, 𝑆Δ) |) (7)

where
1

|I(c |V0,𝑆Δ) | ≤ 𝑘 ≤ 1.

Note that if 𝑘 = 1, then k-percentile deniability is the same as

full deniability, where the set of values inferred by the adversary

from view V is the same as the set from the base view. With 𝑘 < 1,

it allows for a bounded amount of leakage. We also note that the

security models used in prior works is subsumed by the notion

of 𝑘-percentile deniability defined above. For instance, the model

used in [3] ensures that the querier cannot reconstruct the exact

value of the sensitive cell using data dependencies, which can be

viewed as a special case of 𝑘-percentile deniability with the value

of 𝑘 = 2

|I(c |V0,𝑆Δ) | , i.e., the number of values sensitive cell can take

is more than 1.

We discuss 𝑘-percentile deniability in detail in the extended

version of the paper. In Section 7, we show that the algorithm

that achieves 𝑘-percentile deniability only marginally improves on

full deniability even with low values of 𝑘 (i.e., complete leakage).

Therefore this approach is not useful in improving the utility in

realistic settings. It is possible that in more complex domains with

large number of sensitive cells, 𝑘-percentile deniability is more

effective and this needs to be studied further.

6.2 Limitations of Security Model
The second potential limitation is from the perspective of security

as our security model is based on the assumption that no correla-

tions exist between attributes and tuples i.e., they are independently

distributed other than what is explicitly stated through dependen-

cies (that are either learnt automatically or specified by the expert).

However, typically in databases, other correlations do exist which

can be exploited to infer the values of the hidden cells. These correla-

tions can be also learned by the database designer using dependency

discovery tools or data analysis tools. If the correlations are very

strong (e.g. hard constraints with no violations in the database), we

call them out as constraints and consider them in our algorithms.

For weak correlations, or soft constraints that only apply to a por-

tion of the data, we do not consider them. Otherwise, everything in

the database will become dependent, in which case our algorithm

would be too conservative and hide more cells than necessary based

on these soft constraints.

Hence, in our experiments (Section 7), we consider only the data

dependencies (a set of hard constraints) that were defined on the

database. To understand how this assumption plays out in inference

attacks, we deployed a data cleaning adversary who tries to exploit

all possible correlations in the data to reconstruct the values of the

sensitive cells. The results (Section 7.4) show that by considering

the major data dependencies, the adversary is only able to recover

a small portion of the sensitive cells (14 out of 90 sensitive cells).

7 EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation results for

our proposed approach to implement full-deniability. First, we ex-

plain our experimental setup including details about the datasets,

dependencies, baselines used for comparison, evaluation metrics,

and system setup. Second, we present the experimental results for

each of the following evaluation goals: 1) comparing our approach

against baselines in terms of utility, performance, and number of

cuesets generated; 2) evaluating the impact of dependency connec-
tivity, and 3) studying the extensions and limitations presented

in Section 6. The dataset schemas, list of data dependencies, and

results on a larger dataset are included in the extended version[27].

7.1 Evaluation Setup
Datasets. We perform our experiments on 2 different datasets. The

first one is Tax dataset [2], a synthetic dataset with 10k tuples and

14 attributes, where 10 of them are discrete domain attributes and

the rest are continuous domain attributes. Every tuple from the tax

table specifies tax information of an individual with information

such as name, state of residence, zip, salary earned, tax rate, tax

exemptions etc. The second dataset is the Hospital dataset [5] which
is a real-world dataset where all of the 15 attributes are discrete

domain attributes.

Data Dependencies. For both datasets, we identify a large num-

ber of denial constraints by using a data profiling tool, Metanome

[25]. Many of the output DCs identified by Metanome were soft

constraints which are only valid for a small subset of the database

instance. After manually analyzing and pruning these soft DCs, we

selected 10 and 14 hard DCs for the Tax dataset and the Hospital

dataset respectively. We also added a FC based on the continuous

domain attribute named “tax" which is calculated as a function

“tax = 𝑓 𝑛(salary, rate)”.
Policies. (described in Section 2) control the sensitivity of a cell.

The number of sensitive cells is equivalent to the number of policies

2445

Figure 3: (a) Data utility (b) Performance. Experiments done
on Tax dataset for Our Approach, Random Hiding, and Obliv-
ious Cueset.

and it helps us in precisely controlling the number of sensitive cells

in experiments using policies. While the experiments are performed

for a single querier, the extension to multiple queriers is trivial.

Metrics. We compare our approach against the baseline methods

using the following metrics: 1) Utility: measures the number of total

cells hidden; 2) Performance: measures the run time in seconds.

System Setup. We implemented the system in Java 15 and build the

system dependencies using Apache Maven. We ran the experiments

on a machine with the following configuration: Intel(R) Xeon(R)

CPU E5-4640 2.799 Ghz, CentOS 7.6, with RAM size 64GB.We chose

as the underlying database management system MySQL 8.0.3 with

InnoDB. For each testcase, we perform 4 runs and report the mean

and standard deviation.

Baselines. In the following experiments we test our approach

which implements Algorithm 1, denoted by Our Approach against

baselines. To best of our knowledge, there exists no other systems

which solves the same problem and therefore we have developed

2 different baseline strategies for comparison. In each baseline

method, we replace one of the key modules in our system, deter-

mining cuesets and selecting cell to hide from the cueset, with a

naïve strategy but without compromising full deniability of the

generated querier view.

• Baseline 1: Random selection strategy for hiding (Random Hid-
ing): which replaces the minimum vertex cover approach with

an inference protection strategy that randomly selects cells from

cuesets to hide.

• Baseline 2: Oblivious cueset detection strategy (Oblivious Cue-
set): which disregards Tattle-Tale Condition and uses an inference

detection strategy that creates as many dependency instantiations

as the number of tuples in the database for each dependency and

generates cuesets for all of them.

7.2 Experiment 1: Baseline Comparison
We compare our approach against the aforementioned baselines

and measure the utility as well as performance (see Figure 3(a)).

We increase the number of policies from 10 to 100 (step=10) where

each each sensitive cell participate in at least 5 dependencies. This

ensures that there are sufficient inference channels through which

information about sensitive cells could be leaked. The number of

cells hidden by Our Approach increases linearly w.r.t the increase

in number of policies/sensitive cells compared to Random Hiding
(5.3×Our Approach) and Oblivious Cueset (1.4×Our Approach). Ran-
dom Hiding performs the worst because it randomly hides cells

Figure 4: (a) Number of cuesets generated in each invocation
of Inference Detection (b) Number of cells hidden in each
invocation of Inference Protection. Experiments run with 10
sensitive cells on Tax dataset.

without checking the membership count of a cell in cuesets (as with

using MVC in Algorithm 3). The performance of Oblivious Cueset
is better because it uses the same Inference protection strategy as

Our Approach. However, it generates a larger number of cuesets

as it doesn’t check the Tattle-Tale Condition for the dependency

instantiations (like in Algorithm 2)) and therefore has to hide more

cells to ensure full deniability.

We also compare the performance (run time in seconds) against

number of policies of these 3 approaches (see Figure3(b)). The

run time of Our Approach is almost linear w.r.t the increase of

the number of policies. On the other hand, Oblivious Cueset is
exponential w.r.t number of policies, because it generates O(|Δ | ×
𝑛2) cuesets where 𝑛 denotes the number of tuples in D and it is

expensive to run inference detection on such a large number of

cuesets. In Random Hiding, we restrict the execution to the fifth

invocation of the inference detection algorithm (Algorithm 2) i.e., if

the execution doesn’t complete by then, we force stop the execution.

In order to study this further, we analyzed the total number of

cuesets generated by Random Hiding vs. Our Approach (see Figure

4) in each invocation of Inference Detection. Due to the usage of

MVC optimization in Inference Protection,Our Approach terminates

after a few rounds where as with Random Hiding the number of

cuesets generated in each invocation keeps increasing. We also note

that Our Approach is more stable in different test cases and has a

lower standard deviation on number of cuesets and hidden cells

compared to Random Hiding.

7.3 Experiment 2: Dependency Connectivity
In the next set of experiments, we study the impact of dependency

connectivity on the utility as well as performance. The relationship

between dependencies and attributes can be represented as a hyper-
graph wherein the attributes are nodes and they are connected via

data dependencies. We define the dependency connectivity of a node,

i.e., an attribute, in this graph based on the summation of the degree

(number of edges incident on the node) as well as the degrees of all

the nodes in its closure. Using dependency connectivity, we catego-

rize attributes on Tax dataset into three groups: low, medium, and

high where attributes in high, low, and medium groups have the

highest, lowest, and average dependency connectivity respectively.

In Tax dataset, the high group contains 3 attributes (e.g. State),

while the medium group has 3 attributes (e.g. Zip) and the low

group includes 4 attributes (e.g. City).

2446

Figure 5: (a) Data utility (b) Performance. Experiments run
with sensitive cells selected from (low, medium, high) depen-
dency connectivity attributes in Tax dataset.

The results (see Figure 5) show that when sensitive cells are

selected from attributes with higher dependency connectivity, Our
Approach hides more cells than when selecting sensitive cells with

lower dependency connectivity. This is because higher dependency

connectivity leads to a larger number of dependency instantiations

and therefore a larger number of cuesets from each of which at

least one cell should be hidden.

7.4 Experiment 3: Extensions
In the final set of experiments, we test the extensions and limitations

of Our Approach discussed in Section 6. First, we implemented Our
Approach with a relaxed notion of security, 𝑘-percentile deniability,

where 𝑘 is a relative parameter based on the domain size of the

sensitive cell. We analyze the utility of Our Approach when varying

𝑘 and measure the utility. For the results shown in Figure 6(a), the

sensitive cell is selected from “State” which is a discrete attribute

with high dependency connectivity. Clearly, when 𝑘 = 0, i.e., full

leakage, Our Approach will only hide sensitive cells and when 𝑘 = 1

i.e, Full deniability, Our Approach hides the maximum number of

cells. When 𝑘 = 0.5, i.e., the inferred set of values is half of that

of the base view, Our Approach hides almost the same number of

cells as 𝑘 = 1 i.e., full deniability. When 𝑘 = 0.1, i.e, the inferred set

of values is
1

10
of that of the base view, Our Approach hides ≈ 15%

less cells than the one that implements full deniability. On the

Hospital dataset (results included in extended version), the utility

improvement was marginal with k set to the smallest value possible

(besides full leakage) i.e., 𝑘 = 1

|Dom(c∗) | . We note that Our Approach
that implements full deniability is able to provide high utility with

a stronger security model on both datasets compared to the one

that implements 𝑘-percentile deniability.

Second, we study the effectiveness of Our Approach against in-

ference attacks, i.e., to what extent can an adversary reconstruct the

sensitive cells in a given querier view. We consider two types of ad-

versaries. The first type of adversary uses weighted sampling where

for each sensitive cell c∗, the adversary learns the distribution of

values in Dom(c∗) by looking at the values of other cells in the view.

The querier, then tries to infer the sensitive cell value by sampling

from this learned distribution. The second type of adversary uti-

lizes a state-of-the-art data cleaning system, Holoclean [29], which

compiles data dependencies, domain value frequency, and attribute

co-occurrence and uses them into training a machine learning clas-

sifier. The adversary then leverages this classifier to determine

Figure 6: (a) Data utility on Tax dataset. Experiments done
with full deniability and k-deniability (varying values of k).
(b) Reconstruction precision of sensitive cells with two types
of adversaries.

values of sensitive cells by considering them as missing data in the

database. The sensitive cell for this experiment is selected from

“State” which is a discrete attribute with high dependency connec-

tivity. We consider the 10 dependencies and drop the FC because

Holoclean doesn’t support it. We increase the number of policies

from 10 to 90 and input the querier view (in which the values of hid-

den cells are replaced with NULL) to both adversaries. We measure

the effectiveness by repair precision =
#correct repairs

#total repairs

(where a

repair is an adversary’s guess of the value of a hidden cell) and

therefore lower the repair precision of the adversary is, the more

effective Our Approach is.

The results “Holoclean (before)” in Figure 6 (b) show that when

only sensitive cells are hidden, an adversary such as Holoclean, is

able to correctly infer the sensitive cells. When additional cells are

hidden by Our Approach, indicated by “Holoclean (after)”, the maxi-

mumprecision of Holoclean is 0.15. On the other hand, theweighted

sampling employed by the other type of adversary, indicated by

“Weighted Sampling (after) ”, could reconstruct between 3% and 10%

of the sensitive cells. Note that Holoclean uses the learned data

correlations (and attribute co-occurrence, domain value frequency)

in addition to the explicitly stated data dependencies. However, it is

only able to marginally improve upon weighted random sampling

given the querier view generated by Our Approach.

8 RELATEDWORK
The challenge of preventing leakage of sensitive data from query

answers has been studied in prior work on inference control primar-

ily in the context mandatory access control (MAC) wherein policies

specify the security clearances for the users (subject) and the se-

curity classification/label for the data. Early work by Denning et
al. [9] designed commutative filters to ensure answers returned by

a query are equivalent to that which would be returned based on

authorized view for the user. This work, however, did not consider

data dependencies.

Preventing leakage through dependencies has been explored

along different directions. One such direction is to control infer-

ences by design time modifications by adding more MAC policies.

Qian et al. [28] developed a tool to analyze potential leakage due

to foreign keys in order to elevate the clearance level of data if

such a leakage is detected. Delugachi et al. [8] generalized the work

2447

in [28] and developed an approach based on analyzing a concep-

tual graph to identify potential leakage from more general types

of data associations (e.g., part-of, is-a). Later works such as [35],

however, established that inference rules for detecting inferences

at database design time is incomplete and hence is not a viable

approach for preventing leakage from query answers. Design time

approaches for disclosure control, however, have successfully been

used in restricted settings such as identifying the maximal set of

non-sensitive data to outsource such that it prevents inferences

about sensitive data [10, 18, 23, 24].

Prior work has also explored query time approaches to prevent

inferences from data dependencies. Thuraisingham [32] developed

a query control approach in the context of MAC policies that uses

an inference engine to determine if query answers can lead to

leakage (in which case the query is rejected). While [32] assumed a

prior existence of an inference detection engine, Brodsky et al. [3]
developed a framework, entitled DiMon, based on chase algorithm

for constraints expressed as Horn clauses. DiMon takes in current

query results, user’s query history, and Horn clause constraints to

determine the additional data that maybe inferred by the subject.

Similar to [32], if inferred data is beyond the security clearance of

the subject then their system refuses the query. Such work (that

identify if a query leaks/does not leak data) differs from ours since it

cannot be used be used directly to identify a maximal secure answer

that does not lead to any inferences — the problem we study in

this paper. Also, the above work on query control is based on a

much weaker security model compared to the full-deniability model

we use. It only prevents adversary from reconstructing the exact

value of a sensitive cell but cannot prevent them from learning new

information about the sensitive cell.

Miklau & Suciu [21] also study the challenge of preventing infor-

mation disclosure for a secret query given a set of views. Their secu-

rity model is based on perfect secrecy as they characterize whether

there exists any possible database instance for which information

disclosure is possible through sharing of views. Our problem setting

is different as we check for a given database instance whether it is

possible to answer the query hiding as few cells as possible while

ensuring full deniability. We could, of course, apply [21] to check

if a query is unsafe and in such a case disallow the query. Such a

usage of [21] will be extremely pessimistic as most queries will be

rejected for a database with non-trivial number of dependencies.

Differential Privacy (DP)mechanisms promises to protect against

an adversary with any prior knowledge [12]. In our problem setting

of access control, the data is either hidden or shared depending upon

whether it is sensitive which differs from querier to querier. This is

called the Truman model of access control [30], in which the query

is answered based on non-sensitive data. In such a model, the expec-

tation of a querier is that the result doesn’t include any randomized

answers. However, DP based mechanisms involve randomized an-

swers. Weaker notions of DP such as One-sided differential privacy

(OSDP) [20] aim to prevent inferences on sensitive data by using a

randomized mechanism when sharing non-sensitive data. An ad-

vantage of OSDP based approaches in the context of access control

is that they offer security guarantees without the knowledge of (or

the need to) explicitly specify data dependencies. However, such

techniques offer only probabilisitic guarantees (and cannot imple-

ment security guarantees such as full deniability), and that too with

the suppression of large amount of data. From the results on the

expected percentage of released non-sensitive data as a function

of privacy parameter 𝜖 presented in [20], OSDP suppresses approx.

91% non-sensitive data at 𝜖 = 0.1 and approx. 37% at 𝜖 = 1. In

contrast, our techniques requires only a very small percentage of

data to be suppressed by exploiting data dependencies explicity in

inference control. OSDP may allow some non-sensitive data to

be released based on a coin toss even when their values could lead

to leakage of a sensitive cell as it doesn’t take into account data

dependencies. The current model of OSDP only supports hiding at

the row level and is designed for scenarios where the whole tuple

is sensitive or not. It is non-trivial to extend to suppress cells with

fine-grained access control policies considered in our setting. Fur-

thermore, most DP-based mechanisms (including OSDP) assume

that no tuple correlations exist even through explicitly stated data

dependencies.

9 CONCLUSIONS
We studied the inference attacks on access control protected data

through data dependencies, DCs and FCs. We developed a new

stronger security model called full deniability which prevents a

querier from learning about sensitive cells through data dependen-

cies. We presented conditions for determining leakage on sensitive

cells and developed algorithms that uses these conditions to im-

plement full deniability. The experiments show that we are able to

achieve full deniability for a querier view without significant loss of

utility for two different datasets. In future, we would like to extend

the security model to not only consider hard constraints explicitly

specified in the form of data dependencies but also soft constraints

that exist as correlations between data items. The invertibilitymodel

in FCs could also be extended to model probabilistic relationship

between input and output cells, instead of being deterministic as

in the current model. Improving utility while implementing full

deniability is also an open challenge. In 𝑘-percentile deniability, the

improvement in utility as a factor of 𝑘 needs to be studied further as

factor of different properties of the dataset such as type of attributes,

dependency connectivity, dependency instantiations, and possible

number of cuesets for a given sensitive cell. Along with further

exploration of 𝑘-percentile deniability considered in our paper, one

could also consider releasing non-sensitive values (like in OSDP)

randomly instead of hiding all. However, this requires addressing

challenges of any inadvertent leakages through dependencies when

sharing such randomized data.

ACKNOWLEDGEMENTS
This work was supported by NSF under Grants 2032525, 1952247,

2008993, and 2133391. This material was based on research spon-

sored by DARPA under Agreement Number FA8750-16-2-0021. The

U.S. Government is authorized to reproduce and distribute reprints

for Governmental purposes not withstanding any copyright no-

tation there on. The views and conclusions contained here in are

those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed

or implied, of DARPA or the U.S. Government. We thank the re-

viewers for their detailed comments which helped to improve the

paper during the revision process.

2448

REFERENCES
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2002.

Hippocratic Databases. In Proceedings of 28th International Conference on Very
Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002. Morgan Kaufmann,

Hong Kong, China, 143–154. https://doi.org/10.1016/B978-155860869-6/50021-4

[2] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-

etsidis. 2007. Conditional Functional Dependencies for Data Cleaning. In Pro-
ceedings of the 23rd International Conference on Data Engineering, ICDE 2007.
IEEE Computer Society, Istanbul, Turkey, 746–755. https://doi.org/10.1109/ICDE.

2007.367920

[3] Alexander Brodsky, Csilla Farkas, and Sushil Jajodia. 2000. Secure Databases:

Constraints, Inference Channels, and Monitoring Disclosures. IEEE Trans. Knowl.
Data Eng. 12, 6 (2000), 900–919. https://doi.org/10.1109/69.895801

[4] Jiayi Chen, Jianping He, Lin Cai, and Jianping Pan. 2020. Disclose More and

Risk Less: Privacy Preserving Online Social Network Data Sharing. IEEE Trans.
Dependable Secur. Comput. 17, 6 (2020), 1173–1187. https://doi.org/10.1109/TDSC.
2018.2861403

[5] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.

Proc. VLDB Endow. 6, 13 (2013), 1498–1509. https://doi.org/10.14778/2536258.

2536262

[6] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting

violations into context. In 29th IEEE International Conference on Data Engineering,
ICDE 2013. IEEE Computer Society, Brisbane, Australia, 458–469. https://doi.

org/10.1109/ICDE.2013.6544847

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press, Cam-

bridge, MA, USA.

[8] Harry S. Delugach and Thomas H. Hinke. 1996. Wizard: A Database Inference

Analysis and Detection System. IEEE Trans. Knowl. Data Eng. 8, 1 (1996), 56–66.
https://doi.org/10.1109/69.485629

[9] Dorothy E. Denning. 1985. Commutative Filters for Reducing Inference Threats

in Multilevel Database Systems. In 1985 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, April 22-24, 1985. IEEE Computer Society, Oakland, CA, USA,

134–146. https://doi.org/10.1109/SP.1985.10017

[10] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Giovanni Livraga,

Stefano Paraboschi, and Pierangela Samarati. 2014. Fragmentation in Presence of

Data Dependencies. IEEE Trans. Dependable Secur. Comput. 11, 6 (2014), 510–523.
https://doi.org/10.1109/TDSC.2013.2295798

[11] Irit Dinur and Samuel Safra. 2005. On the hardness of approximating minimum

vertex cover. Annals of mathematics 162, 1 (2005), 439–485. https://doi.org/10.

4007/annals.2005.162.439

[12] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-

ferential Privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.

https://doi.org/10.1561/0400000042

[13] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Con-

ditional functional dependencies for capturing data inconsistencies. ACM Trans-
actions on Database Systems (TODS) 33, 2 (2008), 1–48. https://doi.org/10.1145/

1366102.1366103

[14] Csilla Farkas and Sushil Jajodia. 2002. The Inference Problem: A Survey. SIGKDD
Explor. 4, 2 (2002), 6–11. https://doi.org/10.1145/772862.772864

[15] Elena Ferrari. 2010. Access control in data management systems. Synthesis
lectures on data management 2, 1 (2010), 1–117. https://doi.org/10.1007/978-3-

031-01836-7

[16] Thomas D. Garvey, Teresa F. Lunt, Xiaolei Qian, andMark E. Stickel. 1993. Toward

a Tool to Detect and Eliminate Inference Problems in the Design of Multilevel

Databases. In Results of the Sixth Working Conference of IFIP Working Group 11.3
on Database Security on Database Security, VI: Status and Prospects: Status and
Prospects (Simon Fraser Univ., Vancouver, British Columbia, Canada). Elsevier

Science Inc., USA, 149–167.

[17] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013.

The LLUNATIC Data-Cleaning Framework. Proc. VLDB Endow. 6, 9 (2013), 625–
636. https://doi.org/10.14778/2536360.2536363

[18] Mehdi Haddad, Jovan Stevovic, Annamaria Chiasera, Yannis Velegrakis, and

Mohand-Said Hacid. 2014. Access Control for Data Integration in Presence of

Data Dependencies. In Database Systems for Advanced Applications - 19th Inter-
national Conference, DASFAA 2014 (Lecture Notes in Computer Science), Vol. 8422.
Springer, Bali, Indonesia, 203–217. https://doi.org/10.1007/978-3-319-05813-9_14

[19] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data de-

pendencies for query optimization: a survey. VLDB J. 31, 1 (2022), 1–22.

https://doi.org/10.1007/s00778-021-00676-3

[20] Ios Kotsogiannis, Stelios Doudalis, Samuel Haney, Ashwin Machanavajjhala, and

Sharad Mehrotra. 2020. One-sided Differential Privacy. In 36th IEEE International
Conference on Data Engineering, ICDE 2020. IEEE, Dallas, TX, USA, 493–504.
https://doi.org/10.1109/ICDE48307.2020.00049

[21] Gerome Miklau and Dan Suciu. 2004. A Formal Analysis of Information

Disclosure in Data Exchange. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 2004. ACM, Paris, France, 575–586.

https://doi.org/10.1145/1007568.1007633

[22] State of California Department Justice Office of the Attorney General. 2020. Cal-

ifornia Consumer Privacy Act CCPA. https://oag.ca.gov/privacy/ccpa. [Online;

accessed 01-Jul-2022].

[23] Kerim Yasin Oktay, Murat Kantarcioglu, and Sharad Mehrotra. 2017. Secure

and Efficient Query Processing over Hybrid Clouds. In 33rd IEEE International
Conference on Data Engineering, ICDE 2017. IEEE Computer Society, San Diego,

CA, USA, 733–744. https://doi.org/10.1109/ICDE.2017.125

[24] Kerim Yasin Oktay, Sharad Mehrotra, Vaibhav Khadilkar, and Murat Kantar-

cioglu. 2015. SEMROD: Secure and Efficient MapReduce Over HybriD Clouds. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. ACM, Melbourne, Victoria, Australia, 153–166. https://doi.org/10.1145/

2723372.2723741

[25] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix

Naumann. 2015. Data Profiling with Metanome. Proc. VLDB Endow. 8, 12 (2015),
1860–1863. https://doi.org/10.14778/2824032.2824086

[26] Primal Pappachan, Roberto Yus, Sharad Mehrotra, and Johann-Christoph Freytag.

2020. Sieve: A Middleware Approach to Scalable Access Control for Database

Management Systems. Proc. VLDB Endow. 13, 12 (jul 2020), 2424–2437. https:

//doi.org/10.14778/3407790.3407835

[27] Primal Pappachan, Shufan Zhang, Xi He, and Sharad Mehrotra. 2022. Don’t Be a

Tattle-Tale: Preventing Leakages through Data Dependencies on Access Control

Protected Data. https://doi.org/10.48550/ARXIV.2207.08757

[28] Xiaolei Qian,Mark E. Stickel, Peter D. Karp, Teresa F. Lunt, and Thomas D. Garvey.

1993. Detection and elimination of inference channels in multilevel relational

database systems. In 1993 IEEE Computer Society Symposium on Research in
Security and Privacy. IEEE Computer Society, Oakland, CA, USA, 196–205. https:

//doi.org/10.1109/RISP.1993.287632

[29] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-

Clean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10,
11 (2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[30] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. 2004. Extending

Query Rewriting Techniques for Fine-Grained Access Control. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management of Data (Paris,
France). Association for Computing Machinery, New York, NY, USA, 551–562.

https://doi.org/10.1145/1007568.1007631

[31] Kenneth A. Ross, Divesh Srivastava, Peter J. Stuckey, and S. Sudarshan. 1998.

Foundations of aggregation constraints. Theoretical Computer Science 193, 1-2
(1998), 149–179. https://doi.org/10.1016/S0304-3975(97)00011-X

[32] Bhavani M. Thuraisingham. 1987. Security checking in relational database

management systems augmented with inference engines. Comput. Secur. 6, 6
(1987), 479–492. https://doi.org/10.1016/0167-4048(87)90029-0

[33] Paul Voigt and Axel Von dem Bussche. 2017. The EU general data protection

regulation (GDPR). A Practical Guide, 1st Ed., Cham: Springer International
Publishing 10 (2017), 3152676.

[34] California Legislative Information website. 2020. California Online Pri-

vacy Protection Act (CalOPPA). https://leginfo.legislature.ca.gov/faces/codes_

displaySection.xhtml?lawCode=BPC§ionNum=22575. [Online; accessed

01-Jul-2022].

[35] Raymond W. Yip and Karl N. Levitt. 1998. Data Level Inference Detection in

Database Systems. In Proceedings of the 11th IEEE Computer Security Foundations
Workshop. IEEE Computer Society, Rockport, Massachusetts, USA, 179–189.

https://doi.org/10.1109/CSFW.1998.683168

2449

https://doi.org/10.1016/B978-155860869-6/50021-4
https://doi.org/10.1109/ICDE.2007.367920
https://doi.org/10.1109/ICDE.2007.367920
https://doi.org/10.1109/69.895801
https://doi.org/10.1109/TDSC.2018.2861403
https://doi.org/10.1109/TDSC.2018.2861403
https://doi.org/10.14778/2536258.2536262
https://doi.org/10.14778/2536258.2536262
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/69.485629
https://doi.org/10.1109/SP.1985.10017
https://doi.org/10.1109/TDSC.2013.2295798
https://doi.org/10.4007/annals.2005.162.439
https://doi.org/10.4007/annals.2005.162.439
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/1366102.1366103
https://doi.org/10.1145/1366102.1366103
https://doi.org/10.1145/772862.772864
https://doi.org/10.1007/978-3-031-01836-7
https://doi.org/10.1007/978-3-031-01836-7
https://doi.org/10.14778/2536360.2536363
https://doi.org/10.1007/978-3-319-05813-9_14
https://doi.org/10.1007/s00778-021-00676-3
https://doi.org/10.1109/ICDE48307.2020.00049
https://doi.org/10.1145/1007568.1007633
https://oag.ca.gov/privacy/ccpa
https://doi.org/10.1109/ICDE.2017.125
https://doi.org/10.1145/2723372.2723741
https://doi.org/10.1145/2723372.2723741
https://doi.org/10.14778/2824032.2824086
https://doi.org/10.14778/3407790.3407835
https://doi.org/10.14778/3407790.3407835
https://doi.org/10.48550/ARXIV.2207.08757
https://doi.org/10.1109/RISP.1993.287632
https://doi.org/10.1109/RISP.1993.287632
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.1145/1007568.1007631
https://doi.org/10.1016/S0304-3975(97)00011-X
https://doi.org/10.1016/0167-4048(87)90029-0
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=BPC§ionNum=22575
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=BPC§ionNum=22575
https://doi.org/10.1109/CSFW.1998.683168

